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Abstract. This chapter surveys runtime verification research related to
distributed systems. We report solutions that study how to monitor sys-
tem with some distributed characteristic, solutions that use a distributed
platform for performing a monitoring task, and foundational works that
present semantics for decomposing monitors or expressing specifications
amenable for distributed systems.

We will identify some characteristics that distinguish distributed mon-
itoring from centralized monitoring, and characteristics that allow to
classify distributed runtime verification works based on features of the
executing platforms, the specification language and the system descrip-
tion. Then, we will use these characteristics to describe and compare
the distributed runtime verification solutions proposed in the research
literature.
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1 Introduction

This chapter surveys works on runtime verification (RV) related to distributed
computing systems. Distributed computing is the area of computer science de-
voted to the study of distributed systems: computational artifacts that run in
execution units placed at different locations, and that exchange information us-
ing a communication infrastructure, such as a computer network |Coulouris,
2011} |Garg}, |2002} |Attiya and Welchl [2004].

Since distributed systems encompass many different but related classes of
systems, the terminology has not been uniformly used. We begin by clarifying
what we mean in this chapter by different terms and conventions commonly used
in distributed computing, particularly with respect to monitoring.

*Some reviewer suggested to change the title to include tazonomy or classification,
perhaps “Runtime Verification for Decentralized and Distributed Sytems: A classifi-
cation”, but we are not sure about such a change (and the other reviwers did not
object).
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The computational units that form a distributed system are typically able to
execute processes simultaneously, under true concurrency. Each computational
unit can run more than one process, and independently manage a set of local
resources, typically including local memory and a local clock. We call each of
these computational units a location.

There are two large classes of distributed systems, according to the way
in which processes communicate and synchronize: systems that can use shared
memory, and systems that can only use some form of message passing as means
of communication. It is nowadays widely accepted to refer to the former as
parallel systems and to the latter as distributed systems, and here we follow this
convention. Additionally, some systems assume the existence of a shared clock
among the computational units, which is another usual classification criteria.
When one assumes the existence of a shared clock, the distributed system is
usually called synchronous or decentralized system. If the shared clock is not
assumed then the system is called asynchronous distributed system or simply
a distributed system. Sometimes the communication infrastructure within the
distributed system is simple, as in the case of buses or broadcast communication,
but it is often the case that the network topology is relevant for the study of a
given class of distributed systems. We follow the convention that, unless specified
otherwise, all execution units can talk to all other execution units directly.

In practice, components of distributed systems can fail independently. Loca-
tions are typically the units of failure, modeling crashes on the execution plat-
form that cause all processes in the location to stop their execution. Moreover,
messages in message passing systems can arrive out-of-order, be duplicated or
lost, or experience unbounded delays. The nature of the failures and the high
independence of failure between the different components is another factor of
complexity when dealing with distributed systems. Unless stated, it is common
in distributed systems to assume that the system under study presents no fail-
ures. We follow this convention here too.

Due to their concurrent nature and to the other aspects of distribution, it is
well-known that distributed systems are notoriously difficult to design and rea-
son about. Throughout the years researchers have proposed many techniques to
increase the reliability of distributed algorithms and systems, including dynamic
solutions. These efforts include the development of runtime verification tech-
niques for distributed computing, which we report here. We will use distributed
runtime verification to refer to the broad area of research that studies runtime
verification in connection with distributed or decentralized systems. This in-
cludes the monitoring of distributed systems as well as the use of distributed
systems for monitoring. Due again to these intrinsic difficulties, distributed run-
time verification is a very active area of research and new results will be produced
in the near future.

Terminology A distributed and decentralized monitoring setting is typically
built from subsystems, which we identify with processes for the discussion in
this chapter. We use Py, Ps,...to refer to processes. Processes execute indepen-
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dently and occasionally synchronize or communicate with each another via the
underlying communication platform.

Processes are partitioned across locations, meaning that every process is lo-
cated at exactly one location for any given instance. We use [, k,...to refer to
locations. When two processes are co-located at the same location, we say that
they are local to one another. Otherwise, we say that they are remote. Processes
may interact and communicate with both local and remote processes. Remote
communication is typically assumed to be more expensive than its local coun-
terpart.

A local trace (or simply a trace), denoted Ty, Ty, .. .constitutes a log of past
behavior used for monitoring purposes. A trace consists of a totally ordered set
of trace events, each describing discrete computational steps of the monitored
system. The ordering of trace events is necessary for the monitoring of temporal
properties. A trace can describe events corresponding to a single process or else
a group of processes. Although a particular location may host a number of traces
(e.g., one per process hosted), we assume that a local trace cannot span across
locations.

A monitoring task can be performed online, while the system under analy-
sis is running, or offline by analyzing the log after the system has finished its
execution. Here we consider both kinds of solutions.

In runtime verification, monitors are created from specifications, but we will
use monitoring and runtime verification interchangeably in this chapter. In online
runtime verification, monitors—denoted as My, Ms, ...—are computing entities
that check at runtime for the satisfaction or violation of correctness properties of
the running system. Different monitors can be created to verify different prop-
erties simultaneously, and also in a modular fashion, which generally leads to
better separation of concerns. The checking that the monitors perform is carried
out by analyzing the traces generated by the executing processes. Similar to
processes, monitors are hosted by a single location for any given instance. We
allow monitors to analyze multiple traces in order to generate composite traces.
We do not put restrictions on whether a monitor is allowed to analyze local or
remote traces, but highlight the fact that remote trace analysis may carry ad-
ditional overhead costs and entail higher security risks. Monitors are allowed to
communicate with one another, which gives the flexibility for property checking
to be carried out in a decentralized or choreographed manner (see

and Section 4.4).

The rest of the chapter is organized as follows. Section [2| presents a collec-
tion of reasons that have been proposed in the literature to motivate the study
of distributed runtime verification problems. Section [3| identifies a number of
characteristics that are relevant in the study of the solutions proposed; these
characteristics serve as a basis to classify and compare the proposed solutions.
Section [4] contains a description of the different ways to organize the activities
carried out by the monitoring infrustructures. Section [5| describes a collection
of solutions proposed in the literature, classified according to the attributes de-
scribed in the preceding sections. Finally, Section [6] presents current challenges
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and concluding remarks. The following diagram illustrates the dependencies be-
tween the sections.

2 Motivations

1 Introduction 3 Characteristics 5 Instantiations

‘ 4 Organizations

Essentially, Section [5| contains the description and comparison of relevant work,
using the classification characteristics extracted in Section

2 Motivation and Scenarios

In this section we justify the study of distributed runtime verification. We present
different scenarios from the point of view of the real-world problem that moti-
vated the research reported. The list we present here is not intended to be ex-
haustive but its purpose is to give some practical justifications for the study of
distributed runtime verification. Similarly, we do not claim that the papers cited
are necessarily the first work to propose the study of a similar class of problems.
The works mentioned below are further discussed in

Observing Distributed Computations The obvious setting where distrib-
uted monitoring arises is when the system under scrutiny is itself distributed.
One important problem related to observing distributed computations is that of
detecting global predicates, which is recognized as an important problem since
the early ages of distributed computing [Cooper and Marzullo| 1991].

