
Using infrastructure-based agents to enhance forensic logging of
third-party applications

Jennifer Bellizzi1 a, Mark Vella1 b, Christian Colombo1 c and Julio Hernandez-Castro2 d

1Department of Computer Science, University of Malta, Msida, Malta
2School of Computing, Cornwallis South, University of Kent, Canterbury, UK

{jennifer.bellizzi, mark.vella, christian.colombo}@um.edu.mt, jch27@kent.ac.uk

Keywords: Enhanced Forensic Logging, Deeper Endpoint Visibility, Digital Forensics, Android Security

Abstract: Logs are the primary data source forensic analysts use to diagnose and investigate attacks on deployed ap-
plications. Since the default logs may not include all application events required during an investigation,
application-specific forensic logging agents are used to forensically enhance third-party applications post-
deployment and ensure that any critical events are logged. However, developing such application-specific
agents is impractical as this relies on application-specific knowledge requiring significant code comprehen-
sion efforts. Furthermore, the resulting forensic logging agents are likely to break compatibility between ap-
plication versions and across applications; thus, requiring the time-consuming process of agent re-development
much more frequently. We propose a more practical approach to developing forensic logging agents that lever-
ages commonly-used underlying infrastructure, which is more stable across application versions and common
across different applications. We evaluate our approach in the context of enhanced logging of Android mes-
saging apps. Our results show that this approach can be used to develop logging agents that work across
multiple apps while preserving the accuracy of the logs generated, thus mitigating the challenges associated
with forensically enhancing third-party applications.

1 INTRODUCTION

Incident responders use logs to investigate attacks on
deployed applications. Investigators rely on applica-
tion logs to understand both the entry point of an at-
tack on an application and its ramifications; that is,
what damages have been inflicted and which data as-
sets are being targeted (Ma et al., 2015). However,
it is difficult to know a priori where logs are needed
to ensure attack-related events are logged in the fu-
ture. Exhaustively recording all possible application
events is infeasible due to the resulting overheads. As
a result of these issues, applications can produce lots
of log entries, but rarely the relevant ones needed to
investigate an attack. Furthermore, existing logs may
be inaccessible, for instance, in a mobile investigation
involving an unrooted device.

Several tools, including GRR Rapid Response1

a https://orcid.org/0000-0003-1754-9473
b https://orcid.org/0000-0002-6483-9054
c https://orcid.org/0000-0002-2844-5728
d https://orcid.org/0000-0002-6432-5328
1https://github.com/google/grr

(Cohen et al., 2011) and Velociraptor IR2 use client
device agents for end-point visibility purposes. These
agents are installed within third-party applications or
on devices as part of the forensic readiness stage to
aid in Incident Response. They collect files, applica-
tion and system logs, and outputs from live forensics
commands that harbour indicators of compromise to
feed them back to a central investigation node. Mak-
ing use of additional agents that are inserted inside
third-party application processes (for which access to
the source code is restricted) carries the potential to
enhance logging with deeper visibility. While opt-
ing for application-specific agents may seem the most
obvious solution to log application-related events, it
can be impractical. Such agents rely on application-
specific objects, resources and logic that may change
when newer versions are released. Therefore, not
only do application-specific agents require signifi-
cant code comprehension effort for every application,
their reliance on application-specific logic means that
application-specific logging agents will likely break
compatibility across applications and versions.

2https://github.com/Velocidex/velociraptor

https://github.com/google/grr
https://github.com/Velocidex/velociraptor

Repositories

State holders

Resources

UI Elements

Data Sources

App Logic

Application-specific logging agent Infrastructure-based logging agent

App A v1

Standard APIs

Native libraries

3rd party development
libraries

Repositories

State holders

Resources

UI Elements

Data Sources

App Logic

App A v2

Repositories

State holders

Resources

UI Elements

Data Sources

App Logic

App B

Standard APIs

Native libraries

3rd party development
libraries

Standard APIs

Native libraries

3rd party development
libraries

Figure 1: Forensic logging agents leveraging application-
specific codebase versus agents leveraging common under-
lying infrastructure-interfacing code that is expected to be
more stable across versions (App A v1, v2) and applications
(App A, B). Different colour codes signify application-
specific codebases, whereas the same-coloured codebases
reflect common APIs across applications and versions.

This paper proposes a new approach to address
challenges that arise when relying on application-
specific logic to build post-deployment forensic log-
ging agents for third-party applications, for which ac-
cess to the source code is limited. Figure 1 presents
the main insight underpinning our proposed solution,
which aims to leverage common, widespread infras-
tructure across different application versions and ap-
plications altogether. While application-specific com-
ponents of an application may change when newer
versions are released (see App A v1 and v2 in Fig-
ure 1) and differ across different applications (see
App A and B in Figure 1), infrastructure-centric
components such as native libraries and APIs, are
more likely to remain compatible with other appli-
cations and versions. As a direct benefit of our ap-
proach, code comprehension effort is significantly
reduced since i) common underlying infrastructure
is publicly well-documented, ii) the focus is on a
subset of the code that interacts with infrastructure
code, and iii) the resulting agent has the potential to
work across versions and other applications that use
common underlying infrastructure. Furthermore, in-
frastructure logic is expected to be more stable and
backward-compatible, whereas application internals
may change between versions. Therefore, updates to
infrastructure-based agents will not be required as fre-
quently as application-specific agents that rely on ap-
plication internals which are constantly in flux and out
of the logging agent developer’s control.

While this approach has several benefits, an es-
sential requirement is that accuracy in logged events
is not diminished. Since infrastructure-based logging
agents focus on a reduced subset of the application
codebase, the control over application-specific log en-
try metadata that needs to be logged will also be re-

duced, which may impact the accuracy of the log en-
tries produced. With this in mind, we set out to eval-
uate our approach in the context of Android messag-
ing applications, a common target for attacks (Flubot,
2021; Amer Owaida, 2021; Jon Russell, 2012), and
make the following contributions:

• We verify the potential for infrastructure-centric
logging agents to be compatible across different
apps of the same category through AppBrain and
determine the stability of underlying infrastruc-
ture among selected application versions by per-
forming a static analysis of application versions
spread across five years.

• We produce a prototype logging agent based on
common infrastructure logic for Android messag-
ing applications that can operate on three different
applications and conduct a qualitative study to as-
sess the accuracy of the log entries produced.

