
Computer Says No:
Verdict Explainability for Runtime Monitors

using a Local Proof System?,??

Adrian Francalanzaa,∗, Clare Cinib

aCS@ICT, University of Malta, Msida, Malta, MSD2080.
bRicston Ltd., G.F. Agius De Soldanis Street, Birkirkara, Malta, BKR4850.

Abstract

Monitors in Runtime Verification are often constructed as black boxes: they
provide verdicts on whether a property is satisfied or violated by the executing
system under scrutiny, without much explanation as to why this is the case. In
the best of cases, monitors might also return the trace observed, still leaving
it up to the user to figure out the logic employed to reach the declared ver-
dict from this trace. In this paper, we propose a local proof system for Linear
Temporal Logic—a popular logic used in Runtime Verification—formalising the
symbolic deductions within the constraints of Runtime Verification. We prove
novel soundness and partial completeness results for this proof system with re-
spect to the original semantics of the logic. Crucially, we show how such a
deductive system can be used as a realistic basis for constructing online run-
time monitors that provide explanations for their verdicts; we also show the
resulting monitor algorithms to satisfy pleasing correctness criteria identified
by other works, such as the decidability and incrementality of the analysis and
the irrevocability of verdicts. Finally, we relate the expressiveness of the Linear
Temporal Logic proof system to existing symbolic analysis techniques used in
Runtime Verification.

Keywords: Runtime Verification, Explainability, Interpretability, Linear
Temporal Logic, Proof Systems, Monitoring, Correct Monitor Synthesis

?The research was supported by the University of Malta Research Fund project “A Theory
of Monitors” CPSRP05-04, the Icelandic Research Fund RANNIS project “Theoretical Foun-
dations of Monitorability” TheoFoMon:163406-051 and by the EU H2020 RISE programme
under the Marie Sk lodowska-Curie grant agreement No. 778233 “BehAPI: Behavioural APIs”.

??A preliminary version of this work appeared in [28]. This article includes expanded expla-
nations, more detailed examples, and the complete proofs for the stated theorems. Section 4
has been substantially extended and includes additional results and motivations. We have
also augmented the related work section to include recent literature.

∗Corresponding author

Preprint submitted to Elsevier October 28, 2020

1. Introduction

Runtime verification (RV) [51, 12] is a lightweight verification technique
that checks whether the current execution of the system under scrutiny satisfies
or violates a given correctness property. It has its origins in model checking,
as a more scalable (yet still formal) approach to program verification: it was
recognised early on that, for certain properties, it is far cheaper to search for a
(witness) execution path that disproves the property [52, 50]. In an RV setup,
correctness properties are synthesised as monitors, executables that analyse a
system execution incrementally to report irrevocable verdicts that relate the
observed execution with the monitored property [12, 5]. The technique has
been applied to a variety of settings, from the healthcare sector to financial
services [60]. RV has proved to be particularly useful to verify open distributed
systems where a subset of the participating processes might not necessarily
statically verified [39]. The technique has been employed in conjunction to other
verification techniques [8, 30, 48, 46, 56, 1, 24], in a variety of configurations
that include centralised and choreographed arrangements [38, 16, 55, 20, 9].

Although beneficial, it can be argued that having a monitor that simply
returns a verdict is of little use to an engineer who wants to understand the
cause of the violation or satisfaction. Such an understanding is crucial for ei-
ther resolving the errors causing the violation or improving system performance
(while preserving the good behaviour [21, 29]). In principle, one could mitigate
this by also returning the trace observed1 leading to the verdict. But this still
leaves the engineer with a lot of work to do. For instance, it is hard to infer
which sub-property in a conjunction was violated (dually, which sub-property
in a disjunction was satisfied) or at which iteration an invariant property was
violated. This is particularly unfortunate because, in many cases, the monitor
itself must have internally used the same reasoning the engineer is trying to
recover (from the witness trace) in order to reach its own conclusion.

In this paper, we set out to formalise the reasoning that is carried out
by such monitors, in order to be able to study attributes of the monitoring
process. We strive towards a formalism that is abstract enough to be used as
a justification device for the verdicts reached, without revealing unnecessary
details of the underlying monitoring algorithm: most RV approaches are either
too abstract, simply yielding a verdict without explaining why that verdict
was reached, or else too concrete, revealing the implementation internals of the
monitor. Ideally, this formalism should also be comprehensive enough to express
existing approaches that offer a degree of explainability [31, 42]; this will lead
to a better understanding of how to best present justifications for the verdicts
reach via runtime monitoring.

We focus on providing formalisms for the monitoring of properties expressed
as LTL formulas. In particular, we seek to construct a proof system for LTL

1There are additional problems that are not covered in this article, such as the sheer size
of the trace itself, that is often a byproduct of long periods of monitoring.

2

that is attuned to the constraints of an RV setting, and show how it can be
used as a basis for monitor construction. Formalising monitor reasoning as a
proof system is appealing because it allows us to back up a monitor verdict with
a proof derivation, explaining how the verdict was reached. Proof systems are
also a general formalism that complement well formal logics: they have been
extensively studied as a means for embodying mechanical syntactic deductions
[25, 64]. Although a number of deductive systems for LTL exist, e.g., [53, 49, 23]
they are generally geared towards reasoning about the full point-space of an
LTL property. By contrast, we require our proof system to be local [62, 22], i.e.,
focussing on checking whether a specific point lies within a property set, instead
of interpreting a formula with respect to a set of points (which may be costly
to calculate); this mirrors closely the runtime analysis carried out in RV.

RV settings pose a number of constraints on the runtime symbolic analysis
carried out. In online settings, deductions are often performed on the partial
traces generated thus far by the executing system under scrutiny. This carries
a number of important consequences:

(a) Verdicts reached by a monitor should be irrevocable and consistent with
any extension leading to a complete trace. Stated otherwise, although the
monitor is required to reach a verdict using partial information, i.e., the
execution observed thus far, it is not allowed to change its verdict as further
events of the execution trace are observed.

(b) Given the incomplete nature of the execution provided to a monitor, it
is possible that the partial trace observed so far does not provide enough
information to reach a conclusive verdict. However, in order to keep RV
overheads low, it would be ideal if inconclusive deductions are reusable, and
contribute to deductions of subsequent extensions i.e., the analysis must be
incremental.

(c) The inability to derive a satisfaction verdict from a partial trace does not
necessarily imply the inability to derive a violation verdict for that partial
trace (and vice-versa). Thus monitors for partial traces typically reason
about trace satisfactions, but also trace violations[19, 18] so as to determine
good/bad prefixes [50] and terminate monitoring as soon as either verdict
is reached (keeping overheads lower still). Accordingly, our proof system
deductions should reason directly on both satisfactions and violations.

(d) Timely detections often require a synchronous monitor instrumentation
where monitored system execute in lock-step with the respective monitor,
producing a trace event and waiting for the monitor to terminate its (incre-
mental) analysis before executing further. In order for such an instrumen-
tation to be safe, it is important to ensure that incremental deductions are
at least guaranteed to terminate, which then ensures that the monitor will
get back to the instrumented system so as to allow it to execute further.

Our work is not the first to consider (subsets of) the aforementioned RV con-
straints and requirements for the logic LTL; numerous others have, for instance,

3

incorporated these constraints in the logic semantics [18]. However, considering
these aspects at a proof-theoretic level offers a number of advantages. In par-
ticular, it allows us to keep the semantic definition of the logic constant. This
leads to better separation of concerns, whereby the correctness specifications
formulated in the logic are agnostic to the verification technique used; we could
therefore change our verification method—from RV to, say, model checking—
without affecting the meaning of the correctness specification. This separation
also allows us to study which subsets of the logic is monitorable [5] in terms
of a formal framework that abstracts away from certain details of the monitor
implementation. Specifically, there are certain LTL properties that cannot be
checked at runtime [3, 5], and our methodology lays a foundation to study such
limits from a proof-theoretic perspective.

There are important concerns relating to whether our proposed methodology
(based around a proof systems) can indeed provide explanations to a satisfac-
tory number of cases. We answer these concerns indirectly. In fact, there is
established work that is comparable to ours and can also be used as a basis for
our methodology, i.e., providing high-level explanations for RV verdicts reached
for LTL formulas. We consider two of these works that are reasonably different
from one another: Geilen’s work [41] is based on the notion of informative pre-
fixes [50], whereas Sen et al.’s work [61] is based on the notion of derivatives [45].
We argue that because of their differences (e.g., they assume different syntactic
subsets of the logic, they use different symbolic analyses, they sit at different
levels of abstraction etc.), these formalisms are not easy to relate to one another.
In this paper, we formally compare our proof system with these RV symbolic
formalisms. Apart from enabling us to asses the generality of our approach in
terms of expressiveness, we show how such a comparison yields a better under-
standing of the respectively symbolic techniques that we compare to, while also
suggesting aspects for cross-fertilisation across the various formalisations.

Paper Structure. The rest of the paper is structured as follows. After briefly
introducing the logic syntax and semantics, Section 2, we present our local proof
system for partial traces in Section 3. We prove soundness for our proof system
with respect to the logic semantics of Section 2 and also establish incompleteness
results. Section 4 demonstrates how a monitoring algorithm can be obtained
from this proof system; we show that the resulting algorithm is incremental,
decidable and produces irrevocable verdicts. In Section 5 we study the expres-
siveness of our proof system by establishing formal comparisons with other RV
symbolic analyses. Section 6 concludes with a summary of our contributions
and a discussion of other work that is related to ours.

2. The Logic: An LTL Primer

As is common to most verifications setups, RV correctness properties are
typically expressed as formulas from a formal logic, whose semantics describes
the desired system behaviour. Apart from providing a precise meaning, the
regular syntax of the properties expressed in such logics also facilitates the

4

automation of the monitor synthesis procedure; see [1, 3] for a detailed study of
this. In an RV setting, system behaviour is often described as sets of execution
traces, because it agrees with the type of observations carried out by a monitor
at runtime. In fact, Linear Temporal Logic, (LTL) [57] (and its variants) is
prevalently used to specify correctness properties in formal expositions of RV
[41, 32, 61, 17, 18, 19, 16, 15], due to its pleasingly straightforward semantic
definition over strings denoting execution traces. We give a brief outline of this
logic in terms of its syntax and semantics.

2.1. The Syntax

Figure 1 defines the core syntax of Linear Temporal Logic (LTL) as used in
RV studies such as [19, 32], parameterised by a set of predicates p ∈ Pred. The
grammar consists of two base cases, i.e., the true formula, tt, and a predicate
formula, p, standard negation and conjunction constructors, ¬ψ and ψ1 ∧ ψ2,
and the characteristic next and until formulas, Xψ and ψ1 U ψ2 respectively.

Some studies using LTL (e.g., [41, 23]) prefer to work with formulas in nega-
tion normal form (nnf), where negations are pushed to the leaves of a formula.
To accommodate this, we also consider an extended LTL syntax in Figure 1,
that also includes base formulas for falsehood, ff, and constructors such as dis-
junctions, ϕ1 ∨ ϕ2, and release formulas, ϕ1 R ϕ2. Our extended syntax also
employs an extended predicate notation that includes co-predicates, i.e., for any
predicate p, its co-predicates, denoted as p, represents another predicate that
acts as its dual (whenever p returns true, p returns false, and vice-versa). This
allows us to eliminate negations from normalised formulas and, because of this,
we sometimes refer to an nnf formula as negation-free.2 Figure 1 also defines
a translation function, 〈−〉 :: LTL→ eLtl from formulas of the core LTL to a
negation-free formula in the extended syntax.

2.2. The Model

The logic semantics is also given in Figure 1. It assumes an alphabet, Σ
(with element variables σ), over which predicates are defined, p :: Σ → Bool.
In the rest of the paper, predicate definitions are denoted as sets over Σ, i.e.,
S ⊆ Σ where, accordingly, the co-predicate for a predicate p = S is defined as
Σ \S. The truth value of a predicate p (respectively co-predicate p̄) for element
σ is denoted as p(σ) (respectively p̄(σ)).

As in most RV studies, such as the work in [41, 61, 19, 44], the logic is defined
over infinite strings, s ∈ Σω, denoting execution traces. Finite strings over the
same alphabet represent partial executions and are denoted by the variable
t ∈ Σ∗; the symbol ε is used to represent the empty string. A string with
element σ at its head is denoted as σs (and respectively σt for finite strings).
For indexes i, j ∈ Nat, si denotes the ith element in the string (starting from
index 0) and [s]i denotes the suffix of s starting at index i; for finite strings

2Co-predicates have also been used in other expositions of LTL such as [23, 5].

5

Core LTL Syntax

ψ ∈ LTL ::= tt (true) | p (predicate) | ψ1 ∧ ψ2 (conjuction)

| ¬ψ (negation) | ψ1 U ψ2 (until) | Xψ (next)

Extended LTL Syntax

ϕ ∈ eLtl ::= tt | p | ϕ1 ∧ ϕ2

| ϕ1 U ϕ2 | pXϕ | ¬ϕ
| ff (false) | p (co-predicate) | ϕ1 ∨ ϕ2 (disjunction)

| ϕ1 R ϕ2 (release)

Formula Translation (Normalisation)

〈tt〉 def
= tt 〈¬tt〉 def

= ff

〈p〉 def
= p 〈¬p〉 def

= p

〈Xψ〉 def
= X〈ψ〉 〈¬Xψ〉 def

= X〈¬ψ〉

〈¬¬ψ〉 def
= 〈ψ〉 〈ψ1 ∧ ψ2〉

def
= 〈ψ1〉 ∧ 〈ψ2〉

〈ψ1 U ψ2〉
def
= 〈ψ1〉 U 〈ψ2〉 〈¬

(
ψ1 U ψ2

)
〉 def

= 〈¬ψ1〉 R 〈¬ψ2〉

〈¬
(
ψ1 ∧ ψ2

)
〉 def

= 〈¬ψ1〉 ∨ 〈¬ψ2〉

Semantics

JttK def
= Σω JffK def

= ∅
JpK def

= {s | p(s0)} JpK def
= {s | not p(s0)}

Jϕ1 ∧ ϕ2K
def
= Jϕ1K ∩ Jϕ1K Jϕ1 ∨ ϕ2K

def
= Jϕ1K ∪ Jϕ1K

JXψK def
=
{
s | [s]1 ∈ JψK

}
J¬ϕK def

=
(
Σω
)
\ JϕK

Jϕ1 U ϕ2K
def
=
{
s | ∃j such that [s]j ∈ Jϕ2K and (∀i.i < j implies [s]i ∈ Jϕ1K)

}
Jϕ1 R ϕ2K

def
=
{
s | ∀j we have

(
[s]j ∈ Jϕ2K or (∃i.i < j such that [s]i ∈ Jϕ1K)

)}
Figure 1: Linear Temporal Logic Syntax and Semantics

6

t we have the (implicit) condition that the suffix index satisfies i ≤ |t|, since
[t]|t| = ε. Note that for any s, the suffix at index 0 acts as the identity function,
i.e., [s]0 = s. Infinite strings with a regular (finite) pattern t are sometimes
denoted as tω, whereas the shorthand t . . . represents some infinite string with
a (finite) prefix t.

