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This paper investigates the adaptation of session types to provide behavioural information 
about Elixir modules. We devise a type system, called ElixirST, which statically determines 
whether functions in an Elixir module observe their endpoint specifications, expressed 
as session types; a corresponding tool automating this typechecking has also been 
constructed. In this paper we also formally validate this type system. An LTS-based 
operational semantics for the language fragment supported by the type system is 
developed, modelling its runtime behaviour when interacting with the module client. This 
operational semantics is then used to prove a form of session fidelity and progress for
ElixirST.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Modern programming languages offer a variety of abstractions for the construction of concurrent programs. In the case 
of message-passing functional programs, concurrency manifests itself as spawned computation that exhibits communication 
as a side-effect, potentially influencing the execution of other (concurrent) computation. Such side-effects inevitably increase 
the complexity of the programs produced and lead to new sources of errors. As a consequence, correctness becomes harder 
to verify and language support for detecting errors statically, can substantially decrease the number of concurrency er-
rors.

Elixir [1] is one such example of a functional programming language which supports concurrency based on the actor 
model [2,3]. As depicted in Fig. 1, Elixir programs are structured as a collection of modules that contain functions, the basic 
unit of code decomposition in the language. A module only exposes a subset of these functions to external invocations 
by defining them as public; these functions act as the only entry points to the functionality encapsulated by a module. 
Internally, the bodies of these public functions may then invoke other functions, which can either be the public ones already 
exposed or the private functions that can only be invoked from within the same module. For instance, Fig. 1 depicts a 
module m which contains several public functions (i.e., f1, . . . , fn) and private functions (i.e., g1, . . . , g j). The public function 
f1 delegates part of its computation by calling the private functions g1 and g j , whereas the body of the public function fn

invokes the other public function f1 when executed. Internally, the body of the private function g1 calls the other private 
function g2, which in turn can call g1 again, whereas the private function g j can recursively call itself.
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Fig. 1. An Elixir module consisting of public and private functions, interacting with client processes.

A prevalent Elixir design pattern is that of a server listening for client requests, which we refer to as the service handler 
design pattern.1 For each request, the server spawns a (public) function to execute independently and act as a dedicated 
client handler: after the respective process IDs of the client and the spawned handler are made known to each other, 
a session of interaction commences between the two concurrent entities (via message-passing). For instance, in Fig. 1, a 
handler process running public function f1 is assigned to the session with client client1 whereas the request from clientk is 
assigned a dedicated handler running function fn . Although traditional interface elements such as function parameters (used 
to instantiate the executing function body with values such as the client process ID) and the function return value (reporting 
the eventual outcome of handled request) are important, the messages exchanged between the two concurrent parties 
within a session are equally or more important for software correctness. More specifically, communication incompatibilities 
between the interacting parties could lead to various runtime errors. For example, if in a session a message is sent with an 
unexpected payload, it could cause the receiver’s subsequent computation depending on it to crash (e.g. multiplying by a 
string when a number should have been received instead). Also, if messages are exchanged in an incorrect order, they may 
cause deadlocks, e.g. Elixir uses blocking receive constructs that wait until a suitable message arrives, so if a process sends 
an invalid message, then the other process ends up waiting forever for a proper message to arrive.

In many cases, the expected protocol of interactions within a session can be statically determined from the respective 
endpoint implementations, namely the function bodies; for simplicity, our discussion assumes that endpoint interaction 
protocols are dual, e.g. S1 and S1 in Fig. 1. Although Elixir provides mechanisms for specifying (and checking) the parameters 
and return values of a function within a module, it does not provide any further static guarantees for programs that adhere 
to this design pattern due to two major obstacles. Firstly, Elixir does not provide any support for describing (and verifying) 
the interaction protocol of a function in terms of its communication side-effects. Secondly, in open settings, it is often the 
case that only one side of the code is available, so it is difficult to obtain static guarantees without the full codebase.

Contribution We present a type checker to assist Elixir module construction (following the service handler pattern) in two 
ways: (a) it allows module designers to formalise the session endpoint protocol as a session type, and ascribe it to a public 
function; (b) it statically verifies whether the body of a function respects the ascribed session type protocol specification. 
The type-checker analyses one side of an interaction, i.e., the module side, without requiring access to the code invoking 
the module public functions. This analysis assumes that the invoking code is well-behaved (even though it may or may not 
have been verified against the session type protocol specification), e.g. client1 follows S1 throughout the whole session in 
Fig. 1. The code for the type-checker, called ElixirST, is available at:

https://github .com /gertab /ElixirST

In this paper we present the underlying type system (Section 3) on which the ElixirST type-checker is built and discuss 
its implementation details (Section 6). We also validate the type system; more concretely, in Section 4 we formalise the 
runtime semantics of the Elixir language fragment supported by ElixirST as a labelled transition system (LTS), modelling the 
execution of a spawned handler interacting with a client within a session (left implicit). This operational semantics then 

1 Some projects which build on this service handler design pattern include etorrent [4] and cowboy [5]. The latter is an HTTP server which spawns a handler 
process for each new request; this is scalable since spawning (and maintaining) actors is extremely efficient in Elixir. In literature, this pattern is also called 
thread-per-session [6].
2
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1 defmodule Counter do
2 @spec server(pid, number) :: atom
3 def server(client, total) do
4 receive do
5 {:incr, value} -> server(client, total + value)
6 {:stop} -> terminate(client, total)
7 end
8 end
9

10 @spec terminate(pid, number) :: atom
11 defp terminate(client,total) do
12 send(client, {:value, total})
13 :ok
14 end
15 end

Listing 1: Counter written in Elixir.

allows us to prove a conditional form of the session fidelity and progress properties for the ElixirST type system (Section 5). 
Intuitively they state that, if the interacting processes (that are left implicit) follow the prescribed protocol correctly, then 
the module code being typechecked is guaranteed to behave correctly w.r.t. the protocol (expressed in terms of the adapted 
session fidelity and progress properties).

In this paper we merge and extend the work presented in [7,8]. In addition to [8], we include the full typing rules 
which were originally relegated to the appendix. We also present two additional sections (adapted from [7]): (a) Section 2
introduces a motivating example; and (b) Section 6 describes the implementation details of the ElixirST tool, along with a 
case study. The validation part of the paper is also expanded, by including all proofs. We also add a new result, showing 
that ElixirST observes a form of the progress property.

2. Motivating example

Consider a simple counter system, adapted from [9], whereby a (server) process stores a counter total which can be 
increased by a (client) interacting process or else terminated by this same (client) process. A sample Elixir Counter module 
is shown in Listing 1. It offers one public function called server on lines 3–8 taking two arguments: the pid of the 
client, client, and the initial counter total, total. A process executing this function waits to receive client requests as 
messages in its mailbox using the receive do ... end statement; this construct is blocking, meaning that the process 
stops until a message with the expected format is received. The server function accepts two types of messages, namely, 
increment requests with label :incr carrying payload val, or termination requests denoted by the label :stop. This 
function branches accordingly: for increment requests, it recurses while updating the running total to total+value on 
line 5, whereas termination requests on line 6 are handled by calling the private function terminate. Private functions, 
defined using defp, are only visible from within a module. In this case, the function terminate (defined on lines 11–14) 
sends a :value message carrying the final total value total to the client process and terminates with the atom value
:ok. Assuming that a client process carrying a pid bound to variable cid already exists, a counter server linked to cid
initialised with a running total of 0 can be launched using the statement:

sid = spawn(Counter, :server, [cid, 0]).

Elixir conducts dynamic typechecking to catch runtime errors. In addition, @spec annotations such as those on lines 2
and 10 can help with detecting potential errors at compile-time. However, the language offers limited support to assist the 
static detection of errors relating to the concurrent messaging. For instance, it might not be immediately apparent that the 
payload carried by a :incr request should be a number value. Similarly, the code in Listing 1 does not necessarily convey 
enough information that the intended interaction with a server process should follow the protocol depicted in Fig. 2. This 
abstract specification states that a server can be incremented an arbitrary number of times, followed by a single termination 
request (i.e., no further increment or termination requests can succeed it).

From the perspective of the server, the entire session of interactions can be formalised as the session type (called counter) 
below:

counter = &

{
?incr(number).counter,
?stop().!value(number).end

}
(1)

It states that the server can branch (i.e., &) in two ways: if it receives (i.e., ?) an incr label with a number payload, 
the server recurses back to the beginning; and if it receives a stop label, it has to send (i.e., !) back a label value with 
a payload of type number (i.e., !value(number)). No further interactions are allowed when the end statement is reached. 
Accordingly, the client has to follow a compatible protocol, such as the dual of the same session type.

counter = ⊕
{!incr(number).counter,
!stop().?value(number).end

}
(2)
3
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ClientServer
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curse

incr(number)

stop()

value(number)
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2

Fig. 2. Counter protocol.

Listing 2: Counter annotated with session types.

Concretely, it can repeatedly make a choice (i.e., ⊕) to send one of two labels, either increment or stop. The former 
ensures that it recurses back to the beginning, while the latter results in the client receiving a value of type number.

This paper proposes an approach whereby module definitions are augmented with a @session annotation for functions, 
as shown in Listing 2. Whereas line 4 requires the public function server to adhere to the session type counter, no session 
annotation is required for the private function terminate on line 15. Lines 22–24 present a case in which the client code 
is defined as a public function within the same module; in such a case, we can annotate it with the @dual information on 
line 20.

Our proposed session type annotations serve two important purposes. On the one hand, they provide a high-level (yet 
formal) specification as to how a public function is to be interacted with, without the need to look inside its implementation, 
as in the case of line 4. For instance, by inspecting the counter session type on line 4 of Listing 2, one can immediately 
tell that a process running function server accepts two types of messages with labels incr or stop. On the other hand, 
they allow function implementations to be typechecked against such specifications. E.g., we are able to statically check that 
the function server (and its ancillary function terminate) adheres to the protocol dictated by session type counter on 
line 4. We can also reject the problematic client implementation given in Listing 3 at compile-time, on the grounds that 
it violates the dual session type of counter. Concretely, the client selects an illegal choice decr on line 23, since the server 
cannot handle an incoming message labelled decr. The client also expects to receive a value with a number (line 26) after 
‘forgetting’ to send a termination request (i.e., a message with a stop label). Both cases breach the counter protocol.

3. A formal analysis

We introduce a core Elixir subset and define the typing rules for the ElixirST type system.
4



A. Francalanza and G. Tabone Journal of Logical and Algebraic Methods in Programming 135 (2023) 100891
20 @dual "counter"
21 def client(server) do
22 send(server, {:incr, 5})
23 send(server, {:decr, 2})
24 # send(server, {:stop})
25
26 receive do
27 {:value, num} -> num
28 end
29 end

Listing 3: Counter client with issues.

3.1. The actor model

Elixir uses the actor concurrency model [2,3]. It describes computation as a group of concurrent processes, called actors, 
which do not share any memory and interact exclusively via asynchronous messages. Every actor is identified via a unique 
process identifier (pid) which is used as the address when sending messages to a specific actor. Messages are communicated 
asynchronously, and stored in the mailbox of the addressee actor. An actor is the only entity that can fetch messages from 
its mailbox, using pattern matching. This allows us to provide a static behavioural abstraction for public functions used for 
the service handler design pattern. Apart from sending and reading messages, an actor can also spawn other actors and 
obtain their fresh pid as a result; this pid can be communicated as a value to other actors via messaging, which allows for 
a dynamically linked structure amongst active actors.

3.2. Session types

The ElixirST type system assumes the standard expression types, including basic types, such as boolean, number, atom
and pid, and inductively defined types, such as tuples, {T1, . . . , Tn}, and lists, [ T ] ; these already exist in the Elixir language 
and they are dynamically checked. The type system extends these with (binary) session types, which are used to statically 
check the message-passing interactions.

Expression types T ::= boolean | number | atom | pid | {T1, . . . , Tn} | [ T ]

Session types S ::= &
{

?li
(
T̃ i
)
.Si
}

i∈I Branch

| ⊕ {!li
(
T̃ i
)
.Si
}

i∈I Choice

| rec X . S Recursion

| X Variable

| end Termination

The branching construct, &
{

?li
(
T̃ i
)
.Si
}

i∈I , requires the code to be able to receive a message that is labelled by any one of 
the labels li , with the respective list of values of type T̃ i (where T̃ stands for T 1, . . . , T k for some k ≥ 0), and then adhere 
to the continuation session type Si . The choice construct is its dual and describes the range and format of outputs the code 
is allowed to perform at that point of execution. In both cases, the labels need to be pairwise distinct. Recursive types are 
treated equi-recursively [10], and used interchangeably with their unfolded counterparts. For brevity, the symbols & and 
⊕ are occasionally omitted for singleton options, e.g., ⊕{!l(number).S1

}
is written as !l(number).S1; similarly end may be 

omitted as well, e.g., ?l() stands for ?l().end. The dual of a session type S is denoted as S (shown in Definition 3.1).

Definition 3.1 (Duality).

&
{

?li
(
T̃ i
)
.Si
}

i∈I = ⊕{!li
(
T̃ i
)
.Si
}

i∈I rec X . S = rec X . S

⊕{!li
(
T̃ i
)
.Si
}

i∈I = &
{

?li
(
T̃ i
)
.Si
}

i∈I X = X end = end �

3.3. Elixir syntax

Elixir programs are organised as modules, i.e., defmodule m do P̃ D̃ end. Modules are defined by their name, m, and 
contain two sets of public D̃ and private P̃ functions, declared as sequences. Public functions, def f (y, x̃)do t end, are 
defined by the def keyword, and can be called from any module. In contrast, private functions, defp f (y, x̃)do t end, can 
only be called from within the defining module. Functions are defined by their name, f , and their body, t , and parametrised 
by a sequence of distinct variables, y, ̃x, the length of which, |y, ̃x|, is called the arity. The first parameter (y), is reserved for 
5
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Modules M ::= defmodulem do P̃ D̃ end

Public functions D ::= K B def f (y, x̃)do t end

Private functions P ::= B defp f (y, x̃)do t end

Type annotations B ::= @spec f
(
T̃
) :: T

Session annotations K ::= @session “X = S” | @dual “X”

Expressions e ::= w | not e | e1 � e2 | [ e1 | e2 ] | {e1, . . . , en}
Operators � ::= < | > | <= | >= | == | != | + | − | ∗ |/ |and |or

Basic values b ::= boolean | number | atom | pid | [ ]

Values v ::= b | [ v1 | v2 ] | {v1, . . . , vn}
Identifiers w ::= b | x

Patterns p ::= w | [ w1 | w2 ] | {w1, . . . , wn}
Terms t ::= e

| x = t1; t2

| send (w, {:l, e1, . . . , en})
| receive do

({
:li, p1

i , . . . , pn
i

}→ ti
)

i∈Iend

| f (w, e1, . . . , en)

| case e do (pi → ti)i∈Iend

Fig. 3. Elixir syntax.

the pid of the dual process. Although a module may contain functions with the same name, their arity must be different, so 
we refer to a function with name f and arity n as f/ n.

In Elixir, function parameters and return values can be assigned a type using the @spec annotation, f (T̃ ) :: T , describing 
the parameter types, T̃ , and the return type, T . This information is then used by the Dialyzer to perform static checking 
using success typing [11]. In our formalisation, we require that functions are annotated by their type specification, denoted 
by B in Fig. 3. In addition to this, we decorate public functions with session types, defined in Section 3.2, to describe their 
side-effect protocol. Public functions can be annotated directly using @session “X = S”, or indirectly using the dual session 
type, @dual “X”, where X = S is shorthand for rec X . S .

