
Combining Testing and Runtime Verification

Christian Colombo
Department of Computer Science

University of Malta
Email: christian.colombo@um.edu.mt

Abstract—Testing and runtime verification are intimately
related: runtime verification enables testing of systems beyond
their deployment by monitoring them under normal use while
testing is not only concerned with monitoring the behaviour of
systems but also generating test cases which are able to sufficiently
cover their behaviour. Given this link between testing and runtime
verification, one is surprised to find that in the literature the
two have not been well studied in each other’s context. Below
we outline three ways in which this can be done: one where
testing can be used to support runtime verification, another where
the two techniques can be used together in a single tool, and a
third approach where runtime verification can be used to support
testing.

I. Introduction

To date, testing is by far the most commonly used technique
to check software correctness. In essence, testing attempts to
generate a number of test cases and checks that the outcome
of each test case is as expected. While this technique is highly
effective in uncovering bugs, it cannot guarantee that the tested
system will behave correctly under all circumstances. Typi-
cally, testing is only employed during software development;
meaning that software has no safety nets during runtime.
Conversely, runtime verification techniques are typically used
during runtime to provide extra correctness checks but little
effort has been done to integrate it with the software develop-
ment life cycle. For this reason little or no use of it is made
in contemporary industry.

At a closer look, the two techniques — testing and runtime
verification — are intimately linked: runtime verification en-
ables the checking of a system’s behaviour during runtime by
listening to system events, while testing testing is concerned
with generating an adequate number of test cases whose
behaviour is verified against an oracle. Thus, in summary one
could loosely define runtime verification as event elicitation
+ behaviour checking, and testing to be test case creation +
behaviour checking.

Through this brief introduction of testing and runtime
verification one can quickly note that behavoiur checking is
common to both. Given this overlap between two verification
techniques, one is surprised to find that in the literature the
two have not been well studied in each other’s context. In
this paper, we outline three ways in which this can be done:
one where testing can be used to support runtime verification,
another where the two techniques can be used together in a
single tool, and a third approach where runtime verification
can be used to support testing.

II. A Testing Framework for Runtime Verification Tools

Like any piece of software, runtime verification tools which
generate monitoring code from formal specifications have to be
adequately tested, particularly so because of their use to assure
other software. State-of-the-art runtime verification tools such
as Java-MOP [1] and tracematches [2] have been tested on
the DaCapo benchmark [3]. However, the kind of properties
which have been monitored are rather low level contrasting
with our experience with industrial partners who seem more
interested in checking for higher level properties (such as the
ones presented in [4], [5]). Whilst we had the chance to test our
tool Larva [6] on industrial case studies, such case studies are
usually available for small periods of time and in limited ways
due to privacy concerns. Relying solely on such case studies
can be detrimental for the development of new systems which
need substantial testing and analysis before being of any use.

For this reason, we aim to develop a testing framework
which would provide a highly configurable mock transaction
system to enable thorough validation of systems which interact
with it. Such a testing framework would enable a user to
easily mock different kinds of transactions, usage patterns in
the system, etc. without issues of privacy, and enabling re-
peatability of results. Although not a replacement of industrial
case studies, this would enable better scientific evaluation of
runtime verification systems. This testing framework should
have the following main aspects:

• Language The testing framework should provide an
easy to use specification language which enables a
user to specify:
◦ Sequences of events which the mock system

should be able to generate.
◦ The time delays between such events, possibly

varying randomly.
◦ Whether or not these event sequences may be

run concurrently or not.
A mock system with these aspects would enable the
user to test the detection capabilities of the monitoring
system under test.

• Profiling The test framework should provide inbuilt
means of measuring the processing and memory over-
heads incurred by the system. This would facilitate
the measurement of the overheads induced by the
monitoring system under test.

• Repeatability If unexpected behaviour is exhibited
by the monitoring system while being testing on the
mock system, then, being able to repeat the exact same
behaviour would enable the user to understand the
source of the problem.



III. Combining Testing and Runtime Verification Tools

While testing is still the prevailing approach to ensure
software correctness, the use of runtime verification [7] as a
form of post-deployment testing is on the rise. Such continuous
testing ensures that if bugs occur, they don’t go unnoticed.
Apart from being complementary, testing and runtime verifi-
cation have a lot in common: runtime verification of programs
requires a formal specification of requirements against which
the runs of the program can be verified [8]. Similarly, in
model-based testing, checks are written such that on each
(model-triggered) execution step, the system state is checked
for correctness. Due to this similarity, applying both testing
and runtime verification techniques is frequently perceived as
duplicating work. Attempts [9] have already been made to inte-
grate the runtime verification tool Larva [6] with QuickCheck
[10] by enabling QuickCheck specifications to be compiled
into Larva monitors. We plan to continue on this work by
integrating the Larva tool with a Java model-based testing
tool, ModelJUnit1. This time, the idea is to be able to convert
a Larva specification into a ModelJUnit model which can be
used to automatically generate test cases and check that the
system under test is behaving as expected. Effectively, this
would enable anyone with a Larva specification to be able
to perform both model-based testing and monitoring without
extra manual intervention.