2.3. The Semantics

The denotational semantic function J−K :: eLtl → P(Σω) is defined by
induction over the structure of LTL formulas; in Figure 1 we define the semantics
for the extended LTL syntax (of which the core syntax is a subset). Most
cases are standard. For instance, JttK (respectively JffK) returns the universal
(respectively empty) set of (infinite) strings defined over the alphabet Σ, J¬ϕK
returns the dual of JϕK, whereas Jϕ1 ∧ ϕ2K (respectively Jϕ1 ∨ ϕ2K) denotes the
intersection (respectively union) of the meaning of its sub-formulas, Jϕ1K and
Jϕ2K. The meaning of JpK contains all strings s whose first element s0 satisfies
the predicate p i.e., p(s0) returns true; dually, JpK contains all strings whose first
elements violates p, i.e., p(s0) returns false. The temporal formulas are more
involving. The denotation of Xϕ contains all strings whose immediate suffix (i.e.,
at index 1) is included in JψK. Until formulas Jϕ1 U ϕ2K contain all strings that
contain a suffix (at some index j) satisfying Jψ2K, and all the suffixes preceding
j satisfy Jψ1K. Finally, release formulas, ϕ1 R ϕ2 contain strings whose suffixes
always satisfy ϕ2, as well as strings that contain a suffix satisfying both ϕ1 and
ϕ2 and all the preceding suffixes satisfying ϕ2.

The denotational semantics allows us to observe the duality between the for-
mulas tt, ϕ1 ∧ ϕ2 and ψ1 U ψ2, and their counterparts ff, ϕ1 ∨ ϕ2 and ψ1 R ψ2.
It also helps us understand the mechanics of the translation function, push-
ing negation to the leaves of a formula using negation propagation identities
(e.g., DeMorgan’s law), converting constructors to their dual constructor; at
the leaves the function then performs direct translations from tt and p to ff
and p respectively. The semantics also allows us to prove Proposition 1, justify-
ing the use of a corresponding negation-free formula (with the same meaning)
instead of a core LTL formula, in order to reason exclusively in terms of pos-
itive interpretations. Proposition 1 (implicitly) states that (i) the translation
function is total (otherwise the equality cannot be determined) but also states
that (ii) the translated formula preserves the semantic meaning of the original
formula.

Proposition 1. For any ψ ∈ LTL, JψK = J〈ψ〉K

Proof. We prove an alternative statement from which the required result follows;
we show that

for any ψ ∈ LTL, JψK = J〈ψ〉K and J¬ψK = J〈¬ψ〉K.

The proof proceeds by induction on the structure of ψ. We here consider the
sub-case where ψ = ψ1 U ψ2 and present the proof for the second clause, i.e., we

7

aim to show that J¬ψK = J〈¬ψ〉K. From Figure 1, by expanding J¬(ψ1 U ψ2)K
we obtain(

Σω
)
\
{
s | ∃j such that [s]j ∈ Jψ2K and (i < j implies [s]i ∈ Jψ1K)

}
=

{
s | ∀j we have

(
[s]j 6∈ Jψ2K or (∃i < j such that [s]i 6∈ Jψ1K)

)}
(1)

From the definition of the translation function in Figure 1, we know that
〈¬(ψ1 U ψ2)〉 = 〈¬ψ1〉 R 〈¬ψ2〉. Moreover, by expanding J〈¬ψ1〉 R 〈¬ψ2〉K
we obtain.{

s | ∀j we have
(
[s]j ∈ J〈¬ψ2〉K or (∃i < j such that [s]i ∈ J〈¬ψ1〉K)

)}
(2)

Now we know [s]j 6∈ Jψ2K iff [s]j ∈ J¬ψ2K, and similarly [s]i 6∈ Jψ1K iff [s]i ∈
J¬ψ1K. Moreover, by I.H. we can obtain that J¬ψ1K = J〈¬ψ1〉K and J¬ψ2K =
J〈¬ψ2〉K, from which we can equate the two sets (1) and (2).

Example 2.1. The behaviour of a traffic-light system may be described by
regularly observing its states as a set of traces consisting of green, g, orange,
o, and red, r. Complete executions may thus be represented as traces (infinite
strings) over the alphabet Σ = {g, o, r}. Predicate definitions may be described
as sets over this alphabet Σ, e.g., st = {o, r} is true only for then stopping
actions o and r whereas mv = {o, g} represent states where vehicles may be
in movement ; singleton-set predicates are denoted by the single-letter names
convention e.g., g = {g}. Using the logic of Figure 1, we can specify the following
properties:

• (¬r)∧Xr describes a trace where the system is not in a red state initially,
but turns red at the next instant. Traces of the form gr . . . and or . . .
satisfy this property, but others such as ggg . . . or ro . . . do not. Note also
that whereas the trace ggg . . . violates the first subformula, ¬r, the second
trace ro . . . violates Xr. This information can be crucial for debugging;

• g U o describes traces that eventually switch to the orange state from
a green state. Traces of the form gggo . . . satisfy this property, whereas
other such as ggr . . . or gω do not;

• st U ¬st describes traces that reach a non-stopping action after a sequence
of stopping actions. Using the respective semantic definitions, one can
check that Jst U gK ⊆⊇ Jst U ¬stK ⊆⊇ J

(
(mv∧o)∨ r

)
U ¬stK (⊆⊇ JF¬stK

where F denotes the ”eventually” operator). Occasionally, it might be
easier to check for one description of the property as opposed to the others.

• G st, i.e., always st, which is shorthand for ¬(tt U ¬st) [10], describes traces
that contain only stopping states. Traces of the form (or)ω and rω are
included in the property whereas a trace such as oroog . . . is not. Again,
for debugging purposes, it is may be useful to know that the property was
violated at the fifth iteration of the invariance check since g 6∈ st.

8

The semantics provides multiple ways of checking for a formula. To deter-
mine whether the complete trace rω satisfies formula G st, i.e., r∗ ∈ JG stK, we
can use the semantic definition of the formula to compute the set J¬(tt U ¬st)K
for which we would need to first calculate Jtt U ¬stK and then take its dual.
Alternatively, we can calculate the denotation of 〈¬(tt U ¬st)〉, which trans-
lates to ff R st, and check inclusion with respect to the translated negation-free
formula, safe in the knowledge that J¬(tt U ¬st)K = Jff R stK (by Proposition 1).
Using similar reasoning, to determine whether the violation r . . . 6∈ J(¬r) ∧ XrK
holds, we can instead check whether the membership r . . . ∈ Jr ∨ XrK holds. �

We note an important aspect of the semantics in Figure 1 which has reper-
cussions on our RV perspective. In the case of g U o from Example 2.1, we
require a global view of a trace such as gω in order to determine that it violates
property g U o. Stated otherwise, no finite prefix of gω yields enough infor-
mation to be able to conclude the violation. By contrast, there exists a finite
prefix of the complete trace ggr . . . that allows us to conclude ggr . . . 6∈ Jg U oK,
namely the prefix ggr. Moreover, all traces satisfying g U o contain a finite
prefix that allows us to determine the respectively satisfaction. In the case of
G st from Example 2.1, the situation is almost the reverse: whereas satisfactions
can only be determined through a global view of the trace, violations can always
be determined by observing a finite prefix.

3. An Online Monitoring Proof System

Online3 runtime verification of LTL properties consists in determining whether
the current execution satisfies (or violates) a property from the finite trace gen-
erated thus far. We present a local proof system [62, 22] that characterises this
runtime analysis, and allows us to determine whether any complete trace ts with
finite prefix t is included in (or excluded from) JϕK. The proof system is defined
as the least relation satisfying the rules in Figure 2. These rules employ two,
mutually dependent, judgements: the sequent t `+ ϕ denotes a satisfaction
judgement, whereas t `− ψ denotes a violation judgement; note the polarity
differentiating the two judgements, i.e., the annotations + and −.

Figure 2 includes three satisfaction axioms (pTru, pPrd and pCoP) and
three violation axioms (nFls, nPrd and nCoP); the proof system is parametric
with respect to the pre-computation of predicates and co-predicates, p and p.
The conjunction and disjunction rules, pAnd, pOr1 and pOr2 (respectively
nAnd1, nAnd2 and nOr) decompose the composite formula of the judgement
for their premises. The negation rules pNeg and nNeg also decompose the
formula, but switch the modality of the sequents for their premises, transitioning
from one judgement form to the other. Specifically, in the case of pNeg, the
satisfaction sequent t `+ ¬ϕ is defined in terms of the violation sequent t `− ϕ
(and dually for nNeg).

3By contrast, offline monitoring typically works on complete execution traces [59].

9

Satisfaction Rules

pTru
t `+ tt

pNeg
t `− ϕ
t `+ ¬ϕ

pPrd
p(σ)

σt `+ p
pCoP

p(σ)

σt `+ p

pAnd
t `+ ϕ1 t `+ ϕ2

t `+ ϕ1 ∧ ϕ2
pNxt

t `+ ϕ

σt `+ Xϕ

pOr1
t `+ ϕ1

t `+ ϕ1 ∨ ϕ2
pOr2

t `+ ϕ2

t `+ ϕ1 ∨ ϕ2

pUnt1
t `+ ϕ2

t `+ ϕ1 U ϕ2
pUnt2

σt `+ ϕ1 t `+ ϕ1 U ϕ2

σt `+ ϕ1 U ϕ2

pRel1
t `+ ϕ1 t `+ ϕ2

t `+ ϕ1 R ϕ2
pRel2

σt `+ ϕ2 t `+ ϕ1 R ϕ2

σt `+ ϕ1 R ϕ2

Violation Rules

nFls
t `− ff

nNeg
t `+ ϕ

t `− ¬ϕ

nPrd
p(σ)

σt `− p
nCoP

p(σ)

σt `− p

nOr
t `− ϕ1 t `− ϕ2

t `− ϕ1 ∨ ϕ2
nNxt

t `− ψ
σt `− Xψ

nAnd1
t `− ϕ1

t `− ϕ1 ∧ ϕ2
nAnd2

t `− ϕ2

t `− ϕ1 ∧ ϕ2

nUnt1
t `− ϕ1 t `− ϕ2

t `− ϕ1 U ϕ2
nUnt2

σt `− ϕ2 t `− ϕ1 U ϕ2

σt `− ϕ1 U ϕ2

nRel1
t `− ϕ2

t `− ϕ1 R ϕ2
nRel2

σt `− ϕ1 t `− ϕ1 R ϕ2

σt `− ϕ1 R ϕ2

Figure 2: Satisfaction and Violation Proof Rules

10

The rules for the temporal formulas may decompose judgement formulas,
e.g., pUnt1, pRel1, nUnt1, nRel1, but may also analyse suffixes of the
trace in incremental fashion. For instance, in order to prove σt `+ Xϕ, rule
pNxt requires the satisfaction judgement to hold for the immediate suffix t
and the sub-formula ϕ, i.e., t `+ ϕ. Similarly, to prove the satisfaction sequent
σt `+ ϕ1 U ϕ2, rule pUnt2 requires a satisfaction proof of the current trace σt
and the sub-formula ϕ1, as well as a satisfaction proof of the immediate suffix
t with respect to ϕ1 U ϕ2. Since this suffix premise is with respect to the same
composite formula ϕ1 U ϕ2, it may well be the case that pUnt2 is applied again
for suffix t. In fact, satisfaction proofs for until formulas are characterised by
a series of pUnt2 applications, followed by an application of rule pUnt1 (the
satisfaction proofs for ϕ1 R ϕ2 and violation proofs for ϕ1 U ϕ2 and ϕ1 R ϕ2

follow an analogous structure). This incremental analysis structure mirrors that
of RV algorithms for LTL [41, 61, 19] and contrasts with the descriptive nature
of the semantic definition for ϕ1 U ϕ2 (Figure 1) (which merely stipulates the
existence of some index j at which point ϕ2 holds without stating how to find
this index).

We note the inherent symmetry between the satisfaction and violation rules,
internalising the negation-propagation mechanism of the normalisation func-
tion 〈−〉 of Section 2 through rules pNeg and nNeg. For instance, there are
no satisfaction proof rules for the formula ff and there are no violation rules
for the formula tt either. The respective predicate axioms for satisfactions and
violations are dual to one another, as are the rules for conjunctions and disjunc-

tions. More precisely, following 〈¬
(
ψ1 ∧ ψ2

)
〉 def

= 〈¬ψ1〉 ∨ 〈¬ψ2〉 from Figure 1,
the violation rules for conjunctions (nAnd1 and nAnd2) have the same struc-
ture as the satisfaction rules for the respective disjunctions (pOr1 and pOr2).
The symmetric structure carries over to the temporal proof rules as well, e.g.,
violation rules for the until formulas, nUnt1 and nUnt2, have an analogous
structure to that of the release formula rules, pRel1 and pRel2.

Example 3.1. Recall property g U o from Ex. 2.1. We can construct the sat-
isfaction proof for trace go and the violation proof for trace gr below:

g(g)
pPrd

go `+ g

o(o)
pPrd

o `+ o
pUnt1

o `+ g U o
pUnt2

go `+ g U o

o(g)
nPrd

gr `− o

g(r)
nPrd

r `− g

o(r)
nPrd

r `− o
nUnt1

r `− g U o
nUnt2

gr `− g U o

Crucially, however, we are unable to construct any proof for the finite trace
gg. For instance, attempting to construct a satisfaction proof fails because we
hit the end-of-trace, ε, before completing the proof tree. Intuitively, we do not
have enough information from the trace generated thus far to conclude that the
complete trace satisfies the property. For instance, the next state may be o, in
which case we can infer satisfaction for ggo, or it can be r, in which case we
infer a violation for ggr; the next state may also be g, in which case we have to
postpone any conclusive judgement once again.

11

g(g)
pPrd

gg `+ g

g(g)
pPrd

g `+ g
??

ε `+ g U o
pUnt2

g `+ g U o
pUnt2

gg `+ g U o

We also note that although we can construct a satisfaction proof for the judge-
ment go `+ g U o, we are unable to construct a violation proof for the same
partial trace and formula. The failed derivation below shows how we necessarily
get stuck trying to prove the sequent o `− g U o. The reason for this is because,
due to the structure of the formula and the sequent polarity, we are forced to
use either rule nUnt1 or rule nUnt2; both of these rules require us to prove
o `− o as one of their premises, which we clearly cannot do because the only
rule that we can apply, nPrd, requires ō(o), which clearly does not hold.

o(g)
nPrd

go `− o
??

o `− g U o
nUnt2

go `− g U o

In fact, it turns out that we can never both derive a satisfaction proof and a vi-
olation proof for any partial trace and formula pair (e.g., in the example above,
we could not derive proofs for both judgements go `+ g U o and go `− g U o).
This is an important sanity check that ensures the consistency of our derivations.

