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Abstract
Aspect oriented programming (AOP) is a paradigm ideal for defining
cross-cutting concerns within an existing application. Although
several AOP frameworks exist for more renowned languages such
as Java and C#, little to no frameworks have been developed for
actor oriented languages such as Erlang. We thus present eAOP,
a new AOP framework specifically designed to instrument actor-
oriented constructs in Erlang such as message sends and receives,
along with other traditional constructs such as function calls.
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1 Introduction
Aspect Oriented Programming (AOP) [27, 28, 30] is a programming
paradigm that provides a clean separation between the components
[28] and the aspects of a system. A component of a system repre-
sents a piece of logic that can be encapsulated within a functional
unit of a programming language (e.g., object, function, method,
module etc.) in a manner that is well localized, understandable,
well-composed and easily accessed. Components usually constitute
the building blocks for constructing the functionality of a system,
e.g., objects and methods are components of an object oriented
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language like Java, while actor processes and functions are com-
ponents of Actor-based languages like Erlang. By contrast, aspects
are instances of code logic that is difficult to represent as a unit of
the host language. Rather, an aspect signifies program logic that
must be composed and coordinated across different components of
a program—these properties are said to cross-cut [28, 30] different
components. For instance, logging, error-handling, data validations,
synchronisation of concurrent processes, and the security analysis
of memory access patterns are typical examples of aspects that
cross-cut system components.

An aspect oriented programming framework thus consists of
the component language and the aspect language, where the former
is used to define functional units, i.e., components, while the latter
allows for the specification of cross-cutting properties, i.e., aspects.
Component languages are usually general-purpose programming
languages that are readily available, while aspect languages are de-
veloped separately for a specific component language and plugged
into it through code-instrumentation. Various programming lan-
guages from disparate paradigms (e.g., object-oriented, functional
etc.) can serve as component languages; aspect languages then in-
troduce aspects as supplementary, cross-cutting components that
are merged with the designated components e.g., an aspect in a
procedural language is invoked whenever a specific procedure is
about to be called.

One can find several aspect languages for programming lan-
guages that implement a specific programming paradigm. For in-
stance, for object oriented languages like Java and C#, there are
AOP frameworks such as AspectJ [24, 30] and SpringAOP [35] for
the former, and PostSharp [21] for the latter. These frameworks
generally hook aspects to object oriented constructs such as method
invocations, object creations, exception handling, etc. For proce-
dural languages such as C and C++, there are aspect languages
such as AspectC [17] and AspectC++ [36], whereas for functional
languages such as Haskell there are implementations like effective-
aspects [20].

However, little to no AOP frameworks have been developed
specifically for actor-oriented programming languages. Erlang [2] is
one such programming language that implements the actor-model
[1]. In an Erlang program, actors (i.e., concurrent entities that com-
municate asynchronously through message passing) typically con-
stitute one of the main component forms. Functions are another
important component form in Erlang, since the language is also
functional. We contend that an ideal AOP framework for Erlang
should therefore allow for aspects to be associated with these actor-
based components by instrumenting constructs such as message
sends and receives, actor spawning and function calls.
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AOP has several applications for a variety of diverse areas of
software development and maintenance:

• It is used for achieving structured code optimizations and
refactoring [28]. Optimising functionality sometimes requires
exploiting information about the execution context that
cross-cuts different components; this requires fusing com-
ponents together in a way that might disrupt the structure
of the original code. Similarly, AOP-based refactoring im-
proves upon existing design patterns and discovers new ones
[6, 9, 34] and has been used to implement patterns such as
Inversion-of-Control [16, 19].

• Development methodologies such as Monitor Oriented Pro-
gramming [12, 14, 15] use AOP to augment functionality
within an existing system. Such methodologies permit sys-
tems to be developed incrementally and adapt to fluctuat-
ing user requirements by using an onion-layered approach,
where the inner-most layer contains the core system func-
tionality, while the outer layers contain secondary function-
ality such as user access control. In this case, AOP is used
to automatically instrument each outer layer on top of the
preceding inner layer.

• Software analysis may also resort to AOP for validating and
verifying software systems. AOP is commonly used to instru-
ment logging and tracing features for debugging purposes.
In testing, AOP is also being explored for generating test
cases automatically [37], for mocking, and also for assessing
the adequacy and code coverage of a test suite [33]. It can
also be used for fault injection so as to stress-test a system.
In runtime monitoring [10, 12, 13, 15, 25], AOP techniques
are used extensively to allow a designated runtime analyser
to observe system operations and interactions, in order to
check this behaviour against a correctness property.

In this paper we investigate whether existing AOP mechanisms
are applicable to actor-based languages such as Erlang. We assess
whether actor-based constructs constitute valid components that
can be fruitfully used for aspect orientation—allowing actor lan-
guages to benefit from the aforementioned advantages—or whether
these constructs pose any insurmountable challenges. We carry out
this investigation by developing a prototype AOP framework called
eAOP, specifically designed for instrumenting Erlang code. In what
follows, Section 2 provides preliminary material for understanding
the concepts behind eAOP, while in Section 3 we introduce the
various types of pointcuts and advices that are supported by eAOP.
In Section 4 we then explain how the instrumenter performs static
analysis in order to inject the appropriate advices at the specified
code constructs. In Section 5 we discuss how our framework has
been integrated in runtime monitoring and adaptation tools which
were used to instrument a number of industry-scale third-party
software. Section 6 concludes with a summary of our contributions
and a discussion of related and future work.

