Themulus: A Timed Contract-Calculus?®

Alberto Aranda Garcia', Marfa-Emilia Cambronero?, Christian Colombo!, Luis Llana?, and
Gordon J. Pace!
! Department of Computer Science, University of Malta, Malta

2 Department of Computer Science, University of Castilla-La Mancha, Albacete, Spain

3 Department of Computer Science and the Knowledge Technology Institute, University Complutense of
Madrid, Madrid, Spain

alb.aranda@qgmail.com, MEmilia. Cambronero@Quclm.es, Christian.Colombo@um.edu.mt, llana@ucm.es,
Gordon. Pace@um.edu.mt

Keywords:
Deontic Logic, Formal Methods, Operational Semantics, Simulation Semantics, Themulus

Abstract:

Over these past years, formal reasoning about contracts between parties has been increasingly
explored in the literature. There has been a shift of view from that viewing contracts simply as
properties to be satisfied by the parties to contracts as first class syntactic objects which can be
reasoned about independently of the parties’ behaviour. In this paper, we present a real-time
deontic contract calculus, Themulus, to reason about contracts, abstracting the parties’ behaviour
through the use of a simulation relation. In doing so, we can compare real-time deontic contracts
in terms of their strictness over permissions, prohibitions and obligations.

1 Introduction

The need for formal techniques for reason-
ing about contracts is becoming increasingly im-
portant as software systems interact more fre-
quently with other systems and with our ev-
eryday life. Although for many applications a
property-based approach suffices — specifying
pre-/post-conditions, invariants, temporal prop-
erties, etc. — other applications require a first
class notion of contracts which property-based
approaches do not address sufficiently well. Deon-
tic logics [Georg Henrik Von Wright, 1951] have
been developed precisely to deal with such a need
to talk about ideal behaviour of a system, pos-
sibly also including exceptional situations when
the system deviates from such behaviour. For in-
stance, consider a contract which specifies that
a party is to perform a particular action, but
if they fail to do so, they will incur an addi-

2This work has been supported by the Span-
ish MINECO-FEDER (grant numbers DArDOS,
TIN2015-65845-C3-1-R and FAME, RT12018-093608-
B-C31) and the Region of Madrid (grant number
FORTE-CM, S2018/TCS-4314)

tional charge (which they are obliged to pay) and
prohibited from taking certain actions until they
do so. Such contracts, typically using a deon-
tic logic, have been referred to as total contracts
and have been argued to be more informative
(with the right abstractions) than simple prop-
erties [Fenech et al., 2009]. The opportunity to
move from seeing specifications simply as expres-
sions in a logic which must hold to the higher
level view of them being a form of contract goes
back to Khosla [Khosla, 1988]. By looking at con-
tracts as first-class entities which can be reasoned
about, manipulated, etc., one can perform con-
tract analysis independent of the systems the con-
tract will regulate, e.g., one can analyze contracts
for potential conflicts, or to evaluate which is the
stricter one.

Different approaches to contract analysis
have been reported in the literature, with most
approaches focusing on the violation semantics
of contracts, thus enabling the characteriza-
tion of agreements between parties or agents
regulating their behaviour. In systems with
interacting parties, contracts play an even more
important role since an agent’s behaviour (or

non-behaviour) directly impacts other agents.
Surprisingly, many contract logics reason about
deontic modalities such as obligations and
permissions without specifying agents, and the
literature addressing reasoning about directed
deontic modalities is relatively sparse (e.g.
Modal Action Logic [Jeremaes et al., 1986], de-
ontic STIT logic [Belnap and Perloff, 1993,
Horty, 2001], Business Contract Lan-
guage [Governatori and Milosevic, 2005], con-
tract automata [Pace and Schapachnik, 2012]).

Interaction has long been studied in computer
science using calculi to reason about communicat-
ing transition systems enabling the classification
of systems into correct and incorrect ones with re-
spect to a property. It is only recently, however,
that the distinction between properties and con-
tracts has started being explored. Yet, in much
of the literature, contract comparison is still de-
fined in terms of how the contracts regulate sys-
tems e.g. saying that a contract is stricter than
another if any system which violates the latter
will also violate the former. This means that to
reason about contracts one has to bring to play
the systems which they regulate.

Orthogonal to this issue is that of the notion
of time in contracts. From work in linear tempo-
ral logics, one can (broadly) categorize such logics
into a number of categories: (i) ones which permit
reasoning about sequentiality of events; (ii) ones
which can also reason about time using a notion
of a discrete global clock; and (iii) ones which
allow reasoning about timers which can take con-
tinuous time values and which can interact with
such timers e.g. triggering on timeouts, or reset-
ting the timers. The notion of continuous time
clocks, i.e. (iii), introduces additional complexity
including aspects which may be undecidable as
can be seen, for instance, in the extensive work
on verification of timed automata and hybrid
systems in general [Asarin et al., 2012]. Multi-
party session types, which share much with con-
tracts have been extended to deal with timed as-
pects [Bocchi et al., 2014]. Our approach to time
shares much with theirs, although our handling of
notions such as permission allows for an implicit
notion of deontic modalities

Furthermore, if events are timed, one has to
introduce a notion of time in the deontic logic —
whether in a point-wise manner (e.g. an obliga-
tion to perform a particular action at a partic-
ular time) or over time intervals (e.g. an obli-
gation to perform a particular action before a
deadline). There is much work about the com-

bination of discrete time temporal and deontic
logics, but less so with dense-time logics. Our
approach is an interval logic one, taking the ap-
proach adopted by real time logics such as dura-
tion calculus [Chaochen et al., 1991], which only
allows statements about signal values over non-
point intervals.

In earlier work, we have developed a calculus
to reason about contracts independently of the
systems [Cambronero et al., 2017] in which, only
temporal sequentiality of events was handled. In
this paper, we present a time extension, give an
operational view of contracts, and use simulation
techniques from process calculi to reason about
contracts at an operational level.

The paper is organised as follows. First,
we present a running example (section 2) used
throughout the paper to clarify concepts. Then,
the notation we will use to formalize our notions
is presented in Section 3. We then present our
timed contract calculus Themulus in Section 4 and
formalize the notion of refinement of contracts
in section 5. We finally conclude in Section 6
with some conclusions and possible lines of future
work.