We also point out another important aspect from the example derivations
above. In particular, there is a difference between the failed derivation proof
for the judgement gg `+ g U o and the failed derivation for the judgement
go `− g U o. In both cases, the derivations reached a point where no rules
could be applied to a derivation branch. However, the reason why no rule could
be applied is different: whereas the derivation for gg `+ g U o could not be
completed because the (partial) trace was not long enough i.e., we hit the end
of string ε, the derivation for go `− g U o failed before we reached the end of the
(partial) trace i.e., at stage o. Thus, in a setting where we may learn more parts
of the trace in future, we should keep the incomplete derivation for judgement
gg `+ g U o as this may be extended to a completed derivation. By contrast,
there is no extension to the trace go that may yield a completed derivation for
the judgement go `− g U o. We revisit this point later in Section 4. �

3.1. Properties of the Proof System

We recall that the semantics of our LTL formulas was defined over infinite
strings (complete traces), whereas our proof system associates finite traces to
LTL formulas. In spite of this apparent mismatch, we can show that our proof
system is sound, in the following sense:

• whenever we can construct a satisfaction proof for a prefix t and an LTL
formula ϕ, then we know that for any (infinite) extension s of the prefix,
the resulting (complete) trace, ts, satisfies the formula, i.e., ts ∈ JϕK.

• dually, whenever we can construct a violation proof for a prefix t and an
LTL formula ϕ, then we know that for any extension s of the prefix, the
resulting trace, ts, violates the formula,i.e., ts 6∈ JϕK.

12

Theorem 1 (Soundness). For arbitrary t, ϕ:

• t `+ ϕ implies ∀s. ts ∈ JϕK

• t `− ϕ implies ∀s. ts 6∈ JϕK

Proof. By rule induction on both t `+ ϕ and t `− ϕ. Given that both of
the sequents are mutually dependent on one another, we need to prove both
statements simultaneously. We here show a few of the main cases.

pNeg: From the rule we know that ϕ = ¬ϕ1, and that the conclusion judgement
has the form t `+ ¬ϕ1. From the rule premise, t `− ϕ1 and by I.H. we
know that ∀s.ts 6∈ Jϕ1K. By the definition of J−K in Figure 1, this implies
that ∀s.ts ∈ J¬ϕ1K as required.

pUnt2: From the rule we know ϕ = ϕ1 U ϕ2. From the rule premises σt `+ ϕ1

and t `+ ϕ1 U ϕ2, and by I.H. we know

∀s. σts ∈ Jϕ1K and (3)

∀s. ts ∈ Jϕ1 U ϕ2K (4)

By (4) and the semantic definition of Figure 1 we obtain

∀s
(
∃ l ≥ 0 [ts]l ∈ Jϕ2K ∧ (j < l implies [ts]j ∈ Jϕ1K)

)
(5)

Thus, from (3) and (5) we know that that there exists an index, namely
k = l + 1, such that

∀s
(
∃ k ≥ 0 [σts]k ∈ Jϕ2K ∧ (j ≤ l implies [σts]j ∈ Jϕ1K)

)
(6)

which implies ∀s. σts ∈ Jϕ1 U ϕ2K as required.

pRel2: From the rule we know ϕ = ϕ1 R ϕ2. From the rule premises σt `+ ϕ2

and t `+ ϕ1 R ϕ2, and by I.H. we know

∀s. σts ∈ Jϕ2K and (7)

∀s. ts ∈ Jϕ1 R ϕ2K (8)

By (8) and the semantic definition of Figure 1 we obtain

∀s
(
∀j we have

(
[ts]j ∈ Jϕ2K or (∃i < j such that [ts]i ∈ Jϕ1K)

))
(9)

Thus, we know that either one of the following two statements, should
hold true

∀s. ∀j[ts]j ∈ Jϕ2K (10)

∀s. ∀j ∃ i < j such that [ts]i ∈ Jϕ1K (11)

In case of (10), it immediately follows that the statement holds. In case
of (11) in conjunction with (7), we know that that there exists an index,
namely k = j + 1, such that

∀s
(
∀j we have

(
[σts]k ∈ Jϕ2K or (∃i < k such that [σts]k ∈ Jϕ1K)

))
(12)

which implies ∀s. σts ∈ Jϕ1 R ϕ2K as required.

13

nRel2: From the rule we know ϕ = ϕ1 R ϕ2. From the rule premises σt `− ϕ1

and t `− ϕ1 R ϕ2, and by I.H. we know

∀s. σts 6∈ Jϕ1K and (13)

∀s. ts 6∈ Jϕ1 R ϕ2K (14)

By (14) and the semantic definition of Figure 1 we obtain

∀s
(
∀j we have

(
[ts]j 6∈ Jϕ2K or (∃i < j such that [ts]i 6∈ Jϕ1K)

))
(15)

Thus, from (13) and (15) we know that that there exists an index, namely
k = j + 1, such that

∀s
(
∀j we have

(
[σts]k 6∈ Jϕ2K or (∃i < k such that [σts]k 6∈ Jϕ1K)

))
(16)

which implies ∀s. σts 6∈ Jϕ1 R ϕ2K as required.

Example 3.2. As a result of Theorem 1, the satisfaction and violation proofs
of Example 3.1 suffice to prove gos ∈ Jg U oK and grs 6∈ Jg U oK for any (infinite)
suffix s. Moreover, to determine whether r . . . 6∈ J(¬r)∧XrK from Example 2.1, it
suffices to consider the prefix r and either construct a violation proof directly, or
else normalise the negation of the formula, 〈¬((¬r)∧Xr)〉 = r∨Xr and construct
a satisfaction proof:

r(r)
pPre

r `+ r
pNeg

r `− ¬r
nAnd1

r `− (¬r) ∧ Xr

r(r)
pPre

r `+ r
pOr1

r `+ r ∨ Xr

Note how the derivations explain which subformula was violated in the left
proof, i.e., ¬r, and satisfied in the right proof, i.e., r. �

Remark 3.1. The apparent redundancy (see the two derivations in Example 3.2
for showing that r . . . 6∈ J(¬r)∧XrK) gives us the flexibility to use the proof system
as a unifying framework that embeds other approaches (cf. Section 5), which
may either handle negation directly in a core LTL subset, as in the case of [61],
or else work exclusively with formulas in nnf, as in the case of [41]. �

Our proof system handles empty strings ε, as these arise naturally from
the incremental analysis of finite traces discussed above. For instance, there
are cases where ε is required to complete a derivation, as shown below in Ex-
ample 3.3. In the case of failed derivations, ε also plays an important role in
differentiating between failed derivations, as discussed already in Example 3.1.

Example 3.3. We can prove oo . . . ∈ JX X ttK from the prefix oo, by constructing
the proof tree below; the leaf node relies on being able to deduce ε `+ tt:

pTru
ε `+ tt

pNxt
o `+ X tt

pNxt
oo `+ X X tt �

14

The proof system is incomplete in the sense of Theorem 2. For instance, any
(complete) trace satisfies formula X X tt (from Example 3.3) but we require at
least a prefix of length 2 to determine this in our proof system.

Theorem 2 (Incompleteness). For arbitrary t, ϕ:

• ∀s. ts ∈ JϕK does not imply t `+ ϕ.

• ∀s. ts 6∈ JϕK does not imply t `− ϕ

Proof. By counter example. For the positive case (i.e., satisfaction proofs),
consider t = ε. We can then show the following counter examples:

• ∀s. ts ∈ JX ttK but t 6`+ X tt;

• ∀s. ts ∈ Jp ∨ p̄K but t 6`+ p ∨ p̄;

• ∀s. ts ∈ Jff R ttK but t 6`+ ff R tt.

More concretely, when t = ε we have ts = s ∈ JX ttK for any s. However, we
cannot show ε `+ X tt: a close inspection of the rules in Figure 2 quickly reveals
that no rule can be applied: the only satisfaction rule that can be applied for
a formula of the form X tt is pNxt, but this requires t to be of the form σt′.
Curiously, whenever a predicate p observes the property that p(σ) holds for all
σ ∈ Σ, we also have

• ∀s. ts ∈ JpK but t 6`+ p.

Specifically, the proof system treats such a predicate p differently from tt:
whereas, in the latter case, the proof system can anticipate satisfaction and
accept immediately, in the case of a predicate p that always holds, the proof
system requires evidence of the first trace event to evaluate p over it. Although
this is superfluous for the standard LTLdomain of infinite traces, it plays an
important role in the finite and infinite (finfinite) domain [3, 5]. Analogous
examples can be drawn up for violation proofs.

Remark 3.2. The completeness criterion discussed above is different from com-
pleteness as used for the study of monitorability in recent work [3, 5]: in the
latter definitions, the quantifiers read ∀s.∃ some prefix t. etc.. Rather, the traces
mentioned in Theorem 2 are related to (finite) traces that positively or nega-
tively determine a property as defined in [58, 5], and the ability to yield a verdict
as early as possible. See [3, Section 4.2] for a detailed discussion of this. �

4. Runtime Monitoring with a Proof System

An automated proof search using the rules in Figure 2 can be syntax directed
by the formula (and the respective polarity). Indeed, for most formulas, there is
only one rule that is applicable, whereas the exception cases have at most two
applicable rules. A breadth-first proof search can thus be automated despite
this potential for non-determinism, i.e., not knowing which rule to apply.

15

Notation. In what follows, (t, ϕ)+ and (t, ϕ)− denote the respectively outstand-
ing proof obligations t `+ ϕ and t `− ϕ. Since our algorithm works on partial
traces, dε, ϕe+ and dε, ϕe− are used to denote saturated proof obligations, where
the string ε does not yield enough information to complete the proof search (e.g.,
ε `+ g U o in Example 3.1). A conjunction set L o1, . . . , on M denotes a conjunc-
tion of proof obligations; metavariables oi range over obligations of the form
(t, ϕ)q or dt, ϕeq for q ∈ {+,−}. A disjunction set {c1, . . . , cn}, where ci range
over conjunction sets, denotes a disjunction of conjunction sets.4 We employ a
merge operation over disjunction sets, ⊕, defined below:

d⊕ d′ def
= {c ∪ c′ | c ∈ d, c′ ∈ d′}

The disjunction set {L M} acts as the identity for this operation , i.e., {L M} ⊕
d = d⊕ {L M} = d, whereas the disjunction set {} annihilates such sets, i.e.,
{} ⊕ d = d⊕ {} = {}.

4.1. The Algorithm

A breadth-first proof search algorithm is described in Figure 3. Disjunction
sets are used to encode the alternative proof derivations that may lead to a
completed proof-tree (resulting from multiple proof rules that can be applied
at certain stages of the search). Conjunction sets represent the outstanding
obligations within each potential derivation.

Thus, a disjunction set with an empty conjunction set L M as one of its ele-
ments, denotes a successful search where we reached a stage in one of the possible
derivations with no further obligations to prove. Dually, an empty disjunction
set {} represents a failed search, since there are no alternative derivations left
to consider in order to complete a proof derivation. Both cases are used as
terminating conditions in the search algorithm of Figure 3. The only other ter-
minating condition for this search algorithm is when a disjunction set contains
only saturated conjunction sets: these containing only saturated obligations of
the form dε, ϕeq. The predicate

sat(c)
def
= o ∈ c implies o = dε, ϕeq for some ϕ, q

used in Figure 3 denotes this.
To verify whether the judgement t `q ϕ holds, we initiate the function

exp(−) with the disjunction set {L (t, ϕ)q M}, i.e., a proof search with one po-
tential alternative derivation requiring us to prove the single sequent, t `q ϕ. If
none of the terminating conditions in Figure 3 are met, exp(−) expands each
conjunction set using expC(−), and recurses. Conjunction set expansion con-
sists in expanding every proof obligation using expO(−) and then and merging
them using ⊕. Obligation expansion returns a disjunction set, where each con-
junction set denotes the proof obligations resulting from the premises of the
rules applied. It uses two auxiliary functions:

4For clarity, conjunction set notation, L− M, differs from that of disjunction sets, {−}.

16

Disjunction set expansion

exp(d)
def
=


{L M} if L M ∈ d
{} if d = {}
d if c ∈ d implies sat(c)

exp(
⋃
c∈d expC(c)) otherwise

Conjunction set expansion

expC(c)
def
=
⊕

o∈c expO(o)

Proof obligation expansion

expO(o)
def
=

{
{c | r ∈ rls(ϕ, q), c = prm(r, t, ϕ)} if o = (t, ϕ)q

{L dε, ϕeq M} if o = dε, ϕeq

Figure 3: A breadth-first incremental search algorithm. Auxillary functions sat(−), prm(−)
and rls(−) as discussed inline.

• rls(ϕ, q) returns a set of rule names r from Figure 2 that can be ap-
plied to obligations with the formula ϕ and polarity qualifier q (e.g.,
rls(ϕ1 U ϕ2,+) = {pUnt1,pUnt2} and rls(Xϕ,−) = {nNxt}).

• prm(r, t, ϕ) returns a conjunction set with the premises of rule r in-
stantiated for the conclusion with the string t and the formula ϕ (e.g.,
prm(pUnt2, go, g U o) = L (go, g)+, (o, g U o)+ M and prm(pTru, go, tt) =
L M). Importantly, it observed the following properties for the proof system
rules in Figure 2:

(i) For cases such as prm(pUnt2, ε, g U o) the function returns the
saturated conjunction set L dε, g U oe+ M since the string ε prohibits
the function from generating all the premises for the rule (note that
in Figure 2, one premise requires the string to be of length ≥ 1 for it
to be able to calculate the tail of the string).

(ii) The function is undefined when rule conditions are not satisfied (e.g.,
prm(pPrd, g, o) is undefined since o(g) does not hold).

(iii) For any rule r and formula ϕ, if the function prm(r, t, ϕ) returns a
constraint set for a particular string t, then it should also return the
analogous constraint set for any extension of t, i.e., prm(r, t, ϕ) = c
implies that for any t′, prm(r, tt′, ϕ) = app(c, t′) where the append
function on a constraint set is defined as follows:

app(c, t′)
def
= L (tt′, ϕ)q | (t, ϕ)q ∈ c M ∪ L (t′, ϕ)q | dε, ϕeq ∈ c M

Note that the operation expO(−) acts as a form of identity function for
saturated proof obligations and does not try to expand them further.