It is known that checking general predicates is hard, since one has to store
and enumerate all interleavings of the local processes. The so-called computation
slices can be used for a more efficient detection [see [Mittal et al., 2007; |Alagar]
land Venkatesan, 2001; |Chauhan et al., 2013]. Slices are abstractions of the dis-
tributed computation that guarantee that the predicate is present in a slice if
occurred in some state of the original computation. If an algorithm is too general
and does not exploit the structure of the predicate under consideration, predicate
detection can involve a long runtime and large memory overhead
. Hence, best current solutions for predicate detection consider only frag-
ments of the possible space of global predicates (for example the so-called linear,
relational, regular and co-regular, and stable fragments) to gain efficiency. Even
though most techniques for predicate detection [Cooper and Marzullo), 1991} Mit-|
[tal et al [2007; [Alagar and Venkatesanl [2001] send all local events to a central
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process for inspection of its interleavings, some modern approaches |[Chauhan
et al., 2013| consider purely distributed detection. Based on [Chauhan et al.|
2013], Mostafa and Bonakdarpour [Mostafa and Bonakdarpour, |2015] adapt the
work on predicate detection to detect LTL properties.

Analysis Decomposition Most approaches to runtime verification either con-
sider the system under dynamic evaluation as a black-box, or only inspect the
internals of the monitored system for the sake of instrumentation. However, it
is common—using design principles like component-based design—that the de-
scription of the system is decomposed into different units.

For example, the work [Falcone et al.||2015b| investigates how to use the hier-
archical description of the system to generate monitors that are then composed
with the original system. This process produces a modified system that shares
the original decomposition (and implements its functionality) and also includes
the monitors embedded. Within this setting, the authors study how to compile a
given design into either a centralized or a decentralized platform by deciding the
placement of components using different deployment possibilities. Although the
work in [Falcone et all [2015b] does not specifically target distributed systems,
the solution obtained from the compilation of the modified system can lead to
a distributed monitoring solution if the target platform is distributed.

A similar approach is exemplified in |[Cassar and Francalanzal 2016} |2015],
where a framework for monitoring asynchronous component-based systems is
presented. Again, the authors do not treat the system under scrutiny as a single
monolithic block, but identify its constituent sub-components in the form of
independently computing entities, called actors. The resulting monitoring setup
generated is also localized to sub-components of the system, mirroring its non-
monolithic structure. Even though actor systems are not necessarily executed
in distributed fashion, the asynchronous nature of the code generated and its
localization lends itself to a straightforward distribution.

Exploiting Parallelism Another justification for studying runtime verification
in the context of distributed systems is the exploitation of parallel executing
units to perform a monitoring task. For example, Berkovich et al. |[Berkovich
et al.l [2015] propose to use additional hardware (a GPU parallel execution plat-
form) to minimize the impact of online monitors on execution time overhead,
reducing the intrusiveness. Moreover, the work |[Francalanza and Seychelll [2013]
2015] shows performance gains in terms of lower overheads when monitors are
specified as concurrent entities and executed over the prevalent multi-core and
multi-processor architectures. This is because a monitor decomposition permits
a better exploitation of the underlying processing units, as opposed to monolithic
monitor descriptions.

Fault Tolerance Handling failures in distributed systems is challenging be-
cause different components can fail independently (e.g., nodes crashing) and the
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communication can miss, duplicate or reorder messages or incur in unbounded
delays [Francalanza and Hennessyl [2008]. At the same time, failure tolerance
can be achieved by replicating components that perform a certain task, includ-
ing monitors. For example, Fraigniaud et al. [Fraigniaud et al.,[2014] study the
problem of distributed monitoring with failures, where events can be observed
from more than one monitor, but the nodes where the monitors execute can
crash. The distributed monitoring algorithm then tries to reach a verdict among
the surviving monitors.

The work in [Basin et al. 2013] targets the incomplete knowledge caused by
network failures and message corruptions and attempts to handle the resulting
disagreements. A subsequent work investigates how to handle network failures,
and proposes algorithms that can reach verdicts when some information is miss-
ing and messages are reordered |Basin et al 2015]. Since message losses are also
considered, this approach can also model node crashes, which are simulated by
all messages from the crashed node being lost.

Efficiency In many distributed systems scenarios, a simple monitoring solution
can be obtained by implementing a central monitor that all other entities com-
municate with. However, distribution itself can be exploited to coordinate the
monitoring task more efficiently. Many works attempt to provide more efficient
solutions by exploiting the locality in the observations to also perform partially
the monitoring task. For example, the works in [Falcone et all 2015D}; |[Cassar|
land Francalanzaj [2015] [2016], already mentioned, exploit the hierarchical struc-
ture of the system to generate local monitors. On the other hand, the work in
[Cassar et al., 2015] and in [Francalanza and Seychell, 2013, [2015] exploits the
structure and semantics of the correctness property from which the monitors are
synthesized to generate monitor organizations that use the underlying hardware
efficiently. Concretely, the generated monitors minimize idle computing units and
improve memory management via redundant monitor deallocations and monitor
network reorganizations. These works pursue a more efficient monitoring where
less communication and execution overhead is needed.

The pursuit of lowering overheads has also led Colombo et al.
to consider distribution as a means of offloading part of the moni-
toring computation to the computing resources of another machine. They provide
handles that allow the specifier to dictate whether a property is to be runtime-
checked locally, as inlined code within the monitored system, or remotely via
an independent monitoring unit located on a separate machine. In separate
work [Colombo et al [2015], the authors investigate various instrumentation
techniques in Enterprise-Service Bus (ESB) distributed architectures, so as to
determine which of them lead to lower monitoring overheads.

As observed in [Bauer and Falcone) 2012] and in [Francalanza et all 2013],
when atomic observations of the monitored system occur locally, one can organize
the monitors hierarchically according to the structure of the original specifica-
tion. This can lead to substantial savings in communication overheads because a
verdict of a subformula can often be reached further down hierarchically. From
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the practical point of view, the authors of [Bauer and Falcone, 2012] claim that
many cyber-physical systems, like distributed systems found in the automotive
and avionics industries, fulfill the requirement that both observations and their
placement to local nodes are known at deployment time.

In the context of multithreaded programs with shared memory, the work of
Luo and Rosu [Luo and Rosu, 2013] proposes to decompose a given property
into local decentralized monitors for each of the threads, which again helps to
reduce monitoring overheads.

Monitoring Expressivity Some approaches borrow directly monitoring lan-
guages from non-distributed computing, and study how to exploit or adapt the
methods for distributed systems. Other approaches present new formalisms or
extend existing ones with specific capabilities for distributed systems. For exam-
ple, the work [Sen et al.| 2004} 2006] proposes a method to check for violations of
safety properties in distributed systems, using a variation of LTL that is suitable
to describe (past time) properties of distributed systems. This extension essen-
tially allows to express the knowledge of particular agents. The work in [Fran-
calanza et all |2013] proposes and formalizes a migrating monitor setup so as
to better handle the open-ended and dynamic nature of distributed systems.
This helps monitoring to adapt to locations that are learnt dynamically and
to varying correctness specifications over the course of long-running distributed
computations.

The efficiency of migrating monitors is investigated in [Bauer and Falcone,
2012] for fixed-location setups. The subsequent work [Colombo and Falconel
2016] extends these results and compares them to choreographic solutions (see

Section .

