
Submitted to:
AREA 2023

© R. Abela et al.
This work is licensed under the
Creative Commons Attribution License.

Runtime Verification for Trustworthy Computing

Robert Abela Christian Colombo Axel Curmi Mattea Fenech Mark Vella
Department of Computer Science, Faculty of ICT, University of Malta, Msida, Malta

name.surname@um.edu.mt

Angelo Ferrando
Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145 Genova, Italy

name.surname@unige.it

Autonomous and robotic systems are increasingly being trusted with sensitive activities with poten-
tially serious consequences if that trust is broken. Runtime verification techniques present a natural
source of inspiration for monitoring and enforcing the desirable properties of the communication
protocols in place, providing a formal basis and ways to limit intrusiveness. A recently proposed ap-
proach, RV-TEE, shows how runtime verification can enhance the level of trust to the Rich Execution
Environment (REE), consequently adding a further layer of protection around the Trusted Execution
Environment (TEE).

By reflecting on the implication of deploying RV in the context of trustworthy computing, we
propose practical solutions to two threat models for the RV-TEE monitoring process: one where
the adversary has gained access to the system without elevated privileges, and another where the
adversary gains all privileges to the host system but fails to steal secrets from the TEE.

1 Introduction

The challenge of secure software execution is ultimately a game of cat and mouse where for every step
forward in security, the attackers likewise launch increasingly sophisticated attacks. Suffice to consider
the all too frequent examples1 from recent history. Given this state of affairs, software architectures need
to take a risk-based approach where progressively higher price for security is paid for the correspondingly
sensitive components of a system (just like a traditional physical bank puts more hurdles the closer one
gets to the vault where all the cash is). As robots are becoming more ubiquitous, they are naturally
increasingly becoming likely targets of attacks; motivating more investment in their security [11].

In the security community, the idea of a trusted execution environment (TEE) is well known and
is the ultimate objective whenever executing security-critical tasks [27], such as cryptographic protocol
steps. Trusted computing finds its origin in trusted platform modules (TPM) that comprise tamper-
evident hardware modules and enable secure boots [7]. However, TPM constitute just one component
of a complete TEE solution as depicted in Fig. 1. In fact, the cornerstone of TEE lies in the isolated
execution of critical code segments in a way that they become unreachable by malware infections of
the non-trusted operating system and application code. A secure monitor, which is part of the TEE’s
trusted computing base (TCB), performs thorough checking of the dynamically provisioned code and
the parameters of flows that call into the TEE.

1https://securityintelligence.com/heartbleed-openssl-vulnerability-what-to-do-protect/,
https://github.com/openssl/openssl/issues/353,
https://blog.trailofbits.com/2018/08/01/bluetooth-invalid-curve-points/,
https://info.keyfactor.com/factoring-rsa-keys-in-the-iot-era,

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://securityintelligence.com/heartbleed-openssl-vulnerability-what-to-do-protect/
https://github.com/openssl/openssl/issues/353
https://blog.trailofbits.com/2018/08/01/bluetooth-invalid-curve-points/
https://info.keyfactor.com/factoring-rsa-keys-in-the-iot-era


2 Runtime Verification for Trustworthy Computing

Figure 1: An overview of TEE components.

In previous works [40, 4, 13], we have proposed RV-TEE: A TEE which is supported by runtime ver-
ification techniques. The RV component complements the TEE services to elevate trust also inside the
rich execution environment (REE)2. Even though the TEE’s isolated context protects trusted application
(TA) components, the rich application (RA) components executing inside the REE may still be required
to demonstrate increased trust. In effect, RV-TEE establishes an intermediate level of trust, somewhere
in between the levels offered by the TEE and the REE, since i) a clean un/trusted split of an application
is far from simple in practice; ii) static verification techniques do not always scale and require comple-
mentary dynamic approaches. RV-TEE makes it a point to not be specific to common CPU-mode TEE
implementations [23], whose security-efficiency trade-off may still not satisfy the levels of trust of spe-
cific security-critical applications. Rather, it considers TEE in its broadest sense possible [16], i.e., any
platform realisation that splits runtime execution into trusted and rich execution modes. In sensitive ap-
plications such as military and governmental ones, the input/output overheads introduced by a removable
hardware security module (HSM) of choice could be acceptable as long as the TEE employs a trusted
hardware component.

Robotic systems are far from immune to vulnerabilities [14] and the independent use of TEE’s [37]
and RV [20, 15] for robotic applications is not new. However, to our knowledge, the proposal of com-

https://labs.sentinelone.com/how-trickbot-hooking-engine-targets-windows-10-browsers,
https://meltdownattack.com/

2REE refers to execution which does not take place within a TEE.

https://labs.sentinelone.com/how-trickbot-hooking-engine-targets-windows-10-browsers
https://meltdownattack.com/


R. Abela et al. 3

bining the two in this context is novel. Interestingly, although one could simply introduce the two in-
dependently in a system, we show how the monitor can be further secured through the introduction of
the HSM. While the RV-TEE approach contributes to the trustworthiness of the monitored process, the
monitor itself does not run in a trusted environment, making it a potential target for attacks. In highly
sensitive contexts [26], it is not enough to design for the prevention of attacks. Rather, one has to also
design for handling situations where parts of the system have been taken over by the adversary. Applying
this approach to the security aspects of the monitor itself: What guarantees do we have that the monitor
has not been compromised? How can we be sure that the logs the monitor consumes and generates are
actually authentic?

