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Several models for simulation of personal exposure (PE) to
particle-associated polycyclic aromatic hydrocarbons (PAH)
have been developed and tested. The modeling approaches
include linear regression models (Model 1), time activity weighted
models (Models 2 and 3), a hybrid model (Model 4), a
univariate linear model (Model 5), and machine learning
technique models (Model 6 and 7). The hybrid model (Model
4), which utilizes microenvironment data derived from time-activity
diaries (TAD) with the implementation of add-on variables to
account for external factors that might affect PE, proved to be
the best regression model (R2 for B(a)P ) 0.346, p < 0.01; N
) 68). This model was compared with results from two machine
learning techniques, namely decision trees (Model 6) and
neural networks (Model 7), which represent an innovative
approach to PE modeling. The neural network model was
promising in giving higher correlation coefficient results for all
PAH (R2 for B(a)P ) 0.567, p < 0.01; N ) 68) and good
performance with the smaller test data set (R2 for B(a)P )
0.640, p < 0.01; N ) 23). Decision tree accuracies (Model 6)
which assess how precisely the algorithm can determine the
correct classification of a PE concentration range indicate good
performance, but this is not comparable to the other models
through R2 values. Using neural networks (Model 7) showed
significant improvements over the performance of hybrid
Model 4 and the univariate general linear Model 5 for test
samples (not used in developing the models). The worst
performance was given by linear regression Models 1 to 3
based solely on home and workplace concentrations and time-
activity data.

1. Introduction

Airborne particle-associated polycyclic aromatic hydrocar-
bons (PAH) are produced by high-temperature reactions such

as incomplete combustion and pyrolysis of fossil fuels and
other organic materials (1, 2). Nonoccupational sources of
PAH exposure can be subdivided between outdoor and
indoor. The outdoor sources include exhaust from motor
vehicles (3), tire wear debris, asphalt particles (4), forest fires,
and coal and oil burning (3). In indoor environments, PAH
are generated in fumes from various cooking oils (5), meat
cooking (6, 7), domestic wood burning (8), and from coal
briquettes and charcoal for domestic heating (9). Natural
gas home appliances, candles, incense burning (10), and glue
containing coal-tar pitch in the underlay of parquet floors
(11) were identified as other indoor sources. PAH are also
transferred inside from outdoors either from nearby sources
or due to long-range transport (12, 13). Nevertheless, an
important contribution to PAH indoor air levels comes from
environmental tobacco smoke (ETS) (7, 14).

Delgado-Saborit et al. (15) reported that PE to PAH may
be estimated from a) centrally located monitors, b) from the
combination of fixed-point monitors in individual microen-
vironments and activity data defining the times spent in each
of the microenvironments, or c) from direct PE monitoring
(16, 17). Liu et al. (18) argue that direct measurement of PE
to PAH via personal monitoring is the most accurate exposure
assessment method currently available; however, carrying
out personal monitoring at the population level is costly and
impractical. Serrano-Trespalacios et al. (19) and Wilson et
al. (20) report that centrally located monitors have a tendency
to underestimate exposures. Consequently, indirect estima-
tion via a combination of microenvironment concentrations
and personal time/activity diaries is an attractive alternative.
Earlier studies showed that modeled PE can provide a good
prediction of overall measured PE (21), and this offers an
effective means of estimating PE to these pollutants without
the considerable logistical difficulties of personal sampling.

Previous studies have quantified the level of contribution
of each microenvironment or activity to the total PE in the
nonoccupationally exposed population and have identified
sources affecting PE (22-24). The locations where time is
spent; the activity patterns, which determine the time spent
in different microenvironments; the type of activities in which
people are involved (21, 25); sociodemographics that define
time/activity patterns (26); and environmental factors such
as seasonality and community/area effect (27) all affect
personal exposure to air toxics.