2 Preliminaries
Code instrumentation is an important technique used in several
areas of computer science and software engineering, including test
coverage analysis [31], runtime monitoring [10, 12, 29], security
[7, 32, 35], software development frameworks [5, 14], etc. In code
instrumentation, the source code, intermediate code, or compiled
binary code, is analysed either statically [14] at compile-time or

Instrumenter

Program

Pointcuts

Advices

Modified
Program

Figure 1. The AOP instrumentation process

dynamically [4, 8, 32] at runtime, and modified as necessary to
include additional functionality. Static instrumentation tends to
be more efficient, since the code is instrumented once during a
pre-processing phase rather than at runtime for each execution. On
the other hand, dynamic instrumentation tends to be more flexible
since it allows for code modules to be replaced without requiring
instrumentation beforehand.

Instrumentation is widely used by various software development
tools. Compilers use code instrumentation to embed debugging sym-
bols and breakpoints that allow for easier synchronisation between
the compiled code and the source code while debugging. Testing
tools utilise code instrumentation to measure statement coverage
[31] of the designated test cases, while in runtime monitoring, in-
strumentation is used to inject monitoring code [10, 13, 15, 25, 29]
to detect system executions violating some specification.

2.1 AOP Code Instrumentation
AOP [27, 30] employs code instrumentation for injecting aspect
code that cross-cuts across multiple components within the code
base of an application. In general, AOP frameworks perform code
instrumentation by employing a static analyser known as the in-
strumenter. As shown in Figure 1, the instrumenter takes as input a
program and an aspect specification consisting in code patterns (e.g.,
new object declarations, method calls, message sends, etc.) known
as pointcuts, indicating the constructs that should be injected with
aspect code known as advices. Using source code patterns, a point-
cut defines a set of locations in the code where the instrumenter
may inject appropriate advice code, thereby producing a possibly
modified version of the input system.

2.2 Erlang constructs and components
Since Erlang implements the actor model [1], its main functional
components are actors. Erlang also implements actor-based opera-
tions as first class constructs. For instance, message send operations
are expressed using the dedicated syntax Pid!Msg, where Pid is
the unique identifier (ID) of the destination actor of the message,
while Msg denotes the message that may contain any kind of data
including numbers, atoms, strings, tuples, lists and also actor IDs.
Message receive operations are defined as a list of guarded state-
ments, where guards consist of data structure patterns. Receive
statements thus have the following structure:

receive
guard1 -> statement1;

... ;

guardN -> statementN

end

Messages residing in the mailbox of an actor are patternmatched (in
order) with every guard, and the continuation statement of the first
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Figure 2. The components of the eAOP framework.

matching guard is executed; if none match, the messages remain in
the mailbox and the actor blocks (until a new message is received).

Being also a functional language, Erlang actors execute func-
tions. These can be invoked as M:F(Args)where M stands for the
module in which function F is defined, while Args represents a list
of arguments required by function F; functions may also be invoked
locally (i.e., by functions defined in the same module) without spec-
ifying the module, i.e., F(Args). In Erlang, the notation M:F/A
(where A is the function arity) uniquely identifies a function. Erlang
also encodes a few actor-related operations as built-in functions
(BIFs) [2]. For instance, an actor can be spawned by calling one of
the three functions erlang:spawn/A, where the arity A varies
from 1 to 3. Actors can also be assigned names by registering an
atom to their process id by using erlang:register/2.

3 Pointcuts and Advices
Our tool, eAOP, requires the code of the Erlang system along with
the required pointcuts and advices in order to instrument the nec-
essary aspects, as shown in Figure 2. Pointcuts must be defined in a
text file suffixed with a .eaop extension, and must be forwarded to
the eAOP instrumenter along with the Erlang system. Given these
files, the instrumenter produces a version of the system that is
instrumented with function calls to advices. Advices in eAOP must
be defined as a set of functions in a module called advices.erl.
Due to dynamic loading of modules in Erlang [2], the advices do
not need to be forwarded to the instrumenter. In fact, once defined,
advices.erl must be manually compiled into a .beam file us-
ing the Erlang compiler. The instrumented system thus amounts
to the modified system along with advices.beam, as shown in
Figure 2.

In the remainder of the section we demonstrate the structure
and use of pointcuts and advices in eAOP. Details about the eAOP
instrumenter are then given in Section 4.

3.1 Pointcuts for eAOP
Pointcuts allow the user to specify code patterns which are con-
sulted by the instrumenter while conducting a depth first search
traversal of the syntax tree of the parsed program. During this
traversal, whenever a node in the syntax tree matches a pointcut
definition, the appropriate advices are embedded into the syntax
tree. Pointcuts must be defined as a list of code patterns in the
following format:

Pointcut(<CType>, <MP>, <FP>, <CP>, <ATypes>)

The <CType> of a pointcut specifies the construct type requiring
instrumentation, i.e., the category of code operation (e.g., function

call, message send, etc.) that the instrumenter must look for while
traversing the syntax tree of the given program. The module pat-
tern, <MP>, and function pattern, <FP>, are used to determine the
module and function in which the instrumenter must look for the
required code operations, while the construct pattern,<CP>, is used
to describe the code operation that requires instrumentation. Note
that the construct pattern <CP> varies depending on the construct
type <CType>. For instance, if the construct type specifies a func-
tion call, the construct pattern must specify the module, function
and arity of the function being called. The <ATypes> represent a
list of advice types indicating the way the matched construct should
be instrumented: they are discussed in depth in Section 3.2.