To answer these salient questions, we consider different threat models reflecting different levels of
attack success. The first threat model considers the case where the adversary has gained access to the
monitor-hosting system without elevated privileges, e.g., through an unpatched OS vulnerability the
attacker manages to execute a malicious process. While this threat model doesn’t directly compromise
the monitoring process, it could potentially gather sensitive information and/or interfere with system
resources and processes, e.g., the monitor log file in the filesystem. We handle this threat scenario by
isolating the monitor through containerisation and consider the challenges that this brings about. The
second threat model goes further by assuming that the adversary has gained all privileges to the host
system but fails to steal secrets from the HSM. This gives the adversary full control over the system,
including the monitor. The best we can aim for in such a scenario is that the attack is detected via
tamper-evident logs. We outline the algorithm of an adaptation of SealFS— a filesystem employing
cryptographic techniques to expose any modification of saved data.

In the next section, we introduce the notion of trusted execution, followed by an overview of how we
have employed RV to enhance trust in Sec. 3. After elaborating on the two threat models under consid-
eration in Sec. 4, we propose two practical solutions in each context in Sec. 5 and Sec. 6 respectively.
Next, in Sec. 7, we give an update of the ongoing work to apply RV-TEE within robotics. We hope that
as we conclude in the final sections, this paper offers a novel way of seeing and employing RV in secure
contexts such as robotics, highlighting lessons learnt along with practical solutions for varying scenarios
of compromise.

2 Trusted Execution Environment

A number of prominent TEE extensions to CPUs (CPU-TEE) have already reached industry level ma-
turity. Intel’s SGX [23] and AMD’s SVM [18] technologies are primary examples. These constitute
hardware extensions allowing an operating system to fully suspend itself, including interrupt handlers
and all the code executing on other cores, in order to execute the trusted domain code within a code
enclave. Another wide-spread example is ARM’s TrustZone [25] that provides a CPU-TEE for mobile
device platforms. Several other ideas also originate from academia, such as the suggestion to leverage
existing hardware virtualisation extensions to implement TEE without having to resort to further spe-
cialised hardware [22]. Other works [9, 39, 30, 43] focus on providing practical solutions to port existing
applications to a CPU-TEE.

Despite all these efforts, it is important to note that CPU-TEEs are not attack-proof since practical
threats targeting all the aforementioned hardware have already been demonstrated [41, 28, 31, 21]. The
root cause of these attacks stems from the overall design of CPU-TEEs. Their architecture follows an
on-chip security subsystem approach [16], favouring TEE/REE context switching speed at the expense
of having a shared micro-architecture, which ends up exposing a significant attack surface. However, the



4 Runtime Verification for Trustworthy Computing

architecture of a TEE is not constrained to the widely-available hardware that mainly follows the CPU-
TEE design. Instead, the level of isolation offered by a TEE and the hardware components involved in its
implementation are highly configurable, possibly to fit specific application requirements. For example, a
TEE component may be fully implemented as an external security System-on-Chip (SoC) [16], trading
efficiency with increased trust by eliminating shared micro-architectural components and bringing in
trustworthy hardware of choice.

3 RV-TEE

Circumventing the need of TEE’s to execute sensitive code on specific commodity CPU-TEE, we have
proposed RV-TEE [40] to achieve a similar benefit by combining RV with any hardware security module
of choice — whether a high-speed bus adapter [38], or a commodity USB stick [42]. More specialised
options exist, including multi-chip modules that combine a security-enhanced microprocessor with a se-
curity controller, with the possibility of hardware-accelerated cryptography [10]. Compatibility-wise, if
the design of the software to be secured already supports HSMs, e.g., PKCS#11, deployment even comes
close to ‘plug-and-play’. Ultimately, the level of protection with respect to tampering and resistance to
side-channel attacks of the adopted HSM is carried forward to RV-TEE.

Overall, RV-TEE aims to be compatible with any physical TEE implementation — its primary goal
being that of offering an intermediate level of trust to code executing inside the REE. It might be tempting
to push more of the REE on the TEE so that the boundary between the REE and the TEE handles less
sensitive elements. However, this approach risks turning the TEE into yet another REE in terms of
potential attack surfaces, and which therefore would be counter productive. In the absence of a clean
split between the TEE and REE, the result is a set of RA components that process sensitive derivatives of
TA computations, e.g., plaintext derived from TA decryption. These RA components would benefit from
the trust boundary monitoring for the provision of intermediate trust. The concerned trust boundaries
comprise both that between the RA and the TEE as well as that between the RA and the rest of the REE
(see Fig. 2). This additional trust boundary monitoring is RA-centric, and complements the existing
security monitoring shown in Fig. 1 which rather is TA-centric.

The RV community has traditionally distinguished RV as control-flow or data-flow oriented moni-
toring (see for example [5]). Following this lead, at each boundary, we can loosely distinguish between
control flow, i.e., triggering of code execution, usually through method calls, and data flow, i.e., passing
of data through the stack or heap. In what follows we consider each one in turn.

