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Abstract

The edge-reconstruction number of a graph G is the minimum
number of edge-deleted subgraphs which are required to determine
the isomorphism type of G. Molina has shown that a disconnected
graph whose components are not all isomorphic has edge-reconstruc-
tion number at most three. He also showed that under certain condi-
tions, including the property that at least one component has a cycle,
the edge-reconstruction number is 2. In this paper we give an alter-
native proof of Molina’s main result, characterise those disconnected
graphs which have the largest possible edge-reconstruction number,
and we also investigate what properties can force a forest to have
edge-reconstruction number 2.

1 Introduction

The edge-reconstruction number of a graph G, denoted by ern(G) is equal to
the least number of edge-deleted subgraphs (also called edge-cards) which
alone can determine G up to isomorphism. The (vertez-)reconstruction
number, denoted by rn(G) is similarly defined as the least number of vertex-
deleted subgraphs (called vertez-cards) of G which alone can determine G.
Other graph theoretic definitions not given here can be found in [3] or [5]. In
this paper we shall study the edge-reconstruction number of a disconnected
graph G. Unless specifically stated otherwise, we will always assume that G
has at least two non-trivial components and at least four edges. We often
say that G is the union of its components. In [7] the following result is
proved.



Theorem 1.1 Let G be a disconnected graph with at least three edges and
at least two non-trivial components. Then

1. If not all components of G are isomorphic, then ern(G) < 3;

2. If all components are isomorphic then ern(G) <t + 2 where t is the
number of edges of a single component;

3. If there are two non-isomorphic components at least one of which has
a cycle and G does not have any components isomorphic either to K3
or Ky 3, then ern(GQ) < 2.

In this paper we shall give a short proof of the first part of Theorem
1.1 based on earlier work by Myrvold and Molina himself on the vertex-
reconstruction number of disconnected graphs, we shall characterise those
graphs in the second part of the theorem which have edge-reconstruction
number equal to t42 and we shall investigate forests, which are not covered
by the third part, which have edge-reconstruction number equal to 2.

We shall need the following result, first presented in [8] with the proof
corrected in [6], and the second appearing in [2].

Theorem 1.2 Let G be a disconnected graph. Then,

1. If not all components are isomorphic then rn(G) = 3, and one of the
three cards can always be chosen by deleting a non-cutvertex from a
component with a mazximal number of vertices;

2. If all components are isomorphic and each has ¢ vertices then rn(G) <
c+ 2.

Theorem 1.3 Let G be a disconnected graph in which all components are
isomorphic and each has ¢ vertices. If rn(G) > ¢+ 1, then G must be a
union of complete graphs K.. In particular, no graph with all components
isomorphic and having c vertices can have reconstruction number equal to
c+ 1.

We shall also need the concept of a line graph. The line graph L(G)
of a graph G is the graph whose vertices are the edges of G and such that
two vertices are adjacent in L(G) if and only if the corresponding edges
are adjacent in G. If e is an edge in G we often refer to the corresponding
vertex in L(G) as e*. We shall say that G is L-invertible if it can be
uniquely determined by its line graph. In that case, if G’ = L(G) then we
sometimes denote G' by L~1(G’). Tt is well known that the only connected
graphs which are not L-invertible are K3 and K 3, since both have K3 as
line graph; as in [7] we shall denote the set containing these two graphs by



S. Therefore a disconnected graph is L-invertible if and only if none of its
components is isomorphic to K3 or K; 3 or is an isolated vertex.

It is clear that if e is an edge of G and e* is the corresponding vertex
of L(G), then L(G —e) = L(G) — e*. From this observation we obtain
the following result which is a simple variation of a result of Greenwell and
Hemminger [4].

Lemma 1.1 For any L-invertible graph G, ern(G) < rn(L(G)).

