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1 Introduction

Defining the similarity, or distance, between mathematical objects in some
class is generally always an important undertaking, and this is no exception
for graphs. Ideally we would like to define the similarity between two graphs
G, H as a parameter which is easy to compute, achieves some maximum value
if and only if G and H are isomorphic, and in some sense captures how dif-
ferent G and H are when they are not isomorphic. In a sense, all graphical
parameters can be considered candidates for such a similarity measure, but no
measure which satisfies all these conditions is known. An easily computable
parameter which determines when two graphs are isomorphic would solve
the Graph Isomorphism (GI) Problem, one of graph theory’s diseases [24].
Easily computable parameters such as the degree sequence and the spectrum
do not always distinguish between non-isomorphic graphs. But devising mea-
sures which are efficiently computable although not always able to distinguish
between non-isomorphic graphs is still an important realm for investigation,
especially in applications. A recent example of work in this field (sometimes
called inexact graph matching [8]) is [9], where the authors derive a hierarchy
of similarity measures related to the degree sequence parameter and which can
be computed efficiently. In this paper the authors give experimental results
obtained by applying their similarity measures to more than four hundred
directed graphs representing web-based hypertext structures.

In this chapter we shall focus on measuring the similarity of two graphs
in terms of their subgraphs. Complexity considerations and practical use will
only be discussed briefly in the last section. The first paper to study this way
of measuring similarity or distance between graphs was probably [25]. In this
paper, motivated by a question of Vizing, Zelinka defines the the distance
δ(G, H) between two graphs on n vertices as the minimum k such that G and
H are both induced subgraphs of a graph on n+ k vertices and he shows that
δ is a metric on the set of graphs with n vertices. He also proves the simple
result that G and H are induced subgraphs of a graph on at most n + k
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vertices if and only if they have a common induced subgraph on at least n−k
vertices. We shall consider a similarity measure which takes into consideration
all induced subgraphs and which is also related to another well-known graph
theory disease.

So, how similar can two graphs be? Two graphs are, of course, as similar as
they can be when they are isomorphic. However, how much internal structure
can two non-isomorphic graphs share? We show what the answer can look like
if the measure of common internal structure between the two graphs is taken
to be the number of isomorphic subgraphs which they share. We see how this
notion is related to the internal symmetries of a graph and that therefore,
for most graphs, their internal structure forces them to be very dissimilar to
other graphs. We also indicate some attempts to find non-isomorphic graphs
which are very similar in terms of the common subgraphs which they share.

In the following all graphs will be simple and undirected. Let G be a graph
and v, e a vertex and an edge, respectively, of G. Then G− v will denote the
graph obtained by deleting from G the vertex v and all the edges incident to
v; this will be called a vertex-deleted subgraph of G. More generally, if X is
a set of vertices of G then G − X will denote the graph obtained by deleting
from G all vertices in X and all edges incident to at least one vertex in X .
The resulting graph G − X is said to be induced by the vertices V (G) − X .

Similarly, G − e will denote the graph obtained by deleting the edge e; it
will be called an edge-deleted subgraph of G. We shall mostly be concerned
with vertex-deleted subgraphs, but we shall often indicate how the results and
questions we present relate to the edge-deletion case.

The measure of similarity between two graphs which we shall be discussing
is the number of vertex-deleted subgraphs which they possess in common. We
define the subgraph similarity sim(G, H) between two graphs G and H with
the same number of vertices n as follows. Let D(G), called the deck of G, be
the list of vertex-deleted subgraphs of G, where isomorphic subgraphs appear
with the appropriate multiplicity. Similarly let D(H) be the deck of H . Then
sim(G, H) is equal to the number of vertex-deleted subgraphs in D(G) which
are also in D(H), where a subgraph which appears more than once in D(G)
is counted as many times as it appears in D(H). (Therefore Zelinka’s result
quoted above for k = 1 states that G and H are both in the deck of some
graph if and only if sim(G, H) ≥ 1.) To make these definitions clear note that
the two graphs G and H in Figure 1 have sim(G, H) = 5.