The eAOP framework can handle the following 4 construct types
(<CType>):

send: With this type the instrumenter searches for send oper-
ations (i.e., code excepts of the form Pid!Msg) defined in
modules and functions whose name pattern matches <MP>
and <FP> resp. In this case, pointcut pattern <CP> is used to
specify amessage pattern, in order to enable the instrumenter
to only instrument send operations that match this pattern.

‘receive’: Receive operations are instrumented whenever
they are located within a function <FP> and module <MP>.
A receive operation is only instrumented if one (or more)
of its case guards (i.e., the recieve message pattern excerpt
guard in a construct guard -> cont) match the point-
cut pattern defined in <CP>.

call: This type instructs the instrumenter to search for func-
tion calls (i.e., code excerpts of the form mod:fun(Args)),
that are being invoked from within a function whose name
pattern matches <FP> and which must be residing in a mod-
ule whose name matches <MP>. The construct pattern <CP>
must specify the module, function and arity of the function
being called.

function: This type is used to instrument entire function defi-
nitions (not function calls) which reside in modules matching
<MP>, whose function name and arity match patterns <FP>
and <CP> resp. This construct type is used to mimic method
overriding typical of object oriented programming, whereby
the entire function body is replaced by another instrumented
function. This is particularly useful in cases where one needs
either to add functionality to a function or change it com-
pletely. Hence, the modules calling the function need not be
instrumented in order to benefit from the new functionality
of the instrumented function definition — this is discussed
in more detail in Section 3.2.

Example 3.1. The code snippet below provides an Erlang program
that implements a simple mathematical server as an Erlang module
called server.erl. This module defines two functions, namely
start/0 and math_loop/1. The latter acts as a server loop
that blocks waiting to receive and service mathematical requests
(i.e., atom tags add and sub) sent as messages by external clients.
The math loop increments a counter after servicing add or sub
requests. This counter can then be queried by a client by sending a
service query message consisting of a tuple containing the atom tag
srv and its process id. The start/0 function serves to spawn a
fresh server actor that initiates the math server loop by setting the
counter to 0. It then proceeds by sending the process id of the newly
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spawned mathematical server to a registered process identified by
the atom registry.

1 -module(server).
2 -export([start/0]).
3

4 start() ->
5 SPid = spawn(server, math_loop, [0]),
6 registry ! {math_srv,SPid}.
7

8 math_loop(Count) ->
9 receive
10 {add, Pid, N1, N2} ->
11 Pid ! {res, N1 + N2},
12 math_loop(Count + 1);

13 {sub, Pid, N1, N2} ->
14 Pid ! {res, N1 - N2},
15 math_loop(Count + 1);

16 {srv, Pid} ->
17 Pid ! {sys, Count},
18 math_loop(Count)

19 end.

Consider the following pointcut definitions:

Pointcut(call,"server", "start", ["erlang",

"spawn","3"], <ATypes>

)

The construct type call instructs the instrumenter to search
for function calls invoking erlang:spawn/3 from within the
start function defined in our server module. This will thus
instrument line 5 in the server module.

Pointcut(send, "server", "math_loop", "{res,_}",

<ATypes>

)

We can also instrument message send operations using the send
construct type. The above pointcut notifies the instrumenter to
search for send operations that are defined within the math_loop
function body, situated inside the "server" module. In conjunc-
tion, a send operation is only instrumented if the sent message
matches pattern "{res,_}". Hence, the above pointcut leads
to instrumenting lines 11 and 14. However, the send operation at
line 6 will not be instrumented since the former is defined in the
start function (and not the math_loop as specified). Similarly,
since the message sent at line 17 does not consist in a tuple of two
elements containing atom res as its first element, it is also not
instrumented.

Pointcut('receive',"server", "math_loop",

"{add,_,_,_}", <ATypes>

)

In the pointcut above we use the ’receive’ construct type to
instrument the receive block residing in the function math_loop,
as this block defines a case guard that matches "{add,_,_,_}"
i.e., a tuple containing four elements with the first element being
the atom add. With this pointcut, the instrumenter modifies the
receive block declared at line 9.

Finally, with the following pointcut we can instrument the entire
start/0 function definition residing in the server module.

Pointcut(function, "server", "start", "0",

<ATypes>

)

This allows us to completely replace the function body of the func-
tion with our custom code. ■

3.1.1 Wildcards and Regular Expressions
String patterns defined in pointcuts, i.e., <MP>, <FP>, etc., can also
be defined using regular expressions. For instance, recall that in
Example 3.1, we want to instrument the point where the start
function creates a fresh actor. In Erlang [2], this can be done us-
ing either spawn, spawn_link or spawn_monitor, each of
which may vary in arity (between 1 and 3) and may also be called
from either the erlang or the proc_lib module. Using regular
expressions we can therefore redefine Example 3.1 into a more
generic pointcut:
Pointcut(call, "server",

"start([A-Za-z_]*)", ["(erlang|proc_lib)",

"spawn(_(link|monitor))?","(1|2|3)"],

<ATypes>

)

In the above pointcut we use standard regular expressions con-
structs such as:* to signify that the pattern[A-Za-z_] canmatch
for 0 or more times, | to represent a choice between two patterns,
and ? to imply that _(link|monitor) can occur either once or
none at all.