2 Running Example

In the rest of the paper, we will illustrate our
logic and results based on a contract commonly
used in the literature, that of a plane boarding
system, based on e.g. [Azzopardi et al., 2014]. In
this section we present this use case — an agree-
ment between the passenger and airline com-
pany, regulating the plane boarding process, from
check-in till the flight, including time constraints.
The use case is a simplified version based on the
Madrid Barajas airport regulations.

1. The passenger is permitted to use the check-in
desk within two hours before the plane takes off

(to)-

2. At the check-in desk, the passenger is obliged to
present her boarding pass whitin 5 minutes.

3. After presenting the boarding pass, the passenger
must show her passport, she has 5 minutes for this
purpose.

4. Henceforth, the passenger is (i) prohibited from
carrying liquids in her hand-luggage until board-
ing; and (ii) prohibited from carrying weapons
during the whole trip until the plane lands. If
she has liquids in her hand-luggage, she is obliged
to dispose of them within 10 minutes.

5. After presenting her passport, the passenger is
permitted to board within 90 minutes and to

present the hand-luggage to the staff within
10 minutes. Therefore, the airline company is
obliged to allow the passenger to board within 90
minutes. If the passenger is stopped from carry-
ing luggage, the airline company is obliged to put
the passenger’s hand luggage in the hold within
20 minutes.

3 Background and Notation

Contracts regulate the behaviour of agents or
parties that are acting concurrently. In this Sec-
tion, we present notation used to describe these
agents and their behaviour in order to be able to
formalize contracts in the following sections.

Structurally, the underlying system consists of

several indexed agents running in parallel, using
variables A, A’ to represent the individual agents.
The system as a whole will consist of the parallel
composition of all agents indexed by a finite set
7 i.e. the system will be of the form ||;ezA;. We
will use variables A, A’ to denote the state of the
system as a whole.
Notation: The visible behaviour of the system
and agents will be assumed to consist of actions
over Act, and the agents’ behaviour will be as-
sumed to consist of (i) a relation indicating how
their state changes whenever such action occurs;
and (ii) a relation indicating how they change over
time. Time will be taken to range over the non-
negative reals: T = R*. Agents semantics are
thus represented as timed labelled transition sys-
tems:

o A% A’ for a € Act, indicates that agent A
changes to A’ upon performing action a. As
it is usual in process algebrae [Yi, 1991], the
execution of actions does not consume time.

The transition A-%» indicates that agent A
df

cannot perform a: A-%» = —34"- A % A’
o A~ A for d > 0 e T, indicates that
agent A evolves to A’ after d time units pass.

Assumptions: We will assume that agents are
non-blocking: for any agent A, there is an agent
state A’ such that either (i) A —%> A’ (for some

a € Act); or (i) A o A (for some d > 0 € T).
We also assume the following common properties
of the time transition relation: time determinism,
time additivity, and time continuity.

We can now define how a system as a whole
(a composition of agents) evolves. There are two
kinds of transitions: (i) action transitions of the

form A =5, A’ will indicate that system A can

perform action a € Act with agents indexed by
S e 27 participating, to become system A’; and

(ii) timed transitions A ~4o A indicate the
evolution of the system as a whole over time.

Definition 1 We define the following transition
relations over systems:

. _%5, A, with S € 2T indicating that

agents in S (and no others) synchronise on

action a. Formally, A a5, A’, where A =
Ay Aa] | A, and A' = AL |} | Al is de-
fined as follows: (i) the number of agents does
not change: n = n'; (ii) agents other than
those whose index appears in S do not partic-
ipate in action a: Vi€ T-i¢ S = A, = Al;
and (iii) agents indexed in S evolve over ac-
tiona: YieL ieS= A — Al

o A ~4 A indicates that system A evolves
to A after d > 0 € T time units pass. For-

mally we define A Lo A to mean that all
agents evolve with a time transition of length
d: Ay ~So Al for all i€ I, where A= A4 |
oA An, and AT = AL A A5

. . .S
We will also write A —=- to mean that Sys-
tem A can perform action a involving the agents

. ,S S

inset S: A 22534 4 27, A The lack
.. . . S

of such a transition is written as: Aa—».

In order to formalize violation of contracts, we
will use predicates over agent behaviour.

Definition 2 A predicate is defined in terms of
the following grammar:

Pu=tt|f @) | @F) | PvQ|PAQ

In the grammar above, k € L ranges over agent
indices, a € Act over actions, and P, (Q € P over
predicates.

Predicates ¢t and ff denote true and false re-
spectively. Predicate {a,k) means that agent k
may perform action a. However, since some ac-
tions may require involvement by several agents,
we use the predicate {a, k) to indicate that agent
k wants to perform action a, but this action is not
offered by any other agent for synchronisation.
For instance, an agent ¢ may want to purchase a
ticket (action: ticket) to go to a theatre. Predi-
cate (ticket, ¢y indicates the success of such an ac-
tion with ¢ participating. However, if the action
requires the participation of the ticket office, we
can write the predicate {ticket, ¢y to indicate that
¢ wanted to perform the action, but neither the

ticket office (nor any other agent) was willing to
perform the handshake required. Predicate dis-
junction and conjunction are indicated by P v @
and P A @ respectively.

Definition 3 The semantics of a predicate P un-
der a system A, written A = P, is defined as
follows:

A= tt 4 true

AEff 4 false

A ky 2 35T, 4425 N AkesS
Ara® Y A4 2B, ndvil ks A%
AEPvQ & AP or AEQ

AEPAQ ¥ AePand AEQ

We can now define the notion of stronger-than
and that of equivalence between predicates.

Definition 4 Given predicates P,Q € P, we say
that P is stronger than Q, written P &= Q, iff for
any state of any system A for which A = P holds,
A E Q also holds. We say that P is equivalent
to Q, written P 3= Q, iff P=Q and Q = P.

We will now present a proposition which indi-
cates how equivalence combines with disjunction
and action success.

Proposition 1 Let P,Q € P, k be an agent in-
dex and a € Act, then

1. If P==tt, then {a,k) v P == tt and {a,k) v
P == tt.
2. IfPv Q= tt then P = tt or Q =& .

4 A Timed Contract Calculus

We can now define our contract calculus
Themulus. We start by defining its syntax and
an equivalence relation over the syntactic forms.
We then define the notion of contract violation
conditions based on the operational semantics of
the calculus. As we mentioned before, we will
assume a time domain T ranging over the non-
negative reals. In order to deal with the recursion
operator, we assume a set of variables fvars over
which recursion will be defined.