2 BACKGROUND

The use of log enhancement through application-
specific agents is not just a forensic visibility prob-
lem. Logs are the primary data source engineers, de-
velopers, and analysts use to diagnose issues in de-
ployed applications, such as performance issues, bugs
or even evidence of attacks (Toslali et al., 2021; Yuan
et al., 2012a; Yuan et al., 2012b; Zhao et al., 2017;
Mace et al., 2015). However, it is difficult to know a
priori where logs are needed to help diagnose prob-
lems that may occur in the future. Post-deployment
log enhancement refers to logging third-party appli-
cation events after the application, for which access
to the source code is restricted, has been deployed
so that relevant events related to unforeseen issues
may be logged and analysed. This enhancement
is typically carried out through application-specific
agents that enhance application logging by relying
on application-specific logic. However, relying on
application-specific knowledge requires reverse engi-
neering applications, which introduces several chal-
lenges, including i) comprehending compiled code,
ii) bypassing any anti-tampering solutions present in
the application code and finally, iii) complying with
fair-use reverse engineering.

2.1 Log collection for forensic analysis

Similar challenges apply to forensic log collection.
Cyberattack incidents increasingly use malware that
interacts with benign applications to hide their pres-
ence or escalate privileges, as well as carry out on-
device fraud (ThreatLandscape, 2022; Octo, 2022).

Log collection is crucial in a forensic investigation
to gather all possible evidence to reconstruct the at-
tack steps. Unfortunately, critical evidence is not al-
ways located in the collected logs, especially in cases
involving stealthy malware that hides malicious be-
haviours to minimise suspicion and prolong its life-
time, thus requiring late detection. Advanced persis-
tent threats (APTs) initiated by resourceful attackers
and fileless malware operating in memory fall into
this category. Other advanced stealth techniques have
emerged through attack vectors that misuse the legiti-
mate actions of targeted benign applications for finan-
cial or personal data theft.

In the case of malicious interactions with pre-
installed, benign applications, entries in application
logs are crucial as they contain evidence of applica-
tion activities carried out seemingly by the benign
application that could reconstruct the attack steps in-
volving application misuse. Even if application logs
are available, the investigators are still at the mercy of
the application developers who control the contents of
the log entries. Typically production application logs
are used for diagnostic purposes, which may result in
log entries that do not produce the evidence required
in the case of application misuse. On the other hand,
it is infeasible to introduce exhaustive logging of all
possible application events by default, as this would
incur significant overhead on all application users, in-
cluding those unaffected by a stealthy attack.

In this case, investigators require logging agents
installed inside third-party application processes. Yet,
the lack of collaboration with application developers
can complicate matters. Such agents would rely on
application-specific logic to log related events. Re-
lying on application-specific knowledge not only in-
troduces the previously-mentioned challenges associ-
ated with reverse engineering applications but also in-
troduces issues related to practicality.

2.2 JIT-MF: a specific case of
post-deployment forensic log
enhancement on Android

Just-in-Time Memory Forensics (JIT-MF) (Bellizzi
et al., 2020; Bellizzi. et al., 2021; Bellizzi et al.,
2022) is a framework that enables live process mem-
ory forensics in a setting involving stealthy malware
that delegates their attack steps to benign applications.
JIT-MF was conceived to be adopted by incident re-
sponse tools for stock smartphones without breaking
any of their security controls. Rather, given that its
primary purpose is to aid device owners in recovering
from cyberattacks, it assumes the device owner’s col-
laboration. It tackles the problem of missing evidence

in application logs by enabling the enhancement of
Android apps with app-specific logging agents re-
ferred to as JIT −MF Drivers that timely dump ev-
idence from memory, using app instrumentation to
avoid device rooting. These non-intrusive agents are
installed within third-party applications to record ad-
ditional data from memory, as part of the forensic
readiness stage of incident response, without chang-
ing the application code beyond hooking. JIT-MF
Drivers have two main properties:Evidence objects
are identified as those application-specific objects
whose presence in memory implies the execution of
some specific app functionality, possibly a delegated
attack step. Trigger points define which application
instructions signify that Evidence objects are in mem-
ory, and hence when memory dumps should be trig-
gered. Therefore, trigger points are crucial to timely
dump evidence objects in memory.

JIT-MF Logs. Taking the case of a stealthy mes-
saging hijack attack as an example, attackers aim
to send messages through a victim’s benign mes-
saging app and immediately delete them to ensure
that the victim remains unaware of the malicious at-
tack step. To aid investigation efforts, benign mes-
saging apps can be enhanced with a JIT-MF driver
whose evidence object is defined as the application-
specific MessageObject containing details of the mes-
sage sent, and trigger point can be defined as any op-
eration handling the MessageObject. A sample of the
resulting JIT-MF log entries is shown in Listing 1,
whereby each entry consists of metadata derived from
the evidence object (in this case MessageObject) as
dumped from memory at a particular trigger point.

The application-specific MessageObject contains
the properties that populate a log entry with the neces-
sary information regarding an event. However, iden-
tifying this object in the first place is challenging
since i) application developers may change the prop-
erties of this object or even the object name itself,
when newer versions of the application are released,
and ii) different messaging applications use different
MessageObjects with different properties.

On the other hand, identifying infrastructure-
centric evidence objects, for example, a String ob-
ject, is expected to be simpler and far less likely to
change when compared to an application-specific ob-
ject. However, log entry completeness becomes an
issue due to the level of information derivable from a
generic String object.

Listing 1: JIT-MF log entry sample generated while using WhatsApp, Telegram and Signal Android apps (Bellizzi et al.,
2022)
1 {"time": "1662482712" , "event": "Whatsapp Message Sent" , "trigger_point": "android.database.sqlite.SQLiteDatabase" ,

"object": {"date": "", "message_id": "4138821D2BF18D844720CBBF5067A5AD ,", "text": "Normal_message_1" , "to_id":
"7196@s.whatsapp.net]", "to_name": "", "to_phone": "", "from_id": "", "from_name": "", "from_phone": ""}}

2 {"time": "1662485256" , "event": "Telegram Message Present" , "trigger_point": "recv" , "object": {"date": "1662483779" ,
"message_id": "2328" , "text": "Normal_message_1" , "to_id": "5181266731" , "to_name": "target_phone;;;", "to_phone":
"35699626972" , "from_id": "1679923803" , "from_name": "contact_phone;;;", "from_phone": "35679247196"}}

3 {"time": "1662487182" , "event": "Signal Message Present" , "trigger_point": "open" , "object": {"date": "1662487132503" ,
"message_id": "168" , "text": "Normal_message_1" , "to_id": "RecipientId::2", "to_name": "null" , "to_phone": "
+35699626972", "from_id": "RecipientId::3", "from_name": "null" , "from_phone": "+35679247196"}}

Step 2: Identify
underlying APIs

Step 3: Determine
underlying infrastructure at
the most native level

Input

Step 4: Log Collection -
Identify and manipulate
events that need to be
recorded

Input

Step 5: Log Parsing - parse
application-specific elements
of the logs generated.

API
Native-level

infrastructure

Input

Log entries

Forensic
Enhancement

Technique

Output Output

Step 1: Identify key
application events

Input

Third-party
Application

Input

Third-party
Application

Key application
events

Output Output

Figure 2: Proposed process for creating and deploying infrastructure-based logging agents.