As an alternative to regular expressions, one can also specify
wildcard patterns by using"_" (some pointcut definitions presented
in Example 3.1 already used them). Wildcards can be used to match
anything. For instance, instrumenting every spawn operation in
our module (i.e., not just the one specified in the start function)
may be achieved by defining the function pattern for our pointcut
<FP> as:
Pointcut(call, "server", "_",

["(erlang|proc_lib)",

"spawn(_(link|monitor))?","(1|2|3)"],

<ATypes>

)

Wildcards are also useful to instrument constructs whose precise
information may only be known at runtime. E.g., to instrument
a function call defined as Module:foo() (where Module is a
variable) inside a function bar() defined in module sample, one
can use the pattern
Pointcut(call, "sample", "bar", ["_", "foo", "0"],

<ATypes>)

3.2 Advices for eAOP
Different pointcuts inject different advices based on advice types
defined in <ATypes>. Advice types are defined as a list of direc-
tives indicating which advices the instrumenter should inject upon
matching a syntax tree node with a pointcut definition. Advice
types serve to advise the instrumenter about how it should instru-
ment the matching code fragment and about which advice function
calls should be injected. The instrumenter can only inject function
calls to five advices functions, namely:

advices:before_advice/5,
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advices:after_advice/5,
advices:intercept_advice/5,
advices:upon_advice/5, and
advices:override_advice/5.

These advice functions must be manually defined to include the
code that needs to be executed whenever a specific instrumented
code construct runs.

Our framework provides the following 5 advice types that can
be used to specify which of the above listed advice function calls
should be injected by the instrumenter.

• before: instructs the instrumenter to inject a call to the
advices:before_advice/5 advice function, before ex-
ecuting the respective action.

• after: notifies the instrumenter to insert a function call
to advices:after_advice/5, after the instrumented
action.

• intercept: the instrumenter replaces the specified action
with a call to advices:intercept_advice/5.

• upon (‘receive’ only): injects a function invocation
call to advices:upon_advice/5 after each matching
receive case.

• override (function only): the entire function body
of a matching function definition is replaced by a call to
advices:override_advice/5.

Note that multiple advice types can also be specified to inject mul-
tiple advices.

Example 3.2. Consider the following pointcut:
Pointcut(call, "server", "start",

["erlang","spawn","3"],

[before,after,intercept]
)

This pointcut leads to replacing line 5 of Example 3.1 with a func-
tion call to advices:intercept_advice, that is preceded by
a call to advices:before_advice and followed by another
fucntion call to advices:after_advice. ■

In eAOP, the injected advices must be defined as an Erlang mod-
ule called advices.erl, depicted earlier in Figure 2. This module
must be created inside the same directory in which the instrumented
beam files are set to be generated by the instrumenter, and must be
compiled using the Erlang compiler. The advices follow a standard
order for their arguments. At runtime, the advice arguments will
contain the necessary data for identifying the instrumented part of
the code. When defining advices, one must therefore inspect the
data in these parameters (e.g., using the Erlang case statement)
and perform the necessary aspect logic for the respective cases.
The signature of the advice functions defined in advices.erl
adheres to the following structure:

advices:XXX_advice(Type,Pid,Mod,Fun,Payload)

where the 5 function parameters have the following roles:
• Type represents the construct type as a discriminating atom
denoting the function that is being instrumented and may
consist of any of the tags send, ‘receive’, call or
function.

• Pid is the process id of the actor in which the instrumented
advice is being executed.

• Mod specifies to the module from which this advice is being
called.

• Fun identifies the function from which this advice function
is being invoked.

• Payload contains the data related to the instrumented
Erlang constructs. The payload thus varies according to
the discriminating construct type given by the Type ar-
gument; e.g., for type send, at runtime the payload would
consist of the actual message being sent by the instrumented
send operation and the process id of the recipient actor, i.e.,
[Pid,Msg].

In what follows, we discuss the five advice functions supported
by our eAOP tool. In each case, we explain the Payload parameter
(that differs for every type) and give examples of how the respective
instrumentation works wrt. the code introduced in Example 3.1.

3.2.1 The before_advice function
This function is executed before the instrumented Erlang action (i.e.,
function call, message send or receive) is executed. The Payload
parameter may take one of the following forms:
(i) [] - the empty list (no payload), in case the type of the in-

strumented action is a ‘receive’ operation.
(ii) [Pid, Msg] - a list containing the Pid of the recipient

actor, along with the sent message Msg, when the type of the
instrumented action is a send operation.

(iii) [M,F,A] - a list containing the module M, function F and
arguments A when the instrumentation concerns a function
call operation.

Example 3.3. Consider the three pointcuts below, each defining a
before advice type for one of the permitted construct types.1

[Pointcut('receive',"server","math_loop",
"{add,_,_,_}", [before]),

Pointcut(send, "server", "math_loop",

"{res,_}", [before]),
Pointcut(call, "server", "start",

[ "erlang","spawn","3"], [before])].

The first pointcut specifies that the aspect code should be inserted
before a receive construct that must be defined in math_loop
andmust have one of its guardsmatching pattern"{add,_,_,_}".
This results in the injection of a call to before_advice at line
9 in the instrumented code below, before the receive operation
at line 10, with type ‘receive’ and payload []. The second
pointcut also injects a before_advice at line 12, this time with
type send and payload containing the process id of the recipient
actor and the sent message. Finally, the third pointcut injects a
before_advice, at line 2, with the type call.

1 start() ->
2 advices:before_advice(call,self(),
3 server,start,[erlang, spawn,
4 [server,math_loop,[0]]),
5 SPid = spawn(server, math_loop, [0]),
6 registry ! {math_srv, SPid}.
7

8 math_loop(Count) ->

1The function construct type can only be used in conjunction with the override
advice type.
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9 advices:before_advice('receive',self(),server,
math_loop,[]),

10 receive
11 {add, Pid, N1, N2} ->
12 advices:before_advice(send,self(),
13 server,math_loop,[Pid, {res,N1+N2}]),
14 Pid ! {res,N1+N2};
15 ...