4.1 Contract Syntax

Definition 5 The set of contract formulae de-
noted by C (with variable ¢ € C to range over the

contracts) is syntactically defined as follows:
¢ == T|L[Pra)ld]| Ok(a)ld]| Fi(a)[d]

| wait(d) | condy(a)[d] (1, 2) | @15 02

| era@e v prrer|recry |
where a € Act, z € fvars, k€ Z and d € T u {o0}.

The basic formulae T and L indicate, respec-
tively, the contracts that are trivially satisfied and
violated. The key modalities we use from deontic
logic to specify contracts are permissions, obli-
gations, and prohibitions. The formula Py (a)[d]
indicates the permission of agent k to perform ac-
tion a within d time units, while Og(a)[d] is an
obligation on agent k to perform action a within
d time units, and Fj(a)[d] is the prohibition on
agent k to perform action a within d time units.
The formula wait(d) represents a delay of d time
units.

Contract disjunction is written as @1 v @2,
and contract conjunction as @1 A 3. The for-
mula ¢1; o indicates the sequential composition
of two contracts — in order to satisfy the whole
contract, the first contract 7 must be satisfied
and then the second one ¢-. For instance, we can
model the obligation of agent k of doing action
a in 3 time units after a delay of 2 time units:
wait(2); Ok (a)[3].

The reparation operator, written @1 »p2, is the
contract which starts off as 1, but when violated
triggers contract g, e.g., O1(a)[2]»P2(b)[5] is the
contract which obliges agent 1 to perform action
a in 2 time units, but if she does not, permits
agent 2 to perform action b in 5 time units.

The formula condg(a)[d](¢1,p2) is a condi-
tional contract where (i) if party k performs ac-
tion a within d time units it proceeds to behave
like 1; otherwise (ii) if d time units elapse with-
out a being performed by k, it then proceeds to
behave like . Note that we can generalize to
more general conditions on the system, but we
limit it to the ability of a party to perform an
action for the scope of this paper.

Finally, rec z.¢o and x handles recursive con-
tracts, e.g., rec .0, (a)[d]; x is the contract which
obliges agent p to repeatedly perform action a
within d time units of each other. In contrast,
rec .0, (pr)[10] A wait(30);z, is the contract in
which agent r is repeatedly obliged to pay rent
(action pr) during the first 10 days of the month.

Using these basic contract combinators, we
can define more complex ones, for example, a pro-
hibition which persists until a particular action is
performed — a prohibition on agent k from per-
forming action a until party ! performs action b,

written F([a, k]U [b,1]), and defined as follows:

F(la, K]Ub,1]) = rec . (condy(a)[o0] (L, T)A
cond; (b)[o0](T, z))

Example 1 The contract of the plane boarding
system from Section 2, can be formalised using

our contract calculus as follows:

@o = Pp(checkin)[tg — 120]

w1 == Op(PBP)[5]

w2 = Op(ShP)[5]

w3 u= (F([weapon,p]U [landing, c])) A
((F([1q,p]U [boarding, p])) » Op(d1q)[10])

s u= (Pp(brd)[90]; Pp(h1)[10])»
(O (brd)[90]; O (h1h1d)[20])

PBS == o;¢1;02; (3 A pa)

Where %y is departure estimated time. Note
that the clauses ¢g to ¢4 are used to express
different parts of the contract, and combined to-
gether in the top-level contract expression PBSD

The syntax of our logic allows for formulae
whose meaning is unclear. For instance, the for-
mula Fy(a)[d] v is not well-formed since it con-
tains a free instance of variable z. Another prob-
lem arises with formulae such as rec x.Fy(a)[d] v
xz, which use recursion not guarded by a prefix
formula since the latter ensures certain desirable
properties of our operational semantics. In order
to simplify our semantics, we restrict the set of
well-formed formulae to ones which are (i) closed;
and (ii) strongly prefized. As usual, the closed for-
mulae are those that do not contain free recursion
variables (a recursion variable x is free if it not
bound to a rec x above it). A strongly prefixed
formula is one where all the occurrences of the
formula variables are prefixed by an obligation,
prohibition, permission or wait operation.

4.2 Syntactical Congruence

As in other such approaches [Milner, 1999], we
start by defining a syntactical congruence, de-
noted by =, between contracts. This congruence
is to be applied on a well-formed formula and its
subformulae before the rules of the operational
semantics.

Definition 6 We define the relation = < C x C
as the least congruence relation that includes:

1. opaT=9p 2. Thrp=p
3. Lrp=L1 4. ponanl=1
5. v T=T 6. Tve=T

7. pvl=yp 8. Llvep=yp
9. T;o=¢ 10. Lip=1
11. Tre=T 12 Lrp=9p
13. Ox(a)[0] =L 14. Fr(a)[0]=T
15. Prp(a)[0]=T 16. wait(0) =T
17, condy(a)[0)(p,) =

In order to compute the = relation, we trans-
form it into a rewriting calculus: we can see
the rules above as rewriting rules going from
left to right. For instance, the equivalence
rule 13 (Ok(a)[0] = 1) allows us to rewrite
Or(a)[0]; Pi(b)[5] to L;Pi(b)[5], which in turn
can be rewritten to L using rule 10 (L;p = 1).

Definition 7 We write ¢ — ¢’ (where p, ¢ €
C), if ¢ is the result of applying one of the equiv-
alence rules from left to Tight on a subexpression
of .

Example 2 Returning to the plane boarding
system agreement, consider the obligation on pas-
sengers to present the boarding pass (action PBP)
within 5 time units: O,(PBP)[5]. In this case,

equivalence rule 13 can be applied after 5 time
5

units: O,(PBP)[5] ~~~» O,(PBP)[0] — L.

In order to justify the simplification of con-
tract formulae by applying these rules repeatedly,
we will need to prove that the rewriting process is
terminating and confluent. To prove confluence
of —, we will first prove local confluence, from
which confluence follows using a standard result
from computer science.

Proposition 2 The — € C < C relation is: (i)
terminating: there is no infinite sequence @1, Y2
..., such that Vi-; — @;+1; and (ii) locally con-
fluent: if o — @1 and @ — ps, then there exists
a contract ¢’ such that o1 —* ¢ and oy —* .
Proof. Since the right term is always syntacti-
cally smaller than the one on the left, the relation
— is a well-founded relation, and thus, termina-
tion is easily proved. Local confluence is proved
by structural induction on ¢. The base cases are
trivial. To prove the inductive cases, we perform
case by case analysis on the different rules, which
are applied to the subformulae to show that the
confluence result holds. m]

Based on these results, confluence of < follows
using Newman’s Lemma [Newman, 1942].