The main aim of the Measurement and Modeling of Air
Toxic Concentrations for Health Effect Studies (MATCH)
study was to help advance our understanding of the causes
and magnitude of exposures to PAH and VOC and to establish
whether collecting lifestyle information is sufficient to model
PE reliably compared with exposures evaluated indepen-
dently by personal samplers (15). To date, the modeling of
PE to PAH has primarily focused on occupational exposures
which tend to come from a single dominant PAH source
(28). The challenge in modeling PE in nonoccupational
settings lies in the fact that the exposure to PAH is complex
due to their multitude of sources, both in indoor and outdoor
microenvironments. This paper compares a number of
models for 10 PAH using linear regression and supervised
machine learning techniques and tests the models with an
independent data set. Five models based on linear regression
techniques were developed. Two further models predict PAH
concentrations through the use of decision tree learning
algorithms and neural networks respectively.
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2. Methodology
2.1. Recruitment of Subjects. For the details of the mi-
croenvironment and PE sampling campaigns the reader is
referred to ref 29. The subjects were recruited according to
a matrix of determinants possibly effecting their PE, namely:
1) their geographical location subdivided as urban, suburban,
and rural in London, Birmingham, and South Wales; 2) those
who lived in close proximity to a trafficked road termed as
a first line (FL) property and those who did not; 3) those who
had a house with an integral garage (IG) or not; and 4) those
who were exposed to Environmental Tobacco Smoke (ETS)
or not. For further details on the recruitment strategy the
reader is referred to ref 30. The description of the data
collected related to the subjects participating in MATCH apart
from the air sampling is found in detail in ref 15.

2.1. Sampling and Analytical Methods. In summary, 100
healthy adult volunteers participated in this project, and one
24 h integrated PE sample was collected per subject, using
active sampling on a 47 mm quartz fiber filter. The samples
were then stored at -20 °C, extracted by solvent extraction,
and analyzed by gas chromatography-mass spectrometry
(GC-MS). For further details of the analytical methods, the
reader is referred to ref 31.

2.2. Data Collection. A thirty-minute resolution time
activity diary (TAD) was recorded by each subject ac-
companying the PE sample. Apart from recording the location
where the subjects were, they were asked to note down what
activities they were performing, if there was any ventilation
when residing indoors, indicating if doors or windows were
open, and if they were exposed to ETS. If the subjects traveled
to other places apart from their home they were asked to
indicate the places visited and the routes they had taken.
Microenvironment concentrations (residential indoors, out-
door, transport, and workplaces) were also measured and
are discussed in ref 32. Wherever possible, samples for each
microenvironment were collected during the morning rush
hour and in the afternoon, once in summer and once in
winter. During the microenvironment sampling the average
ambient temperature and relative humidity were recorded.
While sampling, further details on weather and traffic
conditions, any ETS close to the sampler and other details
that might have been useful in understanding the PAH
sources were recorded in an Information Sheet. The Sampling
Questionnaire gathered information on activities carried out
involving the use of solvents or generation of particles in the
house or the immediate vicinity that affected the PE on
sampling day. The ETS Questionnaire contained detailed
information on the number of smokers, number of cigarettes
smoked, indoors or outdoors, and at which distance from
the sampler these were smoked. Further details on the
ventilation modes in operation in the enclosed space were
also noted down. The Storage Questionnaire served to have
information on possible PAH sources in the integral garage
of a house. The Location Sheet Questionnaire identified
the route the subjects took to go to places out of the house
and their proximity to roads. The indoor characteristics of
these places, such as their location compared to street level
and any possible sources related to redecoration and
smoking, were also recorded. These questionnaires are
available in Appendix 3 of ref 30.