16 end
17 ...

The code snippet below shows how abefore_advice function is
typically defined in advices.erl. In this definition, the payload
is inspected using a case statement to differentiate between the
instrumented constructs.
1 before_advice(Type,Pid,M,F,Payload) ->
2 case Payload of
3 [] when Type=='receive' and M==server and F==

math_loop ->
4 print("Before Receive");

5 [SentTo,Msg] when Type==send and M==server and
F==math_loop ->

6 print("Before Send, SPid:~p, Msg:~p",[SentTo,
Msg]);

7 [Mod,Func,Args] when Type==call and M==server

and F==start ->
8 print("Before Call, M:~p, F:~p, A:~p",[Mod,

Func,Args])
9 end. ■

3.2.2 The after_advice function
This advice is meant to be executed after the instrumented Er-
lang action has executed. The returned payload can be one of the
following:
(i) [Msg] - the actual received message, when the instrumented

action is a ‘receive’ operation.
(ii) [Pid, Msg] - same as in before_advice when the in-

strumented construct is a send operation.
(iii) [M,F,A,R] - the payload arguments are the same as for the

before_advice in the case of a functioncall, except that
along with the module name, function name and arguments
of the called function, the payload includes the return value
R as well.

Example 3.4. Consider the following after pointcuts.
[Pointcut('receive', "server","math_loop",

"{add,_,_,_}", ['after']),
Pointcut(send, "server", "math_loop",

"{res,_}", ['after']),
Pointcut(call, "server", "start",

["erlang","spawn","3"], ['after'])].

In the resulting instrumented code shown below, a call to the advice
function after_advice is injected after each specified code
construct with the appropriate type and payload.
1 start() ->
2 R=SPid=spawn(server, math_loop, [0]),
3 advices:after_advice(send,self(),server,start,
4 [erlang, spawn, [server,math_loop,[0]], R]),

5 registry ! {math_srv,SPid}.
6

7 math_loop(Count) ->
8 receive
9 {add, Pid, N1, N2} ->
10 Pid ! {res,N1+N2},
11 advices:after_advice(send,self(),
12 server,math_loop,[Pid,{res,N1+N2}]),
13 math_loop(Count + 1);

14 ...

15 end,
16 advices:after_advice('receive',self(),server,

math_loop,[Msg]),
17 ...

The code snippet below shows a typical implementation for the
after_advice function similar to that in Example 3.3.
1 after_advice(Type,Pid,M,F,Payload) ->
2 case Payload of
3 [Msg] when Type=='receive' and M==server and

F==math_loop ->
4 print("After Receive, Msg:~p",[Msg]);
5 [Dest,Msg] when Type==send and M==server and

F==math_loop ->
6 print("After Send,SPid:~p,Msg:~p",[Dest,Msg]);
7 [Mod,Func,Args] when Type==call and M==server

and F==start ->
8 print("After Call, M:~p, F:~p, Arguments:~p",

[Mod,Func,Args])
9 end. ■

3.2.3 The intercept_advice function
This advice is executed instead of the instrumented action. For
call and send types, the payload has the same format as in
advices:before_advice, but varies in the case of ‘receive’
operations as shown below:
(i) [Fun] - in the case of ‘receive’, the payload consists

of an anonymous function that takes no input arguments.
When executed, this function executes the intercepted receive
operation.

Example 3.5. Consider the intercept advice type pointcut def-
initions below, similar to those in Example 3.3 and Example 3.4.
[Pointcut('receive', "server","math_loop",

{add,_,_,_}, [intercept]),
Pointcut(send, "server", "math_loop",

{res,_}, [intercept]),
Pointcut(call, "server", "start",

["erlang","spawn","3"], [intercept])].

As shown below, the intercept_advice function calls replace
the code excerpts identified by the pointcuts. For instance, the third
pointcut causes the instrumenter to replace the spawn operation on
line 2 with a function call to intercept_advice of type call
along with the module, function and arguments of the replaced
spawn construct.
1 start() ->
2 SPid = advices:intercept_advice(call, self(),

server, start, [erlang, spawn, [server,
math_loop,[0]]),
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3 registry ! {math_srv,SPid}.
4

5 math_loop(Count) ->
6 IFunc = fun() ->
7 receive
8 {add, Pid, N1, N2} ->
9 advices:intercept_advice(send,self(),
10 server,math_loop,[Pid, {res,N1+N2}]),
11 ...

12 end,
13 advices:intercept_advice('receive',self(),

server,math_loop,[IFunc]),
14 ...

The snippet below shows a definition for theintercept_advice
function. In particular, note that the case for the ‘receive’ type
shows how the intercepted receive operation, stored in IFunc, can
be invoked as a normal function.
1 intercept_advice(Type,Pid,M,F,Payload) ->
2 case Payload of
3 [IFunc] when Type=='receive' and M==server and

F==math_loop ->
4 print("Applying Intercepted Receive"),

5 IFunc();

6 ...

7 end.
■

3.2.4 The upon_advice function
This advice can only be used for ‘receive’ pointcuts, since it
is called after a receive guard is matched. Recall that a receive
construct may contain multiple pattern-matching guarded clauses
as discussed in Section 2. The AOPweaves upon_advice for each
guarded expression whose guard matches the pointcut pattern (i.e.,
the continuation excerpt guard in a construct guard -> cont).
At runtime, only one receive guarded expression is triggered,
at which point the necessary pattern-matched data of the event is
known and can thus be forwarded as payload to the instrumented
advice.