3 OVERVIEW

The main aim of this work is to present and eval-
uate a modified approach towards developing post-
deployment third-party application logging agents
that leverages the common subset of the applications’
codebase that interacts with commonly-used infras-
tructure. As shown in Figure 1, the underlying in-
frastructure is generally more stable and widespread
across different applications and versions, allowing
infrastructure-based logging agents to remain us-
able across different applications and versions (unlike
application-specific agents, which need to be devel-
oped anew). Figure 2 presents the process for cre-
ating infrastructure-based forensic logging agents as
part of this new proposed approach.

Step 1: The first step in developing an
infrastructure-based logging agent requires that,
given a third-party application, a logging agent devel-
oper must first identify the scope of the logging agent
by determining which key application events (core
application functionality) requires deeper visibility
and hence needs to be logged. In the case of stealthy
messaging attacks, for instance, key application
events constitute messaging events that an attacker
could hijack.

Step 2: Application developers use readily-
available infrastructure (such as services, libraries
and APIs) to develop key functionality commonly
carried out among applications. Given a third-party
application, the forensic logging agent developer
must determine the underlying APIs that the appli-
cation uses to perform the identified key application

event; for example, storage/database libraries that
persist events in the application’s local database.

Step 3: Applications using the same underlying in-
frastructure may use custom APIs at higher levels of
abstraction that better fit the needs of a specific ap-
plication. However, at the native level, these APIs
typically use the same native libraries. Therefore the
logging agent developer must determine the underly-
ing infrastructure at the most native level, which is
expected to be consistent among application versions
and applications; for instance, the native sqlite.c
library.

Step 4: Given a forensic enhancement technique
and the underlying infrastructure identified, publicly
available documentation of the interface exposed by
the infrastructure can be used to determine which
infrastructure calls need to be logged to produce
log entries containing the identified key application
events. Since the focus is on infrastructure-based
events, this step involves analysing only a subset of
the application codebase that is typically publicly
well-documented and can be common for applications
that use the same underlying infrastructure.

Step 5: An infrastructure codebase is expected to
expose the same interface across the different applica-
tions in which it is used. However, applications may
make application-specific use of the interface and the
events that the infrastructure can carry out. There-
fore, it is expected that the final step will be unique to
each application and will involve application-specific
parsing of the generated and collected log entries.

This means that an element of application reverse
engineering will be required to make sense of the
application-specific elements in the log entries, the
extent of which is difficult to predict as it requires
a large-scale qualitative exploration of the solution.
However, we expect that the definition of the parser
will be similar for applications using the same under-
lying infrastructure. Since infrastructure code is more
stable and less likely to change, modifications to the
log parser between an application’s versions are ex-
pected to be minimal. While the parsing element may
need revising, the collection element remains func-
tional. Therefore, evidence is collected regardless of
whether or not a parser is readily available or a new
one needs to be developed.

4 EVALUATION

We evaluate our proposed approach of infrastructure-
based forensic logging agents in the context of An-
droid messaging apps and use JIT-MF, a forensic en-
hancement technique for third-party Android appli-
cations whose effectiveness has been demonstrated
in previous works (Bellizzi et al., 2020; Bellizzi.
et al., 2021; Bellizzi et al., 2022). We first con-
duct a preliminary analysis to select a suitable infras-
tructure candidate used to carry out core functional-
ity in messaging apps. Then, we run experiments
to answer the following questions: Is common in-
frastructure usage prevalent across different versions
of a messaging app? (Q1) Can infrastructure-based
agents work across different Android messaging apps
while maintaining the same accuracy as application-
specific agents? (Q2)

4.1 Common Infrastructure Adoption

Our preliminary analysis aims to identify which
infrastructure is commonly-used among messaging
apps to ensure that an infrastructure-based agent can
function across app versions and on multiple apps.
Not only does this infrastructure need to be in use by
the app, but it also needs to be taking an active role
when critical events that need to be logged are taking
place. We consider the data provided by AppBrain
(AppBrain, 2022), a service that provides statistics on
the Android application’s ecosystem including library
adoption by different apps in different categories. In
this case, we focus specifically on Android messaging
apps, per the scope of this evaluation.

Methodology. AppBrain categorises libraries used
in Android applications by tags, depending on the

functionality provided by the library. As described in
step 2 of Figure 2, when developing an infrastructure-
based agent, the selected infrastructure must sup-
port core app functionality that is within the logging
agent’s scope and requires deeper visibility (Figure 2
step 1). Out of the 41 possible categories, we identify
Network and Database libraries as critical infrastruc-
tures used by messaging apps to support key messag-
ing events. Network functionality allows messages to
be sent and received over the network, and Storage
allows messages (both sent and received) to be stored
and retrieved on the devices where the app is installed.

Results. At the time of our analysis, AppBrain
statistics showed that the most widely used network
library was Retrofit3. In contrast, the most widely
used database infrastructure was Android Architec-
ture Components4, which at its most native level
(see Step 3 Figure 2) refers to storage management
through an SQLite Database5. AppBrain statistics
revealed that at the time, 86.62% of communication
(messaging) apps used Android Architecture Compo-
nents, while only 14.6% used Retrofit.

Threats to Validity AppBrain is closed-source;
however, it provides insight into how it derives in-
formation regarding Android apps on Google Play-
Store. It analyses all Android apps on Google Play
and performs some analysis on the package file of
the app (APK). Statistics regarding development tools
and libraries usage are obtained by matching package
names inside the apps “with known package names
from development tools. Therefore, these statistics
reflect whether the code of a certain library is present
in an app.” (AppBrain, 2022). While this does not
guarantee that a particular application actively uses a
library, “it still gives a good idea of the market share
and what is the list of the top Android development
tools.” (AppBrain, 2022).

4.2 Prevalence across app versions

Through the results shown in the previous section we
determine that storage libraries, specifically managed
through SQLite, are the most commonly-used storage
library and surpass the usage of network libraries in
messaging apps by 68.02%. JIT-MF has been pre-
viously evaluated (Bellizzi et al., 2022) using app-
specific drivers (logging agents) for WhatsApp, Tele-

3https://square.github.io/retrofit/
4https://www.appbrain.com/stats/libraries
5https://developer.android.com/training/data-

storage/sqlite

https://square.github.io/retrofit/
https://www.appbrain.com/stats/libraries
https://developer.android.com/training/data-storage/sqlite
https://developer.android.com/training/data-storage/sqlite

gram and Signal, and we therefore use statistics pro-
vided by AppBrain to assert that this underlying in-
frastructure is present in the latest version of each of
these apps.