The body of a function consists of a term, t , which can take the form of an expression, a let statement, a send or 
receive construct, a case statement or a function call; see Fig. 3. In the case of the let construct, x = t1; t2, the variable x
is a binder for the variables in t2, acting as a placeholder for the value that the subterm t1 evaluates to. We write t1; t2, as 
syntactic sugar for x = t1; t2 whenever x is not used in t2. The send statement, send (x, {:l, e1, . . . , en}), allows a process to 
send a message to the pid stored in the variable x, containing a message {:l, e1, . . . , en}, where :l is the label. The receive
construct, receive do

({
:li, p1

i , . . . , pn
i

}→ ti
)

i∈Iend, allows a process to receive a message tagged with a label that 
matches one of the labels :li and a list of payloads that match the patterns p1

i , . . . , pn
i , branching to continue executing 

as ti . Patterns, p, defined in Fig. 3, can take the form of a variable, a basic value, a tuple or a list (e.g. [ x | y ], where x is the 
head and y is the tail of the list). The remaining constructs are fairly standard. Variables in patterns p1

i , . . . , pn
i employed by 

the receive and case statements are binders for the respective continuation branches ti . In our formalisation, the case
construct is assumed to have a catch-all pattern which acts as a fail-safe mechanism for unmatchable values. This provides 
stronger static guarantees, however, it is more conservative when compared to Elixir’s common let it crash philosophy, which 
allows unmatched values to crash the whole process.

Terms can also take the form of an expression, e. An expression can be a variable, basic value (e.g. boolean), list, tuple, 
or other operations (e.g. +, <, and). Note that in the original Elixir syntax, there is no separation between terms (t) and 
expressions (e). However, with this distinction we are able to keep the type system in Section 3.4 more manageable and 
concise. We assume standard notions of open (i.e., fv(t) �= ∅) and closed (i.e., fv(t) = ∅) terms and work up to alpha-
conversion of bound variables.

3.4. Type system

Our session type system statically verifies that public functions within a module observe the communication protocols 
ascribed to them. It uses three environments:
6
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Variable binding env. Γ ::= ∅ | Γ, x : T

Session typing env. Δ ::= ∅ | Δ, f/n : S

Function information env. Σ ::= ∅ | Σ, f/n :
{
params= x̃, param_types= T̃ ,

body= t, return_type= T , dual= y

}
The variable binding environment, Γ , maps (data) variables to basic types (x : T ). We write Γ, x : T to extend Γ with the 

new mapping x : T , where x /∈ dom(Γ ). The session typing environment, Δ, maps function names and arity pairs to their 
session type ( f/ n : S); this will be used when recursing (i.e., function calls) to check whether a function is already mapped 
to a session type. If a function f/ n has a known session type, then it can be found in Δ, i.e., Δ( f/ n) = S . Each module has a 
static function information environment, Σ , that holds information related to the function definitions. For a function f , with 
arity n, Σ( f/ n) returns the tail list of parameters (params) and their types (param_types), the function’s body (body), 
and its return type (return_type). It also returns the static variable name that represents the interacting process’ pid
(dual). We assume that function information environment, Σ , is well-formed, meaning that all functions mapped ( f/ n ∈
dom(Σ)) observe the following condition requiring that the body of function f/ n is closed, i.e., for Σ( f/ n) = Ω:

fv
(
Ω.body

) \ (Ω.params∪ {Ω.dual})= ∅
Intuitively, if we look at a function’s body, its only free variables will be its parameters (i.e., params and dual).

Session typechecking is initiated by analysing an Elixir module, rule [tModule]. A module is typechecked by inspecting 
each of its public functions, ascertaining that they correspond and fully consume the session types ascribed to them. The 
rule uses three helper functions. The function functions(D̃) returns a list of all function names (and arity) of the public 
functions (D̃) to be checked individually. The function sessions(D̃) obtains a mapping of all the public functions to their 
expected session types stored in Δ. This ensures that when a function f with arity n executes, it adheres to the session 
type associated with it using either the @session or @dual annotations. The helper function details(−) populates the 
function information environment (Σ ) with details about all the public (D̃) and private functions ( P̃ ) within the module.

For every public function f/ n in functions(D̃), [tModule] checks that its body adheres to it session type using the 
highlighted term typing judgement detailed below:

Δ · Γ � w
Σ S � t : T � S ′

environmentsvariable binding
session typing &

session typesresidual&initialdual pid

term expression type

This judgement states that “the term t can produce a value of type T after following an interaction protocol starting from the 
initial session type S up to the residual session type S ′ (akin to parameterised monads [12]), while interacting with a dual 
process with pid identifier w . This typing is valid under some session typing environment Δ, variable binding environment 
Γ and function information environment Σ .” Since the function information environment Σ is static for the whole module 
(and by extension, for all sub-terms), it is left implicit in the term typing rules. We consider each rule in detail.

∀i ∈ I ·

⎧⎪⎪⎨⎪⎪⎩
∀ j ∈ 1..n ·

⎧⎨⎩simplepat(p j
i , T j

i )

�w
pat p j

i : T j
i � Γ

j
i

Δ · (Γ,Γ 1
i , . . . , Γ n

i

) �w Si � ti : T � S ′
[tBranch]

Δ · Γ �w &
{

?l
(
T̃
)
.S
} � receive do ({:l , p̃ } → t ) end : T � S ′
i i i i∈I i i i i∈I

7
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The receive construct is typechecked using the [tBranch] rule. It expects an (external) branching session type &
{
. . .
}

, 
where each branch in the session type must match with a corresponding branch in the receive construct, where both the 
labels (li ) and payload types (T̃ i ) correspond. Each receive branch is checked w.r.t. the common type T and a common 
residual session type S ′ . The types within each receive branch are computed using the pattern typing judgement, �w

pat p :
T � Γ , which assigns types to variables present in patterns (explained later in Fig. 6).

To ensure that all possible patterns are exhausted, we use Simple Patterns to filter out pattern structures such as lists and 
basic values. As a result, if a receive construct (contains exclusively simple patterns) is well-typed against the branching 
session type, then we are certain that any valid incoming messages can be matched with one of the available branches. 
This is further discussed later in Proposition 3. Simple patterns do not limit the expressivity of our language: complex 
patterns can still be expressed using a combination of (simple) receives and inner case constructs, which allow us to 
use patterns that do not block receives while postponing more specific patterns to the subsequent case matching.

Definition 3.2 (Simple Patterns). The predicate simplepat(p, T ) only accepts patterns that exclusively contain variables and 
top-level tuples, eliminating the possibility of patterns with structures such as lists or basic values. It is defined as follows:

simplepat(p, T )
def= (

(p = {x1, . . . , xn} and T = {T1, . . . , Tn}) or p = x
)

�

Example 3.1. Consider the following receive construct (following the ?incr(number) . . . session type) which does not 
satisfy simplepat:

receive do {:incr,5} → . . . end

This can only accept messages of the form {:incr,5}, so other messages that are valid for the ?incr(number) . . . session 
type, e.g. {:incr,9}, cannot be processed, since not all valid patterns are exhausted. In contrast, simplepat limits us to 
branches such as the one below where the variable (called value) can accept any value:

receive do {:incr,value} → . . . end �

Another crucial typing rule is [tChoice], which typechecks the sending of messages.

μ ∈ I ∀ j ∈ 1..n ·
{
Γ �exp e j : T j

μ

}
[tChoice]

Δ · Γ �w ⊕{!li
(
T̃ i
)
.Si
}

i∈I � send
(

w,
{
:lμ, e1, . . . , en

}) : {atom, T̃μ} � Sμ

This rule requires an internal choice session type ⊕{ . . .
}

, where the label tagging the message to be sent must match with 
one of the labels (lμ) offered by the session choice. The message payloads must also match with the corresponding types 
associated with the label (T̃μ of lμ) stated via the expression typing judgement Γ �exp e : T (see Fig. 5). The resulting 
expression type of the send construct is equivalent to the type of message being sent, i.e.,

{
:lμ, ẽi

}
has type {atom, ̃Tμ}. 

The typing rule also checks the pid of the addressee of the send statement which must match with the dual pid (w) in the 
judgment itself to ensure that messages are only sent to the correct addressee.

Δ( f/n) = S ∀i ∈ 2..n · {Γ �exp ei : Ti
}

Σ ( f/n) = Ω Ω.return_type= T Ω.param_types= T̃
[tKnownCall]

Δ · Γ �w S � f (w, e2, . . . , en) : T � end

Since public functions are decorated with a session type explicitly using the @session (or @dual) annotation, they are 
listed in dom(Δ). Calls to public functions are typechecked using the [tKnownCall] rule, which verifies that the expected 
initial session type is equivalent to the function’s known session type (S) obtained from the session typing environment, 
i.e., Δ ( f/n) = S . Without typechecking the function’s body, which is done in rule [tModule], this rule ensures that the 
parameters have the correct types (using the expression typing rules). From the check performed in rule [tModule], it can 
also safely assume that this session type S is fully consumed, thus the residual type becomes end. Rule [tKnownCall] also 
ensures that the pid (w) is preserved during a function call, by requiring it to be passed as a parameter and comparing it 
to the expected dual pid (i.e., Δ · Γ � w S � f ( w , . . .) : T � end).

Σ ( f/n) = Ω f/n /∈ dom(Δ) Ω.dual= y

Ω.params= x̃ Ω.param_type= T̃ Ω.body= t Ω.return_type= T

∀i ∈ 2..n · {Γ �exp ei : Ti
}

(Δ, f/n : S) · (y : pid, x̃ : T̃
) �y S � t : T � S ′

[tUnknownCall] w ′
Δ · Γ � S � f (w, e2, . . . , en) : T � S

8
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Δ · Γ �w S � t1 : T ′ � S ′′ Δ · (Γ, x : T ′) �w S ′′ � t2 : T � S ′ x �= w
[tLet]

Δ · Γ �w S � x = t1; t2 : T � S ′

Γ �exp e : U Δ · (Γ, xall : U ) �w S � tall : T � S ′

∀i ∈ I ·
⎧⎨⎩�w

pat pi : U � Γ ′
i

Δ · (Γ,Γ ′
i

) �w S � ti : T � S ′
[tCase]

Δ · Γ �w S � case e do (pi → ti)i∈I (xall → tall)end : T � S ′

Γ �exp e : T
[tExpression]

Δ · Γ �w S � e : T � S

Fig. 4. Remaining term typing rules.

Γ �exp e : T ∀i ∈ 1..n · {Γ �exp ei : Ti
}

[tTuple]
Γ �exp {e1, . . . , en} : {T1, , . . . , Tn}

type(b) = T
[tBasic]

Γ �exp b : T

Γ (x) = T
[tVariable]

Γ �exp x : T

Γ �exp e1 : T Γ �exp e2 : [ T ]
[tList]

Γ �exp [ e1 | e2 ] : [ T ]
[tEList]

Γ �exp [ ] : [ T ]

Γ �exp e1 : number Γ �exp e2 : number � ∈ {+, −, ∗, /}
[tArithmetic]

Γ �exp e1 � e2 : number

Γ �exp e1 : boolean Γ �exp e2 : boolean � ∈ {and, or}
[tBoolean]

Γ �exp e1 � e2 : boolean

� ∈ {<, >, <=, >=, ==, !=}
Γ �exp e1 : T Γ �exp e2 : T

[tComparisons]
Γ �exp e1 � e2 : boolean

Γ �exp e : boolean
[tNot]

Γ �exp not e : boolean

Fig. 5. Expression typing rules.

In contrast, a call to a (private) function, f/ n, with an unknown session type associated to it is typechecked using the 
[tUnknownCall] rule. As in the other rule, it ensures that parameters have the correct types (Γ �exp ei : Ti ). In addition, it 
also analyses the function’s body t (obtained from Σ ) with respect to the session type S inherited from the initial session 
type of the call, This session type is appended to the session typing environment Δ for future reference, i.e., Δ′ = (Δ, f/n : S)

which allows it to handle recursive calls to itself; should the function be called again, rule [tKnownCall] is used thus 
bypassing the need to re-analyse its body.

The remaining rules (Fig. 4) make up the functional aspect of the language. The let statement x = t1; t2 is typechecked 
using the rule [tLet]. The initial session type S is first transformed to S ′ due to some actions in t1 and finally becomes S ′′
after the actions in t2. The rule [tCase] checks the case construct, where each case has to match the corresponding type T
and session type S . The final pattern (xall) of the case construct acts as a catch-all alternative to ensure that all values are 
matched to at least one case. The catch-all case is sometimes omitted for ease of readability. Finally, [tExpression] checks 
all expressions e using expression typing. Expressions do not have a side effect, so the continuation session type S remains 
unchanged.

Expression typing Expressions are typechecked using the judgement Γ �exp e : T , where expression e has type T subject to 
the variable environment Γ . The expressions typing rules (Fig. 5) are adapted from [13]. Rule [tBasic] checks the type of 
basic values using the function type, which returns the type for basic values, e.g., type(true) = boolean. Rule [tVariable]
checks that variables have the correct type, as specified in Γ . Rules [tTuple], [tEList] and [tList] check the types of tuples, 
empty lists and lists, respectively. Rule [tArithmetic] ensures that numbers are used when doing arithmetic operations. The 
remaining rules, [tBoolean], [tNot] and [tComparisons], are analogous.

Pattern typing In the term typing rules [tBranch] and [tCase], new variables are introduced as a result of pattern matching. 
These need to be assigned to their respective type for typechecking purposes. This is obtained via the judgement �p

pat T :
Γ � defined in Fig. 6, which states that all variables in a pattern p are collected (with their type) in Γ . Basic values are 
checked in [tpBasic], and new variables are introduced in [tpVariable]. The latter also ensures that the pid of the dual 
process remains unchanged (i.e., x �= w), which allows to statically locate the destination pid of the messages. Each element 
in a tuple is checked individually for either values or variables ([tpTuple]). Lists are checked using [tpEList] and [tpList]. 
Multiple variable environments Γ and Γ ′ are joined together as Γ, Γ ′ (their domains must be distinct).
9
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�w
pat p : T � Γ

∅ �exp b : T b �= [ ]
[tpBasic] �w

pat b : T � ∅
x �= w

[tpVariable] �w
pat x : T � x : T

∀i ∈ 1..n · {�w
pat wi : Ti � Γi

}
[tpTuple] �w

pat {w1, . . . , wn} : {T1, . . . , Tn} � Γ1, . . . , Γn

�w
pat w1 : T � Γ1 �w

pat w2 : [ T ] � Γ2
[tpList] �w

pat [ w1 | w2 ] : [ T ] � Γ1,Γ2
[tpEList] �w

pat [ ] : [ T ] � ∅

Fig. 6. Pattern typing rules.

3.5. Typing in action

Recall the counter system from Listing 2, which contains two public functions, server and client, annotated with 
the session types, counter and counter, respectively defined in eqs. (1) and (2). We discuss briefly how the type system of 
Section 3.4 can be used to statically analyse this Elixir module.

Typechecking starts from the [tModule] rule (� M), and the judgement:

� defmodule Counter do P̃ D̃ end

where D̃ contains the functions server and client, while P̃ contains the private function terminate. The premise 
of [tModule] requires that all public functions are checked individually using the behavioural typing judgement: Δ · Γ �w

Σ

S � t : T � S ′ (Section 3.4). Starting with fn = server2, the initial session type, S , is set to counter and the expected 
residual session type, S ′ , is end, since functions are only well-typed if they fully consume the session type. For the client
function, the initial session type S is computed to get the dual type of counter, given in eq. (2). We focus on the behavioural 
typing of the server function. The function body, t , of server consists of the following:

t =

⎧⎪⎪⎨⎪⎪⎩
receive do

{:incr, value} -> server(client, total + value)
{:stop} -> terminate(client, total)

end

This receive statement is typechecked as the judgement below, using the [tBranch] rule:

Δ · Γ �w &

{
?incr(number).counter,
?stop().S1

}
� t : atom � end

where S1 = !value(number).end and w = client.
The session type in [tBranch] dictates that two branches are required, labelled incr and stop. The terms inside 

the branches must match with the continuation session type of the corresponding session type (i.e., counter and S1, re-
spectively). For the first branch (labelled incr), the continuation term is a known function call (Δ(server2) = counter); 
therefore, we use the [tKnownCall] rule:

Δ · Γ ′ �w counter � server(client, total+value) : atom � end

The term of the second branch (labelled stop) needs to match with the session type S1. This branch makes a call to a 
private function (terminate). Since terminate1 is not in the domain of Δ, we proceed to inspect its body using the 
rule [tUnknownCall]. Recall that private functions are not annotated with session types. Accordingly, rule [tUnknownCall]
requires us to inherit the outstanding session S1 as the specification for typing this judgement, which follows immediately 
using the [tLet] rule:

.