All of this is, of course, related to the Reconstruction Conjecture (RC)
which can now be stated as:

Reconstruction Conjecture
If G and H are two graphs on n ≥ 3 vertices with sim(G, H) = n then G and
H are isomorphic.

Most results in graph reconstruction can now be stated in this fashion, for
example, if sim(G, H) = n then G and H have the same degree sequence, and
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Fig. 1. Graphs G, H with sim(G, H) = 5

the same characteristic and chromatic polynomials [16, 17]; if sim(G, H) = n
and G is in one of these classes of graphs, then G ≃ H : regular, disconnected
[17], trees [12] and maximal planar [15]. (For a survey on the RC the reader
is referred to [16].)

But the new insight which this point of view brings is that now, new and
perhaps more amenable structural questions about graphs arise. Basically,
even if we assume that the RC is true, we can still ask questions such as how
large can sim(G, H) be when G and H are not isomorphic. This enables us
to revisit classes of graphs for which the question of reconstruction is easily
settled but for which the issue of similarity in terms of subgraphs is still a
very interesting unresolved question.

The notion of sim(G, H) is at the heart of two important parameters which
have been studied in the literature on the RC. Both of these parameters indi-
cate how similar or dissimilar a given graph is to all others, and therefore how
easy or difficult it is to determine it from its deck. The universal reconstruction
number ∀rn(G) of a graph G is defined to be

∀rn(G) = 1 + max
H 6≃G

{sim(G, H)}.

This means that, given any ∀rn(G) vertex-deleted subgraphs from D(G), these
subgraphs determine G uniquely because no other non-isomorphic graph can
have all of them in its deck. This interpretation, which tacitly assumes that
RC is true, explains the name given to this parameter and its notation. This
parameter is also often called the adversary reconstruction number of G [4].

The other reconstruction number ∃rn(G), called the existential reconstruc-
tion number of G, is defined a little differently. Again tacitly assuming the
truth of the RC, ∃rn(G) is defined to be the smallest number of vertex-deleted
subgraphs of G which are not found in the deck of any other graph. This means
that there exist ∃rn(G), and no less, vertex-deleted subgraphs of G which alone
determine G uniquely, and this again explains the name of this parameter and
the notation used. This parameter is also often called the ally reconstruction
number or simply the reconstruction number of G [4]. For reasons which will
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become clear in the next section, in this chapter we shall mostly discuss these
reconstruction numbers from the point of view of finding graphs with a high
value for these parameters, that is, graphs which are in some sense very simi-
lar to other graphs. For more results about these two reconstruction numbers
the reader is referred to the survey [4] and the book [17].

When we discuss the analogous situation with edge-deleted subgraphs we
denote these parameters by the suffix e: sime, ∀rne and ∃rne.

It is clear that ∃rn(G) ≤ ∀rn(G) but sometimes the two can be equal. For the
two graphs in Figure 1 one can check that ∃rn(G) = ∀rn(G) = 6, ∃rn(H) = 3
and ∀rn(H) = 6. It is also clear that ∃rn(G) > 2 because suppose we claim
that ∃rn(G) = 2 for some graph G. Let G − u and G − v be the two vertex-
deleted subgraphs which alone determine G. Construct H as follows. If u and
v are adjacent in G then remove the edge uv, if they are not adjacent then
add the new edge uv. Then, H is not isomorphic to G but it contains the two
graphs G − u and G − v in its deck.

So the question becomes: how large can ∃rn(G) and Urn(G) be? we have
seen that for the graphs in Figure 1 ∃rn(G) is as small as it can be while
∀rn(G), ∃rn(H) and ∀rn(H) are almost as large as the truth of the RC would
allow. We shall see in the next section that such large reconstruction numbers
are very rare.

2 Most graphs are dissimilar

It turns out that most graphs are so dissimilar that their universal recon-
struction number is three, that is, any three vertex-deleted subgraphs of most
graphs will determine its graph uniquely. We shall make this statement more
precise and give the proof in full because it illustrates very well how the con-
cept of subgraph similarity which we are using depends heavily on the internal
structure of graphs. The proof is based on [1] (Chapter 10, “Probabilistic Lens:
Counting subgraphs”).