Corollary 1 The syntactic equivalence relation
applied from left to right is confluent: if ¢ —* 1
and @ —* o, then there is a contract ¢’ such
that o1 —* ©' and o3 —* .

Confluence and termination mean that any
given formula can be deterministically reduced to
an irreducible formula in a finite number of steps.

Definition 8 A contract formula ¢ € C is said to
be irreducible, if the equivalence relation cannot
be applied to any of its subexpressions: —3Ip’ €
C-po—¢.

Given contract formulae ¢, € C, we write
©+— @ iff (i) ¢ can be syntactically reduced to
¢ in a number of steps: ¢ —* ¢'; and (ii) ¢’ is
irreducible.

Confluence and termination guarantee that
for a given ¢, there exists a unique ¢’ such that

pr— ¢
4.3 Operational Semantics

We can now define an operational semantics for
our contract calculus. The rules of the opera-
tional semantics appear in Figure 1. The seman-

. . k
tics take one of three forms: (i) ¢ —— ¢’ to de-
note that contract ¢ can evolve (in one step) to ¢’
when action a is performed, which involves party

/

&
k (and possibly other parties); or (ii) ¢ (@), %
indicating that the contract ¢ can evolve to ¢
when the action a is not offered by any party

/

other than k; or (iii) ¢ o ¢’ to represent that
contract ¢ can evolve to contract ¢’ when d time
units pass. We will use variable a to stand for a
label of either form: (a,k) or (a,k). The rules of
the operational semantics are always applied to
irreducible terms.

The core of any contract reasoning formalism
is the rules defining the semantics of the deontic
modalities.

Rules O1, 02, O3, O4, and O35 define the
behaviour of obligations Oy (a)[d], i.e., the obli-
gation on agent k to perform action a within d
time units. Rules O1 and O2 handle the case of
the obligation clause being satisfied when agent k
does action a within d time units, in this case, the
contract reduces to the trivially satisfied one (T).
Rules O3 and O4 consider the case when another
agent [performs an action (I # k) or the action
b is not the compulsory one b # a; in both cases
the obligation remaining intact. Let us recall that
actions are instantaneous, so the time constraints
do not change. Finally, O5 handles the case when
d' time units pass with d’ < d, then the obliga-
tion remains, but the obligation time decreases
in d’ time units. Recall that O(a)[0] is handled
through syntactic equivalence (= 1).

Example 3 Let us consider the obligation on the
passenger (agent: p) to present the boarding pass
(action PBP) within 5 time units: O,(PBP)[5].
The possible outcomes are: (i) rule O1 applies if
the passenger presents the boarding pass within
5 time units, with the contract evolving to T:

O, (PBP)[5] FERP, T (ii) rule O2 can be applied

if the passenger is not allowed to perform the

action: O,(PBP)[5] PP, T; (iii) if an action
other than PBP is performed or PBP is performed
by another party, the obligation remains intact

by rule O3: O,(PBP)[5] BN O,(PBP)[5] (where
b # PBP or | # p); (iv) similarly if other par-
ties or actions are not allowed, the obligation re-
mains unchanged by rule O4: O,(PBP)[5] BUUR
O, (PBP)[5] (where b # PBP or [# p); and finally
(v) rule O5 handles when an amount of time less
than 5 time units elapses, in which case the obli-

gation remains in force, but the deadline is moved

accordingly: O, (PBP)[5] o O, (PBP)[5 — 4]

(where 0 < 5). Note that in this final case, when
the deadline of the obligation decreases to 0, the
syntactic equivalence O,(PBP)[0] = L is directly

applied and reduced accordingly.
m]

Rules F1, F2, F3, F4, and F5 define the cases
for prohibition similar to obligation.

Permission of agent k£ to perform action a
within d time units (Py(a)[d]) is defined through
Rules P1, P2, P3, P4 and P5. Rule P1 consid-
ers the case when agent k consumes her permis-
sion to perform action a by actually performing
it, in this case, the contract reduces to the triv-
ially satisfied one (T). Rule P2 handles the case
when an agent other than k£ performs an action
or the action involving b is not the permitted one
a, leaving k’s permission intact. Rule P3 han-
dles the case when the permission is violated be-
cause agent k intended to perform action a, but it
was not offered a synchronizing action. Rule P4
considers the case when another agent than £ in-
tends to perform an action b (different to a), but
it was not offered a synchronizing action. Fi-
nally, Rule P5 considers the case when d’ time
units elapse, with d’ < d, then the permission re-
mains, but the permission time decreases by d’
time units.

The rules for conditional contracts handle the
cases when the condition holds (C1 and C2), and
when it does not (C3 and C4), resolving the con-
tract to the appropriate branch. The rule C5
considers the case when d’ time units pass (with
d’ < d), in which case the conditional deadline
decreases accordingly.

The rules for conjunction and disjunction are
structurally identical, since both take the two
contracts to evolve concurrently. The difference
between the two operators is only exhibited when
one of the two operands reduces to T or L, which
is then handled by the equivalence rules. The

(01) | Op(@)[d] -2 T (F1) | Fi(a)[d] % 1
(02) | Op(a)d] <= T (F2) | Fi(@fd ~=* 1
(03) | Ox(@)[d] = Ox(a)[d], (a,k) # (b,1) (F3) | Fi(@)d] > Fu(a)[d], (b,1) # (a,k)
(04) | Ou(a)ld] *% Op(@)[d]. (@ k) # (b.) || (F4) | Fia)ld] *% Fi(@ld]. (b.1) # (a.k)
(05) Or(a)[d] ~ Op(a)[d—d],0<d <d (F5) Fi(@)[d] ~4 Fe(@)d—d],0<d <d
(P1) [Pulwld] 5 T (O1) | condy(@ldl(p.v) == &
(P2) Pr(a)[d] 25 Pre(a)[d], (a,k) # (b,1) (C2) condy (a)[d] (¢, ¢) b(‘;’ !
(P3) Pr(a)[d] =250, 1 (C3) condy,(a)[d] (¢, ¥) ;_l)% (b,1) # (a, k)
(P4) Pr(a)[d] 2 Po(@)[d], (ak) # (b,1) (C9) condy,(a)[d] (¢, ¥) T’ ¢, (b1) # (a,k)
w5 ot o pmpa—apncasa || €9 | bt S8
AOl 4 i) ()0,7 w i’ ¢/ 90 _Ci) S0/
on copth 22 ¢/ op i Y e
AN / AN ! d /