Monitoring Control Flows Employing RV techniques to monitor the control flow is useful both as a
means of detecting bugs and also to reduce the attack surface: if we know a priori how the code
is expected to be used, then any deviations are either due to bugs, or due to malicious use of the
codebase. This is useful both in RA-TEE as well as RA-REE control flows. Monitoring RA-TEE
calls may uncover insecure usage of the HSM, while monitoring of RA-REE calls could expose
attempts to execute external malicious code belonging to the attacker.
Specifying and monitoring of control flows is a well studied area in RV. In fact, our experience
[40, 4, 13] has shown that this part of the RV-TEE instantiation is indistinguishable from traditional
RV (see for example [8, 44, 33, 34]): A security protocol is analysed, properties are extracted and
encoded in the specification language of choice, and subsequently synthesised into monitoring
code using the preferred RV tool. More details are provided in the next section.
Given that RV is monitoring a boundary, the RV monitor itself could potentially be hosted (exe-
cuted) by either side of the boundary. This is not an easy choice because on the one hand, it is



R. Abela et al. 5

Figure 2: RV-TEE instantiation.

desirable to keep the size of the TA minimal while on the other hand, the monitor by its nature is
a sensitive part of the system requiring protection. For all three past works [40, 4, 13], we have
opted to run the RV code within the REE, while taking additional precautions to cater for the threat
models considered in the following sections. We leave the exploration of deploying the monitor
on the TEE side as future work, where the challenges of working with limited resources shouldn’t
be underestimated.

Monitoring Data Flows Monitoring the control flow, typically also gives access to the data flowing
through the function arguments and return values. In this section, we are however particularly
interested in the analysis of data which could be used to attack the system (inbound) or ex-filtrated
out of the system (outbound), e.g., data leaving the TEE which should never include the keys, and
data leaving the REE which should never leak the plaintext version (of sensitive information).
Checking for such flows can be done using dynamic taint tracking where data is followed through
the system to ensure that it (or derivatives thereof) are not leaked. While this constitutes a precise
approach, it is generally very expensive to deploy [19]. A cheaper alternative is to use taint infer-
ence [32], where rather than following data at every step of the way, the outflows are monitored
for any sensitive data. This comes with several limitations: if the data is manipulated in any way,
a simple string matching approach would immediately fail to flag issues where there might be.
Therefore, an approximate string matching approach would be preferable while also lending itself
amenable to speedup optimisations. Initial experiments in this regard [40] indicate that finetuning
a number of parameters could establish a compromise of efficient execution and avoid accidental
matching, while running the process asynchronously (possibly on separate resources) could also
make the processor-intensive algorithm affordable.

4 Threat models

Being implemented within the REE, RV monitors constitute an attack surface which could particularly
attract the adversaries’ attention given its ability to raise intrusion alarms. One way of limiting the



6 Runtime Verification for Trustworthy Computing

monitor exposure to attacks (such as process injection using a debugging API) is to deploy it offline,
but this of course limits the timeliness of the detection mechanism. In any case, instrumentation and
recording of the events in a log file still need to happen within the REE and somehow need to be made
accessible to the monitor. In this context, we consider two threat models, ordered in increasing severity:

Non-privileged access In this threat model, we consider the presence of user-space malware without
root privileges. We assume that while such processes do not have elevated privileges, they still
have sufficient privileges to perform malicious actions to interfere with the RV monitor and the
monitored app through their data artefacts (e.g., log files, backups) or directly by tracing executing
processes.

Successful privilege escalation In the event of an elevated malware infection, the possibilities are much
wider, including access to entire filesystems, all devices and even the OS kernel. In other words,
the only thing we assume under this threat model is that the secrets held inside the HSM have
not been stolen, i.e., either the HSM is still operational and any attacks directed at it have been
unsuccessful, or the HSM has been tampered with and became nonoperational with the secrets
remaining safe.

Corresponding to these two threat models, a two-fold strategy is being proposed (refer to Fig. 3 which
will be described further below: (i) the first involving process isolation to address attack vectors used
for RV tampering without privilege escalation and (ii) employing tamper-evident techniques on logs
(through an authentication scheme) are able to detect escalation attempts.

5 Isolated Monitoring Process

Namespaces [3] are a feature of the Linux kernel that partitions kernel resources such that a set of
processes running in the same namespace are restricted to a corresponding set of resources. This has a
similar effect to what chroot [2] does at the filesystem level. Common examples of namespace usage
includes container software (e.g., Docker) to isolate processes, and Google Chrome to isolate its own
browser tab processes hosting non-trusted code. Contrary to the typical use case of sandboxing non-
trusted code, our aim is to use process isolation to safeguard the RV monitor and the instrumented
monitored applications from a compromised OS. This setup provides protection from the Non-privileged
access threat model through custom containers.

We consider two well-known containerisation tools: runc3 and Docker4. runc is a tool for spawning
and running containers on Linux according to OCI specifications. Docker is a software platform which
allows developers to build, share, and deploy applications using container technology to separate the
application from the rest of the infrastructure. The difference between the two is that Docker is at
a higher-level, making use of runc underneath. Docker, consisting of a command-line interface tool
and a daemon process named dockerd, utilises runc through containerd5, which provides additional
features to the lower-level tool such as shareable images, storage, and networking. While convenient,
Docker tooling adds a significant attack surface6 which we opted to avoid, and therefore made direct use
of runc. As for code instrumentation, we opted for source-level function hooking aiming for minimal

3https://github.com/opencontainers/runc
4https://github.com/docker
5https://github.com/containerd/containerd
6https://www.cvedetails.com/product/28125/Docker-Docker.html?vendor_id=13534

https://github.com/opencontainers/runc
https://github.com/docker
https://github.com/containerd/containerd
https://www.cvedetails.com/product/28125/Docker-Docker.html?vendor_id=13534


R. Abela et al. 7

Figure 3: The proposed setup with isolated, tamper-evident monitoring.

impact on runtime overheads. Funchook7, an API hook library, was deemed suitable for this task. The
bottom left quadrant of Fig. 3 shows the RV monitor process and the instrumented application running
in separate runc containers created through the combined use of namespaces and chroot.