.

.[tLet]

(Δ,terminate1 : S1) · Γ ′′ �w S1 �
[
send(w, {:value, total})

:ok

]
: atom � end

[tUnknownCall]
Δ · Γ �w S1 � terminate(client, total) : atom � end

Note that Γ ′′ contains the type information for the client and total variable names, and the session typing judge-
ment (Δ) is extended to contain the session typing information for the function terminate1. To finish our typing analysis, 
we have to consider the two premises of the [tLet] rule. This rule checks two sub-terms in succession, as follows:
10
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Fig. 7. Spawning two processes (green boxes represent spawned concurrent processes). (For interpretation of the colours in the figure(s), the reader is 
referred to the web version of this article.)

(Δ,terminate1 : S1) · Γ ′′ �w S1 � send(w, {:value, total}) : U � end (3)

(Δ,terminate1 : S1) · Γ ′′ �w S1 � :ok : atom � end (4)

Equation (3) contains a send construct that sends a message labelled value. This matches with the labels offered in 
S1, which is checked using [tChoice]. Finally, Equation (4) is typechecked using [tExpression], which finalises our analysis.

As a continuation of this, consider the first two lines of the misbehaving client function body from Listing 3, to be 
typechecked against counter from eq. (2):

send(server, {:incr, 5})
send(server, {:decr, 2})

The first send statement is checked successfully using the [tLet] and the [tChoice] rules. The next send statement also 
needs to be checked using [tChoice]:

Δ′ · Γ ′′′ �w ⊕
{!incr(number).counter,
!stop().S1

}
� send(server, {:decr, 2}) : number � end

However, the [tChoice] rule attempts to match decr with a nonexistent choice from the session type. Thus, this client
function is deemed to be ill-typed.

3.6. Elixir system

Natively, Elixir can create actors using its spawn functions (e.g. spawn/3), which take a function (and its arguments), 
spawns it and returns its pid. ElixirST extends this to provide a bespoke spawning function called session/4 which 
allows the initiation of two concurrent processes executing in tandem as part of a session. This session/4 function takes 
two pairs of arguments: two references of function names (that will be spawned), along with their list of arguments. Its 
participant creation flow is shown in Fig. 7. Initially the actor (pre-server) is spawned, passing its pid (ιserver) to the second 
spawned actor (pre-client). Then, pre-client relays back its pid (ιclient) to pre-server. In this way, both actors participating in 
a session become aware of each other’s pids. From this point onwards, the two actors execute their respective function to 
behave as the participants in the binary session; the first argument of each running function is initiated to the respective pid
of the other participant. Fig. 7 shows that the server process executes the body t , where it has access to the mailbox, which 
we denote as M. As it executes, messages may be sent or received (shown by the action α) and stored in the (modified) 
mailbox M′ . The specific working of these transitions is explained in the following section.

4. Operational semantics

We describe the operational semantics of the Elixir language subset of Fig. 3 as a labelled transition system (LTS) [14]
describing how a handler process within a session executes while interacting with the session client (left implicit), as 
outlined in Fig. 1. The transition t

α−→ t′ describes the fact that a handler process in state t performs an execution step to 
transition to the new state t′ , while possibly interacting with the client via the action α as a side-effect. External actions are 
visible by, and bear an effect on the client, whereas internal actions do not. In our case, an action α can take the following 
forms:

α ∈ Act ::= ι! {:l, ṽ} Output message to ι tagged as :l with payload ṽ

| ? {:l, ṽ} Input message tagged as :l with payload ṽ

| f/n Call function f with arity n

| τ Internal reduction step

external action

internal action

Both output and input actions constitute external actions that affect either party in a session; the type system from 
Section 3.4 disciplines these external actions. Internal actions, include silent transition (τ ) and function calls ( f/ n); although 
11
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t
α−→
Σ

t′ t1
α−→ t′

1
[rLet1]

x = t1; t2
α−→ x = t′

1; t2

[rLet2]
x = v; t

τ−→ t [v/x]

ek → e′
k

[rChoice1]
send

(
ι,
{
:l, v1, . . . , vk−1, ek, . . . , en

}) τ−→ send
(
ι,
{
:l, v1, . . . , vk−1, e′

k, . . . , en
})

[rChoice2]
send (ι, {:l, v1, . . . , vn}) ι!{:l, v1, ..., vn}−−−−−−−−−→ {:l, v1, . . . , vn}
∃ j ∈ I l j = l match(p̃ j , v1, . . . , vn) = σ

[rBranch]
receive do ({:li , p̃i} → ti)i∈Iend

?{:l, v1, ..., vn}−−−−−−−−−→ t jσ

ek → e′
k

[rCall1]
f
(

v1, . . . , vk−1, ek, . . . , en
) τ−→ f

(
v1, . . . , vk−1, e′

k, . . . , en
)

Σ ( f/n) = Ω Ω.body= t Ω.params= x2, . . . , xn Ω.dual= y
[rCall2]

f (ι, v2, . . . , vn)
f/n−→ t [ι/y] [v2 , . . . , vn/x2 , . . . , xn]

e → e′
[rCase1]

case e do (pi → ti)i∈Iend
τ−→ case e′ do (pi → ti)i∈Iend

∃ j ∈ I match(p j , v) = σ
[rCase2]

case v do (pi → ti)i∈Iend
τ−→ t jσ

e → e′
[rExpression]

e
τ−→ e′

Fig. 8. Term transition semantic rules.

the latter may be denoted as a silent action, the decoration facilitates our technical development. We note that, function 
calls can only transition subject to a well-formed function information environment (Σ ), which contains details about all 
the functions available in the module. Since Σ remains static during transitions, we leave it implicit in the transitions rules.

The transitions are defined by the term transition rules listed in Fig. 8. Rules [rLet1] and [rLet2] deal with the eval-
uation of a let statement, x = t1; t2 modelling a call-by-value semantic, where the first term t1 has to transition fully to 
a value before being substituted for x in t2 denoted as [v/x] (or [v1, v2/x1, x2] for multiple substitutions). The send statement, 
send (ι, {:l, e1, . . . , en}), evaluates by first reducing each part of the message to a value from left to right. This is car-
ried out via rule [rChoice1] which produces no observable side-effects. When the whole message is reduced to a tuple 
of values {:l, v1, . . . , vn}, rule [rChoice2] performs the actual message sending operation. This transition produces an ac-
tion ι! {:l, v1, . . . , vn}, where the message {:l, v1, . . . , vn} is sent to the interacting process with a pid value of ι. The 
operational semantics of the receive construct, receive do ({:li, p̃i} → ti)i∈Iend, is defined by rule [rBranch]. When 
a message is received (i.e., α =? {:l, ṽ}), it is matched with a valid branch from the receive construct, using the label :l. 
Should one of the labels match (∃ j ∈ I such that :l j = :l), the payload of the message (̃v) is compared to the corresponding 
patterns in the selected branch ( p̃ j) using match(p̃ j, ̃v). If the values match with the pattern, the match function (Defini-
tion 4.1) produces the substitutions σ , mapping the matched variables in the pattern p̃ j to values from ṽ . This substitution 
σ is then used to instantiate the free variables in continuation branch t j .

Definition 4.1 (Pattern Matching). The match function pairs patterns with a corresponding value, resulting in a sequence of 
substitutions (called σ ), e.g., match(p, v) = [v1/x1] [v2/x2] = [v1, v2/x1, x2]. The match function builds a meta-level list of substitu-
tions, which should not be confused with the lists defined by the Elixir syntax in Fig. 3.

match(̃p, ṽ)
def= match(p1, v1), . . . , match(pn, vn)

where p̃ = p1, . . . , pn and ṽ = v1, . . . , vn

match(p, v)
def=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[ ] p = b, v = b

[v/x] p = x

match(w1, v1), match(w2, v2) p = [ w1 | w2 ] , v = [ v1 | v2 ]

match(w1, v1), . . . , match(wn, vn) p = {w1, . . . , wn} and
v = {v1, . . . , vn} �

Example 4.1. For the pattern p1 = {x,2, y} and the value tuple v1 = {8,2, true}, match(p1, v1) = σ where σ = [8/x] [true/y]
(written also as σ = [8, true/x, y]). However for pattern p2 = {x,2, false}, the operation match(p2, v1) fails, since p2 expects a 
false value as the third element, but finds a true value instead. �

Using rule [rCall1] from Fig. 8, a function call is evaluated by first reducing all of its parameters to a value, using 
the expression reduction rules in Fig. 9; again this models a call-by-value semantics. Once all arguments have been fully 
12
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e → e′ e1 → e′
1

[reOperation1]
e1 � e2 → e′

1 � e2

e2 → e′
2

[reOperation2]
v1 � e2 → v1 � e′

2

v = v1 � v2[
reOperation3

]
v1 � v2 → v

e → e′
[reNot1]

not e → not e′
v ′ = ¬v

[reNot2]
not v → v ′

e1 → e′
1

[reList1]
[ e1 | e2 ] → [

e′
1 | e2

] e2 → e′
2

[reList2]
[ v1 | e2 ] → [

v1 | e′
2

]
ek → e′

k
[reTuple] {

v1, . . . , vk−1, ek, . . . , en
}→ {v1, . . . , , vk−1, e′

k, . . . , en}

Fig. 9. Expression reduction rules.

reduced, [rCall2], the implicit environment Σ is queried for function f with arity n to fetch the function’s parameter names 
and body. This results in a transition to the function body with its parameters instantiated accordingly, t [ι/y] [v2, . . . , vn/x2, . . . , xn], 
decorated by the function name, i.e., α = f/ n. Along the same lines a case construct first reduces the expression which is 
being matched using rule [rCase1]. Then, rule [rCase2] matches the value with the correct branch, using the match function, 
akin to [rBranch]. Whenever a term consists solely of an expression, it silently reduces using [rExpression] using the 
expression reduction rules e → e′ of Fig. 9. These are fairly standard.

5. Validation of the ElixirST type system

We validate the static properties imposed by the ElixirST type system, overviewed in Section 3, by establishing a relation 
with the runtime behaviour of a typechecked Elixir program, using the transition semantics defined in Section 4. Broadly, 
we establish a form of type preservation, which states that if a well-typed term transitions, the resulting term then remains 
well-typed [10]. However, our notion of type preservation, needs to be stronger to also take into account (i) the side-
effects produced by the execution; and (ii) the progression of the execution with respect to protocol expressed as a session 
type. Following the long-standing tradition in the session type community, these two aspects are captured by the refined 
preservation property called session fidelity [15,16]. This property ensures that: (i) the communication action produced as 
a result of the execution of the typed process is one of the actions allowed by the current stage of the protocol; and that 
(ii) the resultant process following the transition is still well-typed w.r.t. the remaining part of the protocol that is still 
outstanding. We also establish a conditional form of progress, where well-typed processes are either a value, or else they 
can safely transition to a new term, producing an internal (or external) action.

Before embarking on the proofs for session fidelity and progress, we prove an auxiliary proposition that acts as a sanity 
check for our operational semantics of Section 4. We note that the operational semantics assume that only closed programs 
are executed; an open program (i.e., a program containing free variables) is seen as an incomplete program that cannot 
execute correctly due to missing information. To this end, Proposition 1 ensures that a closed term remains closed even after 
transitioning.

Proposition 1 (Closed Term). If fv(t) = ∅ and t α−→ t′ , then fv(t′) = ∅

Proof. By induction on the structure of t . Refer to Appendix B.1 for details. �
The statement of the session fidelity property relies on the definition of a partial function called after (Definition 5.1), 

which takes a session type and an action as arguments and returns another session type as a result. This function serves 
two purposes: (i) the function after(S, α) is only defined for actions α that are (immediately) permitted by the protocol S , 
which allows us to verify whether a term transition step violated a protocol or not; and (ii) since S describes the current 
stage of the protocol to be followed, we need a way to evolve this protocol to the next stage should α be a permitted action, 
and this is precisely S ′ , the continuation session type returned where after(S, α) = S ′ .

Definition 5.1 (After Function). The after function is partial function defined for the following cases:

after(S, τ )
def= S

after(S, f/n)
def= S

after(⊕{!li
(
T̃ i
)
.Si
}

i∈I , ι!
{
l j, ṽ

}
)

def= S j where j ∈ I

after(&
{

?li
(
T̃ i
)
.Si
}

i∈I ,?
{
l j, ṽ

}
)

def= S j where j ∈ I
13
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t1

S1

t2

after(S1,α1) = S2

. . . v

after(Sn,αn) = end

α1 α2 αn \

Fig. 10. Repeated applications of session fidelity.

This function is undefined for all other cases. The after function is overloaded to range over session typing environments 
(Δ) in order to compute a new session typing environment given some action α and session type S:

after(Δ, f/n, S)
def= Δ, f/n : S

after(Δ,α, S)
def= Δ if α �= f/n

Intuitively, when the action produced by the transition is f/ n, the session typing environment is extended by the new 
mapping f/ n : S . For all other actions, the session typing environment remains unchanged. �

Recall that module typechecking using rule [tModule] entails typechecking the bodies of all the public functions w.r.t. 
their ascribed session type, Δ · (y : pid, ̃x : T̃

) �y
Σ S � t : T � S ′ (where S ′ = end for this specific case). At runtime, a spawned 

client handler process in a session starts running the function body term t where the parameter variables y, ̃x are instan-
tiated with the pid of the client, say ι, and the function parameter values, say ṽ , respectively, t [ι/y] [ṽ/̃x], as modelled in 
rule [rCall2] from Fig. 8. The instantiated function body is thus closed and can be typed w.r.t. an empty variable binding 
environment, Γ = ∅. Session fidelity thus states that if a closed term t is well-typed, i.e.,

Δ · ∅ �w S � t : T � S ′ (5)

(where S and S ′ are initial and residual session types, respectively, and T is the basic expression type) and this term t
transitions to a new term t′ with action α, i.e.,

t
α−→ t′ (6)

the new term t′ is expected to remain well-typed, i.e.,

Δ′ · ∅ �w S ′′ � t′ : T � S ′ (7)

where the expanded Δ′ is computed as after(Δ, α, S) = Δ′ and the base type of the term is preserved, as described by 
the constant type T in eqs. (5) and (7). To understand how the evolved initial session type (S ′′) is computed or assumed 
(in eq. (7)), we have to consider the context of our analysis. Our type-checker analyses one side of an interaction that does 
not interleave with other sessions. We also assume that the interacting dual processes are well-behaved and thus follow a 
compatible protocol (e.g. the dual session type) during execution. Despite these restrictions, we obtain a certain degree of 
flexibility, where we can statically analyse processes interacting with external processes which we may not have access to 
their source.

To this end, we make a distinction between the transition actions in Equation (6). If the action α depends on the context 
process left implicit (i.e., α is an incoming message), we only require the guarantee stated in Equation (7) whenever α is 
permitted by the protocol S i.e., S ′′ = after(S, α). More specifically, the condition S ′′ = after(S, α) is part of the antecedent 
of the first clause in Session Fidelity Theorem and captures our conditional guarantees that apply only when the context 
process is well-behaved. On the other hand, if the action α depends solely on the process being typechecked (i.e., α is an 
outputted message or an internal action), then we require that α is permitted by the protocol S . Concretely, the second 
clause of Session Fidelity Theorem is stronger and the condition after(S, α) forms part of the succedent.

