
Kalpa Publications in Computing
Volume 3, 2017, Pages 48–54

RV-CuBES 2017. An International Workshop on
Competitions, Usability, Benchmarks, Evaluation,

and Standardisation for Runtime Verification Tools

A Generic Instrumentation Tool for Erlang ∗

Ian Cassar12†, Adrian Francalanza1, Duncan Paul Attard12, Luca Aceto32, and
Anna Ingólfsdóttir2

1 University of Malta, Department of Computer Science, Malta
{ian.cassar.10,adrian.francalanza,duncan.attard.01}@um.edu.mt

2 Reykjav́ık University, School of Computer Science, Iceland
{ianc,duncanpa17,luca,annai}@ru.is

3 Gran Sasso Science Institute, L’Aquila, Italy

Abstract

Aspect oriented programming (AOP) is an instrumentation mechanism that is generally
employed by runtime monitoring frameworks to automatically extract system events and
embed monitoring code within an existing system. Although several AOP tools exist for
renowned languages such as Java and C#, little to no tools have been developed for actor
oriented languages such as Erlang. We present eAOP, an AOP tool specifically designed to
instrument actor-oriented constructs in Erlang such as message sends and receives, along
with other traditional constructs such as function calls.

1 Introduction

Code instrumentation techniques are often employed by software analysis tools for validating
and verifying software systems. In the case of runtime monitoring [11, 15] instrumentation
mechanisms such as Aspect Oriented Programming (AOP) [13, 14] are extensively used to
allow a designated runtime analyser to observe system operations and interactions, in order to
check this behaviour against some correctness property. It is common practice that runtime
monitoring tools convert the given correctness properties into aspect code and then use an AOP
framework to perform the required code instrumentation.

In general, AOP frameworks carry out instrumentation through a static analyser known
as the instrumenter. The instrumenter takes as input a program and an aspect specification
consisting of code patterns (e.g., new object declarations, method calls, message sends, etc.)
known as pointcuts, indicating the constructs that should be injected with aspect code known as
advices. Using source code patterns, a pointcut defines a set of locations in the code where the
instrumenter may inject appropriate advice code, thereby producing a possibly modified version
of the input system. One can currently find several AOP frameworks that support renowned

∗The work presented in this paper was partly supported by the project “TheoFoMon: Theoretical Foundations
for Monitorability” (grant number: 163406-051) of the Icelandic Research Fund.
†The research work disclosed in this publication is partially funded by the ENDEAVOUR Scholarships

Scheme. “The scholarship may be part-financed by the European Union — European Social Fund”

G. Reger and K. Havelund (eds.), RV-CuBES 2017 (Kalpa Publications in Computing, vol. 3), pp. 48–54



A generic instrumentation tool for Erlang I. Cassar et. al

OOP languages such as Java, however, little to no AOP frameworks have been developed
specifically for actor-oriented programming languages such as Erlang [2].

In this paper we thus present eAOP [7], an AOP framework that is specifically designed for
instrumenting Erlang code. Section 2 overviews Erlang and actors, while Section 3 introduces
the various types of pointcuts and advices that are supported by our tool. Section 4 discusses
how our tool has been used for runtime monitoring purposes. Section 5 concludes with a
summary of our contributions and future work.

2 Erlang

Erlang implements the actor model [1]: its main functional components are actors − concur-
rent entities that are uniquely identifiable through unique identifiers (IDs) and interact via
asynchronous message passing. Erlang also implements actor-based operations as first class
constructs. For instance, message send operations are expressed using the dedicated syntax
Pid!Msg, where Pid is the unique identifier (ID) of the destination actor of the message,
while Msg denotes the message payload that may contain data such as numbers, atoms, strings,
tuples, lists and also actor IDs. Message receive operations are defined as a list of guarded
statements, where guards consist of data structure patterns:

receive guard1 -> statement1; ... ; guardN -> statementN end

Messages residing in the mailbox of an actor are pattern matched (in order) with every guard,
and the continuation statement of the first guard which matches with the mailbox message is
executed; if none match, the messages remain in the mailbox and the actor blocks (until a new
message is received).

Erlang functions can be invoked as M:F(Args) where M stands for the module in which
function F is defined, while Args represents a list of arguments required by function F. In
Erlang, the notation M:F/A (where A is the function arity) uniquely identifies a function.

3 Pointcuts and Advices

Our instrumentation tool, eAOP [7], requires the code of the Erlang system along with the re-
quired pointcuts and advices in order to instrument the necessary aspects, as shown in Figure 1.
Pointcuts must be defined in a text file suffixed with a .eaop extension, and must be provided
to the eAOP instrumenter along with the Erlang system. Given these files, the instrumenter
produces a version of the system that is instrumented with function calls to advices. Advices
in eAOP must be defined as a set of functions in a module called advices.erl. Once de-
fined, advices.erl must be manually compiled into a .beam file using the Erlang compiler.
The instrumented system thus amounts to the modified system along with advices.beam, as
shown in Figure 1. The reader should consult [7] for more detail.