AppBrain does not provide statistics on the pre-
vious versions of Android applications. Therefore,
we use a quantitative static analysis approach within
a qualitative set of applications (comprising of What-
sApp, Telegram and Signal) to assess the longevity of
an SQLite infrastructure-based forensic logging agent
across application versions, thus answering Q1.

Methodology. We answer this question in two
parts. First, we assess the prevalence of SQLite
library usage across the previous Telegram, What-
sApp and Signal versions by statically checking for
the presence of code that uses this library. Sec-
ond, we compare the frequency of releases between
the SQLite library and each of the apps to indicate
the stability that infrastructure-based agents relying
on public-facing infrastructure codebase can provide
compared with application-specific logging agents re-
lying on an application-specific codebase.

Previous versions of each app were obtained from
August 2017 every six months up until August 2022
(10 past versions per app, 30 apps in total), using
APKCombo6, a repository for apps and their previ-
ous versions. Versions of the apps dating more than
six months prior could not be installed successfully
due to limitations and restrictions presented by each
app. Telegram was the only exception which allowed
versions from six-month prior to be run. Due to this
limitation, we conduct a static check to assert SQLite
library usage in the decompiled sources of an app’s
version. This check is carried out based on a signature
that encapsulates how a library can be used in an An-
droid app. To use a library, Android apps can either:
i) Call Android’s API wrapper or ii) Use a custom
implementation that interfaces with the infrastructure
using JNI by including a shared object in the APK.

The search aims to (1) find smali code in decom-
piled code that calls functions from the SQLite An-
droid package or (2) find the SQLite shared object in
the application library folder of the decompiled app.
If the search is successful, the search returns the par-
ent folder name; that is, the app version folder.

Listing 2: Signature for checking the presence of SQLite
usage in an Android app package (APK)

1 grep -Priq --include *.smali "
Landroid/database/sqlite.*;->"
$app_version/smali*/ |

2 grep -riq sqlite $app_version/lib/

6https://apkcombo.com/

Results. Table 1 shows the results obtained when
the signature in Listing 2 is used to check for SQLite
usage within the decompiled application versions ob-
tained. These results show that bindings with the
common underlying SQLite infrastructure are present
across all apps and previous versions from the last five
years, even if the interfacing method has changed.
Therefore, selecting an infrastructure-based logging
agent based on SQLite in the case of WhatsApp, Tele-
gram and Signal is likely to remain compatible with
upcoming versions of the apps.

Table 2 shows the frequency by which newer
versions of the apps and SQLite are released.
Application-specific logging agents for WhatsApp,
Telegram and Signal are based on application code-
bases that are updated on average every 6 - 15 days. A
compatibility test would therefore be required accord-
ingly to ensure that application-specific logic within
the agent was not altered in the update. On the other
hand, updates to the SQLite library are not only much
less frequent but also optional and hence not necessar-
ily reflected in the apps that use them. Furthermore,
in the case of SQLite, stable interfaces are maintained
indefinitely in a backward-compatible way7, which
means that the agent relying on an older version of
SQLite will not remain compatible, even if the infras-
tructure is updated.

Threats to Validity. We rely on a static signature
that follows logic on how apps interact with the un-
derlying infrastructure. However, this does not guar-
antee that the developer is using the code, as there
is also the possibility that the code or libraries found
reflect dead or legacy code, which cannot be distin-
guished statically.

4.3 Android Messaging Case Study

We conduct a qualitative case study to evaluate
whether or not infrastructure-based agents can work
across applications while maintaining the same level
of accuracy in the logs produced as application-
specific agents, and thereby answering Q2. Therefore,
the case study involved two Google Pixel 3XL emula-
tors running Android 10 (API 29). Telegram v.8.8.5,
Whatsapp v.2.22.17.70 and Signal v.5.44.4 were in-
stalled on both emulators. JIT-MF was used as a
forensic enhancement tool that equips these apps on
one of the emulators (Device A) with a logging agent
(JIT-MF Driver).

7https://www.sqlite.org/capi3ref.html

https://apkcombo.com/
https://www.sqlite.org/capi3ref.html

Table 1: The table shows whether or not the SQLite usage signature was matched in different versions of Signal, Telegram
and WhatsApp, since 2017.

Release Date App version Found SQLite function calls in
decompiled smali code (1)

Found shared object in library
folder (2)

23-08-2017 Signal v.4.9.9 ✓ ✗
28-02-2018 Signal v.4.16.9 ✓ ✓
06-08-2018 Signal v.4.24.8 ✓ ✓
09-02-2019 Signal v.4.33.5 ✓ ✓
09-08-2019 Signal v.4.45.2 ✓ ✓
12-02-2020 Signal v.4.55.8 ✓ ✓
20-08-2020 Signal v.4.69.4 ✓ ✓
18-02-2021 Signal v.5.4.6 ✓ ✓
20-08-2021 Signal v.5.21.5 ✓ ✓
18-02-2022 Signal v.5.32.7 ✓ ✓
05-08-2017 Telegram v.4.2.2 ✗ ✓
19-02-2018 Telegram v.4.8.4 ✗ ✓
30-08-2018 Telegram v.4.9.1 ✗ ✓
09-02-2019 Telegram v.5.3.1 ✗ ✓
24-08-2019 Telegram v.5.10.0 ✗ ✓
16-02-2020 Telegram v.5.15.0 ✗ ✓
16-08-2020 Telegram v.7.0.0 ✗ ✓
18-02-2021 Telegram v.7.4.2 ✗ ✓
07-08-2021 Telegram v.7.9.3 ✗ ✓
14-02-2022 Telegram v.8.5.2 ✗ ✓
11-08-2017 WhatsApp v.2.17.296 ✓ ✓
09-02-2018 WhatsApp v.2.18.46 ✓ ✓
18-08-2018 WhatsApp v.2.18.248 ✓ ✓
08-02-2019 WhatsApp v.2.19.34 ✓ ✓
07-08-2019 WhatsApp v.2.19.216 ✓ ✓
13-02-2020 WhatsApp v.2.20.22 ✓ ✓
05-08-2020 WhatsApp v.2.20.196.16 ✓ ✗
06-02-2021 WhatsApp v.2.21.3.13 ✓ ✗
09-08-2021 WhatsApp v.2.21.17.1 ✓ ✗
17-02-2022 WhatsApp v.2.22.4.75 ✓ ✗

Table 2: The frequency of Signal, Telegram, WhatsApp and SQLite library version releases, since 2017.

Codebase Average Release time (in days) over the last 5 years
WhatsApp 6.324
Telegram 14.917

Signal 7.319
SQLite 39.48*

* Releases here reflect changes in the library source code. These up-
dates do not necessarily imply changes in the API and are not manda-
tory for applications that use it.

Step 2: Identify
underlying APIs

Step 3: Determine
underlying infrastructure at
the most native level

Input

Step 4: Log Collection -
Identify and manipulate
events that need to be
recorded

Input

Step 5: Log Parsing - parse
application-specific elements
of the logs generated.