It is well known that almost every graph has a trivial automorphism group .
However, a stronger results is possible which will tell us a lot about sim(G, H),
but we need first to explain what we mean when we say that almost every
graph has some property. So, let P be a graph theoretic property such as
‘planar’ or ‘vertex-transitive’. Let rn denote the proportion of labelled graphs
on n vertices that have property P . If limn→∞ rn = 1, then we say that
almost every (a.e.) graph has property P . To show that a.e. graph has our
desired property we will use the simplest probability space which is set up
when studying random graphs. Let G(n, 1

2 ) be the set of all labelled graphs
on the set of vertices {1, 2, . . . , n} where, for each pair i, j,

P(ij is an edge) = P(ij is not an edge) =
1

2
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independently. Therefore each graph G in G(n, 1
2 ) has probability (1

2 )(
n

2),
which is, of course, equal to the probability of choosing G randomly from

amongst all 2(n

2) labelled graphs on n vertices when all are equally likely to
be chosen. So, in order to show that a.e. graph has a particular property P
one has to show that the probability that G ∈ G(n, 1

2 ) has property P tends
to 1 as n tends to infinity.

The property we are interested in is the following. Let k be fixed. We say
that a graph G has property Ak if all induced subgraphs of G on n−k vertices
are mutually nonisomorphic. In other words, G has property Ak means that,
if X, Y are two distinct k-subsets of V (G), then G − X 6≃ G − Y . It is easy
to see that if G has property Ak+1, then it also has property Ak and that if
it has property A1, then it is asymmetric. Therefore having property Ak is
stronger than just being asymmetric. We shall show that, for any fixed k, a.e.
graph has property Ak.

Lemma 1. Let W ⊆ V , |W | = t, |V | = n, and let ρ : W → V be an injective
function that is not the identity. Let g = g(ρ) be the number of elements
w ∈ W such that ρ(w) 6= w. Then there is a set Iρ of pairs of (distinct)
elements of W , containing at least 2g(t− 2)/6 pairs, such that Iρ ∩ ρ(Iρ) = ∅.

Consider those pairs v, w ∈ W such that at least one is moved. (All pairs
are taken to contain distinct elements.) There are g(t − g) +

(

g
2

)

such pairs.
For all but at most g/2 of these pairs, {v, w} 6= {ρ(v), ρ(w)} (the exceptions
are when ρ(v) = w and ρ(w) = v). Let Eρ be the set of all such pairs. Then

|Eρ| ≥ g(t − g) +

(

g

2

)

− g

2
= g(t − g

2
− 1) ≥ g(

t

2
− 1).

Define a graph Hρ with vertex-set the pairs in Eρ and such that each pair
{v, w} is adjacent to the pair {ρ(v), ρ(w)}. In Hρ, all degrees are at most 2.
Degrees equal to 1 could arise because {ρ(v), ρ(w)} could contain an element
not in W , and so the pair would not be in Eρ. Degrees equal to 2 could arise
because {v, w} could be adjacent to both {ρ(v), ρ(w)} and {ρ−1(v), ρ−1(w)}.

Therefore the components of Hρ are isolated vertices, paths or cycles. Let
Iρ be a set of independent (that is, not adjacent) vertices in Hρ. Therefore,
for any pair {v, w} ∈ Iρ, {ρ(v), ρ(w)} is not in Iρ.

Now, all isolated vertices in Hρ are independent, at least half of the vertices
on a path are independent and at at least one third of the vertices on a cycle
are independent, the extreme case here being a triangle. Therefore

|Iρ| ≥ |Eρ|/3 ≥ 2g(t − 2)

6
,

as required.
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Corollary 1 Let G ∈ G(n, 1
2 ), W ⊂ V = V (G) and |W | = t. Let ρ : W → V

be an injective function that is not the identity. Let g = g(ρ) be the number
of elements w ∈ W such that ρ(w) 6= w. Let Sρ be the event

“ρ gives an isomorphism from G[W ] to G[ρ(W )]”.