2.3. Model Development. The models developed to
predict the PE to PAH were based on measured data in various
microenvironments and TADs. Two independent, measured
PE data sets were chosen to develop and validate the PE
model. 75% of the data set (68 samples) was used to develop
the model and hereinafter will be termed the training data
set, and the remainder 25% (23 samples) was kept to validate
it, referred to as the testing data set. The remainder, 9% of
the collected samples (9 samples), was used in the analytical
method development and hence not available for modeling

purposes. For the model development and validation, the
data were chosen randomly (refer to Table S1) but ensuring
an approximately equal proportion of ETS-exposed subjects
in each data set based upon the corresponding 3-ethenylpy-
ridine (3-EP) concentrations. 3-EP is an ETS marker that was
collected concurrently with PAH. Data were analyzed using
SPSS 15 for Windows (SPSS Inc.1989-2006, Release 15.0.0).
As the PAH data distributions were generally positively
skewed, log transformed data were used in all statistical
analyses.

Using the collected data, various models have been
developed to predict PE to PAH. A summary of the models
developed is given hereunder.

i. Linear Regression Model - Model 1. Model 1 assessed
associations between PE and microenvironment concentra-
tions measured in homes and workplaces directly related to
every subject. The equations used in Model 1 were

where Yi is the measured personal exposure for a subject i,
R and � are the intercept and the slope, respectively, Xi,home

is the average home concentration for the subject i, and
Xi,workplace is the workplace concentration for subject i. The
terms εi represent the random error.

ii. Time Activity Weighted Model - Model 2. This model
predicted the PE by summing up every time fraction spent
in each microenvironment multiplied by the concentration
of each microenvironment visited as shown in eq 3

where Pij is personal predicted exposure for a subject i on
a day j, tijk is the time spent in microenvironment k by subject
i on a day j, Xik is the concentration, representative of
microenvironment k for subject i, and Tij is the total time
spent in all different microenvironments for subject i on a
day j, which is the same as the sampling time for subject i
on a day j.

The microenvironment concentrations used in Model 2
for homes and workplaces were the data collected directly
in each subjects’ home and workplace. That is 21 workplaces
and 59 home microenvironments for PAH. For those subjects
where no data for home or work were available and for all
the rest of the microenvironments (streets, transport and
other indoor microenvironments) an average concentration
representative of each microenvironment was used (Sup-
porting Information - Table S2).

iii. Time Activity Weighted Model - Model 3. This predicted
the PE by summing up the time fraction spent in each
microenvironment multiplied by the concentration of each
microenvironment visited as described by eq 3. In this model,
the microenvironment concentrations used for homes and
workplaces were not the actual collected data for each
subject’s home and workplace but an average value, rep-
resentative of the microenvironment. Thus eq 3 was slightly
modified to

where Xk is the concentration representative of microenvi-
ronment k. For this purpose a detailed list of stratified
microenvironment concentrations has been developed for
all the microenvironments, namely homes, workplaces,
streets, transport, and other indoor microenvironments
taking into account and applying different strata such as

log(Yi) ) R + �*log(Xi,home) + εi (1)

log(Yi) ) R + �*log(Xi,workplace) + εi (2)

Pij ) ∑ tijk*Xik

Tij
(3)

Pij ) ∑ tijk*Xk

Tij
(4)
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location, season, time of the day traffic exposure, and ETS
exposure (Supporting Information - Table S3).

iv. Hybrid Model - Model 4. Model 4 predicted the PE by
summing up the time fraction spent in each microenviron-
ment multiplied by the concentration of each microenvi-
ronment visited and accounting also for external factors that
might affect exposure as add-on variables

where Yij is the observed personal exposure for a subject i
on a day j, Pij is the predicted personal exposure for a subject
i on a day j as calculated in Model 3, R is the coefficient
associated with personal exposure Pij, Am are different
explanatory variables describing activities performed on a
day j by a volunteer i or characteristics associated to a
volunteer i, �m is the coefficient associated with the explana-
tory variable Am, Fn represents the time spent in doing
different activities, and γn is the coefficient associated with
the factor Fn.