SQLite

sqlite.c

Input

INSERT INTO
TABLE_NAME (v1,v2…)

JIT-MF

Output Output

Step 1: Identify key
application events

Input

Telegram,
Whatsapp, Signal

Input

Telegram,
Whatsapp, Signal

Message Send

Output Output

Figure 3: Process for creating and deploying SQLite infrastructure-based logging agents for Telegram, WhatsApp and Signal,
using SQLite as infrastructure and JIT-MF as the forensic enhancement tool.

Methodology. Existing JIT-MF drivers from pre-
vious research8 that cater for messaging hijacks on
Telegram, WhatsApp and Signal are used and a new
SQLite infrastructure-based driver9 is developed that
can be used with all three apps. The applications
are equipped with their respective application-specific
JIT-MF driver and the same SQLite infrastructure-
based driver. AndroidViewClient was used to simu-
late normal messaging traffic, whereby 20 messages
were sent, and 20 messages were received by De-
vice A. Each message was formulated as follows:
Normal Message < #msgnumber >.

The log entries produced by the drivers are ex-
pected to include any messages sent and received by
the enhanced app. Therefore, to evaluate whether an
SQLite infrastructure-based driver can maintain the
same level of accuracy in its log entries as application-
specific drivers, we compare these log entries to those
produced by application-specific drivers.

Logging Agent Development. JIT-MF drivers are
the logging agents used in JIT-MF. We created a
new SQLite infrastructure-based JIT-MF driver as
an infrastructure-based logging agent aimed at being
able to enhance all three apps. Following the steps
shown in Figure 2, the SQLite infrastructure-based
driver was developed, as shown in Figure 3. We iden-
tify message send events as the key application event
that the SQLite infrastructure-based agent needs to
log. Log entries produced through JIT-MF are in-
voked at trigger points containing evidence objects.
In the case of an SQLite infrastructure-based JIT-MF
driver, trigger points were defined as the functions ex-
posed by the sqlite C interface10 and evidence ob-
jects comprise of a parameter within these functions
that contains the SQL statements executed.

Log Collection. The publicly available documen-
tation for SQLite indicates that prepared state-
ments allow applications to execute all SQL state-
ments. Furthermore, the second parameter of
any prepared statement contains the SQL query
to be executed. Subsequent bind functions
(BIND INT,BIND TEXT,BIND BLOB) are used to pop-
ulate the parameterised values of the query, depend-
ing on a query ID11. Therefore log entries produced
by SQLite infrastructure-based logging agent should

8https://gitlab.com/mobfor/jitmf_experiments_
resources

9https://gitlab.com/bellj/infrastructure_based_
agents

10https://www.sqlite.org/c3ref/funclist.html
11https://www.sqlite.org/c3ref/stmt.html

consist of SQL statements that were executed to pop-
ulate messages in the messaging app local database.

Log Parsing. An offline component was required
to parse the log entries produced. While the SQLite
infrastructure-based JIT-MF driver was the same for
all three apps, the log entries produced contained
application-specific knowledge that required unique
parsing logic per app. For instance, not all apps inter-
nals use the same SQL statements to populate their re-
spective local databases. However, SQLite databases
include a schema that describes the tables within a
database. This means that the developed parser could
use this information to carve out the necessary por-
tions from the log entries accordingly.

Listing 3 shows three unparsed log entries gener-
ated by an SQLite infrastructure-based driver, while
sending messages from WhatsApp, Telegram and
Signal, respectively. Each entry comprises of an
INSERT | REPLACE statement, signifying a new mes-
sage that will be inserted in the local database.
Application-specific parsers were developed which
could: i) identify the names of the message table
unique to each app (message ftsv2, messages v2
and sms), and ii) map the appropriate field val-
ues with the key application event metadata; for in-
stance, the second field value of a REPLACE INTO
messages v2 table generated when using Telegram
reflects the time at which a message was sent. The
respective parsed log entries are shown in Listing 4.

Results. Publicly-available documentation allowed
the development of an SQLite infrastructure-based
logging agent without requiring application-specific
code reversing. The same SQLite infrastructure-
based JIT-MF driver was effective on all three apps;
however, as expected, offline application-specific log
parsing was required per app.

We compare the parsed output generated by the
SQLite infrastructure-based logging agent with that
produced by the application-based agents. The
final column in Table 3 shows that the SQLite
infrastructure-based agent was able to produce the
same number of log entries containing the same text
metadata, as each of the application-specific drivers.
While text metadata in log entries generated by the
SQLite infrastructure-based logging agent (Listing 4)
and application-based agents (Listing 1) is the same,
closer inspection of the two sample log entry outputs
generated, shows some difference in the other key
application event metadata generated. Application
event metadata generated by SQLite infrastructure-
based logging agent translates roughly to the same
metadata obtained by the application-based agents in

https://gitlab.com/mobfor/jitmf_experiments_resources
https://gitlab.com/mobfor/jitmf_experiments_resources
https://gitlab.com/bellj/infrastructure_based_agents
https://gitlab.com/bellj/infrastructure_based_agents
https://www.sqlite.org/c3ref/funclist.html
https://www.sqlite.org/c3ref/stmt.html

Listing 3: Unparsed log entries generated by infrastructure-based agent for WhatsApp (1), Telegram (2) and Signal (3)
respectively
1 INSERT INTO message_ftsv2(fts_jid ,docid ,content ,fts_namespace) VALUES (0 b,null,normal_message_1 ,0 b)
2 REPLACE INTO messages_v2 VALUES(2328, 1679923803, 2, 0, 1662483779, n8\"QY[!d\"QY[!dC}cNormal_message_1 , 0, 0,

18446744073709552000 , NULL, 0, 0, 0, undefined , 0, 0, 0, undefined)
3 INSERT INTO sms(thread_id ,subscription_id ,address ,protocol ,expires_in ,server_guid ,date_sent ,body ,date,read,type ,

unidentified ,date_server ,reply_path_present ,service_center ,address_device_id) VALUES (3,18446...0,3, 31337,0,d500 3
b3d-ce8e -41cf-ba67 -1cf592fa81c2 ,1662485982439 , Normal_message_1Â§ ,1662485983160 ,0 ,10485780 , 1,1662485974012,1,GCM ,1)

Listing 4: JIT-MF log entry sample generated while using WhatsApp, Telegram and Signal, produced through an SQLite
infrastructure-based logging agent.
1 {"time": "1662481636" , "event": "WhatsApp Message Sent" , "trigger_point(s)": "sqlite3_clear_bindings|sqlite3_prepare_v2|

sqlite3_prepare16_v2|sqlite3_bind_int|sqlite3_bind_int64|sqlite3_bind_text|sqlite3_bind_text16|sqlite3_bind_blob|
sqlite3_finalize" , "object": {"date": "", "message_id": "","text": "normal_message_1" , "to_id": "", "to_name": "",
"to_phone": "", "from_id": "", "from_name": "", "from_phone": ""}}