Theorem 2 (Session Fidelity). If Δ · ∅ �w
Σ S � t : T � S ′ and t α−→

Σ
t′

— for α =? {:l, ṽ} and some session type S ′′ = after(S, α), then there exists some Δ′, such that Δ′ · ∅ �w
Σ S ′′ � t′ : T � S ′ and 

after(Δ, α, S) = Δ′
— for α ∈ { f/n, τ , ι! {:l, ṽ}}, then there exists some S ′′ and Δ′ , such that Δ′ · ∅ �w

Σ S ′′ � t′ : T � S ′ for after(S, α) = S ′′ and 
after(Δ, α, S) = Δ′

Proof. By induction on the typing derivation Δ · ∅ �w
Σ S � t : T � S ′ . Refer to Appendix B.2. �

As shown in Fig. 10, by repeatedly applying Theorem 2, we can therefore conclude that all the (external) actions gen-
erated as a result of a typed computation (i.e., sequence of transition steps) must all be actions that follow the protocol 
14
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1 @dual "counter"
2 def client(server) do
3 x = send(server, {:stop})
4
5 receive do
6 {:value, num} -> num
7 end
8 end

Listing 4: Counter client obeying the protocol counter.

described by the initial session type. Since public functions are always typed with a residual session type end, certain ex-
ecutions could reach the case where the outstanding session is updated to end as well, i.e., after(Sn, αn) = end. In such a 
case, we are guaranteed that the term will not produce further side-effects, as in the case of Fig. 10 where the term is 
reduced all the way down to some value, v .

Example 5.1. We consider a concrete example to show the importance of session fidelity. The function called client/ 1
sends a stop label and awaits a reply with the total value.

This function adheres to the following protocol (from eq. (2)):

counter = ⊕
{!incr . . . ,

!stop().?value(number).end

}
A process evaluating the function client executes by first sending a message containing a stop label to the interacting 

processes’ pid (ιserver ), as shown below.

x = send(ιserver, {:stop})

# ...

x = {:stop}

# ...

t t′α = ιserver ! {stop}

As the process evaluates, the initial term t transitions to t′ , where it sends a message as a side-effect. This side-effect is 
denoted as an action α, where α = ιserver ! {stop}. By the After Function Definition, counter evolves to a new session type 
X:

X = after(counter,α) = ?value(number).end

For t′ to remain well-typed, it must now match with the evolved session type X, where it has to be able to receive 
a message labelled value, before terminating. As a result, by the session fidelity property, we know that each step of 
execution will be in line with the original protocol. �

We will also show that ElixirST observes a conditional form of the progress property, which describes how well-typed 
terms transition within the aforementioned analysis context. However, we consider the most problematic scenario first, 
where a process depends on external factors to progress. When a process executes a term that is following the branching 
session type, the process has to be able to handle (and pattern match) any valid incoming message. Concretely, a term t
following the session type &

{
. . .
}

has to be able to accept incoming messages, by (successfully) pattern matching them to 
one of the branches. This holds due to the [tBranch] rule (from Section 3.4) where we restrict all branching patterns to 
simple ones. In Proposition 3 we show that valid messages can always be matched to one of the branches.

Proposition 3. Any well-typed term (Δ · Γ �w
Σ S � t : T � S ′) following the branching session type is able to process any valid 

incoming message, i.e.,

t = receive do
({
:li, p1

i , . . . , pn
i

}→ ti
)

i∈Iend

S = &
{

?li
(
T 1

i , . . . , T n
i

)
.Si
}

i∈I

after(S,?
{
lk, v1, . . . , vn}) = Sk for some k ∈ I

⎫⎪⎪⎬⎪⎪⎭ =⇒ match(p j
k, v j)i∈1..n is defined

Proof. Note that Δ · Γ �w
Σ S � t : T � S ′ and t = receive do

({
:li, p1

i , . . . , pn
i

}→ ti
)

i∈Iend imply simplepat(p j
i ,

T j
)i∈I, j∈1..n . Refer to Appendix B.3. �
i
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Elixir Source Code +
Session Type Annotations Elixir AST
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ErlangCore ErlangBEAM Code

ElixirST

Fig. 11. Stages of Elixir compilation along with the session type implementation (in red).

By Proposition 3 we know that if a process depends on external factors (i.e., a term expects an incoming message), then 
it should not have a problem to be able to handle these messages. From this, we can infer that a well-typed receive
construct is able to transition to a new term, when a message is received. If we extend this to all terms, we can form 
the Progress Theorem, where we establish that a process can always transition from one form to another. If no further 
transitions are possible (see Fig. 10), then the process must be itself a (final) value. In this theorem we also establish that 
the action produced during the transition is always allowed by the protocol; this is checked using the after function.

Theorem 4 (Progress). If Δ · ∅ �w
Σ S � t : T � S ′ , then either t is a value, or else there exists some term t′ and action α such that t α−→

Σ
t′

and after(S, α) is defined

Proof. By induction on the typing derivation Δ · ∅ �w
Σ S � t : T � S ′ . Refer to Appendix B.3. �

6. Implementation

This section describes how the type system of Section 3 is implemented as the session type checker tool called ElixirST. 
This tool is integrated in Elixir with minimal changes to the syntax of the surface language. The source code is written in 
Elixir and is available open-source.

6.1. Elixir compilation with session types

The Elixir source code is compiled in several steps (see Fig. 11). The original Elixir source code is initially parsed into 
an Abstract Syntax Tree (AST). Then, Elixir’s powerful macro system expands all non-special form2 into special form macros 
(e.g., if/unless statements are converted into case constructs) [17]. Afterwords, the expanded Elixir AST is converted 
into Erlang abstract format and Core Erlang. Finally, it is compiled into BEAM code which can be executed on the Erlang 
Virtual Machine (BEAM).

Our implementation integrates seamlessly within this compilation pipeline (see Fig. 11, red). Inside the Elixir source 
code, processes are described with a specific session type using annotations (starting with @). Annotations are able to hold 
information about a module during compile-time. We provide normal labelled session types (@session) and their dual 
(@dual, referenced by a label):

@session "X = !ping().?pong().X"
# ...
@dual "X" # Equivalent to X’ = ?ping().!pong().X’

The annotations set up the rules of the session types, which need to be enforced later on in the compilation process. 
Elixir provides several compile-time hooks which provide a way to alter or append to the compilation pipeline. In this 
implementation, we initially use the on_definition hook to parse the session type (from the annotations) and compute 
the dual type where required; this is done using the Erlang modules leex3 and yecc,4 which create a lexer and a parser, 
respectively, based on the session type syntax rules shown in Fig. 3. Then, the after_compile hook is used to run
ElixirST right after the BEAM code is produced. Since the BEAM code stores directly the expanded Elixir AST, ElixirST is able 
to traverse this AST and verify its concurrent parts using session types.

6.2. Bridging between Elixir and our model

Every construct in Fig. 3 maps directly to a corresponding construct in the actual Elixir language. The @spec annotation 
which decorates functions with types is already present in the latest distribution of the language. It is typically used for 

2 Special form macros cannot be expanded further, forming the basic building blocks of the Elixir language.
3 https://erlang .org /doc /man /leex .html.
4 https://erlang .org /doc /man /yecc .html.
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code documentation and to statically analyse programs using the Dialyzer [11], a tool that detects potential (type) errors in 
Core Erlang programs using success typing [9]. We use the @spec information to specify the types for the parameters and 
the return type of the functions, supplementing our session typechecking analysis. A similar approach to ours was adopted 
by Cassola et al. [13] for a gradual static type system for Elixir.

receive do
{:A} -> send(p, {:C})

:ok
{:B} -> send(p, {:C})

:ok
end

.

receive do
{:A} ->

:ok
{:B} ->

:ok
end .
send(p, {:C})

The typing rules of Section 3 are also designed in a way to minimally alter common coding patterns in the 
language. For instance, branches in session types might have common continuations, such as !C().end in the type 
&
{

?A().!C().end, ?B().!C().end
}

. Many type systems force programs to structure their code as shown in the left-hand side 
code snippet above (which performs the same send action twice). However, in Elixir it is common to express this as a 
fork-join pattern, with a single continuation performing the common action once as shown in the right-hand side code 
snippet. Our type system can typecheck both code snippets.

The only aspect left to discuss is the mechanism used by our implementation to guarantee an interaction between 
the two processes implementing the respective endpoints of binary session type. To achieve this end, we implemented a 
bespoke spawning function (refer to Section 3.6) that takes the code of the respective endpoints and returns a tuple with 
the pids of the two processes that are already linked. The implementation of our session initiation is given below:

1 def session(serverFn, server_args, clientFn, client_args)
2 when is_function(serverFn) and is_function(clientFn) do
3 server_pid = spawn(fn ->
4 receive do
5 {:pid, client_pid} ->
6 apply(serverFn, [client_pid | server_args])
7 end
8 end)
9

10 client_pid = spawn(fn ->
11 send(server_pid, {:pid, self()})
12 apply(clientFn, [server_pid | client_args])
13 end)
14
15 {server_pid, client_pid}
16 end

This modified session/4 function takes two pairs of arguments: two references of function names (that should be 
spawned) and their list of arguments. The code implements the initialisation protocol depicted in Fig. 7. It first spawns 
one process (pre-server in Fig. 7 for line 3) and passes its pid to the second spawned process (pre-client in Fig. 7, as the 
variable server_pid on lines 11 and 12). Then, the pre-client process sends its pid to the pre-server process (line 11 and 
lines 4 and 5). At this point, both processes execute their respective functions to transform into the actual first and second 
processes participating in the session, passing the respective pids as the first argument of the executing functions (lines 6
and 12).

The current implementation of the session/4 function can only launch two processes at a time, in line with the binary 
sessions. This can however, be extended to handle more than two processes in the case of hierarchical processes, where a 
process may interact in several separate binary sessions, similar to the notion of intuitionistic session types [18].

Our implementation still allows spawned processes to receive messages from any other process. Unfortunately, unso-
licited messages can interfere with a session-typed process, since the receiver is not able to distinguish where the message 
is originating from in the present implementation. An improvement would be exploiting Elixir’s ability to cherry-pick mes-
sages out-of-order from the queue using pattern matching. As soon as a session is launched, a unique session ID would be 
shared with the two parties, and each message exchanged between them would use this ID to identify the source (and des-
tination). This would enable selective reads to filter unsolicited messages. Mostrous and Vasconcelos [19] created a similar 
system to distinguish messages by attaching a unique reference to each message.

6.3. Case study

We use ElixirST to verify an Elixir (CLI) application which interacts with a third-party service (i.e., Duffel [20]). Duffel of-
fers a real-time flight selling service, where flights can be fetched and booked via a REST application programming interface 
(API).

Our application is built as an Elixir module, called FlightSystem, which interacts with the Duffel Flight Server, as 
shown in Fig. 12. The module consists of a client which can request to book flights from the Duffel Server. This server can 
17
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Fig. 12. Interactions with Duffel API.

only accept HTTP messages (e.g., GET or POST requests), so we use a gateway which acts as a middleman between the client 
and the third-party server.

From the Duffel API documentation,5 we can get a list of API calls that can be made, along with their details. Thus, 
we can infer an order (i.e., a protocol) of calls that need to be invoked in the correct order, to achieve what we want. For 
instance, we consider a client that searches and books a flight. Concretely, the client has to interact with several endnodes, 
including \offer_requests, \offers and \orders, in a correct order. This order of interaction is formalised in the 
Sclient protocol which is then used by ElixirST to ensure that a client process follows it, thus interacting safely (via a gateway 
process which converts the requests to HTTP messages) with the Duffel server.

Sclient = ⊕
⎧⎨⎩!request(origin: binary,destination: binary,

dep_date: binary, class: atom,pass_no: number
)
.Soffers,

!cancel()

Soffers = rec Y .&

⎧⎪⎪⎨⎪⎪⎩
?offer

(
offer_no: number, total_amount: number,

currency: binary,duration: number,
stops: number, segments: binary

)
.Sdetails,

?error(binary).Sclient

Sdetails = ⊕

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
!more_details().&

⎧⎪⎪⎨⎪⎪⎩?details(. . . ). ⊕
⎧⎨⎩!make_booking(. . . ).

&{?ok(. . . ),?error(binary)},
!cancel()

⎫⎬⎭ ,

?error(binary)

⎫⎪⎪⎬⎪⎪⎭,

!reject().Y

For clarity, Sclient is split in two: Soffers and Sdetails . Furthermore, we add labels to each payload type to make it more 
apparent what data needs to be transferred – labels are also allowed in ElixirST, given that labels are only used for decorative 
purposes. We take a brief look at how the client can book a flight. The interaction starts with the client making request to 
get the available flights (Sclient). By glancing on Sclient , one can get more information on what the client needs to include 
the request details, such as the origin and destination locations. Note that, we use the binary type, which is the type for 
strings in Elixir. Then, the client starts receiving (and rejecting) one offer at a time, until the client decides to take up an 
offer (Soffers).

To learn more about the flight offer, the client sends a request to get more details (e.g., operating airline and updated 
price), and awaits the results (Sdetails). Once the details are received, the client can decide to either cancel the order, or book 
the flight. In case of the latter, the booking will be finalised after the client receives back a confirmation code. Throughout 
this interaction, the server may reply with an error message, which the client also needs to handle (i.e., ?error(binary)).

This behaviour formalised by Sclient is applied in the module FlightSystem, which is shown partly in Listing 5.
FlightSystem contains a public function client, a private function consume_offer, and an omitted public function
gateway. The client function is annotated with the session type Sclient , thus ElixirST ascertains that the client follows 
the expected behaviour (line 4). The client function sends a message containing :request and then it calls the private 
function consume_offer. This latter function follows the remaining actions in the session type, i.e., Soffers . The dual part 
of the interaction, the gateway function, should follow a compatible protocol, such as the dual session type, Sclient . This is 
not enforced, since the gateway function goes beyond the syntax defined in Section 3.3 (e.g., uses other modules to parse 
JSON responses, or uses dynamic types) which are not defined by our type system in Section 3.4. This function may also be 
inaccessible for static analysis (e.g. proprietary source code), so we assume that at runtime it obeys Sclient . Nevertheless, we 
can initiate a session executing both public functions using our session function, as follows:

ElixirST.session(&FlightSystem.client/6,
["MLA", "CDG", "2023-11-24", :economy, 2],

&FlightSystem.gateway/1,
[])

5 https://duffel .com /docs /api /overview /welcome.
18

https://duffel.com/docs/api/overview/welcome


A. Francalanza and G. Tabone Journal of Logical and Algebraic Methods in Programming 135 (2023) 100891
1 defmodule FlightSystem do
2 use ElixirST
3
4 @session "S_client = +{!request(origin: binary, destination: binary...}"
5 @spec client(g_pid, binary, binary, binary, atom, number) :: :ok
6 def client(g_pid, origin, destination, dep_date, class, pas_no) do
7 send(g_pid, {:request, origin, destination, dep_date, class, pas_no})
8 IO.puts("Sending request for a flight from #{origin} to...")
9 IO.puts("Waiting for a response from the server...")

10
11 consume_offer(g_pid)
12 end
13
14 @spec consume_offer(pid) :: atom
15 defp consume_offer(g_pid) do
16 receive do
17 {:offer, offer_no, total_amount, currency, dur, stops, segments} ->
18 IO.puts("Offer ##{offer_no}: \n#{currency}#{total_amount}...")
19 accept? = IO.gets("Accept offer ##{offer_no}? y/n: ")
20
21 case accept? do
22 "y\n" -> send(g_pid, {:more_details})
23 IO.puts("Requesting updated details for offer...")
24 ...
25 _ -> send(g_pid, {:reject})
26 consume_offer(g_pid)
27 end
28
29 {:error, message} -> send(pid, {:cancel})
30 end
31 end
32 end

Listing 5: Session-typed snippet of a flight system written in Elixir.

ElixirST ensures that the function client/ 6 follows the pattern described by Sclient which mirrors the implicit order of API 
requests by Duffel. For instance, if a client tries to make a booking before making a request containing the flight details 
(i.e., skipping line 7), then the order will fail; this will be flagged by our type system earlier on instead of being rejected by 
Duffel at runtime.

This case study shows that ElixirST is flexible and practical enough to be integrated in real-world applications. In addition 
to verifying statically the individual functions, by explicitly adding information about the interactions, we provide a source 
of documentation within the source code itself.

In this case study we analysed the client side of the interaction, leaving the gateway process unverified, thus susceptible 
to behavioural issues. To fix this, we can use existing techniques, such as synthesising runtime monitors [21–23] for the 
unverified parts, similar to the work by Bartolo Burlò et al. [24].