Pointcuts for eAOP Pointcuts allow the user to specify code patterns that are consulted
by the instrumenter while conducting a depth first search traversal of the syntax tree of the
parsed program. During this traversal, whenever a node in the syntax tree matches a pointcut
definition, the appropriate advices are embedded into the syntax tree. Pointcuts are defined
using the following format:

Pointcut(<CType>, <MP>, <FP>, <CP>, <ATypes>)

49



A generic instrumentation tool for Erlang I. Cassar et. al

eAOP
Instrumenter

Erlang
Compiler

System Files
<.erl>

or <.beam>

Pointcuts
<.eaop>

Advices
advices.erl

Advices
advices.beam

Modified
System Files
<.beam>

Instrumented System

Figure 1: The components of the eAOP instrumentation tool.

The <CType> specifies the construct type, i.e., the type of code operation (e.g., function call,
message send, etc.) that the instrumenter must look for while analysing the given program.
The module pattern, <MP>, and function pattern, <FP>, determine the module and function
in which the instrumenter must look for the required code operations, while the construct pat-
tern, <CP>, is used to describe the construct that requires instrumentation (where <CP> varies
depending on <CType>). eAOP can handle the following four construct types:

• send, receive and call: With these types the instrumenter resp. searches for send opera-
tions (Pid!Msg), receive blocks (receive [. . .] end), and function calls (mod:fun(Args))
that are defined in modules and functions whose name pattern matches <MP> and <FP> resp.
Since <CP> varies according to the <CType>, if for instance <CType> is send, pattern <CP>
must specify a message pattern, thereby restricting the instrumenter to instrument only send
operations that send messages matching this pattern.

• function: This type is used to instrument entire function definitions (not function calls)
that reside in modules matching <MP>, whose function name and arity match patterns <FP>
and <CP> resp. This construct type is used to mimic method overriding typical of OOP,
whereby the entire function body is replaced by another instrumented function.

Advices for eAOP Different pointcuts inject different advices based on the advice types de-
fined in <ATypes>. Advice types are defined as a list of directives indicating which advices
the instrumenter should inject upon matching a syntax tree node with a pointcut definition.
Advice types dictate how the instrumenter should instrument the matching code fragment
by specifying which advice function calls should be injected. The instrumenter can only in-
ject function calls to five advices functions, namely: before advice/5, after advice/5,
intercept advice/5, upon advice/5, and override advice/5. These advice func-
tions must be manually defined to include the code that needs to be executed whenever a
specific instrumented code construct runs.

In total, eAOP provides five advice types that can be used to specify which of the afore-
mentioned advice function calls should be injected by the instrumenter. Primarily, our tool
supports three augmentative advice types, namely before, after and upon, which instruct
the instrumenter to resp. augment a function call to before advice before executing the
respective action, a function call to after advice after the instrumented action, and a call
to upon advice after each matching receive guard. eAOP also supports two refactoring advice
types, namely, intercept in which the instrumenter replaces the specified action with a call

50



A generic instrumentation tool for Erlang I. Cassar et. al

Monitor System

call start

send Msg

...

(a) Asynchronous

Monitor System

call start

ack

send Msg

ack

...

(b) Synchronous

Figure 2: Instrumentation for Asynchronous and Synchronous Monitoring

to intercept advice, and override where the entire function body of a matching function
definition is replaced by a call to override advice.

As depicted in Figure 1, the injected advice functions must be defined in the advices.erl
module which must be created inside the same directory in which the instrumented beam files
are set to be generated by the instrumenter. The advices follow a standard order for their
arguments. At runtime, the advice arguments will contain the necessary data for identifying
the instrumented part of the code. When defining advices, one must therefore inspect the data
in these parameters (e.g., using the Erlang case statement) and perform the necessary aspect
logic for the respective cases (an example of how this can be done is given in Section 4).

System Instrumentation In order to instrument an Erlang system, one needs to provide
the instrumenter with a .eaop text file containing the list of pointcuts, along with the system’s
source .erl files or its .beam files (compiled in debug mode).

To instrument an Erlang system with eAOP, one can invoke the instrumenter by calling
eaop:instrument(SrcDirs, ConfigDirs), where SrcDirs refers to a list of directories
containing either the system .erl (source) files or .beam files that require instrumentation.
ConfigDirs refers to a list of directories containing the .eaop pointcut specification files.