Then

P (Sρ) ≤
(

1

2

)2g(t−2)/6

.

Let Iρ be the set constructed in the previous lemma. Now, for a given pair
{v, w} ∈ Iρ, the event

“{v, w} and {ρ(v), ρ(w)} are both edges or nonedges”

has probability 1/2. These events, as they range over all pairs {v, w} ∈ Iρ, are
mutually independent, because they involve distinct pairs. But Sρ requires all
these events simultaneously. Therefore, by independence,

P (Sρ) ≤ (
1

2
)|Iρ| ≤

(

1

2

)2g(t−2)/6

,

as required.

The result of this corollary is the crux of the matter. There are too many
independent correct ‘hits’ required for ρ to be an isomorphism, and the prob-
ability therefore becomes small as n increases.

Theorem 2 (Korshunov [14]; Müller [21]; Bollobás [6]). Let k be a fixed
nonnegative integer and let G ∈ G(n, 1

2 ). Let pn denote the probability that

∃W ⊆ V (G) = V = {1, 2, . . . , n},

with |W | = n − k and such that

∃ρ : W → V, ρ 6= id, ρ is an isomorphism from G[W ] to G[ρ(W )].

Then, limn→∞ pn = 0.
Hence, a.e. graph has property Ak.

Pick a particular W ⊂ V with |W | = n − k. This can be done in
(

n
n−k

)

ways, and
(

n

n − k

)

=
n(n − 1) . . . (n − k + 1)

k!
< nk.

Let t = n − k. Let ρ : W → V be injective and not the identity, and let
g = g(ρ) be the number of vertices of W that are moved by ρ. Let Sρ be the
event defined in the previous corollary.
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Now, for a given value of g between 1 and t, how many functions ρ are there
such that g(ρ) = g? Such a function is determined by the set {w : ρ(w) 6= w}
and by the values it takes on this set. Therefore, there are less than n2g such
ρ. Therefore, for a given fixed W , the probability of a nontrivial isomorphism
is given by

∑

ρ6=id

P (Sρ) =

t
∑

g=1

∑

ρ:g(ρ)=g

P (Sρ)

≤
t

∑

g=1

n2g

(

1

2

)2g(t−2)/6

=

t
∑

g=1

[

n22(2−t)/3
]g

<

t
∑

g=1

[

41/3n22−t/3
]g

.

Now t = n − k > 12(k + 1) lg n for sufficiently large n. Therefore

41/3n22−t/3 < 41/3n22−4(k+1) lg n

=
41/3n2

n4(k+1)

≤ 41/3

n2(k+1)

<
1

nk+1

where the last inequality follows if 41/3 < nk+1.
Therefore

∑

ρ6=id

P (Sρ) <

t
∑

g=1

(

1

nk+1

)g

<

n
∑

g=1

(

1

nk+1

)g

=
nn(k+1) − 1

nn(k+1)(nk+1 − 1)
.

But all this is for fixed W . Therefore the required probability is

pn < nk nn(k+1) − 1

nn(k+1)(nk+1 − 1)
,

and this tends to 0 as n tends to infinity.
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Now the following theorem explains the relationship between property Ak

and the subgraph similarity between graphs which we have been discussing.

Theorem 3 (Müller [21]; Myrvold [22]; Bollobás [6]). Let G have prop-
erty A3. Then G can be uniquely determined from any three vertex-deleted
subgraphs in its deck. That is, sim(G, H) ≤ 2 for any graph H not isomorphic
to G and ∀rn(G) = 3.

Let u, v, w ∈ V (G). We shall show that G is uniquely determined from
just G − u, G − v and G − w.