The explanatory variables, Am, associated with activities
were extracted from the TAD, the ETS, and Activity Ques-
tionnaires. The explanatory variables related to characteristics
were extracted from the Sampling, ETS, and Storage and
Location Sheet questionnaires. The explanatory variables
have a value of 1 if the activity is performed or the
characteristic is present, and 0 if not. The variables repre-
senting the time associated with different variables, Fn, were
measured in minutes and were extracted from the TAD and
the Location Sheets for Traveling. A total of 63 add-on
variables (an example of these add-ons would be Time in
ETS, entering the value in minutes would indicate the time
that the subject was exposed to smoke), Am and Fn, extracted
from the available information were included into the model
(Supporting Information - Table S4).

The PE models were developed in three steps. Initially,
using a stepwise option, the linear regression model identified
the optimum number of variables to get the highest cor-
relation coefficient. The criterion followed to enter new
variables was to have a probability of F less than or equal to
0.05. The criterion to remove variables was if the probability
of F was greater than or equal to 0.10. In the second stage
the variables selected automatically by the statistical package
were checked to have a scientific meaning and that the least
number of selected variables explained most of the variation.
The final linear regression model would enter the selected
variables from the previous stage.

The best model developed with the training data set was
used to predict concentrations in the testing data set, and
the most important variables for each compound are
summarized in Table S5.

v. Univariate General Linear Model (UGLM) - Model 5.
To check if the Model 4 could be improved, a Univariate
General Linear Model (UGLM) was used. The predicted
concentration was related to a number of categorical (fixed)
variables (for example Summer, so if a value for this variable
is 1 it indicates the sample was taken in summer and the
contrary if 0) and other covariates (these are continuous
predictor variables for example Time-in-a-car which would
indicate the accumulation of time a subject spends in a car).
All the original variables drawn up for the PAH model were
entered, and a univariate analysis of variance was carried
out, each time removing the variable with the least signifi-
cance. This removal procedure was done repeatedly until
the variables remaining were statistically significant (p < 0.05),
and thus the GLM parameters were obtained. With reference
to Table S6, the model parameters for every PAH were
extracted and computed the predicted concentrations with
the training data set. The R2 of this approach shows that this
parsimonius model was not an improvement compared to

the Model 4 when run for the testing data set. However it is
notable that Model 5 enters variables into the model which
are different from the Model 4.

vi. Machine Learning Techniques - Decision Trees - Model
6. Apart from the models generated through linear regression,
the applicability of machine learning techniques to model
PE to PAH concentrations were investigated. Tree learning
methods allow for a clear and comprehensive class descrip-
tion to be learned from the provided samples. Through the
calculation of the information gain, the most important
parameters that affect the final PAH concentrations can be
determined from the top root nodes of the tree.

Various decision tree learning algorithms have been
proposed. Following work done by Hunt in the late 1950s
and early 1960s, Quinlan continued to improve on the
developed techniques and released the Iterative Dichot-
tomizer 3 (ID3) and the improved C4.5 decision tree learners
(33). In this study the C4.5 decision tree algorithm was used.

Ten PAH are treated independently, and separate data sets
each consisting of the 40 time-values corresponding to the
duration spent by each participant in the various microenvi-
ronment as well as the 63 other add-on boolean parameters
were initially generated and are tabulated in Table S7. Since
the C4.5 algorithm is a classification technique, the measured
concentrations were also binned into discretized sets covering
6 categories in the following concentration ranges: below
method detection limit -0.10 ng/m3 (Category A), 0.10-0.12
ng/m3 (Category B), 0.12-0.20 ng/m3 (Category C), 0.20-0.25
ng/m3 (Category D), 0.25-1.00 ng/m3 (Category E), and more
than 1.00 ng/m3 (Category F).

The European fourth air quality daughter Directive 2004/
107/EC, relating to PAH in ambient air, specifies a target
value for B(a)P of 1 ng m-3 (annual average) to be achieved
by 2012. In the UK, the Expert Panel on Air Quality Standards
(EPAQS) has recommended an Air Quality Standard of 0.25
ng m-3 B(a)P as an annual average. Based on these levels,
the classes A to F proposed above were determined, and
each sample was allocated to a nominal class.