4 Applying eAOP for monitoring

In [4], we used eAOP as part of a toolchain making up a runtime monitoring framework called
DetectEr 2.01. This monitoring framework generates actors that monitor for a given specifi-
cation, and instruments the system under scrutiny to enable it to report trace events to the
generated monitoring actors.

Using the code instrumentation mechanism provided by eAOP, DetectEr 2.0 is able to imple-
ment multiple monitoring mechanisms. The instrumentation used by the tool varies depending
on the chosen monitoring mechanism, namely synchronous, asynchronous or hybrid monitoring
[8]. In synchronous monitoring, the system is forced to wait until the monitor finishes process-
ing the reported trace event before it can proceed with its execution, while in asynchronous
monitoring the system proceeds immediately. Hybrid monitoring constitutes a mixture of the
two mechanisms. Although asynchronous monitoring was shown to be more efficient in [4], the
inclusion of synchronous monitoring was crucial to allow for timely detections [8].

As shown in Figure 2a, to implement asynchronous monitoring with AOP, the instrumen-
tation code is used to asynchronously deliver an event notification as a message to the monitor

1DetectEr 2.0 is open source and downloadable from https://bitbucket.org/casian/detecter2.0.

51

https://bitbucket.org/casian/detecter2.0


A generic instrumentation tool for Erlang I. Cassar et. al

before the specified action executes. Implementing synchronous monitoring, however, requires
the instrumentation of a handshake protocol as depicted in Figure 2b. In this case, the in-
strumented code sends the event notification and then blocks the system actor rather than
resuming execution immediately; the blocked actor is thus forced to wait until it receives an
acknowledgement message from the monitor signalling it to continue with its execution.

DetectEr 2.0 instruments this monitoring protocol by automatically generating the required
pointcuts and advices from the given specification, and then uses eAOP to perform the re-
quired instrumentation. For instance, to synchronously monitor for send operations in which
the message being sent has the form {add,N1,N2} and which are defined within a function
mod:foo(Args), the tool generates the following pointcut:

[Pointcut(send,"mod","foo","{add,_,_}",[before])].

along with the following advice function definition:

1 before_advice(Type,Sender,M,F,Payload) ->
2 case Payload of
3 [SentTo,Msg={add, , }] when Type==send and M==mod and F==foo ->
4 detecter!{trace,send,Sender,SentTo,Msg},
5 receive
6 ack -> ok
7 end,
8 end.

The generated pointcut instructs the instrumenter to inject a function call to before advice
before every send operation in which the message being sent matches the pattern "{add, , }",
i.e., the message consists of a tuple containing the atom add along with two other elements.
The instrumenter also generates the advices.erl module containing the implementation for
before advice. The generated advice definition immediately applies a case statement (lines
2 and 3) to inspect the contents of the payload so as to ensure that a trace message is only
produced when the instrumented action is a send operation that is defined in mod:foo which
is sending a message that matches "{add, , }". In such case, the generated advice reports
the operation by sending a trace message (line 4) to the monitoring process (registered as the
designated name detecter) and then blocks via an injected receive waiting for an ack
message (lines 5-7). In the case of asynchronous monitoring, the advice code omits the receive
block thereby allowing the instrumented actor to proceed immediately.

eAOP was also embedded in a framework called AdaptEr2 to automate runtime adaptation
monitors for Erlang systems [5, 6]. AdaptEr was developed as an extension to DetectEr 2.0, and
can selectively apply adaptation actions to specific actors so as to either rectify the effects of a
detected misbehaviour (e.g., restart a misbehaving actor) or else to improve the system based
on the current state of the system (e.g., by terminating idle/redundant actor processes).

Erlang’s implementation of the actor model limits inter-process communication to asyn-
chronous message passing. For instance, one of AdaptEr’s adaptation actions allows the moni-
tor to empty the mailbox contents of a system actor after this performs a specific sequence of
actions. Since Erlang strictly forbids actors from directly modifying the mailbox contents of
another actor, this adaptation had to be encoded using an instrumented protocol by means of
which the monitor delivers the required adaptation using message passing.

As illustrated in Figure 3, the instrumented protocol builds on the synchronous monitoring
protocol outlined in Figure 2b, by forcing the system actor to block after forwarding the trace
event to the monitor. The blocked actor must then wait for either an acknowledgement message

2AdaptEr is open-source and downloadable from https://bitbucket.org/casian/adapter.

52

https://bitbucket.org/casian/adapter


A generic instrumentation tool for Erlang I. Cassar et. al

Monitor System

call start

ok

send Msg

adapt flush mailbox

...