(AO2) 12 i L 4 v2) PRSCN

popY ~~ o op)/ orth o o v

d d’ , 7
(A03) P~ T ¢/w¢7 d>d (V3) Lprv\%\»L,'(/}fvé/\»f[ﬁ’

o ntp ~Yo g dtd

TN prp o y
(AO4) po P Ve T (S1) i endb SN

o np ~So ;Y ;? axy

a d ’ A~ (!
(AOS5) g L w,w Vo sd (S2) %

qu)ﬁ«/ﬁl/\»zﬂ @Cbe\”tpdDw

i, o & o T, s o)
(AO6) sowwso,wwl’dzd/ (S3) nd

© VY «,3\,) o’ D3~~~ !

i (REC1) “"ai’ ¢
(waitl) | wait(d) ~% wait(d—d’) ,0 < d’ < d rec z.p = @'[z/rec z.¢]
(wait2) | wait(d) %> wait(d) (REC2) o~

d /
rec x.p ~~~ ' [x/rec z.¢|

Figure 1: Operational Semantics transition rules

first rule AO1 states that the conjunction or dis-
junction of two formulae evolves along with both
operands concurrently.

The second rule AO2 considers the case in
which d time units pass for both contracts. Rule
AO3 shows the case in which: (i) d time units
pass for the first contract, ¢, then it evolves to
T and (ii) d’ for the second one, 1, evolving to
', with d’ > d. Thus, the contracts’ conjunction
evolves as the second one. AO4 handles the case
in which d time units pass for the first contract,
@, then it evolves to ¢’ and d’ time units for the
second one, 1), then it evolves to T, with d > d’,
thus the contracts conjunction evolves as the first
one. Rules AO5 and AOG6 consider the cases in
which the first or second contract has been al-
ready violated and how the disjunction of both
contracts evolve, in an analogous manner as the
conjunction.

The rules for reparation and sequential com-

position are similar. The rules V1 and V2 allow
moving along the primary contract when some
actions are done or the time passes. There is no
need for rules dealing with the recovering from
a violation since this is handled by the syntac-
tic equivalence rules. The sequential composition
rules S1 and S2 behave in an analogous manner,
allowing evolution along with the first contract,
with no need for additional rules thanks to the
syntactic equivalence rules. It is worth noting
that, similar to reparation which fires the second
operand on the first (shortest trace) violation, se-
quential composition fires the second operand on
the shortest match of the first operand. Rules
V3 and S3 are necessary for time additivity with
reparation and sequential composition, respec-
tively.

Example 4 In our running example, we can con-
sider clause (4, that is:

(Pp(brd)[90]; P, (R1)[10]) »
(Oc(bxd)[90]; Oc(h1h1ld)[20])

P4 =

where the passenger is permitted to board within
90 minutes (P,(brd)[90]) and, then to present
the hand-luggage to the staff within 10 min-
utes (Pp(h1)[10]). Therefore, the reparation part
of this clause indicates that if the passenger is
stopped from boarding or carrying luggage, the
airline company is obliged to allow the passen-
ger to board within 90 minutes (O, (brd)[90]) and
then, to put the passenger’s hand luggage in the
hold within 20 minutes (O.(hlh1d)[20]). If 90-
time units pass, ¢4 evolves in the following way:

Pp(brd)[90]; Pp(h1)[10] » O(brd)[90]; O.(h1h1ld)[20]
90

Pp(brd)[0]; Pp(h1)[10] » (O (brd)[90]; O.(h1h1ld)[20]

= T;Pp(h1)[10] » (Oc(brd)[90]; Oc(h1h1d)[20])

The latter equivalence applies by rule
15, since Pp(brd)[0] = T. In turn,
rule 9 can be applied to the first part
(T:P,(a1)[10] = P,(BL)[10]), then @y =
Pp(h1)[10] » (O.(brd)[90]; O.(h1h1d)[20]).
Thereafter, if 10 time units pass, rule 15 can b

applied again (P,(h1)[10] Ao p »(brd)[0

T), then @4 ::= T»(O.(brd)[90]; O, (hlhld)[QO]).
And finally, applying rule 11: YRHES
T » (O.(brd)[90]; O, (h1h1d)[20]) = T, then
in this case, it is possible to conclude that
the contract is satisfied by only applying the
congruence relations.

|

The wait rules define two possible cases: when
d’' time units pass, with d < d, then the time
delay decreases by d’' time units (Rule waitl),
and when an action is performed (Rule wait2)
the time delay remains intact since (let us recall)
actions are instantaneous.

The final rules deal with recursion in a stan-
dard manner — by replacing free instances of the
recursion variable by the whole recursion formula.
Note that since we assume formulae to be closed
and recursion guarded, we require no rules for ex-
pressions consisting of just a free variable, or to
handle unguarded recursion such as rec z. x.

The following proposition shows that the se-
mantics ensure that any non-trivial contract (i.e.
any irreducible contract other than T and 1) can
evolve to any observed action. Furthermore, they
evolve in a deterministic manner.

Proposition 3 Given a contract p € C:

1. One of the following holds: (i) ¢ = T; (ii)
w = L; or (i) for any a € Act and k € I,

a,k a,k
2. If o —— @1 and ¢ —— pa, then p1 = @s.

Proof. The first property follows immediately
from the operational semantics. The second fol-
lows by structural induction on ¢. m]

The following proposition shows that the con-
tracts behave coherently with respect to time.

Proposition 4 Let p, ¢, " € C be contracts and
di,dy € T be time values. Then, the following
properties hold:

d d
1. If o ~~o @ and p ~~mo @ then @ = .
d d dy+d
2. If p AU 4 A ©", then ¢ SV "
di+d
9. If o AL

that AN v I o

" then there is ¢’ € C such

Proof. These properties are proved by struc-
tural induction. The base cases are trivial, one
only needs to take into account that the contracts
Or(a)[d], Fx(a)[d], Pr(a)[d] do not transition be-
yond time d because the contracts are violated (in
the case of obligation) or satisfied (in the case for
prohibition and permission). O

4.4 Contract Violation

We can now formally define contract violation.
First, we define the predicate vio(y). This predi-
cate will be used to verify if a contract is currently
violated, which enables us to determine how a sys-
tem can be monitored with respect to a contract.