Example 3.6. The two pointcuts below specify receive construct
types with an upon advice type.
[Pointcut('receive',"server","math_loop",

"{add,_,_,_}", [upon]),
Pointcut('receive',"server","math_loop",

"{srv,_}", [upon])].

As shown below, a call to upon_advice is injected after the re-
ceive guards thatmatch patterns"{add,_,_,_}" and"{srv,_}".
The advices are thus injected at lines 4 and 10 after the guard cases
"{add,Pid,N1,N2}" and "{srv,Pid}".
1 math_loop() ->
2 receive
3 Msg = {add,Pid,N1,N2} ->
4 advices:upon_advice('receive',self(),server,

math_loop,[Msg]),
5 Pid ! {res, N1 + N2},
6 math_loop(Count + 1);

7 Msg = {sub,Pid,N1,N2} ->
8 Pid ! {res, N1 - N2}, ...

9 Msg = {srv,Pid} ->

10 advices:upon_advice('receive',self(),server,
math_loop,[Msg]),

11 Pid ! {sys, Count},
12 math_loop(Count)

13 end.
14 ...

In the advices.erl file, upon_advice functions are de-
fined using a structure that is very similar to that one seen ear-
lier for the functions before_advice, after_advice and
intercept_advice. ■

3.2.5 The override_advice function
This can be used exclusively for function pointcuts. Whenever a
function pointer matches the name of a function definition, its func-
tion body is replaced by a function call to override_advice. A
new/fresh function definition is then created using the body of the
matched function definition. The overridden function is renamed,
using its original name suffixed by "_@", i.e., its name becomes
<Function>_@ where <Function> is its original name. The
Payload consists of a list [M,F,A] where M, F and A respec-
tively refer the module, function and arguments of the overridden
function. These can be used within the override_advice to
call the base function by calling "apply(M,F,A)".

Example 3.7. The pointcut below specifies that the start func-
tion should be overridden by the instrumented code.
[Pointcut(function,"server","start","0",

[override]
)].

As shown in the code below, the original start function is re-
named to start_@, and a new start function is introduced.
Moreover the body of the original start function is replaced en-
tirely by a call tooverride_advice. This advice is invokedwith
argumentsfunction as the type, and[server,start_@,[]]
as payload. Note that the payload provides the necessary informa-
tion for invoking the overridden function from within the advice
definition.

1 start() ->
2 advices:override_advice(function,self(),
3 server,start,[server,start_@,[]]).
4

5 start_@() ->
6 SPid = spawn(server, math_loop, [0]),
7 registry ! {math_srv,SPid}.

The sample code below defines an override_advice function
that prints the name of the overridden function before reapply-
ing the overridden function by calling Erlang’s built in function
apply(Mod,Func,Args).

1 override_advice(Type,Pid,M,F,Payload) ->
2 case Payload of
3 [Mod,Func,Args] when Type==function and M==

server and F==start ->
4 print("Function ~p was overridden.", [Func]),
5 print("Reapplying base function ~p.",[Func]),
6 apply(Mod,Func,Args);
7 end. ■
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4 System Instrumentation
In order to instrument an Erlang system, one needs to provide the
instrumenter with a .eaop text file containing the list of pointcuts,
along with the system’s source .erl files or its .beam files; see
Figure 3(i). Compiled beam files can only be processed if they
have been compiled in debug mode: .beam files compiled in debug
mode are embedded with debug information from which the syntax
tree of the compiled module can easily be extracted.

Once these files are provided, the instrumenter proceeds to com-
pile the given source files (.erl) using Erlang’s compilation func-
tion compile:file/3. As for the compiled .beam files, the em-
bedded abstract code is first extracted via beam_lib:chunks/2
and then re-compiled using compile:forms/2—both functions
are provided by Erlang libraries [2]. To initiate the AOP weav-
ing process, both compilation functions are executed using the
parse_transform option to specify that the compiler must
invoke our weaver module during compilation.

Once the syntax tree of a module is obtained via this method,
the instrumenter applies a depth first search traversal during which
every node is pattern matched with the specified pointcut patterns.
Whenever a node matches a pointcut pattern, the parse tree is
modified according to the type of advices that need to be injected.
For instance, in Figure 3 (ii), the matching node is replaced by
the instrumented code whenever an intercept advice type is
specified, while in the case of before and after advice types,
function calls to the respective advices are instrumented before and
after the matching node resp. Finally, the modified tree is compiled
into the required .beam file which amounts to the instrumented
module.

Remark. Due to the lack of documentation provided regarding the
abstract forms of the tree, modifying the abstract syntax tree proved
to be a delicate task: the structure of the syntax tree was mostly
understood through reverse engineering. Since extensive changes to
the syntax tree can easily lead to the introduction of errors, we opted
to minimize the number of changes by limiting the instrumented
code to just function call insertions to the respective advice functions
instead of inlining the full advice code. ■

4.1 Instrumenting a System with eAOP
To instrument an Erlang system with eAOP one needs to use one
of the following methods, exported by the eaop module:

(i) eaop:instrument(SrcDirs, ConfDirs): where argu-
ment SrcDirs refers to a list of directories containing either the
system .erl (source) files or .beam files, compiled in debug
mode, that require instrumentation. ConfDirs refers to a list
of directories containing the pointcut definitions specified in
.eaop files.