The namespace/chroot-based isolation, along with function hooking-level instrumentation, is not ex-
pected to impact significantly on runtime overheads. Yet we made sure that this is the case with an
empirical investigation considering the two scenarios of a chat application used in our previous publi-
cation [4]. Although we have yet to perform a case study directly on ROS, we expect that the message
exchange mechanism in ROS will share several significant characteristics of the chat application case
study.

These two testing scenarios involved a number of chat client applications connecting to one server,
performing the protocol handshake to establish a secure session and exchanging some text messages
between them. The client application was extended making it accept scripted session input in order
to allow for automate testing. Artificial pauses were also introduced to better simulate a typical user’s

7https://github.com/kubo/funchook

https://github.com/kubo/funchook


8 Runtime Verification for Trustworthy Computing

Table 1: Runtime overheads (in seconds).
Time (s) No Instrumentation Instrumentation Increase
Scenario A B A B A & B
Non-Containerised 20.042 13.028 20.044 13.026 0%
Runc 20.04 13.034 20.042 13.04 0.02%

interaction with the chat application. In both scenarios, only the chat client with id=1 was instrumented,
and all the other clients and server were running on the same machine.

Specifically, the testing scenarios were as follows:

• Scenario A: 3 clients involved, with client id=1 creating a room (following the protocol steps for
an initiator participant U0).

• Scenario B: 3 clients involved, with client id=1 joining the room (following the protocol steps for
a non-initiator participant U1≤i≤n).

The experiments were carried out on a Hetzner Cloud VM having two virtual Central Processing
Units (vCPU) on an Intel Xeon Gold Processor with 4GB of RAM. All experiments were run 10 times
and the results reflect their average running time. Results in Tbl. 1 confirm minimal overheads, not
even close to 1%. However, there are other considerations of containerisation, namely that additional
work will have to be done if the isolated application makes use of resources isolated via non-default
namespaces (e.g., makes use of network or inter-process communication). In such cases the monitored
application will have to account for the isolated setup by emulating/virtualising the missing devices and
kernel resources through network proxies over virtual network interfaces. Such scenarios are expected
to introduce further runtime overheads, and therefore further experimentation is needed.

6 Tamper-Evident Logging

In this section we now consider the Privileged access threat model. In this case, the adversary has full
control of the system, possibly including physical access to the hardware. Our only assumption will be
that the adversary cannot compromise the HSM without breaking it, i.e., the keys stored inside it remain
secret.

Log analysis is an important tool for forensic investigation and similarly, most monitoring tools
depend on log files both as their source of input and also to record monitoring verdicts. Logs can however
be forged by intruders to hide or fake evidence. Sending logs to a remote system might mitigate this risk,
but it can be seen as simply shifting the problem to another location on the network.

While it is not possible to stop a fully privileged adversary from tampering with the logs, we adopt
the SealFS filesystem [35] whereby any modification doesn’t go unnoticed. SealFS implements a scheme
that authenticates local log files based on a forward integrity model, i.e., log data from boot time to the
instant the malicious code elevates privileges can be authenticated. It does not depend on specialised
security hardware or securing a distributed system. An intuitive summary of the procedure is as follows
(refer to the bottom left quadrant of Fig. 3):

Generation of keystream A random keystream is generated, in our case by the HSM in order to have
more entropy, prior to loading SealFS. This keystream is used in the following steps and a copy is
stored on the forensic node (or safe external storage8) for the purposes of verification.

8We acknowledge that communication to a remote forensic node or external storage might not be an option during operation



R. Abela et al. 9

Setting up The SealFS module creates an offset on the HSM (initialised at zero) representing the number
of bytes consumed from the key and creates a file, SEALlog, within the forensic node to store the
authentication data and metadata for the logs.

Execution Referring to Alg. 1, when some data D of size Dsz is to be appended to a log file L at
offset Loff , the following operations are executed in the HSM9: A chunk C of the key is read
and the corresponding zone is “burnt” (lines 2–3), leaving no trace of it. An HMAC of the log
concatenation, uniquely identifying the log file, the offset in the log, the data length, the key offset,
and data D is generated (line 4). The key chunk is removed from memory (line 5). The record
is sent to the SealFS module and appended to SEALlog (line 6). Finally, the offsets are updated
accordingly (lines 7–8).

input : System event/monitor verdict D of length Dsz

input : Log file L
input : Log file offset Loff
input : HSM-stored key K
input : HSM-stored key offset Koff
input : Fixed key chunk size Csz

input : Authentication data log file SEALlog

1 append D to L at offset Loff ; // add data to log file
2 C← K[Koff . . .(Koff +Csz−1)]; // copy key chunk
3 K[Koff . . .(Koff +Csz−1)]← RANDOM(); // burn key chunk
4 H← HMAC(C,L∥Loff ∥Dsz∥Koff ∥D); // generate HMAC using C
5 remove C from memory ;
6 append (L,Loff ,Dsz,Koff ,H) to SEALlog; // create record in SEALlog
7 Loff ← Loff +Dsz; // update log file offset
8 Koff ← Koff +Csz; // update key offset

Algorithm 1: Appending tamper-evident logfile (adapted from [35])

When it comes to verifying that the log is intact, all the records of SEALlog are verified sequentially using
the safe copy of the key stored as in the first step above. If the adversary removes any log records from
SEALlog, or if any log file is truncated or shortened, the verification fails. Similarly, if the adversary
modifies any of the fields of any record in the log file, the verification fails because the HMAC would not
match. The verification process can either be carried out on-demand, i.e., whenever the system auditor
decides to, or on particular events, e.g., at regular time intervals, after a specific number of log entries,
or when suspected malicious actions have taken place.