Example 4.1. Recall the judgments go `+ g U o and gr `− g U o from Exam-
ple 3.1, for which we constructed a derivation proof justifying the respectively

17

trace satisfaction/violation as stated in Theorem 1. If we execute the proof-
search algorithm of Figure 3 on the initial disjunction set {L (go, g U o)+ M} (cor-
responding to the proof obligation for go `+ g U o), the execution terminates,
returning the disjunction set {L M} i.e., we have no further proof obligations and
thus a complete derivation was found. We obtain the same outcome when we run
the algorithm on the initial disjunction set for gr `− g U o, i.e., {L (gr, gUo)− M}.

Recall also the inconclusive judgement gg `+ g U o from Example 3.1. Exe-
cuting our proof-search algorithm on the initial disjunction set {L (gg, g U o)+ M}
terminates with the resultant (saturated) disjunction set {L dε, g U oe+ M}. As an
illustrative example, we go over this expansion in detail below:

exp({L (gg, g U o)+ M}) = exp({L (gg, o)+ M, L (gg, g)+, (g, g U o)+ M}) (17)

= exp({} ∪ ({L M} ⊕ {L (g, o)+ M, L (g, g)+, (ε, g U o)+ M})
(18)

= exp({L (g, o)+M, L (g, g)+, (ε, g U o)+ M}) (19)

= {L dε, g U oe+ M} (20)

Expansion (17) is obtained by applying the function expO(−) on the only obli-
gation (gg, g U o)+; it returns the obligations derived from the premises of the
two proof rules from Figure 2 that may be applied, namely pUnt1 and pUnt2.
At (18) the two conjunction sets are expanded: expC(L (gg, o)+ M) yields {}
(terminating unsuccessfully the proof search along this potential derivation),
whereas expC(L (gg, g)+, (g, g U o)+ M) returns {L M} from expO((gg, g)+) and
{L (g, o)+ M, L (g, g)+, (ε, g U o)+ M} from expO((g, g U o)+)—similar to the expan-
sion in (17). Merging these sets using ⊕ yields (19). Its expansion follows a
similar pattern to that of (18), with the exception that expO((ε, gUo)+) returns
a saturated set, at which point the expansion terminates.

Finally, recall the failed derivation for the judgement go `− g U o from
Example 3.1, where we argued that the reason why a derivation could not be
constructed in this case was qualitatively different from that of the judgement
gg `+ g U o discussed above—no extension of the partial trace go could every
lead to a completed satisfaction. Accordingly, expanding the initial disjunction
set {L (go, g U o)− M} corresponding to the judgement go `− g U o terminates,
but yields a different outcome from the expansion detailed above: it returns the
disjunction set {}. �

4.2. Properties of the Algorithm

An execution of exp({L (t, ϕ)q M}) may yield either of three verdicts. Apart
from success, {L M}, meaning that a full proof tree was derived, the algorithm
partitions negative results as either a definite fail, {}, or an inconclusive verdict,
consisting of a saturated disjunction set d (where c ∈ d implies sat(c)).

Lemma 1. exp(d) = d’ implies d’={} or d’={L M} or (c ∈ d implies sat(c)).

Proof. Immediate from the definition of exp(d) in Figure 3.

18

The algorithm of Figure 3 for the proof rules of Figure 2 shows that the
function exp(d) is decidable for the three outcomes discussed above (i.e., success,
failure or inconclusive verdicts). Intuitively, the main reason for this is because
the proof system is cut-free, where rule premises are either defined in terms of
string suffixes or sub-formulas. Formally, we define a rank function |−| mapping
proof obligations to pairs of naturals, for which we assume a lexicographical

ordering (n1,m1) ≥ (n2,m2)
def
= n1 > n2∨ (n1 = n2∧m1 ≥ m2) and the obvious

function max(−) returning the greatest element from a set of such pairs. Apart
from |t|, we also assume |ϕ| returning the maximal depth of the formula (e.g.,
|p U ¬(p̄ ∨ p)| = 4 and |p̄| = 1 = |tt|).

|(t, ϕ)q| def
= (|t|, |ϕ|) |c| def= max({|o| | o ∈ c} ∪ {(0, 0)})

|dt, ϕeq| def
= (0, 0) |d| def= max({|c| | c ∈ d} ∪ {(0, 0)})

Above, the rank function maps saturated obligations to the bottom element
(0, 0). We overload the function to conjunction sets, where we add (0, 0) to the
max(−) calculation to cater for the case where c is empty. Following a similar
pattern, we also extend the rank function to disjunction sets, but equate all sets
with an empty conjunction set to the bottom element (0, 0); this mirrors the
termination condition of the algorithm in Fig. 3 which terminates the search as
soon as the shortest proof tree is detected.

We can show two important properties. The first one, Lemma 2, states that
when the disjunction set rank is (0, 0), then expanding it is just an idempotent
operation. The second property, Lemma 3, states that if a disjunction set d
has a rank that is not (0, 0), then expanding each of its constituent conjunction
sets yields a disjunction set with rank that is strictly less than that of d. Since
each iteration of an expansion of d is defined as the union of all the respectively
expansions of its constituent conjunction sets (see Figure 3), this means that at
each iteration the rank of the disjunction set will strictly decrease. This carries
on until it reached the only rank that cannot decrease further, i.e., (0, 0), at
which point the expansion must terminate (by Lemma 2).

Lemma 2. |d| = (0, 0) implies exp(d) = d

Proof. Immediate from the definition of |d|, where we have |d| = (0, 0) only
when d = {} or d = {L M} or else (c ∈ d implies sat(c)).

Lemma 3. |d| 6= (0, 0) implies |d| > |
⋃
c∈d expC(c)|

Proof. Follows from showing that |o| 6= (0, 0) implies |o| > |expO(o)|. Since
|o| 6= (0, 0) then it must be the case that o = (t, ϕ)q for some t, ϕ and q. The
proof proceeds by a (long and tedious) case analysis of ϕ and q. For instance,
when q = + and ϕ = ϕ1Uϕ2, expO(o) at most returns a disjunction set with
conjunction sets containing either of the following obligations:

• dt, ϕeq: |dt, ϕeq| = (0, 0) which is clearly less than |(t, ϕ)q|.

• (t, ϕ2)q: |(t, ϕ2)q| is strictly less than (t, ϕ1Uϕ2)q since |ϕ1Uϕ2| > |ϕ2|.

19

• (t, ϕ1)q: |(t, ϕ1)q| is strictly less than (t, ϕ1Uϕ2)q since |ϕ1Uϕ2| > |ϕ1|.

• (t′, ϕ)q for some t′, σ where t = σt′: since |t| > |t′| we have (t, ϕ)q > (t′, ϕ)q

again.

Theorem 3 (Decidability). For any t, ϕ, q exp({L (t, ϕ)q M}) is decidable.

Proof. Termination follows from Lemma 2 and Lemma 3. Decidability is ob-
tained from termination and Lemma 1.

Saturated disjunction sets make the algorithm incremental, in the following
sense. When a further suffix t′ is obtained, in addition to a judgement t `q ϕ
with an inconclusive verdict, we can reuse the saturated disjunction set returned
for t `q ϕ, instead of processing tt′ `q ϕ from scratch. This is done by converting
each obligation of the form dε, ϕeq in each saturated conjunction set to the active
obligation (t′, ϕ)q by extending the auxiliary append function app(−) defined
earlier to disjoint sets:

app(d, t)
def
= {app(c, t) | c ∈ d}

Example 4.2. To determine whether ggo `+ g U o holds, we can take the
inconclusive outcome of exp({L (gg, g U o)+ M}) from Example 4.1, convert the
saturated obligations using suffix o,

app(exp({L (gg, g U o)+ M}), o) = app({L dε, g U oe+ M}, o) = {L (o, g U o)+ M},

and then calculate from that point onwards, exp({L (o, g U o)+ M}) = {L M}. �

The property of incrementality can be formalised as Theorem 4 below. Its
proof relies on the following technical lemmata. Lemma 4 states that appending
to a verdict disjunction set {} or {L M} ignores the appended trace and leaves the
disjunction set unchanged. Lemma 5 states that saturated proof obligations can
only be obtained when expanding obligations with an empty string. Lemma 6
states that appending a disjunction set with a trace that can be decomposed
into two sub-traces yields the same result as that of appending incrementally
the two sub-traces. Finally, Lemma 7 states that when a disjunction set is
appended and subsequently expanded, then we can expand that disjunction set
before appending and still obtain the same answer.

Lemma 4. d = {} or d = {L M} implies app(d, t) = d.

Lemma 5. expO(o) = dε, ϕeq implies o = (ε, ϕ)q

Lemma 6. app(d, t1t2) = app(app(d, t1), t2)

Lemma 7. exp(app(d, t)) = exp(app(exp(d), t))

Theorem 4 (Incrementality).

exp({L (t1t2, ϕ)q M}) = exp(app(exp({L (t1, ϕ)q M}), t2))

20

Proof. By induction on the structure of t2:

t2 = ε: We know that t1t2 = t1 and the result follows if we show that

exp({L (t1, ϕ)q M}) = exp(app(exp({L (t1, ϕ)q M}), ε)).

From Theorem 3 we know that exp({L (t1, ϕ)q M}) is defined. By Lemma 1
we know that it can either be one of three cases: if it is either {} or
{L M}, the required result follows immediately from Lemma 4; the only
other possibility is that exp({L (t1, ϕ)q M}) yields a saturated set d. Now
app(d, ε) would simply yield a disjunction set d′ where every saturated
obligation of the form dε, ϕeq in d is converted into the respective active
obligation (ε, ϕ)q. From Lemma 5 we can then conclude that exp(d′) = d
after one expansion.

t2 = σt3: By I.H. we know that

exp({L (t1σt3, ϕ)q M}) = exp(app(exp({L (t1σ, ϕ)q M}), t3)).

Thus, the required result would follow (by transitivity) if we are able to
show that:

exp(app(exp({L (t1, ϕ)q M}), σt3)) = exp(app(exp({L (t1σ, ϕ)q M}), t3))

The proof proceeds as follows:

exp(app(exp({L (t1, ϕ)q M}), σt3))

= exp(app(app(exp({L (t1, ϕ)q M}), σ), t3)) (Lemma 6)

= exp(app(exp(app(exp({L (t1, ϕ)q M}), σ)), t3)) (Lemma 7)

= exp(app(exp(app({L (t1, ϕ)q M}, σ)), t3)) (Lemma 7)

= exp(app(exp({L (t1σ, ϕ)q M}), t3)) (def. of app(−))

We can also show another important property of our algorithm, namely that
of verdict irrevocability. As stated in the introduction, this means that if a
(proof) success or fail verdict is reached for a specific trace prefix, the algorithm
preserves this verdict when more evidence from the execution trace is observed.
We can indeed show this property via Theorem 4 and the technical lemmata
that led to it.

Theorem 5 (Irrevocability).

Fail: exp({L (t1, ϕ)q M}) = {} implies ∀t2 . exp({L (t1t2, ϕ)q M}) = {}

Success: exp({L (t1, ϕ)q M}) = {L M} implies ∀t2 . exp({L (t1t2, ϕ)q M}) = {L M}

Proof. We here show the proof for the fail case since that for the success case
is analogous. Assume exp({L (t1, ϕ)q M}) = {} and pick a trace continuation t2.
From Theorem 4, we know that

exp({L (t1t2, ϕ)q M}) = exp(app(exp({L (t1, ϕ)q M}), t2)). (21)

21

From our assumption, Lemma 4 and then the definition of exp(−) of Figure 3
we can deduce

exp(app(exp({L (t1, ϕ)q M}), t2)) = exp(app({}, t2)) = exp({}) = {} (22)

The required result follows from (21) and (22).

4.3. Runtime Monitoring

The algorithm presented in Section 4.1 can be used to obtain an instantia-
tion of the abstract monitoring system defined in [5, Definition 1]. For each
formula ϕ we automatically obtain a monitor mϕ by executing both expressions
exp({L (t, ϕ)+ M}) and exp({L (t, ϕ)− M}) concurrently for each execution trace t
provided:

• the monitor would accept the trace t and all possible continuations, i.e.,
judgement acc(t,mϕ) in [5], whenever exp({L (t, ϕ)+ M}) = {L M}, which
means that a proof derivation was found for the judgement t `+ ϕ.

• analogously, the monitor would reject the trace t and its extensions, i.e.,
judgement rej(t,mϕ) in [5], whenever exp({L (t, ϕ)− M}) = {L M}, since a
proof derivation for the judgement t `− ϕ was found.

By virtue of Theorem 1, we know that acc(t,mϕ) corresponds to ts ∈ JϕK and
that rej(t,mϕ) corresponds to ts 6∈ JϕK for any trace completion s respectively,
as required in [5]. Note that the possibility of constructing a proof for both
t `+ ψ and t `− ψ, is ruled out by soundness (Theorem 1), which implicitly
guarantees that our analysis is consistent (since the semantics is defined in terms
of sets). It is however possible that mϕ is unable to construct a proof for either
case, t `+ ψ or t `− ψ. This implies that we do not have enough evidence (i.e.,
the trace produced thus far) to determine satisfaction or violation; this is often
equated to the inconclusive verdict “?”; see [12]. It is important to note that the
algorithm presented in Section 4 can be easily extended so as to record the rules
used at each expansion and keep them as part of each conjunction set of proof
obligations. This information would then allow us to recover and reconstruct
a proof derivation whenever it terminates its search successfully and report it
along with the verdict as a high-level implementation-agnostic explanation of
how the verdict was reached.

The results of Section 4.2 allow us to go a step further and instrument our
monitor in an online synchronous fashion [26] with the executing system where

• trace events are observed incrementally (one event at a time);

• the system execution is paused while the monitor analyses each event
generated.

This synchronous instrumentation relation is used by most RV setups [12], and
has been formally specified and extensively studied in [34, 37, 35, 3]. Theorem 4
of Section 4.2 allows us to process a trace prefix of the form t = σ1 . . . σn

22

incrementally as the nested sequence exp(app(. . . exp({L (σ1, ϕ)q M}) . . . , σn))
instead of exp({L (t, ϕ)q M}). Starting from σ1, exp({L (σ1, ϕ)q M}) for either
q ∈ {+,−} can yield either an acceptance, a rejection or (perhaps more impor-
tantly) an inconclusive verdict in the form of a saturated disjunction set d1. This
disjunction set di represents the internal state of the monitor to be considered
when the next event σi+1 is produced by the system as exp(app(di, σi+1)) =
di+1. Theorem 5 of Section 4.2 allows us to be efficient and terminate the mon-
itor computation as soon as an acceptance or rejection is reached, safe in the
knowledge that this verdict will not change for any of the future events. Finally,
Theorem 3 of Section 4.2 provides a guarantee that the monitor cannot interfere
with the execution of the system when composed via synchronous instrumen-
tation, because every exp(app(di, σi+1)) = di+1 terminates computing after a
finite number of steps. This property is more occasionally referred to as monitor
transparency and [34, 33] provides a detailed operational account of how this
arises.