Definition 9 We say that an irreducible contract
@ s in a violated state, written vio(p) if and only
if the contract has already been violated:

vio(T) ifﬁ vio(L) 4 4y

vio(Pu(@[d]) L (ak) vio(Ox(a)[d]) £ g7

vio(Fi(a)[d]) £ (a, k) vio(wait(d)) & f
vio(; ¢') 4 vio(p) vio(rec z.¢p) g o(p)

vio(condy (a)[d](i2, ")) < f

vio(i A) L vio(p) v vio(¢')

vio(ip v) & vio(p) A vio(¢')

vio(» ') Z vio(p) A vio(¢')

Since syntactical equivalences would remove
any zero time windows (i.e. d = 0), the above
definition covers only when d > 0.

The two first cases for the trivially satisfied
and violated contracts are straightforward. In

the case of permission being currently in force, we
flag a violation if the party holding the permission
wants to perform the action but is not offered a
synchronizing action. In case of an obligation, a
violation can only occur after the time has expired
(d = 0), but this case is already defined because
of the syntactical equivalence O (a)[0] = L. Let
us note that an obligation to perform an action
within a (non-zero) time frame is never in vio-
lation at this instant since there is still time to
perform the action and fulfil the obligation.

In the case of a reparation vio(¢ »¢'), a viola-
tion can only occur, if both ¢ and ¢’ are violated.
In the case of vio(condy (a)[d] (v, ¢’)), whether the
action a or any other action is observed the vio-
lation is always false since the conditional con-
tract only defines how the contract will behave
(as ¢ or ¢'). In the case of sequential composi-
tion vio(p; '), an immediate violation must oc-
cur on the first operand (since T;¢ would have
been reduced to ¢), and it is thus defined as
vio(). In the case of wait(d), the violation is
always false, since it depicts a time delay, then
an immediate violation is false. Finally, the def-
inition vio(rec x.¢) = vio(y) is well-formed since
recursion is always assumed to be guarded.

Lemma 1 For any contract ¢ € C, vio(p) =& tt
if and only if p = L.

Proof. The proof uses structural induction on ¢.
The only non-trivial case being when ¢ = p1 A 2,
in which case we use Proposition 1.]

4.5 Contracts Acting on Systems

We can now define how contracts evolve along-
side a system, and what it means for a system to
satisfy a contract.

Definition 10 Given a contract ¢ € C with a set
of actions Act’ and a system A, we define the
semantics of p| A — the combination of the sys-
tem with the contract — with alphabet Act with
Act’ € Act through the following rules:

Lpa_vk,(pg A 25,
o A= ¢ | A

o~ oA (0B

Awﬂ,«:\jf’ A
— /
(M3) mu¢ Act
A~So A o2 o,
Vd' <d- if A Lo A and
©® 2 " then A" = vio(¢")
ol A= | A

(M1) kes

(M2)

(M4)

Rule M1 and M2 handles synchronization be-
tween the contract and the system. If an action a
performed by the system is of interest to the con-
tract, the contract evolves alongside the system
(M1), if the contract allows an agent to perform
an action but only agent k (and no other agent)
is willing to engage in the action, then only the
contract evolves (M2). Rule M3 handles actions
on the system in which the contract is not in-
terested in. Finally, rule M4 ensures that time
cannot skip over a violation.

Definition 11 Let A be a system and ¢ € C be a
contract.

e System A can breach ¢, written breach(A,),
if there exists a computation that leads to a
violation of the contract: for some n = 0 and
contracts ¢q till p, such that:

ol A=poAo= ... on-1 | An—1= on | An,

and A,, & vio(py,).

o System A may fulfil @, written fulfill(A, ©), if
there exists a computation of the system that
fulfils the contract: for some n = 0 and con-
tracts g till oy, :

elA=wolAo=...on1]An—1= on | An ,
and A k= vio(pg) for 0 <k <n, and p, =T.

Note that there are contracts that may never
be fulfilled. An example of such a contract is
¢ = rec x.[a,k,0](L,00), which may never be
fulfilled since there are no transitions from this
contract leading to T. Nevertheless, if agent k
never performs action a, then neither is the con-
tract broken.

5 Refinement

We now define two notions of contract refine-
ment (<, and <7). Intuitively <, relates two
contracts ¢, € C (i.e. <1 9) if any system
which can breach contract ¢, can also breach con-
tract . The meaning of < is its dual: if p <7 ¥
then any system which can fulfil ¢ can also fulfil
1. Both notions are based on simulation tech-
niques, defined in a co-inductive fashion.

Definition 12 Let ¢, € C and R < C x C, we
say that R is a 1-simulation relation iff whenever
(p,1) € R the following conditions hold:

(i) viol) - vio().
(ii) If ¢ ~So ' then

a. there is d' < d such that 1 A 1, or

b. there is ¢’ € C and v ~d Y and
(¥, eR
(iti) If ¢ == ' then there exists ¢’ € C and
= and (¢, 0) eR
We say p <1 9 if there is a L-simulation relation
R such that (p,1) € R.

Definition 13 Let p,9 € C and R < C x C, we
say that R is a T-simulation relation iff whenever
(¢,v) € R, the following conditions hold:

(i) If o=T theny =T.
(it) If vio(v)) = vio(yp).
(iii) If o~ ¢ then
a. there is d' < d such that 1 ~4 T, or

b. there is ' € C and that 1 ~d Y and
(¢ ¢)eR
(w) If ¢ == ¢’ then there is 1)’ € C such that
Y =>4 and (¢',¢') € R
We say o<1 v if there is a L-simulation relation
R such that (p,¢) € R.

Lemma 2 The relation id = {(¢,¢) | ¢ € C} is
both a 1-simulation relation and a T-simulation
relation.

Proof. 1t is immediate from the definitions. o

Lemma 3 Let Ry and Ry be L-simulation re-

lations (respectively T-simulation). Then, their

composition Ry o Ry is also a 1-simulation rela-

tion (respectively T -simulation).

Proof. The proof is simple from the definitions.
O

Proposition 5 The relations <, and <1 are re-
flexive and transitive.

Proof. This proposition is immediate from Lem-
mas 2 and 3. m]

Consider the following example illustrating
the use of these definitions.