Using the independent test data set, classification accuracy
describes the percentage of correctly classified testing
samples in the respective bins. To test classification accuracy,
10-fold cross-validation was used. This involves splitting the
data into ten sets from which nine sets are used to train the
classifier and the remaining set is used to test the inferred
tree. Repeating this process for nine other times will allow
each sample to be treated as a test case at least once. The
average accuracy was then computed after determining the
number of samples for which the classifier gave the expected
class.

vii. Neural Networks - Model 7. Another machine learning
technique that mimics the biological learning processes
occurring in the human brain was used. Neural networks
present a robust way to predict real-value concentrations
after learning from a supplied sample set. Such networks
connect a number of individual elements each of which take
a set of inputs and produce a single real number. The learning
algorithm determines numeric weights to apply between each
of these neurons to obtain the desired output. One main
advantage of this technique is that it can produce good results
even when supplying it with noisy and incomplete data.

A two-layer feed-forward network with sigmoid hidden
neurons and linear output neurons was fitted to the generated
data sets. The network was trained using the Levenberg-
Marquardt back-propagation algorithm. Twenty neurons
were set in the hidden layer. The generated data sets for each
compound representing 40 time values corresponding to the
duration spent by each participant in the various microen-
vironment as well as the 63 other add-on boolean parameters
(Table S7) were again used. As with the linear models, 75%
of the data were used to train the classifier, while 25% of the

Yij ) R·Pij + ∑ �mAm + ∑ γnFn (5)
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samples were left for testing. The correlation coefficient
between the measured data and the predicted modeled data
as predicted by a trained neural network was calculated for
each component. This made possible direct comparisons
with the linear regression model accuracies.

3. Results and Discussion
Descriptive statistics of the whole PAH measured data set,
the training and the testing data sets appear in Table S1 and
confirm that there was no bias in their choice. The results
of model development appear in Table 1.

Viewed across the full suite of compounds, neither Model
1 nor Model 2 performed well. The time-weighted Model 3
which used average stratified data for all the cases explained
less variability in personal exposure than the previous models.
This was a consequence of the difficulties encountered in
adequately stratifying home microenvironments with the
relatively small number of samples collected. Even when the
total sample size is fairly big (N ) 68 samples), the large
number of different strata to account for integral garage,
ETS exposure, first line properties or location within a city,
reduces considerably the sample size per stratum, even down
to just 2 samples per stratum. The range of activities that the
subjects were engaged to in their normal life was reflected
in the specific home and workplace levels. The stratified PAH
levels, representative of each different stratum of exposure,
did not reflect the various activities. To solve this difficulty,
the hybrid Model 4 used the concentrations calculated in
Model 3 and included a number of add-on variables that
represented activities or home characteristics, that could not
be reflected in the stratified data. None of the two proposed
time-weighted models (Model 2 and Model 3), which only
consider time spent in different microenvironments, could
adequately explain the variance of the PAH compounds.
However, Model 4 (Table 1), with the inclusion of add-ons
was able to explain 25-65% of the variance of the PAH
compounds (35% of variance for B(a)P). This model also
performed relatively well in predicting VOC exposures (15).
In the testing data set of Model 4, most R2 values were lower
(Table 4). The variables entered in Model 4 are described in
the Supporting Information, Table S4 and in Table S5.

When the performance of Model 4 was tested as to whether
predicted PE was above or below a threshold value in the
validation data set, the model was successful in correctly
classifying cases in the lower exposure band showing 83%
to 100% of correctly classified cases (Table S8). However, the
success rate decreased substantially when classifying cases
in the upper exposure band, for many compounds failing
totally to identify cases above the threshold. This is, however,
not unexpected as all the models showed a tendency to
underestimate the PE levels.

Results from Model 4, illustrated in Figure S2(a), show
that intercepts were generally close to zero in the training
data set, but the testing data set showed larger intercepts
(Figure S2(b)). Similarly, from the scatter plots of Figure S2(a)
and (b), correlating measured with predicted concentrations,
the model generally slightly underestimated the values in
the training data set and even more in the testing data set.