Testing and Enforcement Testing multithreaded programs is in general a
challenging task because often concurrency errors arise only under specific in-
terleavings and execution conditions, which are hard to cause and reproduce
due to the non-determinism introduced by the scheduler. The work in [Luo and
Rosu, [2013], already mentioned, presents an enforcement mechanism that ex-
ploits user-specified properties to generate local monitors that block individual
threads whose execution may lead to a violation of the specified property. This
approach intends (1) to force schedulers to explore properties during the test-
ing of multithreaded programs; and (2) to automatically guarantee the enforce-
ment of properties in a multi-threaded program, which is otherwise typically
implemented using ad-hoc manual synchronization. The monitoring generation
described in [Luo and Rosul 2013] includes the decomposition of the property
into local decentralized monitors for each of the threads.

3 Characteristics of Distributed Runtime Verification

In this section we capture some challenges that distributed systems impose on
monitoring and the main difficulties that must be tackled by solutions to dis-
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tributed runtime verification. We begin in by describing some key
characteristics of distributed system monitoring, particularly following a histor-
ical perspective. Overall, we consider 14 characteristics, denoted (C1)—(C14).
Some of them (in particular (C1)-(C5)) are common to most distributed mon-
itoring solutions, but are not typically a concern for non-distributed systems.
Other criteria are not oblivious to all distributed monitoring cases, but identify
aspects that will allow us to to extract some classification dimensions, according
to the approach taken by each solution. Most of these characteristics are also
either unique to distributed systems or more challenging and important in dis-

tributed systems than in non-distributed systems. The classification aspects are
listed later in

3.1 Common Characteristics

Already in the late 1980s, Joyce et al. [Joyce et al. [1987] identified five issues
in monitoring distributed systems, in an early attempt to characterize the key
constraints that distinguish monitoring in sequential settings from monitoring
in distributed systems:

(C1) The fact that distributed systems have many foci of control,

(C2) The presence of communication delays among nodes, which makes it diffi-
cult to determine a system’s state at any given time;

(C3) The inherent non-determinism in distributed and asynchronous systems;

(C4) The fact that monitoring a distributed system alters its behavior;

(C5) The complexity of the interactions between the system and the system
developer.

Aspect (C1) captures the idea that a distributed system is composed of pro-
cesses running independently in distributed execution units. Issue (C2) refers to
one of the aspects of message passing systems. We will later refer to this as-
pect that allows to distinguish between systems that are not synchronized (see
Global Clock below) and where messages can be unboundedly delayed or be
lost (see Failures below). Not all current research in distributed monitoring
assumes that messages can suffer independent delays. Issue (C3) refers to the
non-deterministic and asynchronous nature common to many distributed sys-
tems. Issue (C4) refers to the intrusiveness of monitoring in the system under
analysis, which is not a unique characteristic of monitoring distributed systems.
We consider here intrusiveness as a key characteristic (see Intrusiveness below).
Finally, issue (C5) refers to the additional complexity (when compared with non-
distributed systems) for the engineer exercising the monitoring infrastructure, in
terms of deploying the monitors and collecting and analyzing the reported data.
We do not develop (C5) further in this chapter as we focus runtime verification,
and not on software engineering aspects.

Another work that explores monitoring distributed systems and identifies
common and classifying criteria is [Francalanza et all |2011} [2013], where the
following characteristics are extracted:
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(C6) Difficulties in keeping a global state;

(C7) Confidentiality of the information collected and communicated;
(C8) Trace analysis locality;

(C9) Dynamic aspects of specifications;

(C10) Locations constitute units of failure.

Maintaining a global state in a distributed system under observation is im-
practical for several reasons, captured by aspect (C6). One reason is that some-
times it is even theoretically impossible to build and maintain a global view, due
to the lack of global clocks, asynchrony, message loss and reordering, etc. Even
when it is theoretically possible, it is common that the volume of event messages
that are required to build such a global view would substantially increase the
monitoring overhead, making it impractical. Most works recognize that although
such a central solution would greatly simplify monitoring, it is either too complex
or too intrusive. This difficulty will be captured as Global Clock and Failures
below.

Aspect (C7) is related to security. Every time a trace of events is commu-
nicated across locations, the confidentiality of the information contained may
be compromised. Solutions that encode and decode this information can further
increase the monitoring overhead. However, we will not discuss this security
aspects in this chapter.

Aspect (C8) refers to where the monitors are placed and where the events
from the observed system are collected. Ideally, local monitors should analyze
events locally and then communicate analysis summaries across locations. On
the other hand, placement sometimes involves additional restrictions. For exam-
ple, certain locations may not allow monitoring to be carried out locally due to
resource constraints. Placement is often at odds with locality, which sometimes
involves dynamic aspects. There are cases when it is difficult to anticipate the
location where certain computations will be executed because this location de-
pends on some runtime information that is hard to infer statically. Aspect (C8)
is related to the distribution of the monitoring process, and in particular refers
to the preference of decentralizing it (see Centralization below).

Aspect (C9) considers that in long-running applications without a central au-
thority, correctness specifications may not be all available prior to deployment.
Some specifications are added at runtime, while the system is already executing,
which disables the static placement of monitors. Dynamic aspects of monitoring
are considered in (C8) and (C9), caused by either unpredictable aspects at de-
ployment time, or constraints in the execution platform which restrict installing
monitors dynamically. Finally, aspect (C10) considers again the issue of failures
(see Failures below).

In a recent short paper, [Bonakdarpour et al., 2016b], the authors discuss
the following four issues as distinctive, characteristic challenges of distributed
runtime verification{}

“The distributed RV considered in [Bonakdarpour et al.,[2016b| is a general mon-
itoring solution that runs on an infrastructure that is unreliable and unable to solve
consensus.
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(C11) Modeling a distributed RV system;

( ) Defining and evaluating distributed correctness specifications;
(C13) Using different verdicts on the state of the monitored system;
(C14)

Giving semantics to the different verdicts.

Issue (C11) concerns both the actual implementation of a distributed sys-
tems’s description (including whether it is used in the monitoring process, see
issue Exploiting System Description below), as well as efforts devoted to
describing the monitoring solutions (see [Section 4). Aspect (C12) is related to
the formalism used to describe monitors (see Distributed Specifications).
Finally, the last two issues (C13) and (C14) are more specific to the solution
provided in [Bonakdarpour et all 2016b|. The first issue (C13), is already wit-
nessed in monitoring non-distributed systems using LTL3 [Bauer et al., [2011],
where the semantics of LTL in finite traces is expressed using a 3 valued domain
(the third value captures the possibility of expressing an unknown verdict, which
may become later true or false when new observations are made). Issue (C13)
refers to the use of multi-valued domains as verdicts emitted the local monitors
in the distributed systems. Issue (C14) refers to how these multiple verdicts can
be combined during the creation of a final verdict.

3.2 Distinguishing Characteristics

We now list six dimensions that will allow us to distinguish the different lines of
research and classify the solutions proposed.

Exploiting System Description Most work in RV focuses on building mon-
itors that can analyze any system, that is, the system is consider as a black-
box that emits the necessary signals to the monitor. On the other hand, some
other approaches exploit the system’s description to generate specialized moni-
tors. Examples of system’s descriptions proposed include models of the system,
abstractions or even full descriptions as programs. In this case, the monitors
generated are only guaranteed to be correct for the specific system analyzed,
and in case a different system is finally deployed with the monitor, the verdicts
of this monitor may not be correct. On the other hand, solutions that consider
the system as a black-box generate monitors that are correct for every system
at the price of potentially less efficiency. For example, algorithms that generate
monitors as finite state systems from LTL specifications work for all systems as
sources of traces. If the monitor can rule out certain paths using concrete facts
of the system under observation, obtained by static analysis for example, then
the monitor can be specialized into a smaller finite state machine.