5. Alternative RV Symbolic Techniques for LTL

We relate our proof system of Section 3 to two prominent, but substan-
tially distinct, symbolic techniques for LTL in the context of RV, namely Geilen
work on informative prefixes [41] and the work on derivatives by Sen et al.
[61]. In spite of their respectively discrepancies (e.g., [41] works with nnf
whereas [61] deals with arbitrary negative formulas, [41] bases analysis on local-
informativeness whereas [61] uses a rewriting technique called derivatives) we
can use our correspondence results, Theorem 6 and Theorem 7, to better com-
pare these LTL runtime verification techniques to one another.

5.1. Informative Prefixes

Intuitively, an informative prefix for a formula explains why a trace satisfies
that formula [50]. In [41], trace satisfactions are monitored with respect to LTL
formulas in nnf, by checking whether a trace contains an informative prefix.

Example 5.1. Recall g U o from Example 2.1. Prefix go is informative because

(i) although the head, g, does not satisfy g U o in a definite manner, it allows
the possibility of its suffix to satisfy the formula conclusively (g(g) holds);

(ii) the immediate suffix, o, satisfies g U o conclusively (o(o) holds).

In [41], both go and o are deemed to be locally-informative with respect to
g U o but go generates satisfaction obligations for the immediate suffix (temporal
informative successor). �

The algorithm in [41] formalises the notion of locally informative by convert-
ing formulas to their informative normal forms. Moreover, temporal informative
successors are formalised through the function next(−), returning a set of for-
mulas from a given formula and a trace element. For instance, in Example 5.1

23

gTru
linf(t, tt, ∅)

gPre1
p(σ)

linf(σt, p, ∅)
gPre2

p̄(σ)

linf(σt, p̄, ∅)

gOr1
linf(t, ϕ1,m)

linf(t, ϕ1 ∨ ϕ2,m)
gOr2

linf(t, ϕ2,m)

linf(t, ϕ1 ∨ ϕ2,m)

gAnd
linf(t, ϕ1,m1) linf(t, ϕ2,m2)

linf(t, ϕ1 ∧ ϕ2,m1 ∪m2)
gNxt

linf(t,Xϕ, {ϕ})

gUnt1
linf(t, ϕ2,m)

linf(t, ϕ1 U ϕ2,m)
gUnt2

linf(t, ϕ1,m)

linf(t, ϕ1 U ϕ2,m ∪ {ϕ1 U ϕ2})

gRel1
linf(t, ϕ1,m1) linf(t, ϕ2,m2)

linf(t, ϕ1 R ϕ2,m1 ∪m2)
gRel2

linf(t, ϕ2,m)

linf(t, ϕ1 R ϕ2,m ∪ {ϕ1 R ϕ2})

Figure 4: Locally-informative and successor judgements

next(g, g U o) = {g U o} whereas next(o, g U o) = {}. These functions are used
in [41] to construct automata that check for these properties over string prefixes.

In this section, we express the locally-informative predicate and the asso-
ciated temporal informative successors as the single judgement linf(t, ϕ,m),
defined as the least relation satisfying the rules in Figure 4. Concretely, a
judgement states linf(t, ϕ,m) that t is locally informative for ϕ with obligations
m ∈ P(eLtl) for the succeeding suffix; recall that eLtl is the extended LTL
syntax introduced in Figure 1. For example, for a formula Xϕ, any string t
is locally informative, but requires the immediate suffix to satisfy ϕ (see rule
gNxt in Figure 4). By contrast, for ϕ1 U ϕ2, if t is locally informative for ψ1

with suffix obligations m, then t is also locally informative for ϕ1 U ϕ2 with obli-
gations m ∪ {ϕ1 U ϕ2} (see rule gUnt2). Informative prefixes are formalised
as the predicate inf(t, ϕ) below. Note that recursion in the definition of inf(t, ϕ)
is employed on a substring of t and terminates when m = ∅.

inf(t, ϕ)
def
= ∃m.

(
linf(t, ϕ,m) and

(
ϕ′ ∈ m implies (inf([t]1, ϕ′))

))
Example 5.2. We can conclude that go is an informative prefix for g U o, i.e.,
inf(go, g U o), because we can deduce linf(go, g U o, {g U o}) using the rules in
Figure 4 and also deduce linf(o, g U o, ∅) using the same rules.

g(g)
gPre1

linf(go, g, ∅)
gUnt2

linf(go, g U o, {g U o})

o(o)
gPre1

linf(o, o, ∅)
gUnt1

linf(o, g U o, ∅)

Note that the implication condition required by the definition of inf(t, ϕ) for
linf(o, g U o, ∅) to be able to infer inf(o, g U o), i.e., (ϕ′ ∈ ∅ implies (inf([o]1, ϕ′))),
is trivially satisfied since there can never be any ϕ′ such that ϕ′ ∈ ∅. �

We can formally show a correspondence between informative prefixes and
our monitoring proof systems.

Theorem 6 (Informative Prefixes Correspondence). For all ϕ in nnf, inf(t, ϕ)
iff t `+ ϕ

24

Proof. The only-if case is proved by structural induction on ϕ, then by induction
on the structure of t. We here outline the main cases:

ϕ1 ∧ ϕ2: By expanding inf(t, ϕ1 ∧ ϕ2), we know that

∃m. linf(t, ϕ1 ∧ ϕ2,m) (23)

ϕ′ ∈ m implies inf([t]1, ϕ′) (24)

By case analysis of rules in § 5.1, we have two options to consider for the
derivation of linf(t, ϕ1 ∧ ϕ2,m) from (23), only the rule gAnd could have
been used. By this rule, we obtain

linf(t, ϕ1,m1) (25)

linf(t, ϕ2,m2) (26)

m = m1 ∪m2 (27)

Consider that ϕ′1 and ϕ′2 are in m1 and m2 respectively. From (27) we
know that m = m1 ∪m2 and from (24) it follows that

inf(t′, ϕ′1) and inf(t′, ϕ′2) (28)

Using (25), (26), and (28) we can obtain

inf(t, ϕ1) and inf(t, ϕ2) (29)

By (29) and I.H., it follows that

t `+ ϕ1 and t `+ ϕ2 (30)

Finally, by (30) and pAnd, we conclude t `+ ϕ1 ∧ ϕ2 as required.

ϕ1 U ϕ2: By expanding inf(t, ϕ1 U ϕ2), we know that

∃m. linf(t, ϕ1 U ϕ2,m) (31)

ϕ′ ∈ m implies inf([t]1, ϕ′) (32)

By case analysis of rules in § 5.1, we have two options to consider for the
derivation of linf(t, ϕ1 U ϕ2,m) from (32):

gUnt1: By the rule premise we know that

linf(t, ϕ2,m) (33)

By (32) we know that for any arbitrary ϕ′2 in m we have

inf([t]1, ϕ′2) (34)

From (33) and (34), we obtain

inf(t, ϕ2) (35)

25

By I.H., it follows that

t `+ ϕ2 (36)

And finally, by pUnt1, we conclude t `+ ϕ1 U ϕ2 as required.

gUnt2 By the rule premises we know that

linf(t, ϕ1,m
′) (37)

m = m′ ∪ {ϕ1 U ϕ2} (38)

From (32), we know that for any arbitrary ϕ′1 in m′ (which is a subset
of m) we have

inf([t]1, ϕ′1) (39)

By (37) and (39) we obtain inf(t, ϕ1), and by I.H. we get

t `+ ϕ1 (40)

From (38) we know that m is not empty, and by (32) we deduce that
[t]1 exists. By (32) and (38) it must be the case that

inf([t]1, ϕ1 U ϕ2) (41)

By induction on the structure of t, we obtain

[t]1 `+ ϕ1 U ϕ2 (42)

Finally, from (40), (42) and pUnt2 of Fig. 2 we conclude t `+
ϕ1 U ϕ2 as required.

The if direction is proved by rule induction on t `+ ϕ from Figure 2. Note
that since ϕ is in nnf (in our case this means that it does not contain negations)
then we shall never require rule pNeg from Figure 2. As a result, our proof
does not need to consider properties relating to violation judgements. Again,
we here outline the main cases of the inductive proof.

pPrd: From the rule we know that ϕ = p. From the rule premises we know
p(σ). By rule gPre1 of § 5.1, we get linf(σt, p, ∅), and given that m = ∅,
it immediately follows that that inf(σt, p) as required.

pAnd: From the rule we know that ϕ = ϕ1 ∧ ϕ2. From the rule premises
t `+ ϕ1, t `+ ϕ2 and by I.H. we know

inf(t, ϕ1) (43)

inf(t, ϕ2) (44)

26

By expanding (43) and (44), we get

linf(t, ϕ1,m1) (45)

ϕ′1 ∈ m1 implies inf([t]1, ϕ′1) (46)

linf(t, ϕ2,m2) (47)

ϕ′2 ∈ m2 implies inf([t]1, ϕ′2) (48)

Using (45), (47) and the rule gAnd, we obtain

linf(t, ϕ1 ∧ ϕ2,m1 ∪m2) (49)

From (46) and (48) we know that for arbitrary ϕ′ in m1 ∪ m2 we have
inf([t]1, ϕ′). Thus, by (49) we obtain inf(t, ϕ1 ∧ ϕ2) as required.

pUnt1: From the rule we know that ϕ = ϕ1 U ϕ2. From the rule premise
t `+ ϕ1 and I.H. we obtain inf(t, ϕ1) which can be expanded to

linf(t, ϕ1,m) (50)

ϕ′ ∈ m implies inf([t]1, ϕ′) (51)

Using (50) and the rule gUnt1, we obtain

linf(t, ϕ1 U ϕ2,m) (52)

From (52) and (51) we can conclude inf(t, ϕ1 U ϕ2) as required.

pUnt2 From the rule we know that ϕ = ϕ1 U ϕ2 and that t = σt′. From the
rule premises σt′ `+ ϕ1, t′ `+ ϕ1 U ϕ2 and by I.H. we know

inf(σt′, ϕ1) (53)

inf(t′, ϕ1 U ϕ2) (54)

By expanding (53) we get

linf(σt′, ϕ1,m1) (55)

ϕ′ ∈ m1 implies inf(t′, ϕ′) (56)

From (55) and rule gUnt2 we obtain

linf(σt′, ϕ1 U ϕ2,m1 ∪ {ϕ1 U ϕ2}) (57)

Using m = m1 ∪ {ϕ1 U ϕ2} as our witness, to obtain inf(σt′, ϕ1 U ϕ2)
from (57), we have to show that for any ϕ′ ∈ m we have inf(t′, ϕ′). This
follows from (56) and (54).

pRel1 From the rule we know that ϕ = ϕ1 R ϕ2. From the rule premises
t `+ ϕ1, t `+ ϕ2 and by I.H. we know

inf(t, ϕ1) (58)

inf(t, ϕ2) (59)

27

By expanding (58) we get

linf(t, ϕ1,m1) (60)

ϕ′ ∈ m1 implies inf([t]1, ϕ′) (61)

By expanding (59) we get

linf(t, ϕ1,m2) (62)

ϕ′ ∈ m2 implies inf([t]1, ϕ′) (63)

Using (60) and (62) and the rule gRel1, we obtain linf(t, ϕ1 U ϕ2,m1 ∪
m2). From (5.1), (63) and (5.1) we can conclude inf(t, ϕ1 R ϕ2) as required.

pRel2 From the rule we know that ϕ = ϕ1 R ϕ2 and t = σt′. From the rule
premises σt′ `+ ϕ2, t′ `+ ϕ1 R ϕ2 and by I.H. we know

inf(σt′, ϕ2) (64)

inf(t′, ϕ1 R ϕ2) (65)

By expanding (64) we get

linf(σt′, ϕ2,m1) (66)

ϕ′ ∈ m1 implies inf(t′, ϕ′) (67)

From (66) and rule gRel2 we obtain

linf(σt′, ϕ1 R ϕ2,m1 ∪ {ϕ1 R ϕ2}) (68)

Using m = m1 ∪{ϕ1 R ϕ2} as our witness, to obtain inf(σt′, ϕ1 R ϕ2), we
have to show that for any ϕ′ ∈ m we have inf(t′, ϕ′). This follows from
(67) and (65).

Discussion. In the only-if direction, Theorem 6 embeds informative prefixes
within our deductive system, and ensures that our system is as expressive as
[41]. In the if direction, Theorem 6 shows that every derivation in our proof
system corresponds to an informative prefix as defined in [50]; as a corollary, we
also establish a correspondence between t `− ϕ and inf(t,¬ϕ) as used in [41]
for bad prefixes. This provides an alternative justifications as to why our proof
system is unable to symbolically process certain prefix and formula pairs, as we
illustrate in the next example.

Example 5.3. The proof system of Section 3 is unable to deduce ε `+ Xtt
(cf. proof for Theorem 2) even though, on a semantic level, this holds for any
string continuation. Through Theorem 6 we can argue that this is not a mere
expressiveness limitation in our proof rules, but because ε in not an informative
prefix of Xtt as define by Kupferman et al. in [50]. �

28

Derivative Rewriting Rules

tt{σ} def
= tt ff{σ} def

= ff

p{σ} def
= if p(σ) then tt else ff

(¬ψ){σ} def
= (tt⊕ ψ){σ} ψ1 ⊕ ψ2{σ}

def
= ψ1{σ} ⊕ ψ2{σ}

ψ1 ∧ ψ2{σ}
def
= ψ1{σ} ∧ ψ2{σ} ψ1 ∨ ψ2{σ}

def
= ψ1{σ} ∨ ψ2{σ}

Xψ{σ} def
= ψ

ψ1 U ψ2{σ}
def
= ψ2{σ} ∨ (ψ1{σ} ∧ ψ1Uψ2)

Formula Equivalence Rules

tt ∧ ψ ≡ ψ ff ∧ ψ ≡ ff ff ∨ ψ ≡ ψ tt ∨ ψ ≡ tt
ψ ∧ ψ ≡ ψ ψ ∨ ψ ≡ ψ ff ⊕ ψ ≡ ψ (ψ1 ∧ ψ2)⊕ ψ1 ⊕ ψ2 ≡ ψ1 ∨ ψ2

Figure 5: Derivative Interpretation of LTL formulas

Theorem 6 has another important implication. One argument in favour of
limiting symbolic analysis to informative prefixes is that any bad/good prefixes
detected can be accompanied by an explanation [19]. However, whereas in [41]
this explanation is given in terms of the algorithm implementation, delineating
the proof system from its implementing monitor (as in our case) allows us to
provide the explanation as a proof derivation using the rules from Section 3,
i.e., a reasonably abstract step-by-step justification.