Proof. Let rn(L(G)) = p. Therefore there exist vertices ej, ..., e, such
that L(G) is uniquely determined by L(G) —ej,..., L(G) — e;. We claim
that G —eq,...,G — e, reconstruct G uniquely, therefore ern(G) < p.
Take the line graphs of G —ey,...,G — e,. By the observation above,
these are L(G) —e7, ..., L(G) — ey, and therefore L(G) is determined. But
G is L-invertible, therefore L(G) gives us G, uniquely. O

2 Not all components are isomorphic

By Lemma 1.1 and the first part of Theorem 1.2, what we now need to do
in order to prove the first part of Theorem 1.1 is to tackle the case when
the disconnected graph is not L-invertible.

The following would appear to be a simple way to proceed. Let G be a
disconnected graph with at least two non-isomorphic components and not
all components coming from S. By Theorem 1.2, L(G) can be reconstructed
from three cards. Analogously to Lemma 1.1 we obtain Gy which is G
except for possibly a number of components which are triangles in L(G)
and which we do not know if they are K3 or K; 3 in G. But we know that
there are, say, k of them. Let A be the components of G not from S. From
G we know the total number p of vertices in the components in 4. From
any one of the subgraphs G — e we also know the total number g of vertices
of G. Therefore the number of vertices in the non-L-invertible components
is ¢ — p. So, let s and ¢ be the number of components in G isomorphic to
K 3 and K3, respectively. Therefore s+t = k and 4s+ 3t = ¢ — p, but we
know k and g — p, therefore we can find s and ¢ and hence G.

However, this approach fails because G' can have isolated vertices. Since
these are lost when taking line graphs, although we do know the right values
of p and ¢, we do not know whether the value of ¢—p is equal to the number
of vertices in the non-L-invertible components or whether it also contains
a number of isolated vertices. Therefore solving the above two equations
for s and t does give us the correct total number of components from S
in G but not the correct mix of stars and triangles. We therefore need to
proceed more carefully.



Figure 1: The two graphs with a member of S in an edge-card

As above, we first assume that G is a disconnected graph with at least
two non-isomorphic components and at least one of them is not in S. We
again let A be the collection of components of G none of which is isomor-
phic to a graph in S, that is, the L-invertible components, and let B the
components of G isomorphic to one or the other of the graphs in S (B could
be empty). Using line graphs of three appropriately (according to Theorem
1.2) chosen edge-cards we reconstruct the L-invertible components of G,
the number k of non-invertible components in B, but not the number of
isolated vertices. Let G — e be the edge-card corresponding to the vertex-
card of L(G) with maximal order (as per Theorem 1.2). If in G — e we see
the right number & of components from B then we are done. The problem
arises if in G — e there are more than the required k£ components from S.
Since, by Theorem 1.2 e* is not a cutvertex in L(G), this can only happen
if the edge e is taken from a component C' of G which is like either one of
the two in Figure 1. This way, in G — e there is one more component from
S than the correct number k.

Now if C' is the first graph H; shown in Figure 1, then G — e has one
less component isomorphic to H; than there are in A (remember that we
know A) and also an extra component than there should be in B. But then
there is only one way to add an edge to G — e such that a member of S is
transformed into H;. Therefore we have unique reconstruction in this case.
This argument however does not work when C' is Hy, because in this case
both K3 (plus an isolated vertex) and K4 3 can be changed into Hs. But
we can dispose of this case very easily without resort to line-graphs.

Lemma 2.1 Let G be a disconnected graph whose components are not all
isomorphic and one of which is the graph Hs shown in Figure 1. Then G
is uniquely reconstructible from the two edge-cards G — ¢ and G — b.

Proof. Let G be a disconnected graph whose components are not all
isomorphic but one of which is isomorphic to Hs. Let b and ¢ be two
edges of Hy as shown in the figure. Therefore the edge-card C; = G — b
has a component isomorphic to K 3 and the edge-card C; = G — c has a



component isomorphic to the path P;. Let €’ be the new edge added to
Cy. If ¢ is made to join two vertices from a component isomorphic to K 3
then there is only one way to do this, up to isomorphism. This would give
G.