In some cases only certain aspects of the system description are used to build
the solution, like the number of distributed nodes, the location of the individual
predicates emitted by the running system, or the topology of the network.
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Centralization Even if the system under observation is intrinsically distributed,
the monitoring task can be performed in a central location that collects informa-
tion from the remote units. However, solutions with a central monitor have many
drawbacks from the points of view of overhead, efficiency, tolerance to faults and
security. For these reasons, many solutions attempt to divide the monitors into
local monitors and perform part of the monitoring activities locally, in a dis-
tributed fashion.

Global Clock There are two large classes of distributed runtime verification
techniques depending on whether it is assumed that all nodes have access or
not to a global clock (or a perfectly synchronized local clock). In case a global
clock is assumed, the system under analysis is equivalent to a synchronous sys-
tem (following distributed computing terminology). In this case, we call the
problem decentralized monitoring. Similarly, when monitors do not have access
to a global clock we refer to the problem as distributed monitoring. Another
characteristic feature of monitoring distributed systems is asynchrony, both be-
tween the monitors and the distributed system under scrutiny, and among the
distributed monitors themselves.

Monitoring a distributed system often amounts to monitoring a message pass-
ing system. We reserve the term non-distributed systems for those systems that
have a global clock and direct access shared memory between all computational
units. For example, parallel systems (as defined above) are non-distributed sys-
tems with several concurrent execution units.

Distributed Specifications One key classification criteria is whether the spec-
ification language from which monitors are generated has specific features for dis-
tributed systems, that is whether the formalism allows to refer to characteristics
of the distributed platform. Some approaches borrow directly a language origi-
nally proposed for non-distributed systems, like LTL, and attack the problem of
monitoring distributed systems against specifications written in this language.
Other approaches start by introducing a modified specification language with
some distributed feature, and then develop specific monitoring algorithms for
this language.

Failures In practice, both non-distributed and distributed systems are subject
to failures. However, failures in distributed systems can be more subtle than in
non-distributed systems due to the physical independence of the executing units.
Even though most monitoring solutions assume that no component can fail, some
approaches consider the possibility of some part of the distributed system failing.
In particular, some of the failing aspects considered are network delays in the
transmission of the messages, message loss or duplication, message corruption
and node crashes. Even though Byzantine failures have been thoroughly studied
in distributed systems, this aspect has received little attention in the area of
monitoring distributed systems.
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Intrusiveness As already identified in early surveying efforts (see (C4) above),
the monitoring process typically modifies the behavior of the monitored sys-
tem. Naturally, most works focus on the effectiveness of the monitoring solution
proposed, that is, on proving that the monitoring process actually detects the
intended property. Some research also considers the efficiency of the combined so-
lution (in terms of running time, number of messages, etc) and in some few cases
how the monitoring process affects the running system (that is, how intrusive
monitoring is). Moreover, some works are intrusive on purpose, trying to reduce
the intrinsic non-determinism of the running system with the goal of avoiding
failures (like in enforcement) or provoking failures (for testing purposes).

4 Monitor Organizations

In this section we explain and compare the various ways in which monitoring
distributed system activities can be organized. The various monitoring organiza-
tions can be explained in terms of the different configurations used to compose
these components together as a monitoring infrastructure contributing towards
a common goal.

The analysis of correctness properties concerning different processes, possibly
spanning across different locations, often requires the aggregation of traces into
composite traces. We will generally assume that the composition of two remote
traces does not necessarily yield a total ordering among the events of the resulting
composite trace, but instead gives a partial ordering. Monitors can communicate
with each other to coordinate the monitoring task.

4.1 Traditional Monitoring

A traditional monitoring setup, depicted in typically consists of a
group of processes (Py, P> and Ps in the figure) that reside at one location (1).
These processes generate a single local trace (77) that is analyzed by a single
monitor (M), also located at the same location. Even if these processes execute
concurrently and are subject to a different interleaving every time the system is
executed, the monitoring setup will always report a trace with a total ordering
of events reflecting the executed interleaving.

4.2 Decentralized Monitoring

As depicted in a decentralized monitoring setup resembles traditional
monitoring in that all process executions and trace events are governed by a sin-
gle global clock. Moreover, processes and monitors can communicate using syn-
chronous channels, and computations are totally ordered. Consequently, traces
can also be totally ordered, either explicitly as one data structure or locally via
using time-stamps.

In contrast to traditional monitoring which is typically performed by a sin-
gle monolithic monitor, monitoring in a decentralized and distributed setup is
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Fig. 1. A traditional monitoring setup where processes generate a single trace observed
by a single monitor.

interaction m interaction

]\41 interaction ]\42 interaction M3

Fig. 2. In a decentralized monitoring setup the synchronized trace can be processed
by several independent monitors that share a global clock.

decomposed into different sub-components (M7, Ma, M3) reflecting the fact that
a global correctness property may be decomposed into smaller properties. For
instance, in cases where trace events may be attributed to different system units
(e.g. classes or objects), each monitor may selectively analyze events pertaining
to a particular unit entity (e.g. all the method call invocations on a particu-
lar object) and then communicate aggregate monitoring information to other
monitors in order to verify a global property. It is common that sub-monitors
reflect some decomposition of the specification, but sometimes sub-monitors are
obtained directly by the placement of parts of the specification into locations
without much decomposition.
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Fig. 3. In an orchestrated monitoring setup, traces are independently produced locally
at the location of processes, but can be processed by remote monitors.

There are also cases in which the correctness properties are inherently sepa-
rate and concern only a subset of processes as in the case of parametric monitor-
ing where the property can be evaluated independently for different parameter
instances (see, e.g., |[Chen and Rosu, 2009]). In this case, monitoring may be
decentralized in a natural manner without the need for the individual monitors
to communicate among themselves.

4.3 Orchestrated Monitoring

Orchestrated and choreographed monitoring approaches are used in settings
where more than one process is dispersed across more than one location. The
set of processes generate more than one trace that can only be partially ordered
due to the absence of a global clock.

In an orchestration all monitoring is ultimately performed centrally by a
single monitor, accessing the respective trace events from different locations.
The approach is depicted in which shows two sub-systems located
at [ and k, each producing local traces of events (71,75 and T35 respectively),
subsequently analyzed by monitors M7, Ms and M3 from a remote location g.
Each of these monitors analyze an independent correctness property.

On the one hand, the centralization of the analysis simplifies the logic of
the monitor, which is conducive to a decrease in errors in the monitor code it-
self. However, these benefits come at a cost in distributed settings such as the
one depicted in First, the approach leads to a substantial increase
in the volume of trace information which has to be transmitted remotely for
monitoring. The considerable increase in communication overhead across loca-
tions affects monitoring scalability when the number of processes and locations
increases. The approach is also susceptible to data exposure when the trace
events transmitted across locations contain private information. Adding addi-
tional security layers via mechanisms such as encryptaion further increases the
monitoring overhead. Finally, the architecture poses a security risk by exposing
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Fig. 4. In an choreographed monitoring setup, traces are independently produced lo-
cally at the location of processes and can be processed by different monitors indepen-
dently.

the monitor as a central point of attack from which sensitive information can be
tapped. Nevertheless, restricted forms of the orchestrated monitoring approach
can be suitable when dealing with public information that is communicated over
a relatively safe medium.