Example 5
wait(3) <1 Pr(a)[5]
wait()i L %1 Pr(a)[5]; L

Pu(a)[3] <7 wait(3)
Pi(a)[3] » Ou(D)[2] 1 wait(3) » Oy(b)[2]
wait(5) <1 Ok(a)[6]
wait(5) A wait(7) < Og(a)[6] A wait(7)

It is not difficult to formally verify the correct-
ness of these orderings. For instance, consider

wait(3) and Pg(a)[5] — the former cannot be
violated, whilst the latter can be violated by
any system that does not allow agent k to per-
form action a within 5 units of time, which en-
sures that the simulation holds. Now consider
wait(3) <1 Pr(a)[5], we can put both contracts in
the context of the continuation operator to follow
up with L. While wait(3); L cannot be fulfilled
after 3 units of time whatever the system does, in
the case of Py (a)[5]; L, if the system allows agent
k to perform a after 3 units of time but agent k
does not perform the action, the contract is not
broken yet. Regarding the <t relation, dual rea-
soning can be applied, whilst the other relations

can be similarly reasoned about.
m]

Since the relations are preorders, for each of
them we have an equivalence relation. However,
we can prove that these relations are, in fact,
equivalent.

Proposition 6 The two equivalence relations
=<t and o = < n<uTh are
equal to each other: v« =« .

Proof. In order to prove «~; S 1 we have to
prove | € < and «~; < <, ~!. Both proofs are
symmetrical, so let us prove the first. It is suffi-
cient to prove that «~ is a T-simulation relation.
Consider ¢, € C such that ¢ «~; ¥ — we must
prove the conditions of Definition 13, with the
only non-trivial one being condition i. Assume
p = T. Since ¢« ¥, we deduce vio(v)) = ff. If
1 #£ T, then by Proposition 3, for any possible «
there must exist v’ such that ¢ —%» ¢’. Again,
since ¢ | 1 we obtain that for any «, there must
exist ¢’ such that T = ¢ —%» ¢', which is impos-
sible. We can thus conclude that ¢ = T. O

Given their equivalence, we can define the sim-
ulation equivalence of contracts as either of the
two equivalence relations.

Definition 14 We define the simulation equiva-
. d,
lence relation as « 2 <tn<t!

Consider the L simulation: if two contracts
are related ¢ < 1, then the violations identified
by ¢ are also identified by .

Theorem 1 Let A be a system and @,9 € C be
contracts, such that o<11. Then, if A violates p,
it also violates 1 : breach(A, p) = breach(A,).
Proof. Since ¢ <1 9, then there exists a simu-
lation contract relation R, such that (¢,%) € R.
On the other hand, since breach(.A, ¢) holds, there
exists a sequence of transitions

<PHA:¢0HA0=>~~~80n\|An:<PIHA/

where n > 0, such that breach(A’, ¢’). By simu-
lating ¢, we can build a computation beginning
with the contract ¥y = ¥:

V[A=vo | Ao=...0m [An =1 | A

such that m < n, (@, ¥r) € R for 0 < k < m,
and breach(A’,v,,). Let us proceed by induction.
If n = 0 the proof is immediate, so let us consider
the inductive case n > 0. Let us consider the first
transition. There are four cases according to the
rules of the system transitions (Definition 1):
Rules M1 and M2. ¢y — ¢;. Since
(¢0,%0) € R, then there is a contract 17 such
that 9 —— 11 and (¢1,91) € R. There-
fore, we obtain that we have the computation
o || Ao = 1 || A1. Then we obtain the result
by induction.
Rule M3. This is trivial because the contract is
not involved.
Rule M4. ¢, o (1 then either:

1. There exists d’ < d such that g ~4o 1
this case we obtain ¢ | A= L || A’

2. There exists wl such that g s 11 and
(p1,91) € If there were 0 < d' < d

such that ~Lo Y, N , and
A’ = vio(y'), then we obtaln the result im-
mediately. Otherwise 9 || A= 1 || A1 and we
obtain the result by induction.

Finally, if m < n we have found the computa-
tion ¢ || A=" L | A". Otherwise (¢n,%n) € R,
then vio(¢,,) E vio(¢y,), and by definition A,, =
vio(1p,). o

Now let us prove the corresponding property
of T simulated contract. If two contracts are re-
lated p<T1¢’, and if can be fulfilled by a system,
then ¢’ is also fulfilled by the same system.

Theorem 2 Let A be a system and p,v € C be
contracts such that o <t 1. Then, if A can fulfil
©, it can also fulfil W: fulfill A, o) = fulfill(A,).
Proof. The proof of this theorem is very simi-
lar to the previous one. The inductive cases for
rules M1, M2 and M3 are similar: We only have
to verify Ay, &= vio(y), which is immediate since
vio(¢) = vio(pg). The case M4 is slightly dif-

ferent; so let us assume 4, p1. First let
us suppose that there exists d < d such that
o &, P, A ~o A and A = vio(¢'). Due
to Proposition 4 and the definition of T simula-

tion contract, there exists ¢’ such that g <, s
with (¢',9") € R. Therefore vio(¢)') k= vio(¢') and
then the transition ¢ | A= ¢; | A is not possible.
Now, since (¢g,10) € R there are two cases:

1. There exists d’ < d such that 1 ~ T, so
in this case we have found the computation

Yo | A~ T A

2. There exists 11 such that g s 11 and
(p1,91) € R. If o1 = T then ¢y = T
and we have found the required computa-
tion. Otherwise, vio(1) & vio(¢1) and then
A; E vio(11), so we obtain the result by in-

duction.
O

Finally, in this section we are going to show
important properties of the relations <+ and < .
First, let us show that T and L are the best con-
tracts in their respective relations <t and <.
Then, as p A T =y and ¢ v L = ¢, it is impor-
tant to show o A @' <1 and v v ¢’ < .

Proposition 7 For any ¢, ¢’ € C, the following

hold: Loo<sT

2. (,D<J_J_

VRN WN S
S.pmpve
3. ove'<Le 6. pwpn

Proof. Statements 1 and 2 follow from the def-
initions and Lemma 1. For 8 we have to check
that Ry ={(p v ¢, ¢) | p,¢’ €C}is a L simula-
tion contract. While for 4 we have to check that
Rr={(pnr¢,0)| p,¢ €C}isa T simulation
contract. For 5 and 6 it is easy to check that
the relations R, = {(¢,¢ v ¢) | ¢ € C}, R/, =
{lpvep)|pell, Ry ={(p,pnep)|peCll,
and R = {(¢ A ¢,¢) | p € C} are respectively
both, T simulation contracts and L simulation
contracts. O

Let us show cases in which the relations act as
congruences.