We note that our proposal depends on the HSM being used as the root of trust of the whole scheme.
An attestation protocol (e.g., see [6]) could be used to provide assurance to a remote observer that the
HSM is still being used by the system, and by extension that the guarantees it affords are still in place.
However, in our proposal, since the HSM is burning parts of the key which is stored in its entirety in safe
storage, by verifying the log file, one would also be indirectly verifying that the system is still using the
HSM (keeping in mind our only assumption that the adversary fails to steal secrets from the HSM).

of autonomous robots. In such cases, the key stream could be generated and safely stored before the start of the robot’s
operation.

9Given the limited resources of the HSM, the process described here could be optimised through techniques such as ratch-
eting (see SealFSv2 [24]) which can work with less memory requirements.



10 Runtime Verification for Trustworthy Computing

Figure 4: ROS monitoring using Larva as an oracle.

7 Implementation for Robotic Systems

As a step towards deploying RV-TEE within robotic systems, we have developed a prototype which
combines the RV tool which we have used in our previous works, Larva [12], with ROSMonitoring [15]
to successfully monitor a ROS-based system.

Fig. 4 shows how ROSMonitoring listens for relevant events (also known as topics) occurring within
the ROS application. These are then forwarded to the Larva monitor, which in turn can send back
commands to the system being monitored. As ROSMonitoring is agnostic to the chosen verification
system (also referred to as oracle) by design, it was not difficult to combine it with Larva.

At the time of writing this paper, the implementation of the rest of the proposed secured RV-TEE
setup (described in this paper) is underway. Depending on the robotic case study which would be con-
sidered in the future, we expect the Larva process to run in a separate container, the forensic node.

It is important to note that, as for the software systems discussed previously, robotic applications
may also be the target of attacks. In case of robotic applications developed in ROS10, security is a
big concern. Indeed, ROS was not born to be exploited in industrial applications and security was not
taken into consideration in its development. As mentioned before, ROS nodes can communicate through
messages. Such messages are shared over channels, that in ROS are named topics. In ROS, such topics
are not protected whatsoever; that is, one cannot protect the data exchanged (except by encrypting the
data before sending them). In fact, any ROS node can be the publisher (resp., subscriber) of a topic and
hence there is no way to guarantee an attacker node will not intercept the messages on our topics (by
simply subscribing to them). One can solve this issue by deploying the robotic system through ROS2
(the newer version of ROS), which offers security mechanisms to forbid attacker nodes from intercepting
private messages. However, even with ROS2, the protection against attackers with privileged access is
limited.

In both ROS and ROS2, the exploitation of RV-TEE would be of great impact. Thanks to the Larva
component currently under development, it is possible, through ROSMonitoring, to intercept and verify
the messages exchanged on the topics. By doing so, it is possible to implement the bridge (as partially
shown in Figure 4) which would connect the TEE node with the rest of the system. Moreover, since ROS
is node-based, our approach could exploit such distribution by deploying the TEE component as a node

10https://www.ros.org/



R. Abela et al. 11

in the net. The rest of the nodes would be considered non-protected nodes that could be the target of
malicious attacks. In such a scenario, RV-TEE would be deployed through ROSMonitoring and would
be used to protect the information exchange between the secure node (TEE) and the rest of the robotic
system.

Most importantly, it is relevant to observe that the exploitation of RV-TEE with ROSMonitoring
would be applicable both in ROS and ROS2 (since ROSMonitoring is supported in both ROS versions).
Moreover, both ROS and ROS2 would gain from such integration, since the security techniques natively
deployed in ROS2 would not protect the system from attackers with privileged access.

While the additional forensic node can assure adherence to some security policy established for
the ROS2 computational graph, RV-TEE can also secure communications between nodes on different
machines. Secure inter-machine communication in ROS2 is provided by the underlying Data Distribu-
tion Service (DDS) [36], which is the programmatic abstraction enabling the publish/subscribe-based
communication. Once secure communication is enabled in DDS, the security plugins provided by the
specific implementation, e.g., Eclipse Cyclone DDS [1], provide node authentication, data encryption,
and integrity services. Any such implementation executing on a robot-controlling PC is prone to threats
related to incorrect cryptographic protocol implementation and malware attacks. Thus, DDS security
plugin implementations through RV-TEE can offer enhanced resilience, similar to how RV-TEE has se-
cured both classic and post-quantum cryptography in previous works (hence the relevance of the chat
application case study presented above).

8 Conclusions

While there are numerous accounts in the literature of the application RV techniques to the area of
security (see for example [8, 44, 33, 34]), the challenging task of securing the monitor implementation
itself seems not to be so well studied. In fact, the survey of RV challenges in 2019 [29] leaves this aspect
out. There are of course several other considerations to achieving “high-assurance” RV [17], but securing
and protecting the monitoring code under various threat models cannot be left out if RV is to be deployed
in real-life, high-security scenarios such as robotics.