4.4 Choreographed Monitoring

A choreographed monitoring approach also targets system settings consisting
of multiple processes dispersed across more than one location. In contrast to
orchestrated monitoring, choreography-based approaches push the runtime veri-
fication activities locally to the location where the traces are generated, as shown
in The diagram depicts four processes, located at three locations I, k,
and h, each generating local traces, with monitors My, My placed at [, and M3
placed at k. The monitor decomposition is not only due to the independence of
the correctness properties being checked. In fact, monitors Ms and M3 could be
verifying the same global property and eventually interact with each other in
order to synchronize their monitoring effort.

The appeal of localizing monitoring is the potential minimization of data
exposure and communication overhead. By verifying locally, we avoid having to
transmit trace information to a remote monitor. Moreover, localized monitors
typically require less communication than remote monitoring using a central
monitor. However, choreography is more complex to instrument, since correct-
ness properties need to be decomposed into coordinated local monitors. Fur-
thermore, choreographed monitoring is also more intrusive, by burdening the
monitored subsystems with additional local computation, and is thus applicable
only when the hosting locations allow local instrumentation of monitoring code.
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5 Instantiations

In this section we describe and compare research solutions proposed in the lit-
erature, using the characteristics captured in Section [3] and the organizations
described in Section [d] To ease the description we group the papers as follows:

— Decentralized Monitoring

Distributed Monitoring

Fault Tolerance

Monitor Decomposition

Predicate Detection and Distributed Monitoring
Intrusiveness

Behavioral Type Systems for Distributed Monitoring

Other features cross-cut papers across different characteristics and are men-
tioned in each particular case. Tables [I] and [2] summarize the papers according
to the main characteristics considered. In the characteristics shown in the tables,
Global Clock, Failures, System Description, Distributed Specs and In-
trusiveness are directly characteristics captured in Section [3] Asynchronous
Msgs refers to whether the underlying platform is a message passing system.
Asynchronous Msgs, Decentralized Monitoring and Distributed Mon-
itoring are characteristics considered within Global Clock in Section

The entries LTL and Predicate Detection are included because these spec-
ification languages have been thoroughly considered in many works. Finally,
Types refer to a line of research based on process algebras and session types.

Decentralized Monitoring The works [Bauer and Falcone, 2012, 2016] study
the problem of decentralized monitoring. The starting point is a specification
expressed in LTL without any specific extension for distributed systems, except
for the static mapping of atomic predicates to individual processes. Note that
individual state predicates of the specification may be split into more than one
process. The solution synthesizes a monitor for each process, under the assump-
tion that components communicate synchronously with a global clock. Each
component has a local monitor attached, and emits events synchronously after
every global clock tick. By design, the solution to a verdict is taken as combi-
nation of the execution of the local monitors, lacking a central decision-making
point.

The main advantage of a decentralized solution over a non-distributed one
is that not all events must be sent to the location of the central monitor. The
challenge is that local monitoring must be performed with only partial observa-
tions of the global trace. The algorithm progresses by rewriting the specification
at each node, with the partial information available. When local monitors are
unable to evaluate a specification given their local view of the computation,
they communicate their residual formulas to the other monitors. An alternative
approach would use a central monitor that receives information about the local
states of all other locations. One of the main practical concerns is how the decen-
tralized approach compares with this alternative central approach. The empirical
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Table 2. State-of-the-art on distributed monitoring. Each paper is classified according
to the characteristics considered (part 2).

evaluation reported in [Bauer and Falcone, 2012, 2016] suggests that the over-
head introduced is lower in the distributed solution. There is also an economic
advantage in the decentralized solution, because in a distributed solution there
is no need to add a central processor. Practical applications of this approach
involve monitoring the behavior of embedded systems that are distributed by
nature, like cars and airplanes where the different distributed components are
known upfront. These include typical field-busses like EtherCAT, ProfiBus and
ProfiNet (also known as “Industrial Ethernet” ) In these systems,
processes communicate over a synchronous bus, so the global clock assumption
is justified.

The works [Colombo and Falcone| 2014, 2016] start from similar assump-
tions and goals: there is a global clock and one local monitor per executing
component. The number of executing components is also known upfront. The
work in [Colombo and Falcone, 2016] removes the assumption of instantaneous
communication from [Colombo and Falcone| [2014] and enables a solution with
reliable messages with any delay. Still, a global clock is assumed because the
specification logic is LTL and individual predicates sensed are totally ordered.
The solution proposed is a choreographed decentralized monitoring algorithm,
where each local monitor senses a collection of local predicates. The local mon-
itors use the rewriting approach (also known as formula progression) by which
the state of the monitor is the LTL formula that results by expanding the LTL
formula to the residual formula in the next state, simplified with the acquired
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knowledge. A key element in the solution is that a network of monitors is stat-
ically built by assigning each subformula of the original formula to a node in
the distributed system. The hierarchical description inherent by the sub-formula
relation in turn dictates the communication pattern between the local monitors.
Consider a formula 1 and let ¢ be a sub-formula of . The monitor M; for ¢
informs the monitor M for ¢ about the verdict of ¢ which, in turn, is used by
Ms to compute the verdict of ¥. If a synchronous clock is assumed, the root for-
mula verdict is guaranteed to be reached within at most k steps of delay, where
k is the height of the original formula.

Bartocci |[Bartocci, |2013] extends the work [Bauer and Falconel 2012] to real-
time embedded systems by considering the maximum duration of the computa-
tion and communication. The main result is the ability to calculate a sampling
ratio above which the decentralized monitoring process is guaranteed to generate
the correct outcome.

Distributed Monitoring The work in [Sen et al., [2004] proposes a method
to detecting violations of safety properties in an asynchronous distributed sys-
tem, where no global clock is assumed. The method proposed generates, given
a specification, local monitors for all distributed nodes. These local monitors
communicate only by piggybacking additional information in the messages sent
by existing processes in the system, so the shape of the history of messages ex-
changed is not modified by the actions taken by the monitors. The logic used
in [Sen et al., [2004] extends past time LTL with features for distributed systems:

wi=true | P(Yi, ... ) | ~0i | pi Noi | Bpi | Owi | Opi | i S @i | Qi
fir=clvi | Q;f;

where formula @;p; refers to the most recent value of formula ¢; according to
process j.

The algorithm uses vector clocks [Lamport}, [1978; Mattern, [1989; Fidgel (1989,
1991] to transmit the most recent value of sub-formulas needed to compute the
outcome of their containing formulas. Then, at deployment time, the monitor
specification is decomposed into local monitors that collect information locally
and compute the current value of formulas, based on this local information and
on the information received in messages about the causal past of remote pro-
cesses. This approach allows to generate monitors without inspecting the internal
behavior of each process.

Francalanza et al. [Francalanza et all 2011} [2013] present a formal model for
distributed monitoring. System computations are described as m-calculus pro-
cesses [Milner et all [1992] hosted at different locations and interacting with
one another via message passing. When systems compute, they generate resid-
ual trace events that are only locally ordered (with respect to the other events
generated at the same location) but globally unordered (with respect to events
generated at other locations), thereby modeling the absence of global clocks. Dis-
tributed monitors, also residing a different locations, are then tasked with ana-
lyzing local traces and interacting with one another in order to perform a global
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analysis of system computation. The model is equipped with a bisimulation-
based equivalence relation that is used to reason about different distributed
monitoring strategies such as those discussed in Section [4 The model is also
used to define and evaluate a new migrating monitor strategy that better han-
dles the dynamic nature of open distributed systems.