Proposition 8 For any o, ¢, ¥, € C, the fol-
lowing hold:

Ife'<ipand ¢/ <L v: If ' <79 and ¢ <7 ¢-
L1 s <ipry T.1 @54 <7 @59

L2 o ry/<ipny T2 @AY KTQAY
L3¢ vy <Lovy T3¢ vy <ToVvY

L4 condp(a)[d](¢’,¥") T.4 condi(a)[d](¥’,¥")

<1 condy (a)[d] (¢,) <7 condy(a)[d](p, %)

Proof. For all the cases consider the relations:

R(op,rcl) ,: <re/l U{(‘P op w» SOII op 1/),) | ,
®w, P 7waw EC,SD <rel 71/1 <rel w }

where op € {;, », A, v,cond;(a)[d](-,-)} and rel €
{T,L}. Inall cases we have to prove that R(op rel)
is a rel simulation. Also in all cases we are going
to consider (x,x’) € Roprey and to prove that
(X, X') €<tel - If (X, X') €<yel there is nothing
to prove, so we consider that x = g op vy, ¥’ =
@ op Y, v el P’ and ¥ Xyl ¥, In all cases we

have to check the conditions on the corresponding
relation in Definitions 12 and 13. m|

Theorem 3 -« is a congruence.
Proof. This follows from the previous proposition
and Proposition 6. O

6 Conclusions

The calculus Themulus allows us to reason
about contracts with time constraints indepen-
dent of the systems on which they are applied
to. In order to achieve this, we have introduced
a notion of similarity between contracts, which
takes into account predicates over system states,
and shows how these semantics can be used for
runtime verification of contracts.

There are various research directions we in-
tend to explore. From a practical perspective, we
will be looking into automated runtime verifica-
tion of contracts, and looking at how this scales
up with more complex contracts. From a the-
oretical perspective, there are various questions
we have yet to explore — from identifying con-
flicts in our contract language, to looking at au-
tomated synthesis of the strongest contract satis-
fied by a given system (analogous to the weakest-
precondition) and synthesis of the weakest system
satisfying a given contract.

One application arising from runtime moni-
toring was that of runtime enforcement, where
starting from a specification, algorithmic machin-
ery is synthesized to ensure that the system un-
der scrutiny does not violate the specification e.g.
by delaying or injecting events. In particular,
there is a body of work on runtime enforcement of
timed properties e.g. [Falcone et al., 2016] which
could offer insight on how our work can be ex-
tended to build contract enforcement engines, a
notion that has not been widely explored in the
deontic logic world.

References

[Asarin et al., 2012] Asarin, E., Mysore, V., Pnueli,
A., and Schneider, G. (2012). Low dimensional hy-
brid systems - decidable, undecidable, don’t know.
Inf. Comput., 211:138-159.

[Azzopardi et al., 2014] Azzopardi, S., Pace, G. J.,
and Schapachnik, F. (2014). Contract automata
with reparations. In Legal Knowledge and Informa-
tion Systems - JURIX: The Twenty-Seventh An-
nual Conference, Jagiellonian University, Krakow,
Poland, 10-12 December, pages 49-54.

[Belnap and Perloff, 1993] Belnap, N. and Perloff,
M. (1993). In the realm of agents. Ann. Math.
Artif. Intell., 9(1-2):25-48.

[Bocchi et al., 2014] Bocchi, L., Yang, W., and
Yoshida, N. (2014). Timed multiparty session
types. In CONCUR 2014 - Concurrency Theory
- 25th International Conference, CONCUR 2014,
Rome, Italy, September 2-5, 2014. Proceedings,
pages 419-434.

[Cambronero et al., 2017] Cambronero, M., Llana,
L., and Pace, G. J. (2017). A calculus supporting
contract reasoning and monitoring. IEEE Access,
5:6735-6745.

[Chaochen et al., 1991] Chaochen, Z., Hoare, C.
A.R., and Ravn, A. P. (1991). A calculus of dura-
tions. Inf. Process. Lett., 40(5):269-276.

[Falcone et al., 2016] Falcone, Y., Jéron, T., Marc-
hand, H., and Pinisetty, S. (2016). Runtime en-
forcement of regular timed properties by suppress-
ing and delaying events. Sci. Comput. Program.,
123:2-41.

[Fenech et al., 2009] Fenech, S., Pace, G. J., Okika,
J. C., Ravn, A. P., and Schneider, G. (2009). On
the specification of full contracts. FElectr. Notes
Theor. Comput. Sci., 253(1):39-55.

[Georg Henrik Von Wright, 1951] Georg Henrik Von
Wright (1951). Deontic Logic. Mind, 60(237):1-15.

[Governatori and Milosevic, 2005] Governatori, G.
and Milosevic, Z. (2005). Dealing with contract vi-
olations: formalism and domain specific language.
In EDOC Enterprise Computing Conference,
Ninth IEEE International, pages 46-57. IEEE
Computer Society.

[Horty, 2001] Horty, J. F. (2001). Agency and Deon-
tic Logic. Oxford University Press.

[Jeremaes et al., 1986] Jeremaes, P., Khosla, S., and
Maibaum, T. (1986). A modal (action) logic for
requirements specification. Software Engineering,
86:278-294.

[Khosla, 1988] Khosla, S. (1988). System Specifica-
tion: A Deontic Approach. PhD thesis, Imperial
College of Science and Technology, University of
London.

[Milner, 1999] Milner, R. (1999). Communicating
and Mobile Systems: the w-Calculus. Cambridge
University Press.

[Newman, 1942] Newman, M. H. A. (1942). On the-
ories with a combinatorial definition of” equiva-
lence”. Annals of mathematics, pages 223-243.

[Pace and Schapachnik, 2012] Pace, G. J. and Scha-
pachnik, F. (2012). Contracts for Interacting Two-
Party Systems. In FLACOS’12, volume 94 of
ENTCS, pages 21-30.

[Yi, 1991] Yi, W. (1991). CCS + time = an inter-
leaving model for real time systems. In Automata,
Languages and Programming, 18th International
Colloquium, ICALP91, Madrid, Spain, July 8-12,
1991, Proceedings, pages 217—228.