2 {"time": "1662483789" , "event": "Message Sent" , "trigger_point(s)": "sqlite3_clear_bindings|sqlite3_prepare_v2|
sqlite3_prepare16_v2|sqlite3_bind_int|sqlite3_bind_int64|sqlite3_bind_text|sqlite3_bind_text16|sqlite3_bind_blob|
sqlite3_finalize" , "object": {"message_number": "2328" , "date": "1662483779" , "text": "Normal_message_1 ", "type":
"received" , "to_id": "5181266731" , "to_name": "target_phone;;;", "to_phone": "35699626972" , "from_id": "1679923803"
, "from_name": "contact_phone;;;", "from_phone": "35679247196"}}

3 {"time": "1662485983" , "event": "Message Sent" , "trigger_point(s)": "sqlite3_clear_bindings|sqlite3_prepare_v2|
sqlite3_prepare16_v2|sqlite3_bind_int|sqlite3_bind_int64|sqlite3_bind_text|sqlite3_bind_text16|sqlite3_bind_blob|
sqlite3_finalize" , "object": {"date": "1662485983160" , "text": "Normal_message_1" , "type": "received" , , "to_id":
"_", "to_name": "target_phone" , "to_phone": "+35699626972", "from_id": "3", "from_name": "contact_phone" ,
"from_phone": "+35679247196"}}

Table 3: The table shows the maximum lines of code (LoC) that need to be analysed to develop an application-specific agent
and an SQLite infrastructure-based agent, along with the percentage of log entries retrieved by an SQLite infrastructure-based
agent, when compared with log entries generated using an application-specific agent.

Application Maximum LoC analysed for
application-specific agent

Maximum LoC analysed for
SQLite infrastructure-based

agent

% of log entries retrieved by
SQLite infrastructure-based

agent
WhatsApp 1,515,334 395,076 100
Telegram 1,025,467 -* 100

Signal 1,552,171 -* 100
* The same SQLite codebase is used to develop an SQLite infrastructure-based agent for all three apps. Therefore the lines

of code is analysed only once.

the case of Telegram and Signal. With WhatsApp,
however, application event log entries are missing the
recipient value. Unlike Telegram and Signal, What-
sApp is closed-source. Therefore, parsing the gen-
erated logs was not as straightforward and possibly
required further in-depth reverse engineering efforts
to fully parse metadata within SQLite infrastructure-
based log entries. That said, given that the log entries
generated by the agent contain all the app events in-
volving interactions with the database, additional re-
verse engineering effort can be carried out offline at a
later stage to parse the generated logs.

In the case of application-specific JIT-MF drivers,
evidence objects are identified and defined within a
driver based on knowledge of the application code-
base, which calls for a reverse engineering process.
We use lines of code (LoC) as a metric to high-
light the reverse engineering effort that needs to
be made when developing application-specific and
SQLite infrastructure-based logging agents. The sec-
ond and third columns of Table 3 show the maximum
LoC that need to be analysed using both approaches
(application-specific and SQLite infrastructure-based
logging agent) to select the relevant evidence object
and thus develop a logging agent for each app. In the
case of the application-specific logging agents, LoC

for each app reflects the lines of code in the respec-
tive decompiled java source files. For the SQLite
infrastructure-based agent, the LoC reflects the lines
of code in sqlite source and header files. Since
the same SQLite infrastructure-based agent was used
for the three apps, the LoC value for the SQLite
infrastructure-based agent is only considered once.
Therefore, the codebase that needs to be reversed to
develop an SQLite logging agent is much smaller than
each of the applications’ codebases and only needs
to be reversed once since it is common for all three
apps. The LoC values in the table portray the worst-
case scenario, as reverse engineering efforts can be
reduced further in the case of application-specific
agents by using keyword searches (e.g. Message) –
assuming an unobfuscated codebase – to narrow the
search for the evidence object to a couple of classes.
With infrastructure-based agents, public documenta-
tion of the infrastructure’s interface can outline key
exposed methods without going through the infras-
tructure codebase.

Threats to Validity. JIT-MF aims to ensure min-
imal forensic readiness by repackaging apps rather
than requiring the device to be rooted. While minimal
forensic readiness is a core property of JIT-MF, it falls

outside this experiment’s scope, as our aim is to assess
the accuracy of a JIT-MF driver based on infrastruc-
ture rather than application-specific logic. Therefore,
a rooted emulator was used to carry out the experi-
ment, which enabled ease of automation and results-
gathering, and drivers could be embedded directly on
the device without app repackaging. While repackag-
ing should not compromise the results obtained, this
merits threats to validity as the results obtained as-
sume that the driver can be installed.

5 DISCUSSION

While infrastructure-based forensic logging agents
can significantly reduce the code comprehension ef-
fort required, selecting the proper infrastructure upon
which a forensic logging agent is developed is crit-
ical to the agent’s ability to produce the necessary
evidence. SQLite, the storage management infras-
tructure employed by Android Architecture Compo-
nents, was selected for our experiments. This infras-
tructure persists data from memory to a database on
the user’s phone. While our qualitative case study
demonstrated the success of an SQLite infrastructure-
based agent on three Android messaging apps, we ex-
pect that similar storage infrastructure usage is com-
monplace among the most popular apps, regardless of
their category. Applications maintain their state by
persisting essential app data and events to storage (ei-
ther on the device or to cloud storage). Thus, appli-
cations are bound to use storage infrastructures that
handle key application events even beyond messag-
ing, potentially allowing such an infrastructure-based
agent to be reused among multiple apps.

We assess the potential effectiveness of using
an infrastructure-based approach to generate log-
ging agents for Android apps at a larger scale by
performing coverage analysis on the most down-
loaded Android apps from Google Playstore (550
apps in total, 44 of which fall in the messaging cat-
egory). Using statistics from AppBrain (AppBrain
API, 2022), Figure 4 shows that, potentially, develop-
ing two storage-related infrastructure-based logging
agents would be enough to forensically enhance a
large majority (94.7%) of the most popular apps. At
the same time, a single storage-related infrastructure-
based logging agent could enhance 93.2% of messag-
ing apps. This means a significantly small number of
apps (5-7%) would require further code comprehen-
sion effort to develop the relevant logging agents.