Note first that v is identifiable in G − u and u is identifiable in G − v;
because, since G has property A3 (and hence A2), the only pair of vertices
x ∈ V (G − u), y ∈ V (G − v) such that G − u − x ≃ G − v − y are x = v
and y = u. Let X = G − u − x and Y = G − v − y. There can only be one
isomorphism from X to Y . For suppose α and β are two such isomorphisms.
Let z ∈ V (X) such that α(z) 6= β(z). Then X − z ≃ Y − α(z) ≃ Y − β(z),
contradicting property A3. Therefore we can label X and Y uniquely, and,
from X = G − u, we can determine uniquely all of the neighbours of v in G,
except possibly u. All we need to know is whether u and v are adjacent. To
determine this we repeat the above procedure with G − w instead of G − u.

From Theorem 2 and this lemma the following surprising result is imme-
diate.

Theorem 4. Almost every graph G has sim(G, H) ≤ 2 for any graph H 6≃ G
and therefore ∀rn(G) = 3.

In an analogous manner one prove this result on edge-deleted subgraphs.

Theorem 5. Almost every graph G has the property that any two edge-deleted
subgraphs from its edge-deck determine it uniquely, that is, sime(G, H) ≤ 1
for any graph H 6≃ G, and ∀rne(G) = 2.

2.1 Empirical evidence

The data in Table 2.1, obtained by McMullen and Radziszowski [18], gives a
very good idea of how strong Theorem 4 really is. Out of more than 12,000,000,
graphs on ten vertices, only twelve have ∃rn greater than the minimum possi-
ble value of 3. This situation sets the scene for the search of graphs with large
values of ∃rn and ∀rn, and sometimes even a value of four can be considered
large and graphs with this value could be difficult to find. In the next section
we shall look at some results which have been obtained in this vein.

3 Graphs with large subgraph similarity

We shall look at the problem of finding graphs with large subgraph similarity
from two angles, that of the existential reconstruction number ∃rn and the
universal reconstruction number ∀rn.
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Table 1. Number of graphs with given order and given ∃rn

∃rn Order
3 4 5 6 7 8 9 10

3 4 8 34 150 1044 12, 334 274, 666 12, 005, 156

4 3 4 8 6

5 2 2 2 4

6 2

7 2

3.1 Large values of ∃rn

The first graphs for which ∃rn were studied were disconnected graphs. Myrvold
[23] and Molina [20] showed the following.

Theorem 6. A disconnected graph with non-isomorphic components has ∃rn
equal to 3. A disconnected graph with all components isomorphic each having
c vertices has ∃rn ≤ c + 2.

So here it seems that we have a rich supply of graphs with large ∃rn. The
example which Myrvold gave of disconnected graphs with ∃rn = c+2 was the
graph G consisting of disjoint copies of the complete graph Kc. The graph
G in Figure 1 is the special case K4 ∪ K4. However, Asciak and Lauri [5]
showed that in fact these are the only examples of disconnected graphs with
∃rn = c + 2 and that there are no disconnected graphs with ∃rn = c + 1. The
computer searches of McMullen and Radziszowski [18] amongst all graphs
on at most ten vertices unearthed only two examples of disconnected graphs
with ∃rn > 3. These are the graph made up of two disjoint copies of the cycle
on four vertices and the graph made up of two disjoint copies of the path
on four vertices. Both have ∃rn = 4 and no other disconnected graphs with
∃rn > 3 are known. The big gap between ∃rn = 4 and ∃rn = c is waiting to
be explored.

The situation with regular graphs is somewhat similar. Myvold [22] has
shown that r-regular graphs have ∃rn at most r + 3 but Asciak [3] has shown
that again the disconnected graph consisting of disjoint copies of Kr+1 is the
only r-regular graph with ∃rn = r + 3. Here too, knowledge about the gap
between ∃rn = 4 and ∃rn = r + 2 is very scant. The computer searches of
McMullen and Radziszowski led them to this construction. The graph RCCn,j

is obtained as follows. Take n ≥ 2 disjoint copies of cycles each of length
j ≥ 3. Let vc,i, i ∈ {0, 2, . . . , j−1} denote the i-th vertex of the c-th cycle. For
each c 6= d join the vertices vc,i and vd,i+1, where addition is modulo j. The
resulting graph RCCn,j is regular and McMullen and Radziszowski prove the
following.
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Theorem 7. ∃rn(RCCn,j) > n + 1, for all n ≥ 2 and j ≥ 3.