The model parameters entered and the corresponding R2

values for Model 5 are summarized in Table S6. Similar or
slightly higher values of R2 compared to Model 4 were
obtained for Pyr, B(a)A, Chry, B(a)P, D(a,h)A, and Cor (Table
1). Two variables, the number of cigarettes within 2 m from
the sampler (covariate) and the identification if the sample
was collected in summer (fixed variable), are significant for
almost all the PAH in both model approaches. Nevertheless,
Model 5 when run with the testing data set performed worse
than Model 4.

In the case of Model 6, Figure 1 shows an example of an
inferred decision tree for B(a)P, and the results for all
compounds are presented in Table 2. The accuracy values
were calculated by calculating how many modeled concen-
trations were classified in the correct bin. One main
disadvantage of this approach is that if the correct value is
very close to the upper or lower threshold of the bin and the
predicted value surpasses the threshold by a very small
amount, the sample is still considered to be incorrectly
classified. Another disadvantage is that the accuracy values
cannot be directly compared to the correlation coefficient
computed for the linear models (Models 1-5). While the R2

value indicates how well the predicted values match the
measured concentrations, the accuracies presented here
indicate how precise the algorithm is in determining the
correct class. Figure S3 shows the number of concentrations
modeled and measured in each category for B(a)A, B(a)P,
and D(a,h)A, respectively.

It is interesting to note that for the majority of the
compounds, the parameter representing the number of
cigarettes within 2 m was designated as the root of the tree
indicating a high information gain and hence a high
characterizing factor to the modeled PE. Parameters des-
ignated in first level nodes included those representing time
spent in a car, time spent in pub/bar/social club, and whether
the car driven had a diesel engine. Such attributes were also
found to have a high characterizing factor in the linear models
and hence have a significant effect on the PAH.

In Model 7, the resulting correlation coefficients obtained
after plotting the measured (expected) values versus the
predicted (modeled) results as outputted by the neural
network for the training set and the testing set are shown in
Table 1. Figure S4 shows the plots obtained for Pyr, B(a)P,
and D(a,h)A for modeled and measured concentrations. The

TABLE 1. Model Performance As Expressed by the Coefficient of Determination (R2) for Models 1-5 and 7a

model 1 model 2 model 3 model 4 model 5 model 7

compound

home
(N ) 36)

R2b

work
(N ) 20)

R2b
(N ) 68)

R2b
(N ) 68)

R2b

training
(N ) 68)

R2b

testing
(N ) 23)

R2b

training
(N ) 68)

R2b

testing
(N ) 23)

R2b

training
(N ) 68)

R2b

testing
(N ) 23)

R2b

pyrene 0.226 0.002 0.066 0.147 0.247 0.857 0.252 0.008 0.450 0.763
benzo(a)anthracene 0.184 0.009 0.024 0.015 0.661 0.261 0.695 0.008 0.752 0.714
chrysene 0.361 0.191 0.006 0.049 0.334 0.073 0.417 0.001 0.640 0.700
benzo(b)fluoranthene 0.121 0.502 0.000 0.023 0.278 0.360 0.274 0.001 0.509 0.706
benzo(k)fluoranthene 0.023 0.131 0.003 0.022 0.303 0.185 0.252 0.032 0.502 0.813
benzo(a)pyrene 0.107 0.194 0.000 0.040 0.346 0.185 0.393 0.019 0.567 0.640
indeno(1,2,3-cd)pyrene 0.068 0.307 0.000 0.032 0.282 0.148 0.165 0.003 0.434 0.797
dibenzo(a,h)anthracene 0.434 0.009 0.003 0.042 0.575 0.262 0.569 0.001 0.602 0.820
benzo(ghi)perylene 0.076 0.378 0.000 0.084 0.259 0.122 0.123 0.044 0.484 0.598
coronene 0.008 0.250 0.001 0.101 0.367 0.387 0.435 0.012 0.486 0.717

a Bold values represent significant correlation values at the p e 0.01 level. b Statistic.
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strong correlation between the measured and predicted
values achieved by Model 7 can be clearly seen in Figure S4.
Using this model, an increase in the calculated R2 for all
compounds is noted in Table 1.