We must therefore consider what happens if either the edge ¢’ joins
two vertices of any two components or it joins two vertices in the same
component but which is not isomorphic to K 3 to form a new component
H. In this case, in order to obtain the edge-card Cs, one has to remove
an edge from the newly formed component H or one isomorphic to it, with
the result that one cannot obtain the necessary number of P4 components
present in card Cs. Therefore this possibility leads to a contradiction, hence
the two edge-cards C', Cs reconstruct G uniquely. O

The last case we now need to tackle is when all the components of G
are from S. Note that Theorem 1.1 leaves open the possibility ern = 2 in
this case. Here we show that this is not possible. We obviously cannot take
line-graphs here since the line-graph of G would have all of its components
isomorphic. So we need to proceed directly, but this is not difficult.

Lemma 2.2 Let G be a disconnected graph whose non-trivial components
are not all isomorphic but all of which come from S. Then ern(G) =3

Proof. Suppose G has exactly two types of non-trivial components, namely
p copies of K 3 and ¢ copies of K3. Therefore the edge-deck of G consists of
two different edge-cards Cy and C3. The edge-card C] is the graph G — e
where e; is an edge in K3 and therefore C consists of p copies of Kj 3,
(¢ — 1) copies of K3, one copy of P3 and r isolated vertices, where r > 0.
The edge-card Cs is the graph G — ex where ey is an edge in K; 3 and
therefore Cy consists of (p — 1) copies of K1 3, ¢ copies of K3, one P and
r + 1 isolated vertices. Suppose

e (G is a disconnected graph whose components are P3, Ha, (p — 1)
copies of K1 3 and ¢ — 1 copies of K3 and r isolated vertices;

e (G5 is a disconnected graph whose components are K3, Py, (p — 1)
copies of K1 3, (¢ — 1) copies of K3 and r isolated vertices;

e (33 is a disconnected graph whose components are Z, made up of a
vertex joined to the two centres of two copies of K1 2, (p — 1) copies
of K13, (¢ — 1) copies of K3, and r isolated vertices.

It is easy to check that whether we are given the edge-cards C; and Cs, or
two copies of C; or two copies of Cs, one of G1, G2, G3 has the two edge-
cards in its edge-deck. Therefore two cards are not sufficient to reconstruct
G uniquely.



To show that three cards are sufficient we reproduce, for completeness’
sake, Molina’s proof. Let e; be an edge in K3 and e, e3 two edges in K 3.
Assume that there is a graph in which G —e; ~ H —¢] for i = 1,2, 3. Now,
e1 is not a cut-edge, so the replacing edge e must join two vertices in the
same component of G — e;. If e forms a component with four edges, then
G and H can have only two cards in common, which contradicts the above
assumption. Therefore e must join two vertices in the component Ps, that
is, G ~ H. O

This therefore gives the first part of Theorem 1.1.

3 All components isomorphic

Our aim here is to prove a result similar to Theorem 1.3 to describe ex-
actly which are the graphs in Theorem 1.1 which have the highest possible
edge-reconstruction number t 4 2, where ¢ is the number of edges of a sin-
gle component. This will be easy to do by taking line-graphs and using
Theorem 1.3.

Theorem 3.1 Let G be a disconnected graph with at least three edges and
such that all components are isomorphic to a graph H. Then

1. If H is isomorphic to K3, then ern(G) = 2;
2. If H is isomorphic to K 3, then ern(G) = 5;

3. If H is not isomorphic to K3 or Ki 3 then ern(G) < t + 2, where
t is the number of edges in H. Moreover, if ern(G) > t + 1 then
H ~ Kl,t~

Proof. 1. Let G consist of p copies of K3 and let the graph T be obtained
from any G — e by adding an edge €', ¢/ # e. Then there is at most one
other card in ED(G) that is also in ED(T), therefore ern(G) = 2.

2. Let G consist of p copies of K7 3. Let Q = PsUK; 4U(p—2)K; 3. Then
ern(G) = 5 because four edge-cards are also in £D(Q), whereas there is no
graph with five edge-cards in common with G.

3. In this case G is L-invertible, and L(G) also has all its components
isomorphic. Therefore Theorem 1.2 gives that rn(L(G)) < t + 2 from
which it follows, using Lemma 1.1, that ern(L(G)) <t + 2.