Considerations & Limitations. Our coverage
analysis indicates that storage-related infrastructure-

No ag
en

t

And
roi

d Arch
ite

c-

tur
e Com

po
ne

nts

Fire
ba

se

Gree
nD

AO

Orm
Lite

Rea
lm

DBFlow

Acti
ve

And
roi

d

Sug
arO

RM

M
on

go
DB0

20

40

60

80

100

Available logging agents

%
of

ap
ps

co
ve

re
d

All apps
Messaging apps

Figure 4: The number of storage infrastructure-based agents
needed to forensically enhance a % of apps from the most
downloaded 550 apps on Google PlayStore.

based agents could significantly decrease the effort
required when developing forensic logging agents for
third-party apps by requiring fewer agents to enhance
more apps successfully. This analysis, however, is
based on statistics derived from AppBrain; thus,
any limitations regarding how these statistics are
generated can impact the results of our analysis.

While results from our case study show that less
application-specific reverse engineering is required
to develop an effective storage-related infrastructure-
based agent, application-specific parsing is still nec-
essary, to a lesser extent. Application evidence in
memory is typically transformed (see Listing 3) when
persisted to storage, regardless of the application cat-
egory, requiring some form of application-specific
parsing (see Listing 4). While the type of transfor-
mation is specific to the application and evidence, our
case study showed that: i) this transformation is typ-
ically lossless (i.e. all the event metadata is retained
in log entries) and structure-related, requiring some
form of deserialisation; ii) the necessary steps to carve
out all the metadata about key application events can
quickly be determined upon observation.

This may not always be the case. Application de-
velopers may opt to transform evidence in memory
so they can no longer be easily parsed, for instance,
by persisting encrypted or compressed data to a lo-
cal database. However, this may not be practical as
is the case in the context of Android, for instance.
File-based encryption (FBE) (Google, 2022) is en-
abled by default on devices running Android 10 or
higher. Therefore, encrypting application data would
lead to slower performance without any additional se-
curity benefit beyond the default.

6 RELATED WORK

Forensic Logging. Tracing system-level depen-
dence is a popular technique for anomaly detection
in desktop, server and mobile environments (New-
some and Song, 2005; King et al., 2005; King and
Chen, 2003; Ammann et al., 2002; Yuan et al., 2017).
Such techniques are typically used to record events
(e.g. system calls, API calls) during execution so that
causal dependencies between system subjects (e.g.
process) and system objects (e.g., network socket or
file) can be identified to detect malicious behaviour.
Ultimately, traces of function/API calls comprise logs
that serve an ulterior specific purpose, such as mal-
ware detection. In this work, we show that applica-
tion events logged at the level of function/API trac-
ing intended to provide deeper visibility are not infe-
rior to enhanced forensic logging that benefits from
application-specific logic knowledge.

Similarly to tools like BEEP (Lee et al., 2013),
ProTracer (Ma et al., 2016), and WinLog (Ma et al.,
2015), an infrastructure-based forensic logging agent,
as proposed in this paper, calls for a proactive ap-
proach to forensically enhance application binaries
for attack reconstruction. However, rather than rely-
ing solely on system and memory level dependencies,
infrastructure-based agents may also rely on library
and API calls. Calls to these dependencies are less
complex to reverse engineer and can obtain semanti-
cally richer traces of logs obtained from lower-level
dependencies (e.g. system calls).

Logging agents deployed by forensic enhance-
ment tools complement tracing techniques by obtain-
ing richer traces through custom tracing third-party
applications. The logging entries (traces) generated
can be used alongside other sources of evidence for
analysis by endpoint visibility tools such as GRR
Rapid Response and Velociraptor IR, provided that an
appropriate parser is created for the traces.

Dynamic instrumentation as an enabler for log-
ging agents. Instrumentation is not always neces-
sary for log enhancement (Ma et al., 2015). However,
in the case of logging agents for third-party applica-
tions it is the primary enabler (Toslali et al., 2021;
Bellizzi et al., 2022). While the approach introduced
in this paper was evaluated using an enhancement
technique that leverages instrumentation, the main
aim of our work involved developing logging agents
that require less reverse engineering effort while mit-
igating the accuracy risks in the logs generated.

Android Forensic Enhancement. In the context of
Android, DroidForensics (Yuan et al., 2017) enables

multi-layer logging events on Android from differ-
ent layers, while CopperDroid (Tam et al., 2015) pro-
poses system-call logging. Rather than utilising a log-
ging agent to log events of interest, these solutions re-
quire modifications to the underlying Android system.
While this means that application reverse engineering
and agents breaking compatibility are no longer an is-
sue, users must significantly modify their devices.

Our work builds on previous research that intro-
duces the JIT-MF framework (Bellizzi et al., 2020;
Bellizzi et al., 2022; Bellizzi. et al., 2021), a foren-
sic enhancement technique for Android that uses
application-specific logging agents (drivers) to dump
evidence from memory to aid investigations regard-
ing benign application misuse. The cornerstone of
the framework is a JIT-MF driver having application-
specific properties related to the application-specific
trigger points and objects that need to be dumped
from memory. Previous work evaluated the impact
black-box (non-application-specific) trigger points
would have on the object (evidence) dumped (Bel-
lizzi et al., 2020); however, the object itself was
application-specific. Experiment results from this
paper show that JIT-MF drivers should follow an
infrastructure-centric approach, which reduces appli-
cation reverse engineering effort by forgoing the need
to work with application-specific objects and thus in-
creasing the driver’s stability across applications and
versions.

7 CONCLUSION

This paper presents a new approach to developing
post-deployment forensic logging agents, deployed
during the forensic readiness stage of incident re-
sponse, for third-party applications whose access to
the source code is limited. This approach leverages
interfaces to widely deployed infrastructure to min-
imise the reverse engineering efforts required to de-
velop such agents, thereby increasing compatibility
across applications and versions.

Our experiments have shown that SQLite can
be leveraged in the context of Android messaging
apps to develop infrastructure-based logging agents
that remain prevalent across app versions and func-
tional across three different applications. In doing
so, we considerably reduce the reverse engineering
effort while increasing compatibility across applica-
tions and their versions.

Coverage analysis based on data from AppBrain
also shows that potentially, using this approach, 95%
of most downloaded apps on Google Playstore can
be forensically enhanced using at most two storage-

related infrastructure-based forensic logging agents.
This significantly reduces the number of agents that
need to be developed and the individual apps that
would need to be reverse-engineered. This result
bodes well for JIT-MF and any other forensic logging
enhancement technique aiming to provide deeper
visibility through a third-party application-specific
forensic logging agent.

ACKNOWLEDGEMENTS

This work is supported by the DETECTIF (Digi-
tal Evidence Targeting covErt Cyberattacks through
Timely Information Forensics) project. DETECTIF
is funded by the Malta Council for Science and Tech-
nology (MCST) under the FUSION R&I: Research
Excellence Programme, Grant Agreement No. REP-
2022-007.

REFERENCES

Amer Owaida (2021). Wormable android mal-
ware spreads via whatsapp messages. https:

//www.welivesecurity.com/2021/01/26/wormable-

android-malware-spreads-whatsapp-messages. Ac-
cessed: 9.11.2021.