The evolution of the linear regression Models 1-5
indicated that for this technique the hybrid Model 4 and the
UGLM Model 5 were the best approaches. An important
difference between Model 4 and Model 5 is that the models
identified different variables as determining the predicted
PAH concentration. Models 4 and 5 identify as add-on
variables those related to ETS (e.g., number of cigarettes
within 2 m), other combustion (e.g., incense burning), and
traffic (e.g., use of bus). The same sources have been widely
associated with PAH in the literature (1, 34, 35).

The two machine learning techniques tested performed
relatively well. As indicated in Table 2, Model 6 produced
some high classification accuracies. However, these cannot
be directly compared with the correlation coefficient results

produced by the linear regression methods and neural
networks. The cigarettes parameter used in several of the
predictive equations of Model 5 (Table S6) is identified by
Model 6 as the most significant, implying it is a crucial factor
influencing PE in nonoccupational settings.

The neural network results from Model 7 show significant
improvements on the outputs of Models 4 and 5 as shown
in Table 1 when dealing with the training data set and when
modeling PE from unseen samples (testing data set). This
good performance motivates further investigation to exploit
the potential of machine learning techniques for such
modeling and the use of support vector machines, Bayesian
statistics, and component analysis. Although the main
limitation was the relatively small number of samples to build
the microenvironment database and identify the factors
which are determinants of PE, the authors have confidence
that with larger data sets including more highly exposed
subjects, the hybrid model and the machine learning
algorithms will be able to predict PE more accurately.
However, and despite the small sample size, the main sources
affecting personal exposure to PAH, such as exposure to ETS
and traffic, have been successfully identified by several
different model approaches, enhancing our confidence in
the proposed models. These main PAH sources are incor-
porated into the models using a reduced set of add-on
variables, identified for each compound, which can be easily
collected from subjects using questionnaires and time activity
diaries. Therefore, using lifestyle information collected in
questionnaires, these models are capable of predicting PAH
exposures, which can be subsequently used in epidemio-
logical studies and to assess health risk associated with
exposures.

Deterministic models enable pollutant concentrations to
be modeled in a more dynamic way by taking into account

FIGURE 1. Decision tree for B(a)P determined by Model 6.

TABLE 2. Classification Accuracies of the Decision Tree
Learning Algorithm (Model 6)

compound accuracy/%

benzo(a)anthracene 69.4
benzo(a)pyrene 52.3
benzo(b)fluoranthene 36.4
benzo(ghi)perylene 27.5
benzo(k)fluoranthene 36.7
chrysene 30.7
coronene 39.8
dibenzo(a,h)anthracene 89.0
indeno(1,2,3-cd)pyrene 33.0
pyrene 18.3
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the space-time interactions that characterize pollution
processes in air or otherwise in order to use them to predict
PE. These models can be complementary to our empirical
models which use airborne PAH concentrations as input to
predict PE levels. Alternatively, while empirical models often
do not reflect the physical/chemical phenomena that cause
the exposures, they implicitly reflect the interdependencies
within the measured dependent and independent variables,
regardless of whether they are known or considered by the
modeler, making them suitable to be applied to other
locations and populations.

Finally, the terms in our models are specific to the data
set from which they have been calculated and hence caution
should be applied when extrapolating the proposed models
(i.e., selected variables and coefficients) to different geo-
graphical regions, countries, times, climates, and locations
with markedly different sources of pollutants (15). However,
the different modeling approaches proposed in this study
are suitable for application elsewhere, with the hybrid, and
machine learning technique models being recommended
for PAH exposures.
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