Now suppose ern(G) > t+ 1, therefore rn(L(G)) > t+ 1. Therefore, by
Theorem 1.3, L(G) is the union of components isomorphic to K;. But since
t > 3, this gives that G is the union of components isomorphic to K+, as
required. O

The gap between ern = 3 and ern = t+1 is crying out to be investigated.
We single out this general question. (See also [1].)



Question 3.1 Let G be a disconnected graph with all components isomor-
phic to H and where H has t edges. What is the largest number N such
that ern(G) = N and H is not isomorphic to K17 Is N a function of t
or is there a constant N such that whenever ern(G) > N then H ~ Ky ;¢

We shall come back to this question at the end of the paper.

4 Forests

We shall now try to investigate conditions which force or do not allow
ern(G) to be equal to 2. In view of Theorem 1.1 we shall focus our attention
on the case when G is a forest and not all of its components are isomorphic.

There is, in general, no straightforward relationship between the edge-
reconstruction number of G and that of its components. For example,
ern(Ky,) =2 for t > 3, but ern(Ky, U Ky,) = 3, where ¢t # r or (r + 1).
Another simple example: ern(Ps) =1 but ern(Ps U Ps) = 3.

The opposite effect can also be seen, namely, the edge-reconstruction
number can go down from 3 to 2 when another component is added. For
example, ern(P,) = 3 for n > 4 but ern(P, U K1 3) = 2. Another simple
example: ern(Cy) = 3 but ern(C, UK 3) and ern(C,, UK3) are both equal
to 2.

Moreover, since almost every graph has edge-reconstruction number
equal to 2 [5] it is not feasible to try and characterise all disconnected
graphs with ern = 2. We shall therefore try to obtain some conditions
which are sufficient or necessary to guarantee ern = 2.

4.1 A few general results

We first start with a result which is very helpful in order to eliminate
possibilities when trying to show that ern(G) = 2.

Lemma 4.1 Suppose G has two components H and K such that H has
a cut-edge e and K has a cut-edge f such that a component of H — e is
isomorphic to a component of K — f. Then G —e and G — f do not
reconstruct G.

Proof. Let G = H U K U A where A consists of a number of other com-
ponents (possibly empty). Suppose that H consists of two components X
and Y joined by the edge e, and K consists of two components X and Z
joined by the edge f. That is, X is the component of H isomorphic to a
component of K.

Let G’ be a graph made up of the components A and two components
X and W, where W is the component X joined by two edges: one edge e’
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Figure 2: Counterexample to converse of Lemma 4.1: the graph G

O

Figure 3: Counterexample to converse of Lemma 4.1: the graph G’

joins X to component Y and another edge f’ joins X to Z, and such that
W-—e¢~YUKand W — f'~HUZ.

Then it is clear that G’ is not isomorphic to G but G’ — ¢’ ~ G — e and
G’ — ' ~ G — f. Therefore G —a and G — b are not sufficient to reconstruct
G. O

One would like the converse of the conditions of Lemma 4.1 to be suf-
ficient for reconstruction, however the converse of this Lemma is, unfortu-
nately, not true, as the following example shows.

Example 4.1 Let G consist of the two components shown in Figure 2,
and let G' be the graph whose two components are as shown in Figure 3.
Then no component of G — e is isomorphic to a component of G — f, but
G-—e~G —¢ and G— f ~G — [, with G # G'. Therefore G — e and
G — f do not reconstruct G.

Even if e and f are not cut-edges, the converse of Lemma 4.1 still does
not hold, as Figure 4 shows.

Example 4.2 In Figure 4, H—e is not isomorphic to K—f, G—e ~ G'—¢’
and G — f~G' — [ but G £ G'.

But, by adding appropriate extra conditions we can avoid such coun-
terexamples to obtain partial converses of Lemma 4.1 such as the following.
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Figure 4: Counterexample to converse of Lemma 4.1 when e and f are not
cut-edges

e’ f

Lemma 4.2 Let G be a disconnected graph with two non-isomorphic com-
ponents H and K. Suppose that H has a cut-edge e and K has a cut-edge
f such that,

1. No component of H — e is isomorphic to a component of K — f; and

2. There exists no edge f' & E(K — f) such that H = K — f+ f' is
isomorphic to a component of G — e.

Then G — e and G — f reconstruct G.