(ii) eaop:instrument(SrcDirs, ConfDirs, Options):
same as (i), but also accepts a list of compiling options identical to
the compiling options definable for compile:file (see [18]).
The most useful option is the {outdir,DestDir} option
which specifies the destination directory (DestDir) in which
the instrumented beam files will be generated. Along with the
standard options, our instrumenter accepts the following addi-
tional options:

<Source Files> <Compiled Files>

.erl .beam

<Pointcuts>

.eaop

1

2 3

4 5

(i)

(ii)

(iii)

1

2

3

4 5

intercept before 3

after 3

<Instrumented Files>

.beam

Compile to
Syntax Tree

Syntax Tree
Extraction from
Abstract Code

Syntax Tree

Instrumented
Syntax Tree

Instrument

weaving advices
as required

Figure 3. The instrumentation process.

• output_instrumented_src: A flag instructing the in-
strumenter to output the source files of the instrumented sys-
tem. This allows for a better understanding of how the system
has been modified by the instrumenter, and it also eases the
process of debugging instrumented systems.

• {outsrcdir,DestDir}: This option serves to specify the
destination directory where the instrumented source files are
to be created. Unless this option is specified, the source files
are generated in the same output directory as specified by the
{outdir,DestDir} option.

• gen_advice_template: This flag alerts the instrumenter
to search for advices.erl in the output directory. If this
is not found, it creates a file containing a template for speci-
fying the required advices — this file must then be modified
accordingly. If the file already exists, the instrumenter leaves
it untouched.

• compile_advices: This flag notifies the instrumenter to
search for and recompile advices.erl. If this is not found,
a warning is issued notifying the user that this file is missing.

(iii) eaop:instrument_srcs(SrcFiles, ConfigDirs,
Options): same as (ii) but argument SrcFiles requires a
list of paths leading to system source .erl files.

(iv) eaop:instrument_beams(BeamFiles, ConfigDirs,
Options): same as (iii) but argument BeamFiles accepts a
list of paths leading to system .beam files, compiled in debug
mode, instead of its source files.
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Monitor System
call start
send Msg

...

Figure 4. Instrumentation for Asynchronous Monitoring

Monitor System

call start
ack

send Msg

ack
...

Figure 5. Instrumentation for Synchronous Monitoring

5 Applications of eAOP
The instrumentation of the running example in Section 3 may easily
be extended to produce execution logs that can be then used for
debugging purposes. Moreover, by intercepting code constructs and
overriding functions in eAOP, one can easily attain code refactoring
as discussed in Section 1. In what follows, we overview how eAOP
can be used to augment program functionality (via adaptation), and
to carry out runtime software analysis (via monitoring).

In [10], Cassar et. al used eAOP as part of a toolchain making
up a runtime monitoring framework called DetectEr 2.02. This pro-
totype monitoring tool generates monitoring actors from a given
specification defined using a program logic called recHML [23].
This monitoring tool also requires instrumenting the system un-
der scrutiny, in such a way that allows the instrumented system
to be able to report trace events to the autonomously executing
monitoring actors using conventional message passing.

The instrumentation used by the tool varies depending on the
chosen monitoring mechanism, namely synchronous, asynchronous
or hybrid monitoring. In synchronous monitoring, the system is
forced to wait until the monitor finishes processesing the reported
trace event before it can proceed with its execution, while in asyn-
chronous monitoring the system does not block whenever a trace
event is reported to the monitor. Hybrid monitoring constitutes
a mixture of the two mechanisms. Although asynchronous mon-
itoring was shown to be more efficient in [10], the inclusion of
synchronous monitoring was crucial so as to allow the monitor
to detect erroneous behaviour before the offending actors are al-
lowed to proceed with their execution, thus preventing further
misbehaviour from these actors.

Although asynchronous monitoring can be implemented using
Erlang’s native tracing mechanism (as was done already in [3, 22])
this mechanism cannot be used for synchronous and hybrid mon-
itoring. Therefore instrumentation was employed. As shown in
Figure 4, to implement asynchronous monitoring with AOP, the
instrumentation code is used to asynchronously deliver an event
notification as a message to the monitor before the specified action

2This runtime monitoring tool is open source and downloadable from https://bitbucket.
org/casian/detecter2.0

executes. On the other hand, implementing synchronous moni-
toring requires the instrumentation of a handshake protocol, as
depicted in Figure 5. In this case, the instrumented code sends the
event notification and then blocks the system actor rather than re-
suming execution immediately; the blocked actor is forced to wait
until it receives an acknowledgement message from the monitor
signalling it to continue with its execution.

DetectEr 2.0 instruments this monitoring protocol by automati-
cally generating the required pointcuts and advices from the given
specification, and then uses the eAOP framework to perform the
required instrumentation. For instance, to synchronously moni-
tor the send operations in the math_loop function (defined in
Example 3.1), the tool generates the pointcut

[Pointcut(send,sever,math_loop,_)].

and its corresponding advice
1 before_advice(Type,Sender,M,F,Payload) ->
2 case Payload of
3 [SentTo,Msg] when Type==send and M==server

and F==math_loop ->
4 detecter!{trace,send,Sender,SentTo,Msg},
5 receive
6 ack -> ok
7 end,
8 end.

The generated advice reports the operation by sending a trace mes-
sage to the monitoring process (registered as the designated name
detecter) and then blocks via an injected receive waiting for
an ack message (lines 5-7). In the case of asynchronous monitor-
ing, the advice code omits the receive block thereby allowing the
instrumented actor to proceed immediately.

The eAOP framework was also used to automate runtime adap-
tation monitors for Erlang systems [11, 12], using a tool called
AdaptEr3. AdaptEr was developed as an extension to DetectEr 2.0,
and was capable of applying adaptation actions to specific actors
without affecting the execution of the other actors. Adaptations can
be used to either rectify the effects of a detected misbehaviour (e.g.,
restart a misbehaving actor) or else to improve the system based on
the current state of the system (e.g., by terminating idle/redundant
actor processes).