While model-based testing is gaining popularity, unit test-
ing is far more commonplace in contemporary industy. Thus,
apart from looking at model-based testing for integration with
runtime verification, we are also attempting to convert unit tests
to monitors. Typically, unit tests include a short sequence of
method calls followed by a number of assertions. If a monitor
successfully observes the same sequence of method calls at
runtime, then the unit test assertions should also hold. This
approach might prove useful to introduce runtime monitoring
to industry with the press of a button.

IV. Using Runtime Verification forModel-Based Testing
Feedback

As software systems grow in size and complexity, it is
becoming harder to ensure their correctness. In particular,
complex security-intensive systems such as software handling
online financial transactions, are particularly difficult to test
for robustness due to the difficulty in predicting and mocking
all the possible ways in which the system is expected to be
used. To automate test case generation and ensure that the
tests cover all salient aspects of a system, model-based testing
[11], [12] enables the use of a model specification from which
test cases are automatically generated. Although successful and
growing in popularity, model-based testing is only effective in
as much as the model is complete. Sequences of untested user
interaction may lead to huge losses for the service-provider ,
and loss of trust from the users’ end if any of these lead to a
failure. Since coming up with a model for test case generation
is largely a manual process [11], [12], it is virtually impossible
to ensure the model is complete — the modeller may not
anticipate all the ways in which the system will be used after
deployment.

1http://www.cs.waikato.ac.nz/~marku/mbt/modeljunit/

In this context, we propose to use runtime information to
detect incompleteness in the test case generation model: by
considering the execution paths the system takes at runtime,
a monitor checks whether each path (or a sufficiently similar
one) is in the test case generation model. If the monitor detects
a path which appeared at runtime but is not in the model, the
modeller can be assisted in updating the model accordingly.

V. Conclusion

Given the intimate ways in which software testing and
runtime verification are linked, there are several advantages in
studying the interaction between them: (i) anyone using one of
the technologies can be supported to automatically benefit from
the other without any extra effort; and (ii) each technology
provides aspects from which the other technology can benefit.
In this paper, we have presented the general idea of ongoing
work which attempts to provide (i) by combining existing tools
to provide both testing and runtime verification capabilities;
and (ii) by improving the quality of runtime verification tools
through testing techniques, and improving testing coverage
analysis through runtime information harvested through run-
time monitors.

References
[1] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu, “An overview

of the MOP runtime verification framework,” JSTTT, 2011, to appear.
[2] E. Bodden, L. J. Hendren, P. Lam, O. Lhoták, and N. A. Naeem,

“Collaborative runtime verification with tracematches,” J. Log. Comput.,
vol. 20, no. 3, pp. 707–723, 2010.

[3] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann, “The dacapo benchmarks: java benchmarking devel-
opment and analysis,” SIGPLAN Not., vol. 41, no. 10, pp. 169–190,
2006.

[4] C. Colombo, G. J. Pace, and G. Schneider, “Dynamic event-based
runtime monitoring of real-time and contextual properties,” in FMICS,
ser. LNCS, vol. 5596, 2008, pp. 135–149.

[5] C. Colombo, G. J. Pace, and P. Abela, “Compensation-aware runtime
monitoring,” in RV, ser. LNCS, vol. 6418, 2010, pp. 214–228.

[6] C. Colombo, G. J. Pace, and G. Schneider, “Larva — safer monitoring
of real-time java programs (tool paper),” in SEFM, 2009, pp. 33–37.

[7] H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I. Lee, G. J. Pace,
G. Rosu, O. Sokolsky, and N. Tillmann, Eds., RV, ser. LNCS, vol. 6418,
2010.

[8] M. Leucker and C. Schallhart, “A brief account of runtime verification,”
JLAP, vol. 78, no. 5, pp. 293–303, 2009.

[9] K. Falzon, “Combining runtime verification and testing techniques,”
Master’s thesis, 2011.

[10] J. Hughes, “Quickcheck testing for fun and profit,” in Practical Aspects
of Declarative Languages, ser. LNCS, 2007, vol. 4354, pp. 1–32.

[11] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, “A
survey on model-based testing approaches: a systematic review,” in Em-
pirical assessment of software engineering languages and technologies,
ser. WEASELTech ’07, 2007, pp. 31–36.

[12] I. K. El-Far and J. A. Whittaker, Model-Based Software Testing. John
Wiley & Sons, Inc., 2002.