Proof. Let C; be the edge-card G — f which consists of the components
H, A, B, and let Cs be the edge-card G —e which consists of the components
K,C,D. Therefore component H is not isomorphic to any of K,C, D and
component K is not isomorphic to any of H, A, B. Without loss of gener-
ality let |E(H)| > |E(K)|. Suppose that a reconstruction G = G — f + f/
of G is obtained by adding a new edge f’ to the edge-card C;. We now
require that G — f + f’ contains the edge-card Cs in its edge-deck.

Case 1: The edge f' joins two vertices of H. In order to obtain the edge-
card Cy from this reconstruction we must remove an edge from the compo-
nent H + f’, with the result that there remain two components A and B
which are not in the edge-card Cj.

Case 2: The edge [’ either joins two vertices in A or two vertices in B.
Without loss of generality we can suppose that f’ joins two vertices in A.
Since component H does not appear in the edge-card Cs, to obtain this
edge-card from G’ we must remove an edge from H. But this leaves the
component B which is not in Cs.

Case 3: The edge f' joins a verter in H to a verter in A or in B. This
case also leads to a contradiction using similar arguments as in Case 2.



Case 4: The edge f' joins a vertex in A to a verter in B. Suppose that
the new component formed by adding the edge f’ is H’. Suppose, for
contradiction, that H’ % K. Since H does not appear in Cs, to obtain
this edge-card from G’ we must remove an edge from the component H in
G'. Therefore H' appears as a component in Cy. Since we are assuming
that H' % K, then it must be isomorphic to C' or D. But this means that
H' = K — f+ f’ is isomorphic to a component of G — e, which contradicts
the second condition of the Lemma. O

These results give us a sufficient condition for a forest with two compo-
nents to have ern = 2

Theorem 4.1 Let G be a disconnected graph with two non-isomorphic
trees H and K as components, such that both H and K are not stars and
[V(K)| < |V(H)| — 1. Then ern(G) = 2.

Proof. Suppose that an endvertex e is deleted from H to give one edge-
card G — e and a non-endvertex f is deleted from K to give the other
edge-card G — f. Then G — e and G — f satisfy the conditions of Lemma
4.2 and therefore reconstruct G. O

In the cases considered so far, the two edge-cards which give the recon-
struction arise by deleting edges from different components. The next re-
sults address this question. We have noted earlier that, even if ern(H) = 2
it could happen that ern(H U K) > 2. If two edge-cards from the same
component reconstruct that component, what conditions can ensure that
this property extend to the graph obtained by adding another component?
First we need a definition.

A graph K is said to have a replaceable edge e if there exists and edge
¢/ ¢ E(K) such that K ~ K —e+¢'.

Theorem 4.2 Let the graph G consist of two connected and non-isomorphic
components H and K such that |E(H)| # |E(K)|+1. Let ey, ea be two edges
in H. Suppose that either H—ey1 # H —es or K does not have a replaceable
edge. Let C1 = H—e1UK and Cy = H—eoUK and let G' = (H—e1)UK +e,
where e is any new edge added to K.

Then the graph G’ cannot contain the two edge-cards Cy,Cy in its edge-
deck

Proof. Suppose the lemma is false. Then card Co must be isomorphic to
the edge-card H — e; UK + e — ¢’ of G', where ¢’ is an edge in K. Now,
H — e cannot be isomorphic to K, by the condition on the number of edges
of H and K. Therefore H —e; ~ H —ey and K +e — e’ ~ K. But these
possibilities cannot hold, by hypothesis. O
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As a simple application of this result we give the following corollary.
This shows that, under certain conditions, if G is a forest obtained by
adding a star as a component to a tree with edge-reconstruction number
equal to 2, then ern(G) is still equal to 2.