However, no other regular graphs with ∃rn > 3 are known and, as Mc-
Mullen and Radziszowski say, there seems to be no clear idea on how to
establish in general the exact value of ∃rn(RCCn,j) for all n, j.

These cases illustrate the new set of problems which the notion of recon-
struction numbers creates. The classical reconstruction of regular graphs is
trivial and that of disconnected graphs is an easy exercise [17]. But even find-
ing examples with ∃rn > 3 is a difficult task. The reader who is interested in
finding out more about graphs with large ∃rn is invited to read [18].

3.2 Large values of ∀rn

The definition of ∀rn is more closely related to that of sim(G, H), and it seems
more difficult to tackle. It certainly seems easier to find disconnected graphs
with large ∀rn than ones with large ∃rn. For example, Hemaspaandra et al
[11] observe that since

sim(Kt+1 ∪ Kt−1, 2Kt) = t + 1

then ∀rn(Kt+1 ∪ Kt−1 and ∀rn(2Kt) are both at least t + 2 and therefore
greater than the corresponding ∃rn numbers which are both three. However,
the proof in [11] that these two ∀rn numbers are actually t + 2 is not simple,
even for such straightforward graphs, showing that determining ∀rn seems to
be quite difficult in general. Also, it is not clear that these and the other two
examples given in [11] are not exceptional cases similar to the usual suspects:
the graphs pKn with large ∃rn. Therefore the question of finding disconnected
graphs with large ∀rn might be as open as it is for finding disconnected or
regular graphs with large ∃rn.

Until recently, most of the results obtained about ∀rn and sim(G, H) were
found in [22] and [10]. An early result was the following.

Theorem 8 (Myrvold [22]). Let G and H be two graphs on n vertices and
with sim(G, H) = n − 1. Then G and H have the same degree sequence.

Again we see that what is an easy exercise in reconstruction [17] becomes a
difficult result when seen in terms of the subgraph similarity between graphs.
The obvious, and difficult, question here is: for given n, what is the largest
value of k such that there exist graphs G and H on n vertices with sim(G, H) =
k but with different degree sequences.

Of course, the most general problem here is to determine the largest value
of sim(G, H) for non-isomorphic graphs on n vertices. But since this would
solve the RC, all authors have attempted this question by restricting G and H
to particular classes and generally trying to determine the maximum possible
value of sim(G, H).

Significant advances in this direction have recently been reported by
Bowler, Brown and Fenner in [7]. For example, they show the following.
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Theorem 9. Let G be a tree and H a unicyclic graph on n vertices (n ≥ 19).
Then

sim(G, H) ≤ ⌊2

5
(n + 1)⌋.

Moreover, this bound is attained.

From this result and other work in [22] the following holds.

Theorem 10. Let G and H be two graphs on n vertices (n ≥ 19) and such
that

sim(G, H) ≥ ⌊n

2
⌋ + 1.

Then if G is a tree H must also be a tree.

Francalanza [10] also considered the number of edge-deleted subgraphs in
common between a tree and a unicyclic graph plus an isolated vertex. She
proved the following.

Theorem 11. Let G be a tree and H a unicyclic graph with an isolated vertex,
both on n vertices. Then

sime(G, H) ≤ n

2
+ 1.

Bowler, Brown and Fenner make conjecture that if G is a tree and H is a
unicyclic graph plus an isolated vertex, both on n vertices, then in fact

sime(G, H) ≤ n

2
.

The structure of the trees and unicyclic graphs which attain large subgraph
similarity between them have are very particular. The trees are caterpillars,
that is, trees the deletion of whose endvertices gives a path, and the uni-
cyclic graphs are what Myrvold and Francalanza call sunshine graphs, that is,
unicyclic graphs the deletion of whose endvertices gives a cycle.

The main question which these researchers would like to answer here is
certainly the following: What is the largest possible value of sim(G, H) when
G and H are two non-isomorphic trees on n vertices?