5.2. Derivatives

In a derivatives approach [45, 61], LTL formulas are interpreted as functions
that take a state i.e., an element of the alphabet Σ, and return another LTL
formula. The returned formula is then applied again to the next state in the ex-
ecution trace, until either one of the canonical formulas tt or ff are reached; the
trace analysis stops at canonical formulas, since tt (respectively ff) are idempo-
tent, returning tt (respectively ff), irrespective of the state that it is applied to.
In [61], co-inductive deductive techniques are furthermore used on derivatives
to establish LTL formula equivalences, which are then used to obtain optimal
monitors for good/bad prefixes.

Example 5.4. Recall ε 6`+ Xtt from Example 5.3. Using their auxiliary co-
inductive analysis, in [61] they are able to establish that formulas tt and Xtt are
equivalent with respect to good prefixes, tt ≡G Xtt, which allows them to reason
symbolically about ε and Xtt in terms of ε and tt instead. Simply put, using
auxiliary reasoning methods, the framework presented in [61] can determine
that ε suffices to establish that Xtt is satisfied. �

Formally, a derivative interpretation is expressed as a rewriting operator
{ } :: aLtl × Σ −→ aLtl (adapted from [61]) defined on the structure of

the formula through the rules in Figure 5. In our rule presentation, we position
rewriting definitions for core LTL formulas from Figure 1 on the left; formula

29

rewriting however also uses an extended set of formulas that include falsehood, ff,
disjunction, ψ1 ∨ ψ2, and exclusive-or, ψ1 ⊕ ψ2. The derivatives algorithm also
works up to formula normalisations using the equalities presented in Figure 5.

Definition 5.1 (Good/Bad Prefixes [61]). For any finite trace t of the form
σ1σ2 . . . σn:

• t is a good prefix for ψ iff ((ψ{σ1}){σ2}){. . . σn} ≡ tt;

• t is a bad prefix for ψ iff ((ψ{σ1}){σ2}){. . . σn} ≡ ff.

Example 5.5. Recall the LTL formula gUo from Example 2.1. The partial
trace go is a good prefix for gUo according to Definition 5.1 because we can
construct the following derivation using the rules in Figure 5:

(gUo{g}){o} def
= o{g} ∨

(
g{g} ∧ gUo

)
{o}

def
= ff ∨

(
g{g} ∧ gUo

)
{o} ≡

(
g{g} ∧ gUo

)
{o}

def
=
(
tt ∧ gUo

)
{o} ≡ gUo{o}

def
= o{o} ∨

(
g{o} ∧ gUo

) def
= tt ∨

(
g{o} ∧ gUo

)
≡ tt �

We can show that good prefixes and bad prefixes, as defined in [61] (repro-
duced here in Definition 5.1), correspond to finite traces with satisfaction proofs
and violation proofs respectively, derived using our proof system of Section 3.
Moreover, the correspondence is bidirectional.

Theorem 7 (Derivatives Correspondence). For any finite trace t = σ1 . . . σn,
and core LTL formula ψ:

• (ψ{σ1}){. . . σn} ≡ tt iff t `+ ψ

• (ψ{σ1}){. . . σn} ≡ ff iff t `− ψ

Proof. For the only-if case, we prove both statements simultaneously by induc-
tion on length of the string n and then by induction on the structure of ψ. The
representative cases are:

ψ1 ∧ ψ2: For the positive case, given that ψ = ψ1 ∧ ψ2, we have to show that

(ψ1 ∧ ψ2{σ1}){. . . σn} ≡ tt implies t `+ ψ1 ∧ ψ2

From Section 5.2, for (ψ1 ∧ ψ2{σ1}){. . . σn} ≡ tt to hold, then both
(ψ1{σ1}){. . . σn} ≡ tt and (ψ2{σ1}){. . . σn} ≡ tt must also hold. By
the I.H. on the structure of ψ, we obtain t `+ ψ1 and t `+ ψ2. Finally, by
rule pAnd, we can conclude that t `+ ψ1 ∧ ψ2 as required. The negative
case is analogous.

ψ1 U ψ2: For the positive case we have to show that

(ψ1 U ψ2{σ1}){. . . σn} ≡ tt implies t `+ ψ1 U ψ2

30

From Section 5.2, for (ψ1 U ψ2{σ1}){. . . σn} ≡ tt to hold, one of the
following statements should hold true:

(ψ2{σ1}){. . . σn} ≡ tt (69)

(ψ1{σ1} ∧ ψ1 U ψ2){. . . σn} ≡ tt (70)

• If (69) holds, by I.H. on the structure of ψ, we get t `+ ψ2 and by
rule pUnt1 it follows that t `+ ψ1 U ψ2 as required.

• If (70) holds, then it must be the case that |σ1 . . . σn| ≥ 1 and for
(70) to hold, it must be the case that

(ψ1{σ1}){. . . σn} ≡ tt (71)

(ψ1 U ψ2{σ2}){. . . σn} ≡ tt (72)

By (71) and I.H. on the structure of the formula we obtain

t `+ ψ1 (73)

By (72) and I.H. on the structure of the string we obtain

[t]1 `+ ψ1 U ψ2 (74)

By (73), (74) and rule pUnt2 we can conclude that t `+ ψ1 U ψ2 as
required.

For the negative case, we have to show that

(ψ1 U ψ2{σ1}){. . . σn} ≡ ff implies t `− ψ1 U ψ2

By the definition given in Section 5.2, for (ψ1 U ψ2{σ1}){. . . σn} ≡ ff to
hold, both of the following statements should hold:

(ψ2{σ1}){. . . σn} ≡ ff (75)

(ψ1{σ1} ∧ ψ1 U ψ2){. . . σn} ≡ ff (76)

By I.H. on the structure of the formula and (75) we get

t `− ψ2 (77)

From (76), we know that either of the following cases must hold:

(ψ1{σ1}){. . . σn} ≡ ff or (78)

(ψ1 U ψ2{σ2}){. . . σn} ≡ ff (79)

We consider either case.

• If (78) holds, then by I.H. on the structure of the formula we obtain
t `− ψ1 and the required result follows by (77) and nUnt1.

31

• Alternatively, if (79) holds, then we know that t = σ1t
′ for some t′,

and by structural induction on the string we obtain the judgement
t′ `− ψ1 U ψ2. The required result follows by (77) and nUnt2.

¬ψ: For the positive case, we have to show that

(¬ψ{σ1}){. . . σn} ≡ tt implies t `+ ¬ψ

By the definition in Section 5.2, we have (tt⊕ ψ{σ1}){. . . σn} ≡ tt which
is equivalent to

tt⊕ (ψ{σ1}){. . . σn} ≡ tt (80)

For (80) to hold, (ψ{σ1}){. . . σn} ≡ ff must hold. By I.H. on the structure
of the formula, this yields t `− ψ. The required result follows from pNeg.
The negative case is analogous.

For the if case, we prove both statements simultaneously by rule induction
on t `+ ψ and t `− ψ. The representative cases are:

pAnd: We know that ψ = ψ1 ∧ ψ2. From the rule premises t `+ ψ1, t `+ ψ2

and I.H. we obtain (ψ1{σ1}){. . . σn} ≡ tt and (ψ2{σ1}){. . . σn} ≡ tt, which
imply (ψ1 ∧ ψ2{σ1}){. . . σn} ≡ tt.

pUnt2 We know that ψ = ψ1 U ψ2. From the rule premises σt′ `+ ψ1, t′ `+
ψ1 U ψ2 and by I.H. we obtain

(ψ1{σ1}){. . . σn} ≡ tt (81)

(ψ1 U ψ2{σ2}){. . . σn} ≡ tt (82)

From (81), (82) and the definition of the derivatives, the following holds

(ψ1{σ1} ∧ ψ1 U ψ2){. . . σn} ≡ tt

which also implies that

ψ2{σ1} ∨ (ψ1{σ1} ∧ ψ1Uψ2){. . . σn} ≡ tt

Thus we can conclude that (ψ1 U ψ2{σ1}){. . . σn} ≡ tt.

pNeg We know that ψ = ¬ψ′. From the rule premise t `− ψ′ and by I.H. we
obtain (ψ{σ1}){. . . σn} ≡ ff which implies that (tt ⊕ ψ{σ1}){. . . σn} ≡ tt
and ultimately (by the definition of Figure 5) that (¬ψ{σ1}){. . . σn} ≡ tt
as required.

nUnt2 We know that ψ = ψ1 U ψ2. From the rule premises σt′ `− ψ2, t′ `−
ψ1 U ψ2 and I.H. we obtain

(ψ2{σ1}){. . . σn} ≡ ff (83)

(ψ1 U ψ2{σ2}){. . . σn} ≡ ff (84)

32

From (84) and the derivatives definition of Figure 5 we can deduce

(ψ1{σ1} ∧ ψ1 U ψ2){. . . σn} ≡ ff (85)

By (83) and (85) we conclude that
(
ψ2{σ1}∨(ψ1{σ1}∧ψ1 U ψ2)

)
{. . . σn} ≡

ff must hold, which yields (ψ1 U ψ2{σ1}){. . . σn} ≡ ff by the derivatives
definition of Figure 5.

Discussion. Apart from establishing a one-to-one correspondence between the
derivative prefixes and proof deductions for the core LTL formulas in our sys-
tem, Theorem 7 (together with Theorem 6) allows us to relate indirectly the
informative prefixes of Section 5.1 to derivative prefixes, using our proof system
as a unifying framework to bridge the gap between the two formalisms.

In addition, Theorem 7 allows us to identify from where the additional ex-
pressiveness of the analysis in [61] derives from. Specifically, the derivatives
formalisation is able to reason about additional satisfactions, such as ε ∈ JXttK
from Example 5.4, through the auxiliary deductive systems for formula equiv-
alence with respect to good/bad prefixed, ` ψ1 ≡G ψ2 and ` ψ1 ≡B ψ2. This
opens up the possibility of merging the two approaches, perhaps by extending
our deductive system with rules analogous to those shown below, that rely on
the auxiliary deductive systems of [61]; one should also consult [3, Section 4.2]
for a related discussion on the matter.

pEq
t `+ ϕ1 ` ϕ1 ≡G ϕ2

t `+ ϕ2
nEq

t `− ϕ1 ` ϕ1 ≡B ϕ2

t `− ϕ2

6. Conclusion

RV monitors are often constructed as black boxes, providing scant explana-
tion to the user on how their verdicts are reached. To address this problem,
we presented a proof system that formalises the mechanical reasoning carried
out by an online monitor when analysing an execution trace with respect to a
correctness property specified as an LTL formula. Proof derivations within this
system can then be provided as implementation-agnostic explanations for said
verdicts. As opposed to other proof systems for the logic LTL, our deduction
system captures closely the constraints encountered in such an online setting
(e.g., it is a local proof system, defined over partial traces) while preserving
the fact that logic itself is defined over complete traces. We demonstrate that
these characteristics indeed reflect online monitoring constraints by presenting
an online monitoring algorithm derived from the proof system in a relatively
straightforward manner. The concrete contributions of our work are:

1. A sound, local LTL proof system that infers complete trace inclusion
from finite prefixes, Theorem 1, together with an incompleteness result,
Theorem 2.

33

2. A demonstration of the realisability of our approach via mechanisation of
proof derivations for this system. We also show its viability in terms of its
incrementality, Theorem 4, decidability, Theorem 3, and the production
of irrevocable verdicts, Theorem 5.

3. A validation of the expressivity of our proposed approach and an expo-
sition of how the proof system can be used as a unifying framework to
relate different runtime monitoring formalisms that are useful for verdict
interpretation, Theorem 7 and Theorem 6.

We espouse the methods advocated by a recent body of work [36, 37, 1, 3, 5]
and tease apart the specification of the symbolic analysis, i.e., the proof sys-
tem, from its automation, i.e., the actual monitoring algorithm, which yields a
number of advantages. The two-tiered organisation leads to better separation
of concerns, and a cleaner organisation that is easier to maintain and under-
stand. For instance, we can localise correctness results leading to a more mod-
ular organisation e.g., soundness is determined for the proof system, whereas
the decidability of proof search is automation specific. The comparisons with
other formal approaches, as shown in Section 5, happens exclusively in terms of
the proof system, promoting cross-fertilisation with other symbolic techniques.
Once the algorithm determines a satisfaction/violation, it can just present the
proof derivation justifying the verdict reached without detailing how such a
derivation was constructed, i.e., how the proof-search was conducted in the al-
gorithm of Figure 3. The modular organisation also allows us to investigate
efficient automation algorithms that lower the overheads of the runtime analy-
sis, while keeping the specification fixed, i.e., the same proof-rules of Figure 2:
properties such as Theorem 1 do not need to be recomputed for the new algo-
rithm.

Related Work. Apart from the deductive system for LTL formula equivalence
in [61], i.e., ` ϕ1 ≡G ϕ2 and ` ϕ1 ≡B ϕ2 mentioned briefly in Section 5.2,
there are other LTL proof systems specifically developed for LTL [40, 53, 49,
23, 14]. However, each system differs substantially from ours. For instance,
the model used in the proof systems of [40, 53] is that of programs, i.e., sets of
traces, instead of (complete) individual traces, as in the case of Figure 1. The
work in [40, 49] is concerned with developing tableau methods for inferring the
validity of a formula from a conjunction of formulas i.e., their sequents are of
the form ϕ1, . . . , ϕn ` ϕ which is considerably different from our (local) proof-
system sequents of Figure 2. Similar to [40, 49], the proof system of [23] reasons
about the full point-space of LTL formulas, but focussed on studying cut-free
sequent systems. In [53], they develop three tailored proof systems for separate
classes of properties, namely safety, response and reactivity properties. In some
sense, our violation proof rules may be seen as rules targetting safety LTL
properties (that may be violated over a finite trace [50]), but the technical details
of [53] are substantially different from ours. For instance, their classification is
based on the syntactic structure of the formulas (e.g., Gψ in the case of safety
properties); this is something our proof rules do not do. Moreover, even though

34

their proof rules include a degree locality by considering all the traces of a
particular program, they do not consider the constraints pertaining to an RV
setting such as deductions from partial traces and the inclusion of violation
judgements. The closest to our work is that of Basin et al. [14]. They study a
local proof system that is inspired by our proof system with separate judgements
for both satisfactions and violations. Again, their setting is different from our
since they do not target the concerns of a typical RV setting e.g., they do not
work with partial traces and are not concerned with synthesising monitors.