Fault tolerance Not many works attack the problem of monitoring distributed
systems considering that components can fail. Notable exceptions are [Basin
et al., [2013] [2015]) and [Fraigniaud et al 2014} Bonakdarpour et al.l 2016a].

In [Basin et al. [2013] the authors present a policy language, a variant of
FOLTL with three-valued semantics, and an algorithm that allows to reason
about incomplete knowledge and handle disagreements. The main practical mo-
tivation is to handle errors in the observed trace, for example due to corruption
or loss of part of logs files in complex IT systems, crashes in running systems, or
network failures. Another motivation is to reconcile different views or verdicts
obtained from monitors that observe different parts of the logs. The key idea is
to equip the execution with features to enable monitors to distinguish between
an event not being observed and the event not existing at all. The authors claim
that any approach that solves this problem must satisfy that, once a definite
verdict is given, providing more compatible information cannot retract the defi-
nite verdict. They manage to provide a complete algorithm for a fragment of the
policy language. A similar work on compliance checking is |Garg et al., |2011].
Even though these works do not explicitly handle distributed systems, they han-
dle runtime verification under incomplete information and incorrect information,
which can be used to encode problems for distributed systems.

Influenced by [Basin et al.,|2013], the work in [Basin et al.,|2015] considers the
problem of monitoring distributed systems in the presence of network failures.
The authors also consider the case that the monitor itself is distributed for
the purposes of efficiency, performing the monitoring computation closer to the
observation point and reducing the communication overhead. The paper [Basin
et al.| [2015] deals with MTL, a logic that allows to express real-time properties.
The algorithm is designed based on the timed asynchronous model for distributed
systems |Cristian and Fetzer| [1999], which assumes the availability of highly
synchronized local clocks but permits crash failures in the processes and in the
network. Another assumption is that components are known at deployment time.

In [Basin et al.| [2015] processes time-stamp their observation before com-
municating them to the local monitors. The time-stamp allows components to
compute precise delays between events, and to totally order the events. It is
interesting to point out that even without failures, reliable asynchronous net-
works allow messages to arrive in different orders. Forcing messages to arrive
in order requires buffering messages to ensure proper delivery order, which in
turn prevents the early detection of some violations that would be possible with
out-of-order delivery.

The algorithm in [Basin et al., [2015] uses a richer value to encode the ab-
sence of knowledge when evaluating part of the specification. When the missing
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information is finally received, the monitor can precisely resolve the uncertainty.
Sometimes, a monitor can reach a precise verdict only with the partial infor-
mation received in a timely manner. Consequently, the algorithm can monitor
MTL properties tolerating the out-of-order arrival of partial observations.

Concerning organization, the monitors in [Basin et al, [2015] are distributed
in a directed acyclic graph (DAG) where each monitor handles a subformula of
the given formula, and children nodes handle subformulas of the formula han-
dled by their parent node. The root of the DAG handles the original formula.
During execution, messages are sent from children to parent monitors to inform
about the verdicts reached in the subformula handled at the given point in time.
When a process performs an atomic observation it also equips the time-stamp
with an additional sequence number, which is locally unique. This sequence num-
ber allows monitors to infer the existence or absence of unknown intermediate
samples between two observations. Intermediate nodes can also send heart-beat
messages, which serve the purpose of informing about the absence of verdicts
and the health of the intermediate node. Heart-beats also allow to infer the ex-
istence or absence of intermediate meaningful observations or verdicts, and in
turn compute timeouts.

The problem of distributed monitoring for asynchronous distributed systems
with node crashes is considered in |[Fraigniaud et al., 2014} [Bonakdarpour et al.l
2016a]. Monitors can either work correctly or fail, but after a fail, monitors
do not perform any action for the reminder of the execution. The solution is
based on the asynchronous “wait-free” communicating infrastructure. It is well
known from the research area of distributed algorithms that the wait-free model
of computation [Attiya and Welch| 2004] can simulate many other models of
crash-fail asynchronous distributed systems. The main result in [Bonakdarpour
et all 2016a; [Fraigniaud et all 2014] is an algorithm and a lower-bound on
the number of different verdicts that monitors need to communicate with each
other to correctly detect the violation of an LTL property. The lower bound
on the number of verdicts reveals that monitors need to communicate complex
information in order to compute a global outcome. The final verdict reached
by the cooperating monitors, in turn, will be that of LTL3. The following three
options are possible: (1) the property is satisfied in all continuations; (2) the
property is violated in all continuations; (3) the outcome is unknown. These
papers do not assume that the observations of the distributed monitors are
disjoint. Even though monitors may only be observing part of the global input
alphabet, several monitors may overlap in their partial observation.

Monitor Decomposition The work [Falcone et all 2015b] targets the problem
of monitoring component based-systems, that is, systems that are described by
the composition of components. More precisely, in [Falcone et al., [2015b| systems
are described using the BIP paradigm. Even though this paper does not attack
explicitly the problem of monitoring a distributed system, it is nowadays well
understood that component-based descriptions can be compiled into distributed
implementations (see |Bonakdarpour et all 2010ajb]) and not only into non-
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distributed platforms. Consequently, the monitors generated at the component
level following [Falcone et all [2015b] are attached to the system generating a
modified BIP description that can subsequently be compiled into a distributed
system.

Monitor decentralization can also be inferred from the specification formula
from which a monitor is synthesized. This line of research is explored extensively
in [Francalanza and Seychell, 2013} 2015; |Attard and Francalanzal 2016] for both
safety and co-safety properties of logics involving conjunctions, disjunctions and
recursion. Conjunctions and disjunctions are synthesized into concurrent moni-
tors that analyze sub-parts of the system, whereas recursion leads to the dynamic
generation of concurrent monitors, generated lazily only when required to min-
imize monitoring overheads. In every case, the concurrent monitors generated
lead to self-contained localized monitoring that can be readily distributed. The
automated synthesis function is proved correct in each of these cases(see [Fran-
calanza et al., 2017] for the correctness proof of [Attard and Francalanzal [2016]).
The work in [Cassar et al., |2015] considers a refined implementation where the
concurrent sub-monitors cooperate among themselves and reorganize their in-
terconnection so as to optimize the resources used for monitoring, thus reducing
monitoring overheads.

Predicate Detection and Distributed Monitoring Predicate detection (see
|Chase and Garg), 1998]) consists on checking whether a certain predicate oc-
curred during the distributed execution, or more formally, whether the predi-
cate holds in some consistent cut of the execution. In this context, predicates
are state formulas (and consequently safety properties) even though some work
has extended predicate detection to richer temporal formulas.

All algorithms for predicate detection assume that the collection of executing
processes is known a-priori, that processes do not fail and that all messages even-
tually arrive. Predicate detection can be performed offline, when all events are
available before the detection algorithm starts running, or online, when one event
at a time is processed. There are three main techniques for predicate detection.
The first technique uses the global snapshots proposed by Chandy and Lamport
in [Chandy and Lamport| |1985], which can only detect stable predicates, which
are predicates that remain true after becoming true (like termination, but unlike
mutual exclusion). The second technique consists in an explicit construction of
the lattice of global states proposed in |[Cooper and Marzullo, [1991]. This tech-
nique can detect unstable predicates but it is exponential in the number of local
states and processes. Finally, the third technique exploits the specific structure
of the predicate to provide efficient solutions. Examples include conjunctions of
local predicates [Garg and Waldecker} [1994] and relational predicates of the form
>; % < C, where x; are local variables.