By bridging the gap between the REE and the TEE, RV-TEE presents a flexible way of creating an
intermediate level of trust without being restricted to specific specialised hardware. Yet, apart from the
usual concerns of monitor correctness and non-intrusiveness, the context requires the monitor itself to be
adapted for adversarial conditions. Considering two incrementally compromising threat models, we have
thus first isolated the monitoring process to make it harder for attackers to tamper with. Initial results
in this regard show that any overheads introduced by containerisation are not of the processing kind but
rather due to potential proxying of resources. To cater for the second threat model, we have proposed the
integration of a tamper-evident filesystem to protect system and monitor logs from modification. Though
an adversary might have been successful in penetrating into the heart of the system, we can be sure that
evidence of system log modification cannot be concealed.

9 Future Work

There are still several questions to be answered in the context of RV-TEE. Here are a few of these
organised under the following headings:

Further experimentation In this paper we have presented a proof of concept for securing RV monitors.
Next, we plan to explore the practical implications of the current setup. In particular, we need to



12 Runtime Verification for Trustworthy Computing

answer questions such as: What is the impact on the HSM given that it will also be used to encrypt
log entries (apart from the other tasks assigned to it)?

RV within the TEE? It could be interesting to explore the possibility of deploying elements of RV as
part of the TCB of the TEE itself. However, apart from the practical challenge of further loading
the already resource constrained TEE, there is also a conceptual objection: The code deployed
on the TEE usually consists of well established primitives which are deployed within the TEE
precisely because they are trusted. Therefore, it is yet to be seen whether this is something worth
investigating. As a first step, one would need to consider a number of interesting properties at
this level and note their cost-benefit analysis. For example, the property concerning the quality
of the randomness, which is at the core of cryptographic primitives, is far from straightforward to
monitor.

Taint inference The string matching algorithm implemented for taint inference has several set thresh-
olds (e.g., when to trigger fine-grained string matching) and a number of parameters which could
also be fine-tuned (e.g., by how much to move the window during coarse-grained matching). These
are also dependant on the size of the buffer under consideration, giving rise to various possible ex-
periments, not least on how to efficiently use the hardware available for speedups. Furthermore,
selection of taint sinks to make taint inference resilient to high-entropy transformations e.g., com-
pression and encryption, needs further study.

References

[1] Eclipse Cyclone DDS. https://github.com/eclipse-cyclonedds/cyclonedds. Accessed: 2023-07-
25.

[2] Linux chroot. https://man7.org/linux/man-pages/man2/chroot.2.html. Accessed: 2023-05-17.

[3] Linux namespaces. https://man7.org/linux/man-pages/man7/namespaces.7.html. Accessed:
2023-05-17.

[4] Robert Abela, Christian Colombo, Peter Malo, Peter Sýs, Tomás Fabsic, Ondrej Gallo, Viliam Hromada
& Mark Vella (2021): Secure Implementation of a Quantum-Future GAKE Protocol. In: Security and Trust
Management - 17th International Workshop, STM 2021, Darmstadt, Germany, October 8, 2021, Proceedings,
Lecture Notes in Computer Science 13075, Springer, pp. 103–121, doi:10.1007/978-3-030-91859-0_6.

[5] Wolfgang Ahrendt, Jesús Mauricio Chimento, Gordon J. Pace & Gerardo Schneider (2017): Verifying data-
and control-oriented properties combining static and runtime verification: theory and tools. Formal Methods
Syst. Des. 51(1), pp. 200–265, doi:10.1007/s10703-017-0274-y.

[6] Muhammad Naveed Aman, Mohamed Haroon Basheer, Siddhant Dash, Jun Wen Wong, Jia Xu, Hoon Wei
Lim & Biplab Sikdar (2020): HAtt: Hybrid remote attestation for the Internet of Things with high availability.
IEEE Internet of Things Journal 7(8), pp. 7220–7233, doi:10.1109/JIOT.2020.2983655.

[7] Ross Anderson, Mike Bond, Jolyon Clulow & Sergei Skorobogatov (2006): Cryptographic processors-a
survey. Proceedings of the IEEE 94(2), pp. 357–369, doi:10.1109/JPROC.2005.862423.

[8] Andreas Bauer & Jan Jürjens (2010): Runtime verification of cryptographic protocols. Computers & Security
29(3), pp. 315–330, doi:10.1016/j.cose.2009.09.003.

[9] Andrew Baumann, Marcus Peinado & Galen Hunt (2015): Shielding applications from an untrusted cloud
with haven. ACM Transactions on Computer Systems (TOCS) 33(3), pp. 1–26, doi:10.1145/2799647.

[10] Blu5 Labs (2020): SEcube – Reconfigurable silicon. https://www.secube.eu/site/assets/files\
/1145/secube_datasheet_-_r7.pdf. Accessed: 2022-05-02.

https://github.com/eclipse-cyclonedds/cyclonedds
https://man7.org/linux/man-pages/man2/chroot.2.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://doi.org/10.1007/978-3-030-91859-0_6
https://doi.org/10.1007/s10703-017-0274-y
https://doi.org/10.1109/JIOT.2020.2983655
https://doi.org/10.1109/JPROC.2005.862423
https://doi.org/10.1016/j.cose.2009.09.003
https://doi.org/10.1145/2799647


R. Abela et al. 13

[11] Alessio Botta, Sayna Rotbei, Stefania Zinno & Giorgio Ventre (2023): Cyber security of robots: A compre-
hensive survey. Intelligent Systems with Applications 18, p. 200237, doi:10.1016/j.iswa.2023.200237.