7. Related work

In this section, we compare ElixirST with other type systems and implementations.

7.1. Type systems for Elixir

Cassola et al. [13,25] presented a gradual type system for Elixir. It statically typechecks the functional part of Elixir 
modules, using a gradual approach, where some terms may be left with an unknown expression type. In contrast to ElixirST, 
Cassola et al. analyse directly the unexpanded Elixir code which results in more explicit typechecking rules. Also, they focus 
on the static type system without formulating the operational semantics.

Another static type-checker for Elixir is Gradient [26]. It is a wrapper for its Erlang counterpart tool and takes a similar 
approach to [13], where gradual types are used. Another project, TypeCheck [27], adds dynamic type validations to Elixir 
programs. TypeCheck performs runtime typechecking by wrapping checks around existing functions. Gradient and TypeCheck
are provided as an implementation only, without any formal analysis. In contrast to ElixirST, the discussed type-checkers [13,
26,27] analyse the sequential part of the Elixir language omitting any checks related to message-passing between processes.

Some implementations aim to check issues related to message-passing. Harrison [28] statically checks Core Erlang for 
such issues. For instance, it detects orphan messages (i.e., messages that will never be received) and unreachable receive 
branches. In separate work, Christakis and Sagonas [29] analyse Core Erlang code to construct a communication graph 
which depicts the message flow between different process. This is then used to detect errors of similar kind, e.g. receive
constructs that never receive any messages. This work was implemented as part of the Dialyzer. Harrison [30] extends [28]
to analyse Erlang/OTP behaviours (e.g., gen_server, which structures processes in a hierarchical manner) by injecting 
19
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runtime checks in the code. Compared to our work, [28,30,29] perform automatic analysis of the implementation, where 
they analyse send and receive primitives against each other. They analyse messages on a fine-grained level, which contrast 
with our work that uses a general protocol (e.g., session types) describing the full interaction within a session.

Another type system for Erlang was presented by Svensson et al. [31]. Their body of work covers a larger subset of Erlang 
to what would be its equivalent in Elixir covered by our work. Moreover, its multi-tiered semantics captures an LTS defined 
over systems of concurrent actors. Although we opted for a smaller subset, we go beyond the pattern matching described 
by Svensson et al. since we perform a degree of typechecking for base types (e.g. in the premise of [tBranch]).

7.2. Session type systems

Closest to our work is [19], where Mostrous and Vasconcelos introduced session types to a fragment of Core Erlang, 
a dynamically typed language linked to Elixir. Their type system tags each message exchanged with a unique reference. 
This allows multiple sessions to coexist, since different messages could be matched to the corresponding session, using 
correlation sets. Mostrous and Vasconcelos take a more theoretical approach, so there is no implementation for [19]. Their 
type system guarantees session fidelity by inspecting the processes’ mailboxes where, at termination, no messages should 
be left unprocessed in their mailboxes. Our work takes a more restrictive but pragmatic approach, where we introduce 
session types for functions within a module. We offer additional features, including variable binding (e.g., in let statements), 
expressions (e.g., addition operation), inductive types (e.g., tuples and lists), infinite computation via recursion and explicit 
protocol definition.

A session-based runtime monitoring tool for Python was initially presented by Neykova and Yoshida [32]. They use the 
Scribble [33] language to write multiparty session type (MPST) [16] protocols, which are then used to monitor the processes’ 
actions. Different processes are ascribed a role (defined in the MPST protocol) using function decorators (e.g. @role), which 
is similar to how we annotate functions with protocols (e.g. using @session). Similar to [32], Fowler [34] presented an 
MPST implementation for Erlang. This implementation uses Erlang/OTP behaviours (e.g., gen_server), which take into 
account Erlang’s let it crash philosophy, where processes may fail while executing. Neykova and Yoshida [35] extend process 
monitoring in Erlang to provide a recovery strategy for the failed processes, ensuring that all of the failed (or affected) 
processes are restarted safely. All of these Erlang tools accept a more flexible language than the one allowed by our work. 
This is done at an added runtime cost, since they flag issues at runtime, whereas our work provides static guarantees that 
flags issues at pre-deployment stages. Moreover, our work is able to statically analyse part of the code (and give static 
guarantees for it) without requiring access to the entire codebase.

Scalas and Yoshida [36] applied binary session types to the Scala language, where session types are abstracted as Scala 
classes. Session fidelity is ensured using Scala’s compiler, which complains if an implementation does not follow its ascribed 
protocol. Bartolo Burlò et al. [24] extended the aforementioned work, to monitor one side of an interaction statically and 
the other side dynamically using runtime monitors. These works relegate linearity checks to runtime. In contrast, ElixirST
statically ensures that annotated implementations fully exhaust their associated protocol once. Another implementation was 
done by Scalas et al. [37,38], where session types were added in Scala 3. This design utilises dependent function types and 
model checking to verify programs at compile-time.

Harvey et al. [39] presented a new actor-based language, called EnsembleS, which offers session types as a native feature 
of the language. EnsembleS statically verifies implementations with respect to session types, while still allowing for adapta-
tion of new actors at runtime, given that the actors obey a known protocol. Thus, actors can be terminated and discovered 
at runtime, while still maintaining static correctness.

There have been several binary [40,41] and multiparty [42,43] session type implementations for Rust. These imple-
mentations exploit Rust’s affine type system to guarantee that channels mirror the actions prescribed by a session type. 
Padovani [44] created a binary session type library for OCaml to provide static communication guarantees. This project was 
extended [45] to include dynamic contract monitoring which flags violations at runtime. The approaches used in the Rust 
and OCaml implementations rely heavily on type-level features of the language, which do not readily translate to the dy-
namically typed Elixir language. When we compare our work to the aforementioned work, we notice several limitations.
ElixirST only supports a limited form of spawning (discussed in Section 6.2), where we constrain the number of processes 
in a single session to two processes. This contrasts to the unbounded number of parallel processes that are allowed in the 
π -calculus, where session types were first introduced [46]. Another aspect that we have not discussed is the lack of session 
delegation. ElixirST does not allow processes to hand over the remaining session to other processes. This stems from the 
approach that we use; our tool typechecks actors directly, whereas the aforementioned works [40–45] typecheck channel 
endpoints that can easily be transferred between different processes.

Actor-like techniques are also used in Active Objects (AO) based languages to combine the concept of process separation, 
with asynchronous method calls in object-oriented languages. Session types are utilised to structure method calls in such 
languages. For instance, Kamburjan et al. [47,48] added session types to ABS, which is an AO language that uses futures 
to resolve the results derived from method invocations. Kamburjan et al. use global protocols (stemming from MPSTs) to 
define the order of method invocation that originate from object instances. Although these global protocols are used for 
dynamic checking, they are also used to check each method statically on a more localised scale, using local types. ABS uses 
(abstracted) Erlang processes to structure their concurrent backend, similar to the backend structure used in our work.
20
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Actor systems are notoriously hard to analyse statically. The main reason for this is that actors are open to receive any 
kind of messages, which makes it difficult to predict or analyse their behaviour. Our work takes a lenient view of this, 
where we simply ignore malformed messages using Elixir’s selective receive construct. On the other hand, well-formed 
but unsolicited messages can cause behavioural issues. Other works handle this by typing the actors’ mailboxes directly 
rather than their behaviour. De’Liguoro and Padovani [49] introduced a mailbox calculus which considers mailboxes as first-
class citizens. This calculus adds types to mailboxes, thus ensuring that processes are free from behavioural issues, such as 
deadlocks. Fowler et al. [50] built on this to implement mailbox types within a practical concurrent programming language. 
These works [47,48,50] are presented with an implementation for purpose-built bespoke languages. The aims of our work 
are different since we start with an industry strength language and try to retrofit session type mechanisms so as to support 
the existing design patterns of the language.

8. Conclusion

In this work we established a correspondence between the ElixirST type system [7] and the runtime behaviour of a 
client handler running an Elixir module function that has been typechecked w.r.t. its session type protocol. In particular, 
we showed that this session-based type system observes the standard session fidelity property, meaning that processes exe-
cuting a typed function always follow their ascribed protocols at runtime. This property provides the necessary underlying 
guarantees to attain various forms of communication safety, whereby should two processes following mutually compatible 
protocols (e.g. S and its dual S), they avoid certain communication errors (e.g., a send statement without a corresponding 
receive construct).

Future work There are a number of avenues we intend to pursue. One line of investigation is the augmentation of protocols 
that talk about multiple entry points to a module perhaps from the point of view of a client that is engaged in multiple ses-
sions at one time, possibly involving multiple modules. The obvious starting points to look at here are the well-established 
notions of multiparty session types [16,38] or the body of work on intuitionistic session types organising processes hierar-
chically [51,18]. Another natural extension to our work would be to augment our session type protocol in such a way to 
account for process failure and supervisors, which is a core part of the Elixir programming model. For this, we will look 
at previous work on process/session type extensions that account for failure [52,53,39,54–57]. We also plan to augment 
our session typed protocols to account for resource usage and cost, along the lines of [58,59]. It should also be relatively 
straightforward to integrate the elaborate expression typechecking mechanisms developed by Castagna et al. [60] to replace 
our (limited) expression typing in Fig. 5. This would considerably enhance the expressivity of our framework to handle a 
wider range of Elixir programs.
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Appendix A. Additional definitions

In this appendix, we formalise some auxiliary definitions that are used in Sections 3–5 and Appendix B.

Definition A.1 (Free Variables). The set of free variables is defined inductively as:

fv(e)
def=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{x} e = x

∅ e = b

fv(e1) ∪ fv(e2) e = e1 � e2 or e = [ e1 | e2 ]

fv(e′) e = not e′

∪i∈1..nfv(ei) e = {e1, . . . , en}

fv(t)
def=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

fv(t1) ∪ (fv(t2) \ {x}) t = (x = t1; t2)

∪i∈1..nfv(ei) ∪ fv(w) t = send (w, {:l, e1, . . . , en})
∪i∈I [fv(ti) \ vars(p̃i)] t = receive do ({:li, p̃i} → ti)i∈Iend

∪i∈2..nfv(ei) ∪ fv(w) t = f (w, e2, . . . , en)

∪i∈I [fv(ti) \ vars(pi)] ∪ fv(e) t = case e do (pi → ti)i∈Iend �
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Definition A.2 (Bound Variables).

bv(t)
def=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅ t = e or t = send (w, {:l, ẽ}) or t = f (̃e)

{x} ∪ bv(t1) ∪ bv(t2) t = (x = t1; t2)

∪i∈I [bv(ti) ∪ vars(p̃i)] t = receive do ({:li, p̃i} → ti)i∈Iend

∪i∈I [bv(ti) ∪ vars(pi)] t = case e do (pi → ti)i∈Iend �

Definition A.3 (Variable Substitution).

e [v/x]
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v e = x

y e = y, y �= x

b e = b

e1 [v/x] � e2 [v/x] e = e1 � e2

not (e′ [v/x]) e = not e′

[ e1 [v/x] | e2 [v/x] ] e = [ e1 | e2 ]

{e1 [v/x] , . . . , en [v/x]} e = {e1, . . . , en}

t [v/x]
def=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

send (w [v/x] , {: l, e1 [v/x] , . . . , en [v/x]}) t = send (w, {: l, e1, . . . , en})
receive do ({li, p̃i} → ti [v/x])i∈Iend t = receive do ({li, p̃i} → ti)i∈Iend

f (e1 [v/x] , . . . , en [v/x]) t = f (e1, . . . , en)

case e [v/x] do (pi → ti [v/x])i∈Iend t = case e do (pi → ti)i∈Iend

y = t1 [v/x] ; t2 [v/x] t = (y = t1; t2), x �= y, y �= v �

Definition A.4 (Type). This partial function defines the types of basic values.

type(boolean)
def= boolean type(number)

def= number

type(atom)
def= atom type(ι)

def= pid, where ι is a pid instance �

Definition A.5 (Variable Patterns). Computes an ordered set of variables from a given pattern p.

vars(̃p)
def= vars(p1, . . . , pn)

def= vars(p1) ∪ · · · ∪ vars(pn)

vars(p)
def=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅ p = b

{x} p = x

vars(w1) ∪ vars(w2) p = [ w1 | w2 ]

∪i∈1..nvars(wi) p = {w1, . . . , wn} �

Definition A.6 (Function Details). We can extract function details (i.e., params, body, param_types, return_type,
dual) from a list of functions ( Q̃ ) and build a mapping, using set-comprehension, as follows. The list of functions ( Q̃ ) 
may consist of public (D) and private (P ) functions.

details(Q̃ )
def=

⎧⎪⎨⎪⎩ f/n :
⎡⎢⎣dual= y, params= x̃,

param_types= T̃ ,

return_type= T , body= t

⎤⎥⎦
∣∣∣∣∣∣∣

⎡⎢⎣[@session “S”]
@spec f

(
pid, T̃

) :: T

def[p] f (y, x̃)do t end

⎤⎥⎦ ∈ Q̃

⎫⎪⎬⎪⎭ �

Definition A.7 (Functions Names and Arity). This definition takes the set of all public function (D̃) as input, and returns a set 
of all public function names and their arity.

functions(D̃)
def=
{

f/n

∣∣∣∣∣
[
@session . . . ; @spec . . .

def f (y, x2, . . . , xn)do t end

]
∈ D̃

}
�

Definition A.8 (All Session Types). The function sessions(D̃), returns the session type corresponding to each annotated public 
function.
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sessions(D̃)
def=
{

f/n : S

∣∣∣∣∣
[
@session “S”; @spec . . .

def f (y, x2, . . . , xn)do t end

]
∈ D̃

}
In case the @dual annotation is used instead of @session, the dual session type is computed automatically. �

Appendix B. Proofs

In this appendix, we present the complete proofs of Proposition 1, Theorems 2 and 4, which were omitted from the main 
text.

B.1. Proofs for Proposition 1

Before proving Proposition 1, we must analyse some properties related to closed terms, where we see how they affect 
variable substitutions (Definition A.3). Lemma 5 states that if a variable x does not exist inside a term t , then, if we initiate x
with some value, term t must remain unaffected, i.e., t [v/x] = t . Restricting this statement, Corollary 6 states that, if x is not 
a free variable in t , then the same result should hold. Lemma 7 consists of two statements that compare the free variables 
in terms (or expressions) with those that include a substitution.

Lemma 5. x /∈ fv(t) ∪ bv(t) implies t [v/x] = t

Proof. By induction on the structure of t . �
Corollary 6. x /∈ fv(t) implies t [v/x] = t

Proof. A consequence of Lemma 5. �
Lemma 7.

i. x ∈ fv(t) implies fv(t [v/x]) = fv(t) \ {x}
ii. x ∈ fv(e) implies fv(e [v/x]) = fv(e) \ {x}

Proof. By induction on the structures of t and e for Items i and ii respectively. �
Lemma 8. match(p, v) = [v1, . . . , vn/x1, . . . , xn], implies vars(p) = {x1, . . . , xn}

Proof. By induction on the structure of p.

[p = b][p = b][p = b] The function match(b, v) succeeds only when v = b. So, by the match definition, when v = b,

match(b,b) = [ ] (B.1a)

By the vars definition, vars(b) = ∅, which matches the result from eq. (B.1a) since no variables where substituted.
[p = x][p = x][p = x] By the match definition, for any v ,

match(x, v) = [v/x] (B.1b)

By the vars definition, vars(x) = {x}, which matches the variable in the substitution of eq. (B.1b).
[p = [ w1 | w2 ]][p = [ w1 | w2 ]][p = [ w1 | w2 ]] By the match definition, for v = [ v1 | v2 ],

match(p, v) = match(w1, v1),match(w2, v2) = [ṽ1/x̃1] [ṽ2/x̃2] where (B.1c)

match(w1, v1) = [ṽ1/x̃1] (B.1d)

match(w2, v2) = [ṽ2/x̃2] (B.1e)

By case analysis of w1 and w2 from eqs. (B.1d) and (B.1e), we conclude that

vars(w1) = {x̃1} (B.1f)

vars(w2) = {x̃2} (B.1g)

We need to show that vars([ w1 | w2 ]) = {x̃1, ̃x2}. By the vars definition and eqs. (B.1f) and (B.1g), vars([ w1 | w2 ])
= vars(x̃1) ∪ vars(x̃2) = {x̃1} ∪ {x̃2}. This result matches the variables in the substitutions of eq. (B.1c).
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[p = {w1, . . . , wn}][p = {w1, . . . , wn}][p = {w1, . . . , wn}] Similar to the previous case. �
Lemma 9 (Closed Expression). fv(e) = ∅ and e → e′ implies fv(e′) = ∅

Proof. By induction on the structure of e. �
Lemmata 5–9 allow us to prove Closed Term Proposition (Proposition 1). By this proposition, we can say that a closed 

term t remains closed, even after t transitions to some new term t′ , producing an action α. Lemma 9 is analogous; it states 
that expressions remain closed after reductions.