Erlang’s implementation of the actor model limits inter-process
communication to asynchronous message passing. For instance,
one of AdaptEr’s adaptation actions allows the monitor to empty
the mailbox contents of a system actor after this performs a spe-
cific sequence of actions. Since Erlang strictly forbids actors from
directly modifying the mailbox contents of another actor, this adap-
tation had to be encoded using an instrumented protocol by which
the monitor delivers the required adaptation using message passing.

As illustrated in Figure 6, the instrumented protocol builds on the
synchronous monitoring protocol introduced in DetectEr 2.0 [10],
by forcing the system actor to block after forwarding the trace event
to the monitor. The blocked actor would then wait for either an
acknowledgement message from the monitor allowing it to resume
execution, or else for an adaptation message. As shown in the code
excerpt below (lines 5-10), upon receiving an adaptation message,
the instrumentation code interprets the message and forces the

3DetectEr is an open-source runtime adaptation prototype tool downloadable from
https://bitbucket.org/casian/adapter
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Monitor System

call start
ok

send Msg

flush mailbox
...

Figure 6. Instrumentation for Runtime Adaptation

actor to execute the requested adaptation action. Using our eAOP
framework, this instrumented protocol permitted the monitor to
deliver (intrusive) adaptation actions through message passing.
1 before_advice(Type,Sender,M,F,Payload) ->
2 case Payload of
3 [SentTo,Msg] when Type==send and M==server

and F==math_loop ->
4 detecter!{trace,send,Sender,SentTo,Msg},
5 receive
6 ack -> ok;
7 flush -> adapter:flush();

8 restart -> adapter:restart();

9 ...

10 end,
11 end.

BothDetectEr 2.0 and AdaptErwere used to instrument monitoring
systems via eAOP for several industry-scale applications such as
Yaws and Ranch [3, 10]. Recent work in [12] also showed how
AdaptEr can be used to create a quick patch for mitigating the
effects of the Directory Traversal vulnerability that was found in
Yaws 1.89 [26] and which made it vulnerable to dot-dot-slash attacks.

6 Conclusion
We investigated the applicability of AOP mechanisms for Erlang,
an archetypal actor-based language. Via our prototype tool, eAOP,
the running example of Section 3 and the case studies in Section 5
we are able to show that (i) actor-based constructs lend themselves
well to AOP techniques and that (ii) aspect oriented programming
can be used effectively for actor-based software development. A
further contribution of our work is the AOP tool itself4 that works
for both Erlang source and intermediary code.

6.1 Related Work
Several forms of instrumentation exist other than AOP. For in-
stance, DynamoRIO [4, 8] is a dynamic binary instrumentation [32]
framework that provides an API for achieving runtime code manip-
ulation. Such manipulation includes the insertion of trampolines
i.e., callback functions that are called when something specific is
executed, and other assembly level instructions. Dynamic binary
instrumentation is most popular in the field of security as it is
generally used to strengthen software against vulnerabilities that
can be exploited for malicious purposes. Although this framework
is highly efficient, it does not provide any type of abstraction. In
fact, the user is required to have deep knowledge of the hardware
architecture and the processor’s instruction set.
4The eAOP framework is open-source and downloadable from
https://github.com/casian/eaop

To our knowledge, ErlAop5 is the only other AOP framework for
Erlang that exists apart from eAOP. ErlAop, however, lacked a num-
ber of important features used in the monitoring tools discussed
in Section 5. For instance, ErlAop does not provide any function-
ality similar to our upon_advice for instrumenting individual
message receive cases. The use of the upon_advice proved to
be crucial for injecting monitoring code after specific individual
receive cases. Moreover, ErlAop does not provide any form of func-
tion overriding functionality similar to our override_advice.
Also, ErlAop only permits the instrumentation of function calls,
whereas eAOP permits the instrumentation of message sends and
receives. ErlAop is also incapable of outputting the modified (instru-
mented) code and does not work on compiled .beam files. ErlAop,
however, provides around advices, which are equivalent to our
intercept advices.

Although eAOP targets specifically the Erlang language, it is
equipped with the standard pointcut types (i.e., before, after,
etc.) found in mature AOP frameworks such as AspectJ [30] for Java
and PostSharp [21] for C#; this gives eAOP a comparable expressive
power.

6.2 Future Work
As future work, we plan to add several other features to our frame-
work that could improve its expressiveness and flexibility. For
instance, currently the required advices must always be defined
within a source file called advices.erl. This introduces two
limitations, namely, (i) that the user must manually define advices
and employ case statements accordingly, and (ii) that merging
multiple instrumented systems requires manually merging their
advices.erl file into a single file so as to avoid naming conflicts
of modules.

To address (i), we thus plan to allow the user to define advices
along with the pointcuts, i.e., directly within the .eaop specifica-
tion file. Upon processing the specification file, in order to cater for
(ii), the instrumenter should then generate a uniquely named mod-
ule (e.g., advices_(md5 hash).erl) for hosting the required advice
functions. This addition will, however, require a more expressive
pointcut language to allow for advices to be defined within the
pointcut specification.

We also plan to include other advice types including types related
to exception handling such as upon_throw, upon_error and
upon_exit. With these advice types, the user can instruct the
instrumenter to inject code at specific try-catch cases. This feature
was not given priority because Erlang code practices generally
discourage the use of traditional exception handling, due to Erlang’s
let-it-fail philosophy. There are, however, cases where exceptions
and local error handling are useful.
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