[12] Christian Colombo, Gordon J. Pace & Gerardo Schneider (2009): LARVA — Safer Monitoring of Real-
Time Java Programs (Tool Paper). In: Seventh IEEE International Conference on Software Engineering and
Formal Methods (SEFM), IEEE Computer Society, pp. 33–37, doi:10.1109/SEFM.2009.13.

[13] Axel Curmi, Christian Colombo & Mark Vella (2022): RV-TEE-Based Trustworthy Secure Shell Deployment:
An Empirical Evaluation. Journal of Object Technology 21(2), doi:10.5381/jot.2022.21.2.a4.

[14] Gelei Deng, Guowen Xu, Yuan Zhou, Tianwei Zhang & Yang Liu (2022): On the (In)Security of Se-
cure ROS2. In Heng Yin, Angelos Stavrou, Cas Cremers & Elaine Shi, editors: Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA,
November 7-11, 2022, ACM, pp. 739–753, doi:10.1145/3548606.3560681.

[15] Angelo Ferrando, Rafael C. Cardoso, Michael Fisher, Davide Ancona, Luca Franceschini & Viviana Mas-
cardi (2020): ROSMonitoring: A Runtime Verification Framework for ROS. In Abdelkhalick Mohammad,
Xin Dong & Matteo Russo, editors: Towards Autonomous Robotic Systems - 21st Annual Conference,
TAROS 2020, Nottingham, UK, September 16, 2020, Proceedings, Lecture Notes in Computer Science
12228, Springer, pp. 387–399, doi:10.1007/978-3-030-63486-5_40.

[16] GlobalPlatform (2018): TEE System Architecture Version 1.2. Doc ref: GPD_SPE_009.
[17] Alwyn Goodloe (2016): Challenges in High-Assurance Runtime Verification. In Tiziana Margaria & Bern-

hard Steffen, editors: Leveraging Applications of Formal Methods, Verification and Validation: Foundational
Techniques - 7th International Symposium, ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016, Pro-
ceedings, Part I, Lecture Notes in Computer Science 9952, pp. 446–460, doi:10.1007/978-3-319-47166-2_31.

[18] David Kaplan, Jeremy Powell & Tom Woller (2016): AMD memory encryption. White paper.
[19] Vasileios P Kemerlis, Georgios Portokalidis, Kangkook Jee & Angelos D Keromytis (2012): libdft: Prac-

tical dynamic data flow tracking for commodity systems. Acm Sigplan Notices 47(7), pp. 121–132,
doi:10.1145/2365864.2151042.

[20] Yunus Sabri Kirca, Elif Degirmenci, Zekeriyya Demirci, Ahmet Yazici, Metin Ozkan, Salih Ergun & Alper
Kanak (2023): Runtime Verification for Anomaly Detection of Robotic Systems Security. Machines 11(2),
doi:10.3390/machines11020166.

[21] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz & Yuval Yarom (2018): Spectre attacks: Exploiting speculative execu-
tion. arXiv preprint arXiv:1801.01203, doi:10.1109/SP.2019.00002.

[22] Jonathan M McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Virgil Gligor & Adrian Perrig
(2010): TrustVisor: Efficient TCB reduction and attestation. In: Security and Privacy (SP), 2010 IEEE
Symposium on, IEEE, pp. 143–158, doi:10.1109/SP.2010.17.

[23] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson, Rebekah Leslie-Hurd & Carlos
Rozas (2016): Intel® software guard extensions (intel® sgx) support for dynamic memory management
inside an enclave. In: Proceedings of the Hardware and Architectural Support for Security and Privacy 2016,
ACM, pp. 1–9, doi:10.1145/2948618.2954331.

[24] Gorka Guardiola Muzquiz & Enrique Soriano-Salvador (2023): SealFSv2: combining storage-based and
ratcheting for tamper-evident logging. Int. J. Inf. Sec. 22(2), pp. 447–466, doi:10.1007/s10207-022-00643-1.

[25] Sandro Pinto & Nuno Santos (2019): Demystifying Arm trustzone: A comprehensive survey. ACM Comput-
ing Surveys (CSUR) 51(6), pp. 1–36, doi:10.1145/3291047.

[26] Scott Rose, Oliver Borchert, Stuart Mitchell & Sean Connelly (2020): Zero Trust Architecture,
doi:10.6028/NIST.SP.800-207. Special Publication (NIST SP), National Institute of Standards and Tech-
nology.

[27] Mohamed Sabt, Mohammed Achemlal & Abdelmadjid Bouabdallah (2015): Trusted execution environment:
what it is, and what it is not. In: 14th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications, pp. 57–64, doi:10.1109/Trustcom.2015.357.

https://doi.org/10.1016/j.iswa.2023.200237
https://doi.org/10.1109/SEFM.2009.13
https://doi.org/10.5381/jot.2022.21.2.a4
https://doi.org/10.1145/3548606.3560681
https://doi.org/10.1007/978-3-030-63486-5_40
https://doi.org/10.1007/978-3-319-47166-2_31
https://doi.org/10.1145/2365864.2151042
https://doi.org/10.3390/machines11020166
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2010.17
https://doi.org/10.1145/2948618.2954331
https://doi.org/10.1007/s10207-022-00643-1
https://doi.org/10.1145/3291047
https://doi.org/10.6028/NIST.SP.800-207
https://doi.org/10.1109/Trustcom.2015.357


14 Runtime Verification for Trustworthy Computing

[28] Mohamed Sabt & Jacques Traoré (2016): Breaking into the keystore: A practical forgery attack against
Android keystore. In: European Symposium on Research in Computer Security, Springer, pp. 531–548,
doi:10.1007/978-3-319-45741-3_27.