Proposition 1 (Closed Term). If fv(t) = ∅ and t α−→ t′ , then fv(t′) = ∅

Proof. By induction on the structure of t .

[t = e][t = e][t = e] Holds immediately by the rule [rExpression] and the losed Expression] Lemma.

[t = (x = t1; t2)][t = (x = t1; t2)][t = (x = t1; t2)] Given that current structure of t , we can derive t α−→ t′ using two cases:

1. [RLET1] From the rule, t′ = (x = t′
1; t2) and

t1
α−→ t′

1 (B.2a)

From the premise, fv(t) = ∅, so by the fv definition, fv(t1) ∪ (fv(t2) \ {x}) = ∅, or equivalently

fv(t1) = ∅ (B.2b)

fv(t2) \ {x} = ∅ (B.2c)

If we apply the inductive hypothesis to eqs. (B.2a) and (B.2b), we get

fv(t′
1) = ∅ (B.2d)

So, by eqs. (B.2c) and (B.2d) and the definition of fv, we get fv(x = t′
1; t2) = ∅ as required.

2. [RLET2] From the rule, t = (x = v; t2) and t′ = t2 [v/x]. Since fv(t) = ∅, by the Free Variables Definition, fv(v) ∪
(fv(t2) \ {x}) = ∅, or equivalently

fv(v) = ∅ (B.2e)

fv(t2) \ {x} = ∅ (B.2f)

We need to show that fv(t′) = ∅, or fv(t2 [v/x]) = ∅, so we consider two sub-cases:

a. If x /∈ fv(t2), then by Corollary 6, t2 = t2 [v/x]. Substituting this in eq. (B.2f), results in fv(t2 [v/x]) = ∅, as 
required.

b. If x ∈ fv(t2), then by Lemma 7, we get fv(t2 [v/x]) = fv(t2) \ {x}. If we substitute this in eq. (B.2f), the case 
holds.

[t = send (w, {:l, e1, . . . , en})][t = send (w, {:l, e1, . . . , en})][t = send (w, {:l, e1, . . . , en})] Given that current structure of t , we can derive t α−→ t′ using two cases:

1. [RCHOICE1] From this rule, we know that α = τ and

t′ = send
(
ι,
{
:l, v1, . . . , vk−1, e′

k, . . . , en
})

ek → e′
k (B.3a)

Since fv(t) = ∅, then by the fv definition

fv(ι) = ∅ (B.3b)

fv(vi) = ∅ for i ∈ 1..k − 1 (B.3c)

fv(ei) = ∅ for i ∈ k..n (B.3d)

Applying the Closed Expression Lemma to eqs. (B.3a) and (B.3d), results in fv(ek) = ∅. Using this information 
along with eqs. (B.3b–d) and the fv definition, results in fv(t′) = ∅ as required.
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2. [RCHOICE2] In this case t = {:l, v1, . . . , vn} and t′ = {:lμ, v1, . . . , vn}. Since from the premise fv(t) = ∅, then 
using the fv definition,

fv(ι) = ∅, fv(vi) = ∅ for i ∈ 1..n (B.3e)

To show that fv({:lμ, v1, . . . , vn}) = ∅, we can apply eq. (B.3e) to the fv definition.

[t = receive do ({:li, p̃i} → ti)i∈Iend][t = receive do ({:li, p̃i} → ti)i∈Iend][t = receive do ({:li, p̃i} → ti)i∈Iend] From the premise, we know that fv(t) = ∅, so by the fv definition,

fv(ti) \ vars(p̃i) = ∅ for all i ∈ I (B.4a)

Given that current structure of t, we can deduce t α−→ t′ using [rBranch], where α =? 
{
:l j, v1, . . . , vn

}
for some 

j ∈ I , and

match(p̃ j, ṽ) = σ where σ = [v ′
1, . . . , v ′

k/x1, . . . , xk] (B.4b)

t′ = t jσ

From eq. (B.4b), we can apply Lemma 8 to get

vars(p̃ j) = {x1, . . . , xk} (B.4c)

Substituting eq. (B.4c) in eq. (B.4a) (for i = j), we get fv(t j) \ {x1, . . . , xk} = ∅. Our aim is to get t jσ = ∅, so we 
check if x ∈ fv(t j). If this is valid, then by Lemma 7, we can conclude that fv(t j [v ′

1/x1]) \ {x2, . . . , xk} = ∅. In case 
when x /∈ fv(t j), the same can be concluded by Corollary 6. Applying the same procedure for a total of k times, 
results in fv(t j [v ′

1, . . . , v ′
k/x1, . . . , xk]) = ∅, as required.

[t = f (w, e2, . . . , en)][t = f (w, e2, . . . , en)][t = f (w, e2, . . . , en)] Given the current structure of t , we can derive t α−→ t′ using two cases:

1. [RCALL1] From this rule, we know that α = τ , t = f
(

v1, . . . , vk−1, ek, . . . , en
)
, t′ = f

(
v1, . . . , vk−1, e′

k, . . . ,
en
)

and

ek → e′
k (B.5a)

Since fv(t) = ∅, then by the fv definition,

fv(vi) = ∅ for all i ∈ 1..k − 1 (B.5b)

fv(ei) = ∅ for all i ∈ k..n (B.5c)

Applying the Closed Expression Lemma to eqs. (B.5a) and (B.5c) (for i = k), we get

fv(ek) = ∅ (B.5d)

So, using the fv definition with eqs. (B.5b–d), result fv(t′) = ∅ holds as expected.
2. [RCALL2] From the rule, we know that α = f/ n and

t = f (ι, v2, . . . , vn) (B.5e)

t′ = t̄ [ι/y] [v2, . . . , vn/x2, . . . , xn]

Σ ( f/n) = Ω Ω.body= t Ω.params= x2, . . . , xn Ω.dual= y (B.5f)

Since term reduction can only happen with respect to a well-formed function information environment Σ , 
we can assume that the only free variables in a function body are the parameter types, or formally, for all 
f/ n ∈ dom(Σ), we have

fv
(
Σ( f/n).body

) \ (Σ( f/n).params∪ {Σ( f/n).dual})= ∅
Thus, using this information and substituting the information from eq. (B.5f), we get

fv(t̄) \ {y, x2, . . . , xn} = ∅ (B.5g)

To obtain the expected result (i.e., fv(t′) = ∅), we check if y ∈ fv(t̄). If this is true, then by Lemma 7, we can 
conclude that fv(t̄ [ι/y]) \ {x2, . . . , xn} = ∅. In case when x /∈ fv(t̄), the same can be concluded by Corollary 6. 
Applying the same procedure for the remaining free variables (i.e., x2, . . . , xn), we get fv(t j [v ′

1, . . . , v ′
k/x1, . . . , xk]) =

∅, as expected.
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[t = case e do (pi → ti)i∈Iend][t = case e do (pi → ti)i∈Iend][t = case e do (pi → ti)i∈Iend] Given that current structure of t , which implicitly contains the catch-all pattern, we can 
derive t α−→ t′ using two cases:

1. [RCASE1] From the rule we know that t′ = case e′ do (pi → ti)i∈Iend, and from the premise we know that

e → e′ (B.6a)

Since fv(t) = ∅, by the fv definition, we know that

fv(ti) \ vars(pi) = ∅ for all i ∈ I (B.6b)

fv(e) = ∅ (B.6c)

Applying Closed Expression Lemma to eqs. (B.6a) and (B.6c), results in fv(e′) = ∅. Thus, using this information, 
along with eq. (B.6b) and the fv definition, we get fv(t′) = ∅ as needed.

2. [RCASE2] From the rule, we know that t = case v ′ do (pi → ti)i∈Iend, e = v ′ and for some j ∈ I ,

match(p j, v ′) = σ where σ = [v1, . . . , vn/x1, . . . , xn] (B.6d)

t′ = t jσ (B.6e)

From the premise, we know that fv(t) = ∅, so by the fv definition, fv(v ′) = ∅ and

fv(ti) \ vars(p̃i) = ∅ for all i ∈ I (B.6f)

From eq. (B.6d), we can apply Lemma 8, to get

vars(p j) = {x1, . . . , xk} (B.6g)

Substituting eq. (B.6g) in eq. (B.6f) (for i = j), we get fv(t j) \ {x1, . . . , xk} = ∅. By similar reasoning from 
previous cases, we get fv(t′) = ∅, as required. �

B.2. Proofs for Theorem 2

Before proving Theorem 2, we consider some other necessary lemmata. The Δ-Weakening Lemma weakens (i.e., extends) 
the session typing environment (Δ) without affecting the overall typing result.

Lemma 10 (Δ-Weakening). If Δ · Γ �w S � t : T � S ′ , then (Δ, Δ′) · Γ �w S � t : T � S ′

Proof. Follows by induction on the derivation of Δ · Γ �w S � t : T � S ′ . We analyse the significant cases:

[TUNKNOWNCALL] From the rule, we know that

(Δ, f/n : S) · Γ ′ �y S � t̄ : T � S ′ (B.7a)

Γ �exp ei : Ti for all i ∈ 2..n (B.7b)

Applying the inductive hypothesis to eq. (B.7a) results in 
(
Δ,Δ′, f/n : S

) ·Γ ′ �y S �t : T � S ′ , where we assume that 
f/ n /∈ dom(Δ′). So, using the latter result, eq. (B.7b) and [tUnknownCall] results in (Δ, Δ′) · Γ �w S � t : T � S ′ , 
as required.

[TKNOWNCALL] From the rule, we know that

Δ( f/n) = S (B.8a)

Γ �exp ei : Ti for all i ∈ 2..n (B.8b)

If we extend Δ by Δ′ , then (Δ, Δ′)( f/ n) = S remains valid. So, using this information, along with eq. (B.8b) in 
[tKnownCall], we get (Δ, Δ′) · Γ �w S � t : T � end, as required.

Cases [tChoice] and [tExpression] hold immediately since Δ is unused. The remaining cases hold effortlessly by the induc-
tive hypothesis. �

The type system observes the session fidelity property if well-typed terms remain well-typed after transitioning. As terms 
transition, in particular in the rules [rLet2], [rCall2] and [rBranch], variables are substituted with values. The Substitution
Lemma (Lemma 11) ensures that when free variables inside of terms and expressions are substituted with a closed value, 
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the resulting terms and expressions remain well-typed. As a result, the substituted variables become redundant in variable 
binding environment (Γ ), and thus can be removed from Γ . This lemma consists of two statements, where substitution is 
performed in (i) terms, and (ii) expressions.

Lemma 11 (Substitution).

i. If Γ �exp v : T ′ and Δ · (Γ, x : T ′) �w S � t : T � S ′ , then Δ · Γ �w[v/x] S � t [v/x] : T � S ′
ii. If Γ �exp v : T ′ and Γ, x : T ′ �exp e : T , then Γ �exp e [v/x] : T

Proof. By induction on the derivation of Δ · (Γ, x : T ′) �w S � t : T � S ′ for Item i, and by induction on the derivation of 
Γ, x : T ′ �exp e : T for Item ii. We show the main cases for Item i:

[TLET] From the rule, we know that t = (x′ = t1; t2), and

x′ �= w (B.9a)

Γ �exp v : T ′ (B.9b)

Δ · (Γ, x : T ′) �w S � t1 : T ′′ � S ′′ (B.9c)

Δ · (Γ, x : T ′, x′ : T ′′) �w S ′′ � t2 : T � S ′ (B.9d)

The variable binding environment of eq. (B.9d) can be reordered to

Δ · (Γ, x′ : T ′′, x : T ′) �w S ′′ � t2 : T � S ′ (B.9e)

We need to show that Δ · Γ �w[v/x] S � (x′ = t1; t2) [v/x] : T � S ′ , which by the Variable Substitution Definition, is 
equivalent to

Δ · Γ �w[v/x] S � x′ = t1 [v/x] ; t2 [v/x] : T � S ′ (B.9f)

for x �= x′ and x′ �= v . To obtain eq. (B.9f), we need some preliminary results. Applying the inductive hypothesis to 
eqs. (B.9b) and (B.9c), and similarly to eqs. (B.9b) and (B.9e), results in

Δ · Γ �w[v/x] S � t1 [v/x] : T ′′ � S ′′ (B.9g)

Δ · (Γ, x′ : T ′′) �w[v/x] S ′′ � t2 [v/x] : T � S ′ (B.9h)

From eq. (B.9a) and the Variable Substitution Definition we know that x �= w [v/x]. Applying this information, along 
with eqs. (B.9g) and (B.9h) to the premise of [tLet] results in eq. (B.9f), as required.

[TBRANCH] From the rule, [tBranch], we know that for some n ∈N and

Γ �exp v : T ′ (B.10a)

S = &
{

?li
(
T 1

i , . . . , T n
i

)
.Si
}

i∈I

t = receive do
({
:li, p1

i , . . . , pn
i

}→ ti
)

i∈Iend (B.10b)

From the premise, we also know that, for all i ∈ I and j ∈ 1..n:

simplepat(p j
i , T j

i ) (B.10c)

�w
pat p j

i : T j
i � Γ

j
i (B.10d)

Δ · (Γ, x : T ′,Γ 1
i , . . . , Γ n

i

) �w Si � ti : T � S ′ (B.10e)

This case holds if the following statement is obtained:

Δ · Γ �w[v/x] S � t [v/x] : T � S ′ (B.10f)

where t [v/x] = receive do
({
:li, p1

i , . . . , pn
i

}→)
i∈Iend. To obtain eq. (B.10f) we need to use the [tBranch]

rule which requires multiple premises. Applying the inductive hypothesis to eqs. (B.10a) and (B.10e) results in

Δ · (Γ,Γ 1
i , . . . , Γ n

i

) �w[v/x] Si � ti [v/x] : T � S ′ for all i ∈ I (B.10g)

If w �= x, then eq. (B.10d)

�w[v/x]
pat p j : T j � Γ

j for all j ∈ 1..n (B.10h)
i i i
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since by the Variable Substitution Definition, w = w [v/x]. Therefore, eqs. (B.11c), (B.10g) and (B.10h) can be applied 
to the premise of [tBranch] to obtain eq. (B.10f):

Δ · Γ �w[v/x] S � t [v/x] : T � S ′

which is the required result. In case when w = x, then an additional mapping may be obtained from the pattern 
type rule which maps the dual pid to some type. However, since in this case x would be substituted to a variable, 
then the extra mapping does not affect the result, obtaining eq. (B.10f) as required.

[TCHOICE] From the rule, we know that for some μ ∈ I , T = {atom, T 1
μ, . . . , T n

μ}, S = ⊕{!lμ

(
T̃μ

)
.Sμ

}
i∈I and

t = send
(
ι,
{
:lμ, e1, . . . , en

})
(B.11a)

Γ, x : T ′ �exp e j : T j
μ for all j ∈ 1..n (B.11b)

Γ �exp v : T ′ (B.11c)

Applying eqs. (B.11b) and (B.11c) to Item ii of Lemma 11 results in Γ �exp e j [v/x] : T j
μ for all j ∈ 1..n. Applying this 

result to [tChoice] results in

Δ · Γ �w[v/x] S � t [v/x] : T � S ′

which is the required result, since t [v/x] = send
(

w [v/x],
{
:lμ, e1 [v/x] , . . . , en [v/x]

})
. �

Lemma 12 links expression types to the basic values (and vice versa), e.g. the value 5 has type number.