Ammann, P., Jajodia, S., and Liu, P. (2002). Recovery from
malicious transactions. IEEE transactions on knowl-
edge and data engineering, 14(5):1167–1185.

AppBrain (2022). Appbrain: Monetize, advertise and an-
alyze android apps. https://www.appbrain.com/stats/

libraries. Accessed: 23.08.2022.
AppBrain API (2022). https://api.appbrain.com/v2/info/

browse. Accessed: 20.10.2022.
Bellizzi, J., Vella, M., Colombo, C., and Hernandez-Castro,

J. (2020). Real-time triggering of android memory
dumps for stealthy attack investigation. In NordSec,
pages 20–36.

Bellizzi., J., Vella., M., Colombo., C., and Hernandez-
Castro., J. (2021). Responding to living-off-the-land
tactics using just-in-time memory forensics (jit-mf)
for android. In SECRYPT, pages 356–369.

Bellizzi, J., Vella, M., Colombo, C., and Hernandez-Castro,
J. (2022). Responding to targeted stealthy attacks on
android using timely-captured memory dumps. IEEE
Access, 10:35172–35218.

Cohen, M. I., Bilby, D., and Caronni, G. (2011). Distributed
forensics and incident response in the enterprise. dig-
ital investigation, 8:S101–S110.

Flubot (2021). Flubot malware – all you need to know & to
act now. https://www.threatmark.com/flubot-banking-
malware/. Accessed: 6.03.2021.

Google (2022). File-based encryption. https://source.

android.com/security/encryption/file-based Ac-
cessed: 22.10.2022.

Jon Russell (2012). Stealth sms payment malware identi-
fied in chinese android app stores, 500,000 devices
infected. https://thenextweb.com/news/stealth-

sms-payment-malware-identified-chinese-app-

stores-500000-android-devices-infected. Accessed:
2.10.2022.

King, S. T. and Chen, P. M. (2003). Backtracking intrusions.
In ACM SOSP, pages 223–236.

King, S. T., Mao, Z. M., Lucchetti, D. G., and Chen, P. M.
(2005). Enriching intrusion alerts through multi-host
causality. In NDSS.

Lee, K. H., Zhang, X., and Xu, D. (2013). High accuracy at-
tack provenance via binary-based execution partition.
In NDSS, volume 16.

Ma, S., Lee, K. H., Kim, C. H., Rhee, J., Zhang, X., and Xu,
D. (2015). Accurate, low cost and instrumentation-
free security audit logging for windows. In ACSAC,
pages 401–410.

Ma, S., Zhang, X., Xu, D., et al. (2016). Protracer: Towards
practical provenance tracing by alternating between
logging and tainting. In NDSS, volume 2, page 4.

Mace, J., Roelke, R., and Fonseca, R. (2015). Pivot tracing:
Dynamic causal monitoring for distributed systems. In
Proceedings of the 25th Symposium on Operating Sys-
tems Principles, pages 378–393.

Newsome, J. and Song, D. X. (2005). Dynamic taint anal-
ysis for automatic detection, analysis, and signature-
generation of exploits on commodity software. In
NDSS, volume 5, pages 3–4.

Octo (2022). Look out for octo’s tentacles! a new
on-device fraud android banking trojan with a rich
legacy. https://threatfabric.com/blogs/octo-new-

odf-banking-trojan.html. Accessed: 16.08.2022.
Tam, K., Fattori, A., Khan, S., and Cavallaro, L. (2015).

Copperdroid: Automatic reconstruction of android
malware behaviors. In NDSS Symposium 2015, pages
1–15.

ThreatLandscape (2022). 2022 mobile threat landscape up-
date. https://www.threatfabric.com/blogs/h1-2022-

mobile-threat-landscape.html. Accessed: 6.03.2021.
Toslali, M., Ates, E., Ellis, A., Zhang, Z., Huye, D., Liu,

L., Puterman, S., Coskun, A. K., and Sambasivan,
R. R. (2021). Automating instrumentation choices for
performance problems in distributed applications with
VAIF. In ACM SoCC, pages 61–75.

Yuan, D., Park, S., Huang, P., Liu, Y., Lee, M. M., Tang, X.,
Zhou, Y., and Savage, S. (2012a). Be conservative:
Enhancing failure diagnosis with proactive logging. In
USENIX OSDI, pages 293–306.

Yuan, D., Zheng, J., Park, S., Zhou, Y., and Savage, S.
(2012b). Improving software diagnosability via log
enhancement. ACM TOCS, 30(1):1–28.

Yuan, X., Setayeshfar, O., Yan, H., Panage, P., Wei, X., and
Lee, K. H. (2017). Droidforensics: Accurate recon-
struction of android attacks via multi-layer forensic
logging. In ACM ASIACCS, pages 666–677.

Zhao, X., Rodrigues, K., Luo, Y., Stumm, M., Yuan, D.,
and Zhou, Y. (2017). Log20: Fully automated optimal
placement of log printing statements under specified
overhead threshold. In ACM SOSP, pages 565–581.

https://www.welivesecurity.com/2021/01/26/wormable-android-malware-spreads-whatsapp-messages
https://www.welivesecurity.com/2021/01/26/wormable-android-malware-spreads-whatsapp-messages
https://www.welivesecurity.com/2021/01/26/wormable-android-malware-spreads-whatsapp-messages
https://www.appbrain.com/stats/libraries
https://www.appbrain.com/stats/libraries
https://api.appbrain.com/v2/info/browse
https://api.appbrain.com/v2/info/browse
https://www.threatmark.com/flubot-banking-malware/
https://www.threatmark.com/flubot-banking-malware/
https://source.android.com/security/encryption/file-based
https://source.android.com/security/encryption/file-based
https://thenextweb.com/news/stealth-sms-payment-malware-identified-chinese-app-stores-500000-android-devices-infected
https://thenextweb.com/news/stealth-sms-payment-malware-identified-chinese-app-stores-500000-android-devices-infected
https://thenextweb.com/news/stealth-sms-payment-malware-identified-chinese-app-stores-500000-android-devices-infected
https://threatfabric.com/blogs/octo-new-odf-banking-trojan.html
https://threatfabric.com/blogs/octo-new-odf-banking-trojan.html
https://www.threatfabric.com/blogs/h1-2022-mobile-threat-landscape.html
https://www.threatfabric.com/blogs/h1-2022-mobile-threat-landscape.html

	Introduction
	Background
	Log collection for forensic analysis
	JIT-MF: a specific case of post-deployment forensic log enhancement on Android

	Overview
	Evaluation
	Common Infrastructure Adoption
	Prevalence across app versions
	Android Messaging Case Study

	Discussion
	Related Work
	Conclusion