This construction from [7] gives a family of pairs of non-isomorphic trees
with large subgraph similarity. Let

G∗ = K1,p−1 ∪ K1,p+1 ∪ K1,p+1

H∗ = K1,p ∪ K1,p ∪ K1,p+1.

Let G be the tree obtained from G∗ by adding a new central vertex and three
new edges joining the new vertex to the three cutvertices of G∗. Similarly,
construct H from H∗. These two trees are non-isomorphic, have n = 3p + 5
vertices, and
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sim(G, H) = 2p =
2

3
(n − 5).

This family of tree pairs has the highest known subgraph similarity be-
tween non-isomorphic trees. A similar construction in [7] gives examples of
pairs G, H of non-isomorphic trees on n vertices with the same degree se-
quence and

sim(G, H) =
2

3
(n + 1 − 2

√
3n − 6).

The best result known to date regarding the highest possible value of sim(G, H)
for general graphs is again given found in [7]. First we require a definition. A
2UC graph pair is a pair of non-isomorphic graphs, G and H , on n vertices,
at least one of which is disconnected, such that in G or in H there are at
least two components which cannot be matched with the components of the
other graph by isomorphism. A particular example is when G is connected and
H is disconnected. (“2UC” stands for “Two Unmatched Components”.) The
motivation behind this definition is that if A and B are two non-isomorphic
connected graphs with the same deck (hence counterexamples to the RC) and
on n−1 vertices, then sim(A∪K1, A∪K1) = n−1. Bowler, Brown and Fenner
prove the following theorem.

Theorem 12. Let G and H be two 2UC graphs. Then

sim(G, H) ≤ 2⌊1

3
(n − 1⌋.

For n ≥ 22 and n ≡ 1(mod3), they also give the following infinite family
of pairs of 2UC graphs attaining this bound:

G = Kp−1 ∪ Kp+1 ∪ Kp+1

H = Kp ∪ Kp ∪ Kp+1.

They also show that this pair is unique for the given values of the parameter
n. Note that although G and H are disconnected, their complements are
connected and also have the same subgraph similarity.

More examples are given in [7] including uniqueness of some families of
pairs attaining the upper bound in Theorem 12. Their work also gives an
example of pairs G, H of 2UC graphs with n = 3p2 − 2, (p ≥ 3), having the
same degree sequence, and

sim(G, H) =
2

3
(n + 5 − 2

√
3n + 6).

This number is smaller than the upper bound in Theorem 12. Therefore it
seems natural to ask what is the maximum possible value of sim(G, H) when
G, H are two non-isomorphic 2UC graphs on n vertices with the same degree
sequence.
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Motivated by Theorem 12, Bowler, Brown and Fenner make the following
conjecture which, of course, is a considerable strengthening of the RC.

Strong Reconstruction Conjecture
Let G and H be non-isomorphic graphs on n vertices. For large enough n,

sim(G, H) ≤ 2⌊1

3
(n − 1)⌋.

Therefore for any graph G on n vertices and sufficiently large n,

∀rn(G) ≤ 2⌊1

3
(n − 1)⌋ + 1.

Finally, what about ∀rne(G), the universal edge-reconstruction number. In
classical graph reconstruction, determining G from edge-deleted subgraphs is
always easier than determining it from vertex-deleted subgraphs. However, the
relationship between the vertex and the edge versions of the parameters which
we have been discussing in this chapter does not seem to be so straightforward
(see [4] for more on this). Sometimes the edge parameter is larger than the
corresponding vertex parameter, and often determining the former is at least
as difficult as finding the latter. Certainly, very little work, if any, has been
done on ∀rne(G), especially the search for graphs with large ∀rne, so this is a
field wide open for investigation.

4 Algorithmic and other issues

The RC is not an algorithm question. The issue is not whether there is an
efficient way of obtaining G from its deck but it is a question of uniqueness:
is there more than one graph with the given deck? However, a few variants
of the RC have been adapted into a question of algorithmic complexity. Sub-
graph similarity and reconstruction numbers, being so closely related Graph
Isomorphism Problem (GI), and the Subgraph Isomorphism Problem which
is known to be NP-complete [13] are perhaps the most natural variants of the
reconstruction problem to be treated algorithmically.