[29] César Sánchez, Gerardo Schneider, Wolfgang Ahrendt, Ezio Bartocci, Domenico Bianculli, Christian
Colombo, Yliès Falcone, Adrian Francalanza, Srdan Krstic, João M. Lourenço, Dejan Nickovic, Gordon J.
Pace, José Rufino, Julien Signoles, Dmitriy Traytel & Alexander Weiss (2019): A survey of challenges for
runtime verification from advanced application domains (beyond software). Formal Methods Syst. Des.
54(3), pp. 279–335, doi:10.1007/s10703-019-00337-w.

[30] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado, Gloria Mainar-Ruiz
& Mark Russinovich (2015): VC3: Trustworthy data analytics in the cloud using SGX. In: 2015 IEEE
Symposium on Security and Privacy, IEEE, pp. 38–54, doi:10.1109/SP.2015.10.

[31] Mark Seaborn & Thomas Dullien (2015): Exploiting the DRAM rowhammer bug to gain kernel privileges.
Black Hat 15.

[32] R Sekar (2009): An Efficient Black-box Technique for Defeating Web Application Attacks. In: Proceedings
of the 16th Annual Network and Distributed System Security Symposium.

[33] Konstantin Selyunin, Stefan Jaksic, Thang Nguyen, Christian Reidl, Udo Hafner, Ezio Bartocci, Dejan Nick-
ovic & Radu Grosu (2017): Runtime Monitoring with Recovery of the SENT Communication Protocol. In:
Computer Aided Verification - 29th International Conference, CAV, pp. 336–355, doi:10.1007/978-3-319-
63387-9_17.

[34] Jinghao Shi, Shuvendu Lahiri, Ranveer Chandra & Geoffrey Challen (2018): VeriFi: Model-Driven
Runtime Verification Framework for Wireless Protocol Implementations. CoRR abs/1808.03406,
doi:10.48550/arXiv.1808.03406.

[35] Enrique Soriano-Salvador & Gorka Guardiola Muzquiz (2021): SealFS: Storage-based tamper-evident log-
ging. Comput. Secur. 108, p. 102325, doi:10.1016/j.cose.2021.102325.

[36] OMG Available Specification (2015): Data distribution service for real-time systems version 1.4. Object
Management Group (OMG) (formal/2015-04-10).

[37] Mariacarla Staffa, Giovanni Mazzeo & Luigi Sgaglione (2018): Hardening ROS via Hardware-assisted
Trusted Execution Environment. In: 27th IEEE International Symposium on Robot and Human In-
teractive Communication, RO-MAN 2018, Nanjing, China, August 27-31, 2018, IEEE, pp. 491–494,
doi:10.1109/ROMAN.2018.8525696.

[38] Thales (2020): High Assurance Hardware Security Modules. https://cpl.thalesgroup.com/
encryption/hardware-security-modules/network-hsms. Accessed: 2020-08-10.

[39] Chia-Che Tsai, Donald E Porter & Mona Vij (2017): Graphene-sgx: A practical library OS for unmodified
applications on SGX. In: 2017 USENIX Annual Technical Conference (USENIX ATC 17), pp. 645–658.

[40] Mark Vella, Christian Colombo, Robert Abela & Peter Špaček (2021): RV-TEE: secure cryptographic pro-
tocol execution based on runtime verification. Journal of Computer Virology and Hacking Techniques, pp.
1–20, doi:10.1007/s11416-021-00391-1.

[41] Rafal Wojtczuk & Joanna Rutkowska (2009): Attacking Intel trusted execution technology. Black Hat DC
2009.

[42] Yubico (2020): Protect your digital world with YubiKey. https://www.yubico.com/. Accessed: 2020-08-
10.

[43] Fengzhe Zhang, Jin Chen, Haibo Chen & Binyu Zang (2011): Cloudvisor: retrofitting protection of vir-
tual machines in multi-tenant cloud with nested virtualization. In: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, pp. 203–216, doi:10.1145/2043556.2043576.

[44] X. Zhang, W. Feng, J. Wang & Z. Wang (2016): Defensing the malicious attacks of vehicular network in
runtime verification perspective. In: 2016 IEEE International Conference on Electronic Information and
Communication Technology (ICEICT), pp. 126–133, doi:10.1109/ICEICT.2016.7879666.

https://doi.org/10.1007/978-3-319-45741-3_27
https://doi.org/10.1007/s10703-019-00337-w
https://doi.org/10.1109/SP.2015.10
https://doi.org/10.1007/978-3-319-63387-9_17
https://doi.org/10.1007/978-3-319-63387-9_17
https://doi.org/10.48550/arXiv.1808.03406
https://doi.org/10.1016/j.cose.2021.102325
https://doi.org/10.1109/ROMAN.2018.8525696
https://doi.org/10.1007/s11416-021-00391-1
https://doi.org/10.1145/2043556.2043576
https://doi.org/10.1109/ICEICT.2016.7879666

	Introduction
	Trusted Execution Environment
	RV-TEE
	Threat models
	Isolated Monitoring Process
	Tamper-Evident Logging
	Implementation for Robotic Systems
	Conclusions
	Future Work