Even if one had access to all the local histories of the execution of all
processes, detecting a predicate is hard because—for general predicates—one
needs to enumerate and search all possible interleavings of the local executions.
In [Chase and Garg, |1998], Chase and Garg show that detection of 2-CNF predi-



Runtime Verification for Decentralized and Distributed Systems 23

cates is an NP-hard problem, even when assuming a central monitor. A solution
to this explosion problem is a technique called slicing |Garg and Mittal, 2001].
Slices are abstractions of the computation that guarantee that the predicate is
detected in a slice if and only if the predicate holds in some consistent cut of
the original computation. Computing a slice for a general predicate is still an
NP-hard problem [Mittal and Garg), 2005], but when efficient slices exist, these
are much smaller than actual explicit histories. Consequently, a line of work has
focused on identifying classes of predicates for efficient slicing procedures ex-
ist. These slices are based on fragments of the logic used to express the global
state predicates. These fragments include regular, co-regular, linear, relational
and stable predicates [Mittal and Gargl 2005; Mittal et al., 2007} |Sen and Garg]
[2007; [Ogale and Gargl, 2007]. Some of these solutions construct the slices offline,
assuming that the whole histories are available to the slicing algorithms, while
others work online, building the slice incrementally. Similarly, most of the solu-
tions are still centralized [Cooper and Marzullo, |1991; Mittal et al. 2007}
land Garg), 2007} Mittal et al., [2007] in the sense that all histories are sent to a
central monitor that computes the slice and detects the predicate.

The first distributed solution to slice-based predicate detection is
. The solution is online and distributed, in the sense that the slicing
is computed by the distributed monitors. The guarantee is that if the predicate
exists in a consistent cut of the computation, then it is detected by some monitor.
The algorithm exploits both the structure of the property (in [Chauhan et al.
regular properties) and epistemic information about what the knowledge
that the different monitors acquire.

Also, even though most approaches are restricted to state predicates (or
more precisely, fragments of the propositional logic for state predicates), some
approaches tract richer temporal properties. For example, the works
|Garg, [2003b; |Ogale and Gargl [2007] present methods for sliced based predi-
cate detection for a fragment of temporal logic that includes invariants (AG)
and possible reachable (EF) operators, which extends the applicability beyond
safety properties into a subclass of CTL formulas called Regular CTL
2003a]. The restrictive use of negation in [Sen and Garg, |2003b] is relaxed
in [Ogale and Gargl 2007]. Even though the work in [Sen and Garg| [2003b;
|Ogale and Garg, [2007] is applicable to a richer fragment of temporal logic, these
algorithms work with a central monitor.

More recently, Mostafa and Bonakdarpour [Mostafa and Bonakdarpour, 2015]
provide a solution for monitorable LTL3 temporal properties, but in this case
extending |Chauhan et all [2013] so the solution obtained is distributed. This
solution inserts additional messages in the network and is not restricted to only
piggybacking information in existing messages.

Intrusiveness It is often desirable that the monitoring process perturbs the
execution of the system under analysis in the least possible manner. Typically,
either the system is instrumented by embedding monitors in the code itself, or
monitors and processes share resources because they execute in the same plat-
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form. These changes affect the behavior of the system, sometimes in a significant
manner.

In [Berkovich et all 2015] the authors propose to use additional hardware,
and in particular a GPU parallel execution platform, to minimize the impact
of online monitoring. The authors show how to generate parallel monitors from
temporal logic specifications and evaluate empirically that the obtained paral-
lel monitors together with the additional GPU hardware alleviate the effect of
monitoring on the execution of the original system.

Other times, it is desirable that the monitoring process perturbs the execu-
tion of the system. One example is runtime enforcement, where the objective of
the “monitoring” is to guarantee that the system stays within a safe region of
states. Consequently, the enforcement system uses the information provided by
the monitor to prevent an error before it occurs (see the chapter in this mono-
graph about runtime enforcement). Another example is testing of multithreaded
programs, which is in general a very hard task, due to the non-deterministic
nature of the execution of concurrent programs, and the difficulty to reproduce
erroneous behaviors. In this context it is desirable to guide the system towards
executions that are more likely to produce an error. The work in |[Luo and Rosu
consists of an enforcement mechanism that uses user-specified monitors to
generate local monitors. Such local monitors block individual threads that violate
the specified properties. This enforcement pursues two objectives: (1) to guar-
antee the enforcement of properties in a multi-threaded program in a systematic
way, which is typically implemented using ad-hoc synchronization manually; and
(2) to force schedules that test properties during the testing of multithreaded
programs. The monitor generation described in [Luo and Rosu, [2013] includes
the decomposition of the property into local decentralized monitors for each of
the threads.

The body of work [Rosu and Havelund), 2005; |Cassar and Francalanza, 2014}
|Zhang et all |2016] explores the idea of decoupling the execution of monitors
from the systems under scrutiny. This approach uses a mixture of synchronous
and asynchronous monitoring, in order to obtain a feasible instrumentation
setup that distribute monitors and systems at different locations, such as in
the case of |Colombo et all |2012] and other orchestrated monitoring setups.
Asynchronous monitoring, used in various monitoring tools such as [Colombo
et al] [2011; [Francalanza and Seychell, 2015; [Zhang et al) 2016; [Attard and
Francalanzal [2016], minimizes monitor intrusiveness because it requires less in-
strumentation effort. Moreover, in |[Cassar and Francalanzal [2014} |Zhang et al.|
the authors show that this method of instrumentation can substantially
reduce monitoring overhead. By using hybrid solutions, they also show how one
need not compromise on the timeliness of detections.

In |Cassar and Francalanzal 2016, |2015|, Cassar and Francalanza extend
the concept of non-intrusiveness to runtime adaptation via hybrid asynchronous
monitoring. The goal is to design monitors that intervene with the execution of
the system under scrutiny, and apply these interventions (i.e. system adapta-
tions) with minimal overheads. In particular, the work [Cassar and Francalanza),
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2016] implements a framework where the monitors for system components can
act at varying degrees of synchrony with respect to the observed components.
Some parts of the system can be executed in a decoupled fashion with their
monitors when no adaptations on that sub-system are required. Later, these sub-
systems can be incrementally synchronized with the respective monitor when an
adaptation is about to be applied. The entire framework is implemented atop a
completely asynchronous actor computational model, which eases the distribu-
tion over remote locations.

Behavioral Type Systems for Distributed Monitoring Many large-scale
systems consist of heterogeneous, distributed software artifacts (processes) that
interact following some precise protocols. In these communication-centric set-
tings, processes communicate asynchronously, without a global clock, and are
prone to local failures. These characteristics make distributed monitoring a suit-
able approach to enforce system correctness by complementing the static verifi-
cation techniques that are typically applied individually to each process. As we
detail next, monitoring for communication-centric systems is an instance of the
choreographed monitoring organization described in

A productive research strand to the analysis of communication-centric soft-
ware systems uses process calculi (such as the m-calculus) as minimal specifica-
tion languages. These formal calculi provide an unambiguous setting in which
the communication correctness of these systems can be compositionally estab-
lished. In particular, coupling process calculi with so-called behavioral type sys-
tems allows to (statically) enforce safety and liveness properties associated to
protocol conformance. Rather than classifying data values, behavioral types de-
fine abstractions of the protocols that a communication entity (say, a socket or
a channel) should respect throughout its execution (see [Hiittel et al, 2016 for
a survey).