Figure 3: Instrumentation for Runtime Adaptation

from the monitor allowing it to resume execution, or else for an adaptation message. As shown in
the code excerpt below (lines 5-10), upon receiving an adaptation message, the instrumentation
code interprets the message and forces the actor to execute the requested adaptation action.
Using our eAOP tool, this instrumented protocol permitted the monitor to deliver (intrusive)
adaptation actions through message passing.

1 before_advice(Type,Sender,M,F,Payload) ->
2 case Payload of
3 [SentTo,Msg={add,N1,N2}] when Type==send and M==mod and F==foo ->
4 detecter!{trace,send,Sender,SentTo,Msg},
5 receive
6 ack -> ok;
7 flush -> adapter:flush();
8 restart -> adapter:restart();
9 ...

10 end,
11 end.

Both DetectEr 2.0 and AdaptEr were used to instrument and monitor industry-scale applications
including Yaws and Ranch [4, 3]. Recent work [6] also showed how AdaptEr can be used to
patch a mitigation for the Directory Traversal vulnerability that was found in Yaws 1.89 [12],
that makes it vulnerable to dot-dot-slash attacks.

5 Conclusion

In this paper we have presented eAOP3, an AOP framework for instrumenting Erlang programs.
This tool was specifically designed to effectively instrument the actor-based functionality that
is native to Erlang. eAOP proved to be an essential asset to allow for achieving synchronous
monitoring [3, 4, 8] and Runtime Adaptation [5, 6] in Erlang programs.

As future work, we plan to design a more expressive language that allows for defining
advices along with the pointcuts, i.e., directly within the .eaop specification file. We also
plan to include other advice types including types related to exception handling that allow for
injecting code at specific try-catch cases.

Related Work Several AOP tools [14, 10, 9] exist for other more renowned programming
languages. However, to our knowledge, ErlAop4 is the only other AOP framework for Erlang

3 eAOP is open-source and downloadable from https://github.com/casian/eaop.
4Accessible from http://erlaop.sourceforge.net/.

53

https://github.com/casian/eaop
http://erlaop.sourceforge.net/


A generic instrumentation tool for Erlang I. Cassar et. al

that exists apart from eAOP. ErlAop, however, lacked a number of important features that
are essential for monitoring tools. For instance, ErlAop only permits the instrumentation of
function calls, whereas eAOP permits the instrumentation of message sends and receives and is
incapable of instrumenting compiled .beam files.

References

[1] Gul Agha. Actors: a Model of Concurrent Computation in Distributed Systems, Series in Artificial
Intelligence. MIT Press, 11(12):12, 1986.

[2] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf,
2007.

[3] Duncan Paul Attard, Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingolfsdottir. A
runtime monitoring tool for actor-based systems. Behavioural Types: from Theory to Tools., 2017.

[4] Ian Cassar and Adrian Francalanza. On synchronous and asynchronous monitor instrumentation
for actor-based systems. arXiv:1502.03514, 2015.

[5] Ian Cassar and Adrian Francalanza. Runtime adaptation for actor systems. In RV, pages 38–54.
Springer, 2015.

[6] Ian Cassar and Adrian Francalanza. On implementing a monitor-oriented programming framework
for actor systems. In IFM, pages 176–192. Springer, 2016.

[7] Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. eAOP: An Aspect Oriented
Programming Framework for Erlang. In Erlang, ACM SIGPLAN, 2017.

[8] Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. A survey of runtime moni-
toring instrumentation techniques. In PrePost2017, pages 15–28, 2017.

[9] Ismael Figueroa, Nicolas Tabareau, and Éric Tanter. Effective Aspects: A Typed Monadic Embed-
ding of Pointcuts and Advice, pages 145–192. Springer, 2014.

[10] Gael Fraiteur. A Thread-Safe Extension to Object-Oriented Programming. Technical report,
PostSharp Technologies.

[11] Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cassar, Dario Della
Monica, and Anna Ingólfsdóttir. A foundation for runtime monitoring. In RV, pages 8–29, 2017.

[12] Alejandro Hernandez. Yaws 1.89: Directory Traversal Vulnerability. Available online at www.
exploit-db.com/exploits/15371/, 2010. Accessed on 24/5/2017.

[13] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented programming, pages 220–242. Springer, 1997.

[14] Ramnivas Laddad. AspectJ in action: practical aspect-oriented programming. Dreamtech Press,
2003.

[15] Martin Leucker and Christian Schallhart. A brief account of runtime verification. The Journal of
Logic and Algebraic Programming, 78(5):293–303, 2009.

54

www.exploit-db.com/exploits/15371/
www.exploit-db.com/exploits/15371/

	Introduction
	Erlang
	Pointcuts and Advices
	Applying eAOP for monitoring
	Conclusion