In [11], the authors define these four decision problems.

1. EXIST-VRN = {〈G, k〉|∃rn(G) ≤ k}.
2. UNIV-VRN = {〈G, k〉|∀rn(G) ≤ k}.
3. EXIST-ERN = {〈G, k〉|∃rne(G) ≤ k}.
4. UNIV-ERN = {〈G, k〉|∀rne(G) ≤ k}.

They remark that it is easy to see that EXIST-VRN ∈ Σp
2 (since GI is

low for Σp
2 ), UNIV-RN ∈ coNPGI, EXIST-ERN ∈ NPGI and UNIV-ERN

∈ coNPGI and they suggest that obtaining tight, or tighter, bounds on the
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complexity of these problems should be interesting. (For explanations of the
above complexity terms the reader is referred to [13].)

And finally, what about possible applications. Any measure of similarity be-
tween mathematical objects is bound to have some relevance in situations
modeled by the objects, and graphs are certainly amongst the mathematical
structures most often used as models. One in which notions which related to
the concept of subgraph similarity seem to be useful is in systems biology. The
way a cell processes information from its environment in order to determine
the rate of production of the proteins it requires is often modeled by what are
called transcription networks, which are basically directed graphs [2]. Biolo-
gists try to identify particular subgraphs of transcription networks in order to
explain their functionality. These network motifs are often identified as those
subgraphs in the transcription network which appear significantly more often
than they do in a random graph of the same size. This seems quite reminiscent
of the notion we have been discussing of comparing two graphs by counting
the number of subgraphs they have in common. Here, the comparison is usu-
ally between the given transcription network and the general random graph.
In this comparison, the number of symmetries of the network motif (the size
of its automorphism group) often plays an important part. The notion of how
a subgraph embeds in a graph, a notion which involves the number of ap-
pearances of the subgraph and the size of its automorphism group, seems to
be the central issue in the reconstruction problem (see, for example, Chap-
ter 10 and especially Chapter 11 in [17]. An investigation of how these ideas
from subgraph similarity and graph reconstruction might apply to the study
of network motifs in transcription networks could therefore be very useful

Similar ideas have cropped up in the unlikely area of counter-terrorism! Inter-
actions between agents in a society (conversations, emails, telephone calls, etc)
can be modeled by a graph. Within this “transactional noise” one would like
to detect the emergence of unlikely configurations (subgraphs) which could
signify the existence of networks of terrorist activities [19]. Again, this is done
by comparing the transactional network with some appropriate random graph
model to detect subgraphs which appear more frequently than expected by
the model. The similarities with the previous application and what we have
been discussing is clear.

It is, after all, not surprising that such applications should exist. With
the ability to collect and handle ever larger amounts of data in various fields
from biology to sociology comes the need of modeling situations with large
graphs. And very often a natural way to investigate certain aspects of the in-
ternal structure of such graphs is through smaller subgraphs which are more
manageable. And these applications are often closely related to issues of algo-
rithmic complexity. When tackling empirically questions about subgraphs in
common between two graphs one cannot escape the from the Graph Isomor-
phism Problem in some guise or another.
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5 Conclusion

We have discussed a way of measuring similarity between graphs in terms of
subgraphs which does not simply give an alternative framework for wording
the Reconstruction Conjecture. It raises simple questions which are difficult
to solve about graphs which are very easily reconstructible, and it gives some
new twists to old ideas, such as the relationship between vertex-reconstruction
and edge-reconstruction. Independently of the status of RC, finding classes of
graphs with large subgraph similarity or reconstruction number is an inter-
esting non-trivial problem. And the notion of comparing graphs in terms of
the number of common subgraphs of some type or another that they share
seems to be a promising area of modern applied graphs theory, which is closely
connected to algorithmic complexity issues related to reconstruction numbers,
which are in turn of important theoretical interest. It seems that subgraph
similarity has a lot to offer to graph theorists with different interests and
tastes.
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