Lemma 12 (Value Typing).
i. Γ �exp v : boolean iff v = boolean

ii. Γ �exp v : number iff v = number
iii. Γ �exp v : atom iff v = atom

iv. Γ �exp v : pid iff v = ι
iiv. Γ �exp v : [ T ] iff v = [ v1 | v2 ] or v = [ ]

iiiv. Γ �exp v : {T̃ } iff v = {
ṽ ′}

Proof. By case analysis on the expression typing rules. �
Lemma 13 provides a guarantee that the variables inside the substitutions produced by the match function have the 

expected types. It also ensures that the variables from the same substitutions, which are stored in Γ , are assigned with the 
same types. Consequently, Corollary 14 provides the same guarantees but for a sequence of patterns and values.

Lemma 13. For all patterns p and values v,

match(p, v) = [v1, . . . , vn/x1, . . . , xn]

�w
pat p : T � Γ

∅ �exp v : T

⎫⎪⎬⎪⎭ =⇒
{

Γ = x1 : T1, . . . , xn : Tn

∅ �exp vi : Ti for i ∈ 1..n

Proof. By induction on the definition match(p, v). We proceed by case analysis:

[p = b, v = b][p = b, v = b][p = b, v = b] By the definition, match(b, b) = [ ], so no substitutions are expected. By �w
pat b : T � Γ and [tpBasic], the 

variable binding environment (i.e., Γ ) must be empty, so case holds immediately.
[p = x][p = x][p = x] By definition, match(x, v) = [v/x], and from the premise we know that

∅ �exp v : T . (B.12a)

From �w
pat x : T � Γ and [tpVariable], we know that Γ must contain x : T only. Therefore, case holds by eq.

(B.12a).
[p = [ w1 | w2 ] , v = [ v1 | v2 ]][p = [ w1 | w2 ] , v = [ v1 | v2 ]][p = [ w1 | w2 ] , v = [ v1 | v2 ]] Using the match definition, match([ w1 | w2 ] , [ v1 | v2 ]) = match(w1, v1), match(w2, v2), 

or equivalently

match(w1, v1) = [v ′
1, . . . , v ′

j/x1, . . . , x j] (B.13a)

match(w2, v2) = [v ′
k , . . . , v ′

n/xk , . . . , xn] where k = j + 1 (B.13b)

From the premise, applying [tList] to ∅ �exp [ v1 | v2 ] : [ T ] , results in

∅ �exp v1 : T and ∅ �exp v2 : [ T ] (B.13c)

Applying also [tpList] to �w
pat [ w1 | w2 ] : [ T ] � Γ , results in
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�w
pat w1 : T � Γ ′ and �w

pat w2 : [ T ] � Γ ′′ (B.13d)

Applying the inductive hypothesis twice to eqs. (B.13a–d) results in

Γ ′ = x1 : T1, . . . , x j : T j and Γ ′′ = xk : Tk, . . . , xn : Tn (B.13e)

∅ �exp v ′
i : Ti for all i ∈ 1..n (B.13f)

Therefore, case holds by eqs. (B.13e) and (B.13f), since Γ = Γ ′, Γ ′′ .
[p = {w1, . . . , wm} , v = {v1, . . . , vm}][p = {w1, . . . , wm} , v = {v1, . . . , vm}][p = {w1, . . . , wm} , v = {v1, . . . , vm}] Using the match definition, match({w1, . . . , wm} , {v1, . . . , vm}) = match(w1, v1),

. . . , match(wm, vm) = σ , or equivalently, for i ∈ 1..m,

match(wi, vi) = σi given that σ = σ1, . . . , σm (B.14a)

From ∅ �exp {v1, . . . , v2} : {T1, . . . , Tm}, by [tTuple], we know that

∅ �exp vi : Ti (B.14b)

Applying also [tpTuple] to �w
pat {w1, . . . , wm} : {T1, . . . , Tm} � Γ1, . . . , Γm , results in

�w
pat wi : Ti � Γi (B.14c)

Applying the inductive hypothesis m times to eqs. (B.14a–c) results in

Γ = Γ1, . . . , Γm = x1 : T1, . . . , xn : Tn

∅ �exp v j : T j for all j ∈ 1..n

as required. �
Corollary 14. For all patterns ̃p = p1, . . . , pn, values ̃v = v1, . . . , vn and ∀ j ∈ 1..n, then the following implication holds.

match(̃p, ṽ) = [v ′
1, . . . , v ′

k/x1, . . . , xk]

�y
pat p j : T j � Γ j

∅ �exp v j : T j

⎫⎪⎬⎪⎭ =⇒
{

Γ̃ = Γ 1, . . . , Γ j = x1 : T1, . . . , xk : Tk

∅ �exp v ′
i : Ti for i ∈ 1..k

Proof. Take j = 1, where we know that match(p1, v1) = σ1, �y
pat p1 : T 1 � Γ 1 and ∅ �exp v1 : T 1. Then, applying this 

information to Lemma 13, we get

Γ 1 = x1
1 : T 1

1 , . . . , x1
m : T 1

m (B.15a)

∅ �exp v1
i : T 1

i for i ∈ 1..m (B.15b)

Generalising for j ∈ 1..n, then Γ̃ = Γ 1, . . . , Γ n holds by generalising eq. (B.15a). Also, ∅ �exp v ′
i : Ti for i ∈ 1..k holds by eq.

(B.15b). Thus, Corollary 14 holds by applying Lemma 13 n times. �
Lemma 15 shows that the type of expressions remains unchanged (or preserved) after an expression is reduced. This 

means that expressions have a constant type in all steps of reductions, until the expression cannot be reduced further.

Lemma 15 (Preservation (Expressions)). If ∅ �exp e : T and e → e′ , then ∅ �exp e′ : T

Proof. Follows by induction on ∅ �exp e : T . We consider the main cases:

[TTUPLE] From the rule, we know that e = {e1, . . . , ek, . . . , en}, T = {T1, . . . , Tn} and

∅ �exp ei : Ti for all i ∈ 1..n (B.16a)

Deriving e → e′ using [reTuple] results in e′ = {
v1, . . . , vk−1, e′

k, . . . , en
}

and

ek → e′
k (B.16b)

Applying eqs. (B.16a) and (B.16b) to the inductive hypothesis results in ∅ �exp e′
k : Tk . By the latter, eq. (B.16a) and 

[tTuple], we get ∅ �exp e′ : T , as required.
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[TARITHMETIC] From the rule we know that e = e1 � e2, T = number and

∅ �exp e1 : number (B.17a)

∅ �exp e2 : number (B.17b)

e → e′ can be derived using different rules, so we consider three sub-cases:

1. [REOPERATION1] From this rule we know that e′ = e′
1 � e2 and

e1 → e′
1 (B.17c)

Applying eqs. (B.17a) and (B.17c) to the inductive hypothesis results in ∅ �exp e′
1 : number. Using this informa-

tion, along with eq. (B.17b) in [tArithmetic], results in ∅ �exp e′ : number, as required.
2. [REOPERATION2] Analogous to [reOperation1].
3. [REOPERATION3] From the rule, we know that e = v1 � v2 and e′ has some value v = v1 � v2. Since we know 

that ∅ �exp e : T , or ∅ �exp v1 � v2 : T , then ∅ �exp e′ : T follows immediately given that e′ = v = v1 � v2.

Regarding the remaining cases: Cases [tBasic], [tVariable] and [tEList] hold trivially, since e → e′ does not apply. Cases 
[tComparison] and [tBoolean] are analogous to [tArithmetic]. Cases [tList] and [tNot] take a similar approach to 
[tTuple]. �

Lemmata 10–15 allow us to prove the Session Fidelity Theorem. This is one of the main results of Section 5.

Theorem 2 (Session Fidelity). If Δ · ∅ �w
Σ S � t : T � S ′ and t α−→

Σ
t′

— for α =? {:l, ṽ} and some session type S ′′ = after(S, α), then there exists some Δ′, such that Δ′ · ∅ �w
Σ S ′′ � t′ : T � S ′ and 

after(Δ, α, S) = Δ′
— for α ∈ { f/n, τ , ι! {:l, ṽ}}, then there exists some S ′′ and Δ′ , such that Δ′ · ∅ �w

Σ S ′′ � t′ : T � S ′ for after(S, α) = S ′′ and 
after(Δ, α, S) = Δ′

Proof. By induction on the typing derivation Δ · ∅ �w
Σ S � t : T � S ′ .

[TLET] From the rule, we know that x �= w , and

t = (x = t1; t2) (B.18a)

Δ · ∅ �w S � t1 : T ′ � S ′′′ (B.18b)

Δ · (x : T ′) �w S ′′′ � t2 : T � S ′ (B.18c)

From the structure of t (eq. (B.18a)), term transitions (t α−→ t′) can be derived using two rules, so we consider two 
sub-cases:

1. [RLET1] From this rule, we know that t′ = (x = t′
1; t2) and

t1
α−→ t′

1 (B.18d)

If α =? {:l, ṽ}, then by α, eqs. (B.18b) and (B.18d) and the inductive hypothesis we obtain

Δ′ · ∅ �w S ′′ � t′
1 : T ′ � S ′′′ (B.18e)

where after(Δ, α, S) = Δ′ . In case that α �=? {:l, ṽ}, eq. (B.18e) can be obtained as well, however we also 
require after(S, α) = S ′′ , which holds immediately. Also, by the After Function Definition, we know that Δ′ is 
an extension of Δ, so we can apply the Δ-Weakening Lemma on eq. (B.18c) to get

Δ′ · (x : T ′) �w S ′′′ � t2 : T � S ′ (B.18f)

Using eqs. (B.18e) and (B.18f) as the premise for rule [tLet], we obtain:

Δ′ · ∅ �w S ′′ � t′
1 : T ′ � S ′′′ Δ′ · (x : T ′) �w S ′′′ � t2 : T � S ′ x �= w

[tLet]
Δ′ · ∅ �w S ′′ � x = t′ ; t : T � S ′
1 2
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where Δ′ · ∅ �w S ′′ � t′ : T � S ′ is the expected result.
2. [RLET2] From the rule, we know that t = (x = v; t2), t′ = t2 [v/x] and α = τ , therefore after(S, α) = S = S ′′′ . 

Since t1 = v , by eq. (B.18b) and [tExpression], then ∅ �exp v : T ′ holds. If we apply this latter information and 
eq. (B.18c) to the Substitution Lemma, we obtain Δ · ∅ �w[v/x] S ′′′ � t2 [v/x] : T � S ′ . This is the expected result, 
since by the Variable Substitution Definition, w [v/x] = w; and by the after definition, Δ′ = Δ.

[TBRANCH] From the rule, we know that for some n ∈N then

S = &
{

?li
(
T 1

i , . . . , T n
i

)
.Si
}

i∈I (B.19a)

t = receive do
({
:li, p1

i , . . . , pn
i

}→ ti
)

i∈Iend (B.19b)

Sμ = after(&
{

?li
(
T̃ i
)
.Si
}

i∈I ,α) (B.19c)

Since α has to be an incoming message, we focus solely on te first case of the Session Fidelity Theorem. From the 
premise, we also know that some properties regarding each individual branch from the receive construct:

∀i ∈ I ·
{

�w
pat p j

i : T j
i � Γ

j
i for all j ∈ 1..n (B.19d)

Δ · (Γ 1
i , . . . , Γ n

i

) �w Si � ti : T � S ′ (B.19e)

From the structure of t (eq. (B.19b)), term reduction (t
α−→ t′) can only be derived using [rBranch], where 

execution progresses to a single branch (i.e., tμ), rather than all branches. The right branch is chosen by matching 
its label, li∈I , to the label received in the incoming message, lμ . Thus, for some k ∈ N , there exists some μ ∈ I
where lμ = li , and

α = ?
{
:lμ, v1, . . . , vn

}
(B.19f)

match((p1
μ, . . . , pn

μ), (v1, . . . , vn)) = [v ′
1, . . . , v ′

k/x1, . . . , xk] (B.19g)

t′ = tμ [v ′
1, . . . , v ′

k/x1, . . . , xk]

From eq. (B.19f), α refers to the message received from the dual process, which is assumed (from the premise of 
the theorem) to be valid by the after function (eq. (B.19c)). We can compare the contents of this message to the 
original session type S (eq. (B.19a)), to obtain information regarding the types of the individual values inside α. 
We know that α contains a label lμ and n values. Thus for j ∈ 1..n, each value v j , has a corresponding type T j

μT j
μT j
μ

from the session type S , where S contains ?lμ

(
T 1
μ, . . . , T n

μT 1
μ, . . . , T n

μT 1
μ, . . . , T n

μ

)
.Sμ . Formally, this can be written as

∅ �exp v j : T j
μ for all j ∈ 1..n (B.19h)

Applying eqs. (B.20), (B.19g) and (B.19h) into Corollary 14, results in Γ̃μ = Γ 1
μ, . . . , Γ n

μ = x1 : T1, . . . , xk : Tk and

∅ �exp v ′
m : Tm for m ∈ 1..k (B.19i)

Applying eq. (B.19i) and Δ · Γ̃μ �w Sμ � tμ : T � S ′ (from eq. (B.19e) for i = μ) repeatedly to the Substitution
Lemma, we get

Δ · ∅ �w Sμ � tμ [v ′
1, . . . , v ′

k/x1, . . . , xk] : T � S ′ (B.19j)

Since after(Δ, α, S) = Δ, then eq. (B.19j) is the expected result.
[TCHOICE] From the rule, we know that for some μ ∈ I , T = {atom, T 1

μ, . . . , T n
μ} and

S = ⊕{!li
(
T̃ i
)
.Si
}

i∈I (B.20a)

t = send
(
ι,
{
:lμ, e1, . . . , en

})
(B.20b)

∅ �exp e j : T j
μ for all j ∈ 1..n (B.20c)

From the structure of t (eq. (B.20b)), term reduction (t
α−→ t′) can be derived by several rules, so we have to 

consider two sub-cases:

1. Derived by the rule [RCHOICE1], we know that α = τ and

t′ = send
(
ι,
{
:l, v1, . . . , vk−1, e′

k, . . . , en
})

ek → e′
k (B.20d)
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Applying eq. (B.20c) (for j = k) and eq. (B.20d) to the Preservation (Expressions) Lemma, we get ∅ �exp e′
k :

Tk . Applying this and eq. (B.20c) to [tChoice] results in Δ · ∅ �w S � t′ : T � Sμ . Since after(S, τ ) = S and 
after(Δ, α, S) = Δ, this holds.

2. [RCHOICE2] From this rule we know that

t′ = {:lμ, v1, . . . , vn}
α = ι!{:lμ, v1, . . . , vn

}
(B.20e)

where α (eq. (B.20e)) is the message being sent to the dual process with pid ι – so, we only consider the 
second case of the Session Fidelity Theorem.

Recall eq. (B.20c), where we have ∅ �exp e j : T j
μT j
μT j
μ for j ∈ 1..n. Notice, that the types T j

μT j
μT j
μ were obtained from 

the session type S (eq. (B.20a)), where S contains !lμ

(
T 1
μ, . . . , T n

μT 1
μ, . . . , T n

μT 1
μ, . . . , T n

μ

)
.Sμ . Now, by the premise of [rChoice2], 

since e j = v j , then

∅ �exp v j : T j
μ for all j ∈ 1..n (B.20f)

By the Value Typing Lemma, we also know that ∅ �exp :lμ : atom. Using this latter information and eq. (B.20f)
in [tTuple] and [tExpression], we get the required result:

∅ �exp :lμ : atom ∀ j ∈ 1..n ∅ �exp v j : T j
μ

[tTuple] ∅ �exp {:lμ, v1, . . . , vn} : {atom, T 1
μ, . . . , T n

μ}
[tExpression]

Δ · ∅ �y Sμ � {:lμ, v1, . . . , vn} : T � Sμ

(B.20g)

Result from eq. (B.20g) holds as required, since after(S, α) = Sμ and after(Δ, α, S) = Δ.