Apart from Manna and Pnueli’s LTL definition for finite (but complete)
traces [54], there is also a substantial body of work that studies alternative
LTL semantics for partial (i.e., incomplete) traces such as [32, 17, 18, 19, 27].
For instance, in [32], the authors define two mutually-dependent semantics for
LTL that approximate to either a satisfaction or a violation respectively when-
ever a trace is truncated before yielding enough information that allows for a
definitive verdict. Although the switching between the approximating semantics
when evaluating negation formulas in [32] is reminiscent to the switch between
satisfaction and violation judgements in our proof system, our approach does
not approximate verdicts, as is discussed in Section 3 and further elaborated in
Section 4.3. In [19] they propose a three-valued LTL semantics for truncated
(finite) traces, and study automata-based monitor constructions with respect to
the new semantics; they also use the alternative semantics to give characterisa-
tions for (finite) trace properties such as good, bad and ugly prefixes. In [17, 18]
they extend this idea and define a four-valued LTL semantics for partial traces,
splitting inconclusive verdicts into temporarily violates and temporarily satisfies
verdicts, and show how this semantics facilitates the construction of automata-
based monitors. More recently, the authors in [27] even propose a five-valued
LTL semantics to deal with the uncertainty of trace-element reordering (in set-
tings without a global-clock) apart from the uncertainty of viewing only part
of a complete trace. See [18] for an extensive comparison amongst the vari-
ous LTL semantics for partial/finite traces. N-values semantics for LTL can
be interpreted as specifications for how monitors should behave over partial
trace. Although this aspect is related to the semantic interpretation of our
proof system, we impose this behavioural specification at the level of the sym-
bolic analysis, i.e., the proof system, while leaving the semantics of the logic
itself unchanged. This leads to a distinct separation between (logic) satisfac-
tions and violations on the one hand, and (proof-system/monitor) acceptances
and rejections on the other.

Explainability has recently garnered more attention in the field of runtime
monitoring, taking a variety of forms. There is work that uses monitors to aug-
ment verdicts and violating traces to assist fault localisation. For instance, Jia
et al. [47] and Ahrendt et al. [6] employ monitors that do not simply raise a vi-
olation, but attribute blame to the entity that causes the blame. In the context
of Cyber-Physical Systems, Bartocci et al. [13] use monitor as part of a testing
toolchain to augment traces with information as to which signals violated a prop-
erty and the time interval in which the properties were violated. The closest to
our work, at least in terms of aims, is that of Dawes and Reger [29]. The authors

35

generate context-free grammar representations of rejected traces as a means of
explaining the violations detected by their monitors. Their logic, CFTL, de-
scribes timed properties, and their explanations also include the severity of the
timed-constraint violations using a distance measure. Although similar, LTL is
less expressive than their logic but our explanations are more closely tied to the
properties satisfied or violated.

Future Work. It would be fruitful to relate other LTL symbolic analyses to the
ones discussed in Section 5. Our work may also be used as a point of departure
for developing proof systems for other interpretations of LTL. For instance, a
different LTL model to that of Section 2 covers both finite and infinite traces [5];
this alters the negation propagation identities used for the translation function
(e.g., ¬Xψ ≡ X¬ψ does not hold) and, amongst other things, would require
tweaking to the proof rules. Similar issues arise in distributed LTL interpreta-
tions such as [16] where instead of having one execution trace, we have a set of
traces (one for each location). Another avenue for research would be to extend
these ideas to other, more expressive logics used in the context RV such as the
modal µ-calculus [37, 5]. The work in [5] is particularly relevant to our cause for
mechanising the runtime analysis of LTL formulas because it provides connec-
tions between monitorability property classes based on operational guarantees
and the more traditional monitorability classes such as [7]. Since the modal µ-
calculus can embed LTL, results from [5] can also be used to identify syntactic
LTL fragments that are both sound and complete in the sense of Theorem 1
and Theorem 2.

We also leave complexity analysis and the assessment of the runtime over-
heads introduced by our setup for future work. More specifically, the automa-
tion proposed in Section 4 is presented merely as a vehicle for demonstrating the
proximity of the proof rules to an actual RV monitor. However, one can easily
define more efficient proof search algorithms that, for instance, expand common
obligations across conjunction sets only once, or circumventing repeated obliga-
tion expansions across iterations through techniques such as memoization. In
the case of generating higher-level explanations in terms of the proof rules used
in a derivation, it may be too expensive to record every rule used. To mitigate
this, one could investigate the applicability of the concepts studied in Grigore
and Kiefer [43] and make an interesting/uninteresting distinction amongst the
relevant rules (e.g., in the case of an ϕ1 U ϕ2 formula one would say that rule
pUnt1 is relevant, implictly recording only the number of times (as an index)
rule pUnt2 is applied before pUnt1 is finally used). More comprehensively,
the subject of efficient monitor generation for LTL (and its various logical ex-
tensions) in the context of RV has been studied in [63, 2, 4].

References

[1] Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., 2018. A Frame-
work for Parametrized Monitorability, in: Foundations of Software Science

36

and Computation Structures - 21st International Conference (FOSSACS),
Springer. pp. 203–220.

[2] Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson,
S.Ö., 2017. On the complexity of determinizing monitors, in: Carayol, A.,
Nicaud, C. (Eds.), Implementation and Application of Automata - 22nd
International Conference, CIAA 2017, Marne-la-Vallée, France, June 27-
30, 2017, Proceedings, Springer. pp. 1–13. URL: https://doi.org/10.
1007/978-3-319-60134-2_1, doi:10.1007/978-3-319-60134-2_1.

[3] Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.,
2019a. Adventures in monitorability: From branching to linear time and
back again. Proceedings of the ACM on Programming Languages (POPL)
3, 52:1–52:29. URL: https://dl.acm.org/citation.cfm?id=3290365.

[4] Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.,
2019b. The cost of monitoring alone, in: Bartocci, E., Cleaveland, R.,
Grosu, R., Sokolsky, O. (Eds.), From Reactive Systems to Cyber-Physical
Systems - Essays Dedicated to Scott A. Smolka on the Occasion of His
65th Birthday, Springer. pp. 259–275. URL: https://doi.org/10.1007/
978-3-030-31514-6_15, doi:10.1007/978-3-030-31514-6_15.

[5] Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.,
2019c. An operational guide to monitorability, in: Software Engineer-
ing and Formal Methods - 17th International Conference, SEFM 2019,
Oslo, Norway, September 18-20, 2019, Proceedings, Springer. pp. 433–453.
URL: https://doi.org/10.1007/978-3-030-30446-1_23, doi:10.1007/
978-3-030-30446-1_23.

[6] Ahrendt, W., Henrio, L., Oortwijn, W., 2019. Who is to
blame? runtime verification of distributed objects with active moni-
tors. CoRR abs/1908.10042. URL: http://arxiv.org/abs/1908.10042,
arXiv:1908.10042.

[7] Alpern, B., Schneider, F.B., 1987. Recognizing safety and liveness.
Distributed Comput. 2, 117–126. URL: https://doi.org/10.1007/

BF01782772, doi:10.1007/BF01782772.

[8] Artho, C., Barringer, H., Goldberg, A., Havelund, K., Khurshid, S., Lowry,
M.R., Pasareanu, C.S., Rosu, G., Sen, K., Visser, W., Washington, R.,
2005. Combining test case generation and runtime verification. Theor.
Comput. Sci. 336, 209–234. URL: https://doi.org/10.1016/j.tcs.

2004.11.007, doi:10.1016/j.tcs.2004.11.007.

[9] Attard, D.P., Francalanza, A., 2017. Trace partitioning and local moni-
toring for asynchronous components, in: Cimatti, A., Sirjani, M. (Eds.),
Software Engineering and Formal Methods - 15th International Conference,
SEFM 2017, Trento, Italy, September 4-8, 2017, Proceedings, Springer.

37

https://doi.org/10.1007/978-3-319-60134-2_1
https://doi.org/10.1007/978-3-319-60134-2_1
http://dx.doi.org/10.1007/978-3-319-60134-2_1
https://dl.acm.org/citation.cfm?id=3290365
https://doi.org/10.1007/978-3-030-31514-6_15
https://doi.org/10.1007/978-3-030-31514-6_15
http://dx.doi.org/10.1007/978-3-030-31514-6_15
https://doi.org/10.1007/978-3-030-30446-1_23
http://dx.doi.org/10.1007/978-3-030-30446-1_23
http://dx.doi.org/10.1007/978-3-030-30446-1_23
http://arxiv.org/abs/1908.10042
http://arxiv.org/abs/1908.10042
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772
http://dx.doi.org/10.1007/BF01782772
https://doi.org/10.1016/j.tcs.2004.11.007
https://doi.org/10.1016/j.tcs.2004.11.007
http://dx.doi.org/10.1016/j.tcs.2004.11.007

pp. 219–235. URL: https://doi.org/10.1007/978-3-319-66197-1_14,
doi:10.1007/978-3-319-66197-1_14.

[10] Baier, C., Katoen, J.P., 2008. Principles of Model Checking. Representation
and Mind series, MIT Press, Cambridge (MA), USA.

[11] Bartocci, E., Falcone, Y. (Eds.), 2018. Lectures on Runtime Verifi-
cation - Introductory and Advanced Topics. volume 10457 of Lecture
Notes in Computer Science. Springer. URL: https://doi.org/10.1007/
978-3-319-75632-5, doi:10.1007/978-3-319-75632-5.

[12] Bartocci, E., Falcone, Y., Francalanza, A., Reger, G., 2018. Introduction
to runtime verification, in: [11]. pp. 1–33. URL: https://doi.org/10.
1007/978-3-319-75632-5_1, doi:10.1007/978-3-319-75632-5_1.

[13] Bartocci, E., Manjunath, N., Mariani, L., Mateis, C., Nickovic, D., 2019.
Automatic failure explanation in CPS models, in: Ölveczky, P.C., Salaün,
G. (Eds.), Software Engineering and Formal Methods - 17th Interna-
tional Conference, SEFM 2019, Oslo, Norway, September 18-20, 2019,
Proceedings, Springer. pp. 69–86. URL: https://doi.org/10.1007/

978-3-030-30446-1_4, doi:10.1007/978-3-030-30446-1_4.

[14] Basin, D.A., Bhatt, B.N., Traytel, D., 2018. Optimal proofs for linear
temporal logic on lasso words, in: Automated Technology for Verifica-
tion and Analysis - 16th International Symposium, ATVA 2018, Los An-
geles, CA, USA, October 7-10, 2018, Proceedings, Springer. pp. 37–55.
URL: https://doi.org/10.1007/978-3-030-01090-4_3, doi:10.1007/
978-3-030-01090-4_3.

[15] Basin, D.A., Klaedtke, F., Zalinescu, E., 2017. Runtime verification
of temporal properties over out-of-order data streams, in: Computer
Aided Verification - 29th International Conference, CAV 2017, Heidelberg,
Germany, July 24-28, 2017, Proceedings, Part I, Springer. pp. 356–376.
URL: https://doi.org/10.1007/978-3-319-63387-9_18, doi:10.1007/
978-3-319-63387-9_18.

[16] Bauer, A., Falcone, Y., 2016. Decentralised LTL monitoring. Formal
Methods in System Design 48, 46–93. URL: https://doi.org/10.1007/
s10703-016-0253-8, doi:10.1007/s10703-016-0253-8.

[17] Bauer, A., Leucker, M., Schallhart, C., 2007. The good, the bad, and
the ugly, but how ugly is ugly?, in: Runtime Verification, Springer. pp.
126–138.

[18] Bauer, A., Leucker, M., Schallhart, C., 2010. Comparing LTL Semantics
for Runtime Verification. Logic and Computation 20, 651–674.

[19] Bauer, A., Leucker, M., Schallhart, C., 2011. Runtime Verification for LTL
and TLTL. Transactions on Software Engineering and Methodology 20, 14.

38

https://doi.org/10.1007/978-3-319-66197-1_14
http://dx.doi.org/10.1007/978-3-319-66197-1_14
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-319-75632-5
http://dx.doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
http://dx.doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-030-30446-1_4
https://doi.org/10.1007/978-3-030-30446-1_4
http://dx.doi.org/10.1007/978-3-030-30446-1_4
https://doi.org/10.1007/978-3-030-01090-4_3
http://dx.doi.org/10.1007/978-3-030-01090-4_3
http://dx.doi.org/10.1007/978-3-030-01090-4_3
https://doi.org/10.1007/978-3-319-63387-9_18
http://dx.doi.org/10.1007/978-3-319-63387-9_18
http://dx.doi.org/10.1007/978-3-319-63387-9_18
https://doi.org/10.1007/s10703-016-0253-8
https://doi.org/10.1007/s10703-016-0253-8
http://dx.doi.org/10.1007/s10703-016-0253-8

[20] Bocchi, L., Chen, T., Demangeon, R., Honda, K., Yoshida, N., 2017.
Monitoring networks through multiparty session types. Theor. Comput.
Sci. 669, 33–58. URL: https://doi.org/10.1016/j.tcs.2017.02.009,
doi:10.1016/j.tcs.2017.02.009.

[21] Bohlender, D., Köhl, M.A., 2019. Towards a characterization of explain-
able systems. CoRR abs/1902.03096. URL: http://arxiv.org/abs/1902.
03096, arXiv:1902.03096.

[22] Bradfield, J., Stirling, C., 1992. Local model-checking for infinite state
spaces.

[23] Brunnler, K., Lange, M., 2008. Cut-free Sequent Systems for Temporal
Logic. Journal of Logic and Algebraic Programming 76, 216 – 225.

[24] Burlò, C.B., Francalanza, A., Scalas, A., 2020. Towards a hybrid verifica-
tion methodology for communication protocols (short paper), in: Gots-
man, A., Sokolova, A. (Eds.), Formal Techniques for Distributed Ob-
jects, Components, and Systems - 40th IFIP WG 6.1 International Con-
ference, FORTE 2020, Held as Part of the 15th International Feder-
ated Conference on Distributed Computing Techniques, DisCoTec 2020,
Valletta, Malta, June 15-19, 2020, Proceedings, Springer. pp. 227–235.
URL: https://doi.org/10.1007/978-3-030-50086-3_13, doi:10.1007/
978-3-030-50086-3_13.

[25] Buss, S.R. (Ed.), 1998. Handbook of Proof Theory. Elsevier.

[26] Cassar, I., Francalanza, A., Aceto, L., Ingólfsdóttir, A., 2017. A survey of
runtime monitoring instrumentation techniques, in: Francalanza, A., Pace,
G.J. (Eds.), Proceedings Second International Workshop on Pre- and Post-
Deployment Verification Techniques, PrePost@iFM 2017, pp. 15–28. URL:
https://doi.org/10.4204/EPTCS.254.2, doi:10.4204/EPTCS.254.2.

[27] Chai, M., Schlingloff, B., 2014. Online monitoring of distributed systems
with a five-valued LTL, in: International Symposium on Multiple-Valued
Logic, IEEE. pp. 226–231. URL: http://dx.doi.org/10.1109/ISMVL.