Corollary 4.1 Let T be a tree such that for some e1,es € E(T) the two
subgraphs T — ey, T — es reconstruct T'. Suppose that T — e1 consists of the
two components Ty and Ty, while T — eo consists of the components T3 and
Ty, such that none of Ty and Ty is isomorphic to any of T3 or T4. Assume
also that S is a star such that |E(T)| # |E(S)|+ 1. Let G = SUT. Then
G — ey and G — ey reconstruct G.

Proof. All the conditions of the previous theorem are satisfied. Therefore
if G’ is a graph containing the two edge-cards C; = G—e; and Cy = G —eq,
then G’ cannot be obtained from any of these edge-cards by adding an edge
to the component S. Therefore G’ is obtained from G — e; either (i) by
adding an edge joining vertices from the two components T} and 15, creating
a new component T”; or (ii) by adding an edge joining vertices from the
component S and one of 17 or Ts, say 17, without loss of generality. Let
the new component so created be S’.

In case (i), the edge-card C5 can only be obtained from G’ by removing
an edge from T”. Therefore 7" has the edge-cards T UT, and T3 UTy. But
these reconstruct T, therefore T/ ~ T.

In case (ii), the edge-card Cs can be obtained from G’ by removing an
edge from the component S’. But if 75 = S, then again component S’
contains the edge-cards Ty U T and T3 U Ty, which means that S’ ~ T'. If
Ty # S, then the component S must be obtained by deleting an edge from
S’. Without loss of generality we can then assume that T5 ~ Ty, again
contradicting one of the corollary’s assumption. O

All conditions in the previous theorem are required as can be seen by
the following example.

Example 4.3 The tree T shown in Figure 5 is reconstructible from the
two edge-cards T —e; and T —ez. Let S = K14 and G = T U S. Let
G' =T' UK 5 where T’ is also shown in Figure 5. Then G —e; and G — ey
do not reconstruct G because they are isomorphic to G' — e} and G' — €,
respectively, but G’ is not isomoprhic to G.

4.2 A few special cases

We now give a few special cases of forests with two non-isomorphic com-
ponents and their edge-reconstruction number. We do not give the proofs
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Figure 5: T' is reconstructible from T'—e; and T' — ez, but if G =T U K 4
and G’ =T U K1 2 then G — e; and G — e are isomorphic to G’ — ¢ and
G’ — €}, respectively, but G’ is not isomorphic to G.

since they all follow easily from the results in the previous sub-section or
can be easily checked directly.

Theorem 4.3 The following forests with two components have edge-reconstruction
numbers as given:

1. ern(Kyp UK nt1) =2, n> 3.

ern(K1,UKy ) =3, m#norn+1 andn > 2.

(
ern(P, UKy m) =2, n>3,m> 1.

ern(Po UKy ) =3, n> 2.

SR

Let G = HUK where H = Ky m, m > 3 and K is formed by adding a
vertex joining the centres of two copies of K1, m—1. Then ern(G) = 2.

6. Let G = HUK where H = Ky, m > 3 and K is formed by adding a
vertex joining the centres of two copies of K1,m—2. Then ern(G) = 3.

5 Conclusion

In spite of [7] and our efforts in this paper, not everything is clear about
the edge-reconstruction number of disconnected graphs. One would have
liked to find the most general partial converse to Lemma 4.1 which could
perhaps go a long way towards understanding when such graphs with non-
isomorphic components have ern > 2 but, as we have seen with examples,
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simple converses of this lemma do not hold and partial converses such as
Lemma 4.2 have to be investigated (another example is Lemma 3 in Section
4 of [7].)

But the most obvious gap in our knowledge of the edge-reconstruction
number of disconnected graph is when all components are equal. We have
already discussed this situation above in Question 3.1. We end here by
answering that question with a conjecture. As empirical evidence for this
conjecture we remark that out of more than a billion graphs on at most
eleven vertices only seventy have edge-reconstruction number greater than 3
[9]. An examination of these graphs, made available to us by David Rivshin,
shows that the only ones with all components isomorphic are unions of stars.

Conjecture 5.1 Suppose that ern(G) > 3 for a disconnected graph all of
whose components are isomorphic to H. Then H s isomorphic to a star
K.
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