[TKNOWNCALL] From the rule, we know that

t = f (w, e2, . . . , en) (B.21a)

∅ �exp ei : Ti for all i ∈ 2..n (B.21b)

From the structure of t (eq. (B.21a)), term transitions (t α−→ t′) can be derived using two rules, so we consider two 
sub-cases:

1. [RCALL1] From this rule, we know that t = f
(

v1, . . . , vk−1, ek, . . . , en
)
, α = τ , w = v1 and

t′ = f
(

v1, . . . , vk−1, e′
k, . . . , en

)
ek → e′

k (B.21c)

Applying eq. (B.21b) (for i = k) and eq. (B.21c) to the Preservation (Expressions) Lemma, we get

∅ �exp e′
k : Tk (B.21d)

By eqs. (B.21b) and (B.21d) and [tKnownCall], we get

Δ · ∅ �w S � f
(

v1, . . . , vk−1, e′
k, . . . , en

) : T � S ′ (B.21e)

eq. (B.21e) holds since v1 = w .
2. [RCALL2] From the rule, we know that α = f/ n, w = ι and

t = f (ι, v2, . . . , vn) (B.21f)

t′ = t̄ [ι/y] [v2, . . . , vn/x2, . . . , xn]

Σ ( f/n) = Ω where

{
Ω.return_type= T

Ω.param_types= T2, . . . , Tn
(B.21g)

Δ( f/n) = S (B.21h)

Since all known functions (i.e., f/ n ∈ dom(Δ)) by eq. (B.21h)) are already typechecked once before, then from 
the function information environment (i.e., Σ ) and eq. (B.21g), we can assume that

Δ · Γ ′ �y S � t̄ : T � end (B.21i)
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where Γ ′ contains only the mapping from the parameter names to their types, i.e., Γ ′ = (y : pid, x2 :
T2, . . . , xn : Tn) – our aim is to change Γ ′ to ∅. This assumption in eq. (B.21i) is possible since a well-
formed Σ dictates that the only free variables in a function body are the parameter types, or formally, for all 
f/ n ∈ dom(Σ), we have

fv
(
Σ( f/n).body

) \ (Σ( f/n).params∪ {Σ( f/n).dual})= ∅
By eq. (B.21f) and Value Typing Lemma we know that ∅ �exp ι : pid. Applying this information and eq. (B.21i)
to the Substitution Lemma results in

Δ · (x2 : T2, . . . , xn : Tn) �y[ι/y] S � t̄ [ι/y] : T � end (B.21j)

where by the Variable Substitution Definition, y [ι/y] = ι = w .
Applying the Substitution Lemma multiple times to eqs. (B.22b) and (B.21j), results in

Δ · ∅ �w S � t̄ [ι/y] [v2, . . . , vn/x2, . . . , xn] : T � end (B.21k)

as required, since after(S, f/ n) = S and S ′ = end. Also, after(Δ, f/ n, S) = (Δ, f/ n : S), but from eq. (B.21h), f/ n
is already mapped to S in the session typing environment, therefore (Δ, f/ n : S) = Δ, as needed.

[TUNKNOWNCALL] From the rule, we know

t = f (w, e2, . . . , en) (B.22a)

∅ �exp ei : Ti for all i ∈ 2..n (B.22b)

From the premise we also know that

(Δ, f/n : S) · (y : pid, x̃ : T̃
) �y S � t̄ : T � S ′ where x̃, T̃ , t̄, T and y are

obtained from the function information environment (i.e.,Σ) (B.22c)

From the structure of t (eq. (B.22a)), term transitions (t α−→ t′) can be derived using two rules, so we consider two 
sub-cases:

1. [RCALL1] From this rule we know that α = τ , and

t′ = f
(

v1, . . . , vk−1, e′
k, . . . , en

)
ek → e′

k (B.22d)

Applying eq. (B.22b) (for i = j) and eq. (B.22d) to the Preservation (Expressions) Lemma, we get

∅ �exp e′
j : T j (B.22e)

Using eq. (B.22b) and eq. (B.22e) in the rule [tUnknownCall], results in

Δ · ∅ �w S � f
(

v1, . . . , vk−1, e′
k, . . . , en

) : T � S ′

This holds since after(S, τ ) = S and after(Δ, τ , S) = Δ.
2. [RCALL2] From the rule, we know that α = f/ n and

t = f (ι, v2, . . . , vn) (B.22f)

w = ι (B.22g)

t′ = t̄ [ι/y] [v2, . . . , vn/x2, . . . , xn]

By eq. (B.22f) and the Value Typing Lemma we know that ∅ �exp ι : pid. Applying this information and eq.
(B.22c) to the Substitution Lemma results in

(Δ, f/n : S) · (̃x : T̃
) �y[ι/y] S � t̄ [ι/y] : T � S ′ (B.22h)

where by the Variable Substitution Definition and eq. (B.22g), y [ι/y] = ι = w .
Applying the Substitution Lemma repeatedly to eqs. (B.22b) and (B.22h), results in

(Δ, f/n : S) · ∅ �w S � t̄ [ι/y] [v2, . . . , vn/x2, . . . , xn] : T � S ′

where after(S, f/ n) = S and after(Δ, f/ n, S) = (Δ, f/ n : S), as required.
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[TCASE] From the rule, we know that for some type U ,

t = case e do (pi → ti)i∈I (xall → tall)end (B.23a)

Δ · (xall : U ) �w S � tall : T � S ′ (B.23b)

∅ �exp e : U (B.23c)

�w
pat pi : U � Γ ′

i for all i ∈ I (B.23d)

Δ · Γ ′
i �w S � ti : T � S ′ for all i ∈ I (B.23e)

By eq. (B.23a), term reduction, t α−→ t′ , can be derived using two rules, so we consider two sub-cases:

1. [RCASE1] From the rule we know that t′ = case e′ do (pi → ti)i∈I (xall → tall)end. From the premise we know 
that

e → e′ (B.23f)

By eqs. (B.23c) and (B.23f) and the Preservation (Expressions) Lemma, we get

∅ �exp e′ : U (B.23g)

Using eqs. (B.23b), (B.23d), (B.23e), (B.23g), and [tCase], we get

Δ · ∅ �w S � case e′ do (pi → ti)i∈I (xall → tall)end : T � S ′

which holds as expected given that after(S, τ ) = S and after(Δ, τ , S) = Δ.
2. [RCASE2] From the rule, we know that t = case v do (pi → ti)i∈I (xall → tall)end and e = v . For convenience, 

we include the catch-all pattern in t with the remaining patterns, so t = case v do (pi → ti)i∈I ′end. So, for 
some j ∈ I ′ ,

match(p j, v) = σ where σ = [v1, . . . , vn/x1, . . . , xn] (B.23h)

t′ = t jσ (B.23i)

By eqs. (B.24c), (B.23d) and (B.23h) and Lemma 13, we know that Γ ′
j = x1 : T1, . . . , xn : Tn and

∅ �exp vk : Tk for all k ∈ 1..n (B.23j)

Then, by repeatedly applying the Substitution Lemma to eq. (B.23j), (B.23e for i = j), we get

Δ · ∅ �w S � t jσ : T � S ′

This holds since after(S, τ ) = S and after(Δ, τ , S) = Δ. �
[TEXPRESSION] From the rule, we know that

t = e (B.24a)

∅ �exp e : T (B.24b)

From the structure of t (eq. (B.24a)), term transition (t α−→ t′) can only be derived using [rExpression], resulting in 
an internal transition (i.e., α = τ )

e → e′ (B.24c)

By Lemma 15 and eqs. (B.24b) and (B.24c), we know that

∅ �exp e′ : T (B.24d)

Thus, case holds by [tExpression] and eq. (B.24d).
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B.3. Proofs for Theorem 4

In this section, we provide the proofs of Proposition 3 which lead to the proofs for progress of expressions (Lemma 16) 
and terms (Theorem 4).

Proposition 3. Any well-typed term (Δ · Γ �w
Σ S � t : T � S ′) following the branching session type is able to process any valid 

incoming message, i.e.,

t = receive do
({
:li, p1

i , . . . , pn
i

}→ ti
)

i∈Iend

S = &
{

?li
(
T 1

i , . . . , T n
i

)
.Si
}

i∈I

after(S,?
{
lk, v1, . . . , vn}) = Sk for some k ∈ I

⎫⎪⎪⎬⎪⎪⎭ =⇒ match(p j
k, v j)i∈1..n is defined

Proof. A well-typed term following the branching session type (&
{
. . .
}

), has to be precisely a receive construct, as 
shown by term t . Such term can only be typed using the [tBranch] rule, from which we infer that

simplepat(p j
i , T j

i )i∈I, j∈1..n

The simplepat statement indicates that all of the patterns used in the branches are simple ones, i.e., p j
i has the form of 

a variable (x j
i ) or a tuple of variables (x j

i ). From the third statement, we know that a message is valid if it matches with 
one of the labels available in t (i.e., lk for some k ∈ I) and each payload value (v1, . . . , vn) matches with the payload types 
dictated by the session type S . Therefore we can apply x j

i and v j (for all j ∈ 1..n) to the match function, to obtain a series 
of variable substitutions, as required. �
Lemma 16 (Progress (Expressions)). If ∅ �exp e : T , then either e is a value, or else there exists some e′ such that e → e′

Proof. By induction on the typing derivation ∅ �exp e : T . We consider the main cases.

[TTUPLE] From the rule, we know that e = {e1, . . . , ek, . . . , en} and

∅ �exp ei : Ti for all i ∈ 1..n (B.25)

By the inductive hypothesis and eq. (B.25), expression ei can either be a value or reduce to e′
i . We consider both 

sub-cases:

1. If for any i ∈ 1..n, ei → e′
i , then case holds by [reTuple], resulting in the reduction e → {v1, . . . , vi−1, e′

i, . . . ,
en}.

2. Otherwise, if for all i ∈ 1..n, ei = vi , then case holds since the tuple {v1, . . . , vn} is a value.

[TARITHMETIC] From the rule we know that e = e1 � e2 and

∅ �exp e1 : number (B.26a)

∅ �exp e2 : number (B.26b)

By the inductive hypothesis and eq. (B.26a), e1 can either be a value or reduce to e′
1. We consider both sub-cases:

1. If e1 → e′
1, then case holds by [reOperation1], resulting in the reduction e → e′

1 � e2.
2. Otherwise, if e1 = v1, we have to consider the behaviour of e2, which by the inductive hypothesis and eq.

(B.26b) results in another two sub-cases:

2a. If e2 → e′
2, then case holds by [reOperation2], resulting in the reduction e → v1 � e′

2.
2b. Otherwise, if e2 is a value, then case holds by 

[
reOperation3

]
.

Regarding the remaining cases: Cases [tBoolean], [tComparison], [tList] and [tNot] are analogous to the previous case. 
Finally, cases [tBasic], [tEList] hold immediately since e in these instances is a value. �
Theorem 4 (Progress). If Δ · ∅ �w

Σ S � t : T � S ′ , then either t is a value, or else there exists some term t′ and action α such that t α−→
Σ

t′

and after(S, α) is defined

Proof. By induction on the typing derivation Δ · ∅ �w S � t : T � S ′ .
Σ
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[TLET] From the rule, we know that t = (x = t1; t2), and

Δ · ∅ �w S � t1 : T ′ � S ′′′ (B.27)

By the inductive hypothesis and eq. (B.27), we know that after(S, α) is defined and that the term t1 can be a 
value, or else transition to a new term t′

1. We consider both sub-cases:

1. If t1
α−→ t′

1, then case holds by [rLet1], resulting in t α−→ t′
1; t2.

2. Otherwise, if t1 = v1, then case holds by [rLet2], resulting in the internal transition t τ−→ t2 [v2/x].

In both cases, after(S, α) remains defined from the inductive hypothesis.
[TBRANCH] From the rule, we know that

t = receive do ({:li, p̃i} → ti)i∈Iend (B.28)

S = &
{

?li
(
T̃ i
)
.Si
}

i∈I (B.29)

A receive term (eq. (B.28)) transitions to a new subterm (ti ) when a message (α =?{:l j, v1, . . . , vn}) is re-
ceived. An incoming message is guaranteed to match with one of the available patterns, since (i) we are dealing 
with a trusted observer which sends valid actions, and (ii) the branches are restricted to simple patterns (using
simplepat) so a well structured message will match with one of the branches. An incoming message is matched to 

a branch using its label :l j (for j ∈ I). So by [rBranch], we know that t
?{:l j ,v1, ..., vn}−−−−−−−−−→ t jσ , where σ is computed 

using the Pattern Matching Definition (i.e., σ = match(p̃ j, v1, . . . , vn)). By the incoming message action and S 
from eq. (B.29), after(S, ?{:l j, ̃v}) is defined, as required.

[TCHOICE] From the rule, we know that for some μ ∈ I , then

t = send
(
ι,
{
:lμ, e1, . . . , en

})
∅ �exp e j : T j

μ for all j ∈ 1..n (B.30)

S = ⊕{!li
(
T̃ i
)
.Si
}

i∈I (B.31)

By Lemma 16 and eq. (B.30), any expression ei can be either a value, or else reduce to a new expression, so we 
consider both sub-cases:

1. If, for any i ∈ 1..n, expression ei can be reduced (i.e., ei → e′
i ), then case holds by [rChoice1], resulting in the 

internal transition:

t
τ−→ send

(
ι,
{
:lμ, v1, . . . , vi−1, e′

i, . . . , en
})

Since this is an internal transition, after(S, τ ) is defined for any S .

2. Otherwise, if for all i ∈ 1..n, ei = vi , then case holds by [rChoice2], resulting in the transition t
ι!{:l,v1, ..., vn}−−−−−−−−−→

{:l, v1, . . . , vn}. In this case, a message containing {:l, v1, . . . , vn} is sent to process with pid ι. From eq.
(B.31), we know that S is an internal choice, thus after(S, !{:l, ̃v}) is defined, as required.

[TKNOWNCALL] From the rule, we know that

t = f (ι, e2, . . . , en)

∅ �exp ei : Ti for all i ∈ 2..n (B.32)

By Lemma 16 and eq. (B.32), any expression ei can be either a value, or else reduce to a new expression, so we 
consider both sub-cases:

1. If, for any i ∈ 2..n, expression ei can be reduced (i.e., ei → e′
i ), then case holds by [rCall1], resulting in the 

internal transition: t τ−→ f
(
ι, v2, . . . , vi−1, e′

i, . . . , en
)
.

2. Otherwise, if for all i ∈ 2..n, ei = vi , then case holds by [rCall2], resulting in the transition t
f/n−→

t′ [ι/y] [v2, . . . , vn/x2, . . . , xn]. The callee’s function body (i.e., t′) and the substitution details (e.g. y, x2) are obtained 
directly from the function information environment Σ using the transition action f/ n, e.g. Σ ( f/n) .body= t′ .

For both cases, after(S, α) is defined since after accepts and session type S for internal actions ( f/ n and τ ).
[TUNKNOWNCALL] Analogous to previous case.
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[TCASE] From the rule, we know that

t = case e do (pi → ti)i∈Iend

∅ �exp e : U (B.33)

By Lemma 16 and eq. (B.33), expression e can be either a value, or reduce to a new expression. Consider both 
sub-cases:

1. If expression e can be reduced (i.e., e → e′), then case holds by [rCase1], resulting in the internal transition: 
t

τ−→ case e′ do (pi → ti)i∈Iend.

2. Otherwise, if e = v , then case holds by [rCase2], resulting in the internal transition t
τ−→ t jσ , where t j is the 

branch which pattern matches with v , and σ contains the substitutions (i.e., σ = match(p j, v)).

[TEXPRESSION] From the rule, we know that

t = e (B.34a)

∅ �exp e : T (B.34b)

Similar to the previous case, by Lemma 16 and eq. (B.34b), expression e can be either a value, or reduce to a 
new expression. In case of the former, where e can be reduced (i.e., e → e′), then case holds immediately by 
[rExpression] (i.e., t

τ−→ e′), where after(S, τ ) is defined. In the other case, when e is a value, then t is also a value, 
since t = e (by eq. (B.34a)). �
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