2014.47, doi:10.1109/ISMVL.2014.47.

[28] Cini, C., Francalanza, A., 2015. An LTL Proof System for Runtime Verifi-
cation, in: TACAS, Springer. pp. 581–595.

[29] Dawes, J.H., Reger, G., 2019. Explaining Violations of Properties in
Control-Flow Temporal Logic, in: Runtime Verification - 19th Interna-
tional Conference, RV 2019, Springer. (to appear).

[30] Desai, A., Dreossi, T., Seshia, S.A., 2017. Combining model checking and
runtime verification for safe robotics, in: Lahiri, S.K., Reger, G. (Eds.),
Runtime Verification - 17th International Conference, RV 2017, Seattle,
WA, USA, September 13-16, 2017, Proceedings, Springer. pp. 172–189.

39

https://doi.org/10.1016/j.tcs.2017.02.009
http://dx.doi.org/10.1016/j.tcs.2017.02.009
http://arxiv.org/abs/1902.03096
http://arxiv.org/abs/1902.03096
http://arxiv.org/abs/1902.03096
https://doi.org/10.1007/978-3-030-50086-3_13
http://dx.doi.org/10.1007/978-3-030-50086-3_13
http://dx.doi.org/10.1007/978-3-030-50086-3_13
https://doi.org/10.4204/EPTCS.254.2
http://dx.doi.org/10.4204/EPTCS.254.2
http://dx.doi.org/10.1109/ISMVL.2014.47
http://dx.doi.org/10.1109/ISMVL.2014.47
http://dx.doi.org/10.1109/ISMVL.2014.47

URL: https://doi.org/10.1007/978-3-319-67531-2_11, doi:10.1007/
978-3-319-67531-2_11.

[31] Edwards, L., Veale, M., 2017. Slave to the algorithm? why a ’right to an
explanation’ is probably not the remedy you are looking for. Duke Law
and Technology Review 16, 1–65.

[32] Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Campen-
hout, D.V., 2003. Reasoning with temporal logic on truncated paths, in:
Computer Aided Verification, Springer. pp. 27–39.

[33] Francalanza, A., . A Theory of Monitors. Information and Computation
(to appear).

[34] Francalanza, A., 2016. A Theory of Monitors (Extended Abstract), in:
Foundations of Software Science and Computation Structures - 19th Inter-
national Conference, FOSSACS, Eindhoven, The Netherlands, pp. 145–161.

[35] Francalanza, A., 2017. Consistently-detecting monitors, in: 28th Interna-
tional Conference on Concurrency Theory (CONCUR), Schloss Dagstuhl.
pp. 8:1–8:19. doi:10.4230/LIPIcs.CONCUR.2017.8.

[36] Francalanza, A., Aceto, L., Achilleos, A., Attard, D.P., Cassar, I., Monica,
D.D., Ingólfsdóttir, A., 2017a. A Foundation for Runtime Monitoring, in:
Runtime Verification - 17th International Conference, RV 2017, Springer.
pp. 8–29. URL: https://doi.org/10.1007/978-3-319-67531-2_2.

[37] Francalanza, A., Aceto, L., Ingólfsdóttir, A., 2017b. Monitorability for the
Hennessy-Milner logic with recursion. Formal Methods in System Design
51, 87–116. URL: https://doi.org/10.1007/s10703-017-0273-z.

[38] Francalanza, A., Gauci, A., Pace, G.J., 2013. Distributed system con-
tract monitoring. J. Log. Algebraic Methods Program. 82, 186–215. URL:
https://doi.org/10.1016/j.jlap.2013.04.001, doi:10.1016/j.jlap.
2013.04.001.

[39] Francalanza, A., Pérez, J.A., Sánchez, C., 2018. Runtime verifica-
tion for decentralised and distributed systems, in: [11]. pp. 176–210.
URL: https://doi.org/10.1007/978-3-319-75632-5_6, doi:10.1007/
978-3-319-75632-5_6.

[40] Gabbay, D., Pnueli, A., Shelah, S., Stavi, J., 1980. On the temporal analysis
of fairness, in: Principles of Programming Languages, ACM, New York,
NY, USA. pp. 163–173. URL: http://doi.acm.org/10.1145/567446.

567462, doi:10.1145/567446.567462.

[41] Geilen, M., 2001. On the Construction of Monitors for Temporal Logic
Properties, in: Runtime Verification, pp. 181–199.

40

https://doi.org/10.1007/978-3-319-67531-2_11
http://dx.doi.org/10.1007/978-3-319-67531-2_11
http://dx.doi.org/10.1007/978-3-319-67531-2_11
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.8
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/s10703-017-0273-z
https://doi.org/10.1016/j.jlap.2013.04.001
http://dx.doi.org/10.1016/j.jlap.2013.04.001
http://dx.doi.org/10.1016/j.jlap.2013.04.001
https://doi.org/10.1007/978-3-319-75632-5_6
http://dx.doi.org/10.1007/978-3-319-75632-5_6
http://dx.doi.org/10.1007/978-3-319-75632-5_6
http://doi.acm.org/10.1145/567446.567462
http://doi.acm.org/10.1145/567446.567462
http://dx.doi.org/10.1145/567446.567462

[42] Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.,
2018. Explaining explanations: An overview of interpretability of machine
learning, in: 2018 IEEE 5th International Conference on Data Science and
Advanced Analytics (DSAA), pp. 80–89. doi:10.1109/DSAA.2018.00018.

[43] Grigore, R., Kiefer, S., 2015. Tree buffers, in: Kroening, D., Pasare-
anu, C.S. (Eds.), Computer Aided Verification - 27th International Con-
ference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceed-
ings, Part I, Springer. pp. 290–306. URL: https://doi.org/10.1007/

978-3-319-21690-4_17, doi:10.1007/978-3-319-21690-4_17.

[44] Havelund, K., Peled, D., 2018. Runtime Verification: From Propositional
to First-Order Temporal Logic, in: Runtime Verification - 18th Interna-
tional Conference, RV 2018, Limassol, Cyprus, November 10-13, 2018,
Proceedings, Springer. pp. 90–112. URL: https://doi.org/10.1007/

978-3-030-03769-7_7.

[45] Havelund, K., Rosu, G., 2001. Monitoring Programs using Rewriting, in:
Automated Software Engineering, IEEE, Wash., DC, USA. pp. 135–143.

[46] Hinrichs, T.L., Sistla, A.P., Zuck, L.D., 2014. Model check what you
can, runtime verify the rest, in: Voronkov, A., Korovina, M.V. (Eds.),
HOWARD-60: A Festschrift on the Occasion of Howard Barringer’s 60th
Birthday. EasyChair. volume 42 of EPiC Series in Computing, pp. 234–244.
URL: https://easychair.org/publications/paper/tq7.

[47] Jia, L., Gommerstadt, H., Pfenning, F., 2016. Monitors and Blame As-
signment for Higher-Order Session Types, in: Bod́ık, R., Majumdar, R.
(Eds.), Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2016, St. Peters-
burg, FL, USA, January 20 - 22, 2016, ACM. pp. 582–594. URL: https:
//doi.org/10.1145/2837614.2837662, doi:10.1145/2837614.2837662.

[48] Kejstová, K., Rockai, P., Barnat, J., 2017. From model checking to
runtime verification and back, in: Lahiri, S.K., Reger, G. (Eds.), Run-
time Verification - 17th International Conference, RV 2017, Seattle,
WA, USA, September 13-16, 2017, Proceedings, Springer. pp. 225–240.
URL: https://doi.org/10.1007/978-3-319-67531-2_14, doi:10.1007/
978-3-319-67531-2_14.

[49] Kojima, K., Igarashi, A., 2011. Constructive linear-time temporal logic:
Proof systems and kripke semantics. Information and Computation
209, 1491–1503. URL: http://dx.doi.org/10.1016/j.ic.2010.09.008,
doi:10.1016/j.ic.2010.09.008.

[50] Kupferman, O., Y. Vardi, M., 2001. Model checking of safety properties.
Formal Methods System Design 19, 291–314. URL: http://dx.doi.org/
10.1023/A:1011254632723, doi:10.1023/A:1011254632723.

41

http://dx.doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1007/978-3-319-21690-4_17
https://doi.org/10.1007/978-3-319-21690-4_17
http://dx.doi.org/10.1007/978-3-319-21690-4_17
https://doi.org/10.1007/978-3-030-03769-7_7
https://doi.org/10.1007/978-3-030-03769-7_7
https://easychair.org/publications/paper/tq7
https://doi.org/10.1145/2837614.2837662
https://doi.org/10.1145/2837614.2837662
http://dx.doi.org/10.1145/2837614.2837662
https://doi.org/10.1007/978-3-319-67531-2_14
http://dx.doi.org/10.1007/978-3-319-67531-2_14
http://dx.doi.org/10.1007/978-3-319-67531-2_14
http://dx.doi.org/10.1016/j.ic.2010.09.008
http://dx.doi.org/10.1016/j.ic.2010.09.008
http://dx.doi.org/10.1023/A:1011254632723
http://dx.doi.org/10.1023/A:1011254632723
http://dx.doi.org/10.1023/A:1011254632723

[51] Leucker, M., Schallhart, C., 2009. A Brief Account of Run-
time Verification. Journal of Logic and Algebraic Programming
78, 293 – 303. URL: http://www.sciencedirect.com/science/

article/pii/S1567832608000775, doi:http://dx.doi.org/10.1016/j.
jlap.2008.08.004.

[52] Manna, Z., Pnueli, A., 1991a. Completing the temporal picture. Theoretical
Computer Science 83, 97–130. doi:10.1016/0304-3975(91)90041-Y.

[53] Manna, Z., Pnueli, A., 1991b. Completing the Temporal Pic-
ture. Theoretical Computer Science 83, 97 – 130. URL: http:

//www.sciencedirect.com/science/article/pii/030439759190041Y,
doi:http://dx.doi.org/10.1016/0304-3975(91)90041-Y.

[54] Manna, Z., Pnueli, A., 1995. Temporal Verification of Reactive Systems:
Safety. Springer-Verlag New York, Inc., New York, NY, USA.

[55] Neykova, R., Bocchi, L., Yoshida, N., 2017. Timed runtime monitor-
ing for multiparty conversations. Formal Aspects Comput. 29, 877–
910. URL: https://doi.org/10.1007/s00165-017-0420-8, doi:10.
1007/s00165-017-0420-8.

[56] Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F., 2018. A session type
provider: compile-time API generation of distributed protocols with re-
finements in f#, in: Dubach, C., Xue, J. (Eds.), Proceedings of the
27th International Conference on Compiler Construction, CC 2018, Febru-
ary 24-25, 2018, Vienna, Austria, ACM. pp. 128–138. URL: https:

//doi.org/10.1145/3178372.3179495, doi:10.1145/3178372.3179495.

[57] Pnueli, A., 1977. The Temporal Logic of Programs, in: Symposium
on Foundations of Computer Science, IEEE, Wash., DC, USA. pp. 46–
57. URL: http://dx.doi.org/10.1109/SFCS.1977.32, doi:10.1109/
SFCS.1977.32.

[58] Pnueli, A., Zaks, A., 2006. PSL model checking and run-time verification
via testers, in: Misra, J., Nipkow, T., Sekerinski, E. (Eds.), FM 2006: For-
mal Methods, 14th International Symposium on Formal Methods, Springer.
pp. 573–586. URL: https://doi.org/10.1007/11813040_38.

[59] Roşu, G., Havelund, K., 2005. Rewriting-Based Techniques for
Runtime Verification. Automated Software Engineering 12, 151–197.
URL: http://dx.doi.org/10.1007/s10515-005-6205-y, doi:10.1007/
s10515-005-6205-y.

[60] Sánchez, C., Schneider, G., Ahrendt, W., Bartocci, E., Bianculli, D.,
Colombo, C., Falcone, Y., Francalanza, A., Krstic, S., Lourenço, J.M.,
Nickovic, D., Pace, G.J., Rufino, J., Signoles, J., Traytel, D., Weiss,
A., 2019. A survey of challenges for runtime verification from ad-
vanced application domains (beyond software). Formal Methods Syst. Des.

42

http://www.sciencedirect.com/science/article/pii/S1567832608000775
http://www.sciencedirect.com/science/article/pii/S1567832608000775
http://dx.doi.org/http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1016/0304-3975(91)90041-Y
http://www.sciencedirect.com/science/article/pii/030439759190041Y
http://www.sciencedirect.com/science/article/pii/030439759190041Y
http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(91)90041-Y
https://doi.org/10.1007/s00165-017-0420-8
http://dx.doi.org/10.1007/s00165-017-0420-8
http://dx.doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3178372.3179495
http://dx.doi.org/10.1145/3178372.3179495
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/11813040_38
http://dx.doi.org/10.1007/s10515-005-6205-y
http://dx.doi.org/10.1007/s10515-005-6205-y
http://dx.doi.org/10.1007/s10515-005-6205-y

54, 279–335. URL: https://doi.org/10.1007/s10703-019-00337-w,
doi:10.1007/s10703-019-00337-w.

[61] Sen, K., Rosu, G., Agha, G., 2003. Generating optimal linear temporal logic
monitors by coinduction, in: Advances in Computing Science, Springer. pp.
260–275.

[62] Stirling, C., Walker, D., 1991. Local model-checking in the modal mu-
calculus. Theoretical Computer Science 89, 161–177.

[63] Tabakov, D., Vardi, M.Y., 2010. Optimized Temporal Monitors for
SystemC, in: Runtime Verification, Springer Berlin Heidelberg. pp.
436–451. URL: http://dx.doi.org/10.1007/978-3-642-16612-9_33,
doi:10.1007/978-3-642-16612-9_33.

[64] Troelstra, A.S., Schwichtenberg, H., 2000. Basic Proof Theory. Cambridge
Tracts in Theoretical Computer Science. 2 ed., Cambridge University Press,
New York, NY, USA. URL: http://books.google.is/books?id=x9x6F_
4mUPgC.

43

https://doi.org/10.1007/s10703-019-00337-w
http://dx.doi.org/10.1007/s10703-019-00337-w
http://dx.doi.org/10.1007/978-3-642-16612-9_33
http://dx.doi.org/10.1007/978-3-642-16612-9_33
http://books.google.is/books?id=x9x6F_4mUPgC
http://books.google.is/books?id=x9x6F_4mUPgC

	Introduction
	The Logic: An LTL Primer
	The Syntax
	The Model
	The Semantics

	An Online Monitoring Proof System
	Properties of the Proof System

	Runtime Monitoring with a Proof System
	The Algorithm
	Properties of the Algorithm
	Runtime Monitoring

	Alternative RV Symbolic Techniques for LTL
	Informative Prefixes
	Derivatives

	Conclusion