Several works have explored the interplay of behavioral types and mecha-
nisms for distributed monitoring. In particular, monitoring frameworks based
on session types, a particular class of behavioral types, have been put forward.
Session types organize a series of communication actions corresponding to the
same reciprocal protocol into a structure called session [Honda et all [1998].
While typed process frameworks for binary session types can analyze two-party
protocols, more general type theories for multiparty session types cover the case
of protocols with three or more participants [Honda et al.,|2016]. Both binary and
multiparty session types start to make their way into mainstream programming
languages and frameworks [Ancona et al., 2016|. In the multiparty case, a global
type entirely describes the intended communication scenario. By projecting this
global type onto each protocol participant, one may obtain its corresponding
local type, which abstracts a participant’s contribution to the protocol. This
collection of local types thus offers a key reference for obtaining correct imple-
mentations for all participants.

Communication-centric systems often comprise components made available
as grey- and black-boxes, with limited communication interfaces. As such, static
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verification techniques are unsuitable for their validation. Motivated by this ob-
servation, several works develop abstract frameworks based on process calculi in
which monitors are terms of the specification language. The formal semantics of
these calculi uses these monitor terms to enable process behavior according to
the intended protocol. Rather than a logical specification (say, an LTL formula),
each monitor uses a behavioral type (e.g., a local protocol) to guide a partici-
pant’s behavior. These works define a special case of choreographed monitoring:
the coupling of processes and monitors at the same level of abstraction makes
the notion of local trace implicit. Monitors do not communicate to each other,
nor perform autonomous actions. The global type through its projections is used
to synthesize a monitor for each participant. This way, even untyped processes
can be used to implement a protocol participant as long as they offer the right
communication actions at the right time, in accordance with the governing local
protocols.

Based on this general setup, Bocchi et al. [Bocchi et all 2013, [2017] de-
velop a monitored w-calculus with dynamic usage of multiparty session types,
offering local and global safety assurance of distributed components. In their
model, a network is a collection of processes (one per participant) that commu-
nicate via asynchronous message passing. Each participant is equipped with a
trusted monitor that guards the run-time behavior of both the principal and
its environment—this is realized by the evaluation of incoming and outgoing
messages. Monitors regulate the creation of sessions and movement of messages
within sessions. This dynamic checking can be switched off when processes have
been statically verified. A series of queues shared between principals is assumed
to support message passing, together with a global transport that abstracts dis-
tributed communication.

Building upon [Bocchi et al., 2013, 2017], the works [Hu et al. 2013} De-
mangeon et alJ, 2015] propose a dynamic verification framework for multiparty
session types that admit interruptions. This a practical framework, which re-
lies on the Scribble protocol language (an implementation of multiparty session
types [Yoshida et all [2013]) to specify global protocols, and on a Python API
for conversation programming. In this framework, the monitor that tracks the
progress of each participant within a session is represented using a finite state
machine (FSM), generated from the local type. By independently monitoring
each session endpoint at runtime, this framework ensures global communication
safety even in the presence of asynchronous interruptions.

Other works on a practical strand are [Neykova et al.t|2013]{2014]. In [Neykoval
et al.l |2013], the authors propose a toolchain for designing deadlock-free multi-
party global protocols. Using automatically generated monitors for each session
endpoint, this toolchain can detect illegal communication actions and mistaken
message types that go against protocol conformance. The work in [Neykova
et al., |2014] extends preceding works with timed information: Scribble specifi-
cations are extended with clocks, resets, and clock predicates that constrain the
occurrence of protocol interactions.
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Recent work introduces a framework for monitoring interacting processes
that follow binary session protocols, building upon a logically motivated the-
ory of session types [Jia et al., 2016]. As in several of the works mentioned
above, in this framework monitors are placed next to communication endpoints.
A distinguishing aspect is blame assignment: in case processes deviate from the
prescribed session protocols, monitors may halt the execution, raise an alarm,
and assign blame. The authors prove that their dynamic monitoring is not in-
trusive in the sense that it does not change the behavior of well-typed processes.
Also, they show that in case of alarm one of an indicated set of possible culprits
must have been compromised.

Finally, we mention some works in which the concept of monitor as a process
term, in the sense just described, has been exploited. Even though the main
purpose of these works is not run-time verification, they can be seen as applica-
tions of xchoreographed monitoring. The works in [Di Giusto and Pérez, [2015;
Di Giusto and Pérez| 2016] use this kind of monitors to support the run-time
adaptation of session-typed processes in both binary and multiparty settings.
There is exactly one monitor per session. By combining monitor information
and event-based constructs, one may specify the reaction to unanticipated cir-
cumstances (for example, local failures) by means of adaptation steps. An as-
sociated type system ensures communication safety and consistency properties:
while safety guarantees absence of run-time communication errors, consistency
ensures that adaptation steps do not disrupt already established session proto-
cols. In a similar line, the monitors defined in |Castellani et al., 2014} 2016| play
a dual role: they enforce run-time adaptation policies, and ensure secure infor-
mation flow in multiparty exchanges. Recent work by Mezzina and Pérez uses
monitors as the memories required to support models of concurrency in which
actions are reversible and causally consistent [Mezzina and Pérez, 2016) 2017].

6 Challenges and Conclusion

6.1 Challenges

We list here some challenges for future research in distributed runtime verifica-
tion.

Fault tolerance One of the key characteristics of distributed systems is that,
in practice, different parts of the system can fail independently. However, most
approaches consider that the system does not fail. Some future problems include
the following.

The theoretical approach in [Fraigniaud et al., 2014} Bonakdarpour et al.,
2016a] (discussed in has two major obstacles to become practical:

— First, after the distributed verdicts are emitted, there is a phase in which a
global function is applied to the collection of verdicts emitted. This function
must be implemented somehow by a central computational infrastructure
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which must receive all verdicts and produce an outcome. However, a gen-
eral implementation of this function requires a non-failing central monitor.
But the existence of such a central unit would greatly simplify the initial
monitoring problem, and in fact, the basic starting point of [Bonakdarpour
et all 20164} [Fraigniaud et al.| 2014] is to design distributed fault tolerant
solutions.

— Second, the work [Bonakdarpour et all [2016a] only presents an algorithm
for the processing of a one letter observation, under the assumption that the
processes are perfectly synchronized at the beginning of such an observation.
To process a subsequent observation, the monitors that survive the first
round must somehow re-synchronize, but again, a synchronization procedure
would provide a much simpler solution to the monitoring problem at hand.
In summary, A general fault-tolerant solution for sequences of observations
is still an open problem.

Also, there are very few results in runtime verification that can handle net-
work failures (most notably, the work in [Basin et al., [2015]). It would be very
interesting to extend these approaches to other logics and distributed system
assumptions.

Global atomic observations Specification formalisms for non-distributed sys-
tems assume that atomic predicates are testable, which is not a restriction. In
distributed systems, in general, predicates are global in the sense that they can
involve different parts of the system. Then, not all global predicates are Boolean
combinations of local predicates. For example, one restriction in [Bauer and Fal-
conel [2012] is that the individual global observations are Boolean combinations
of local observations performed in each of the processes, whose observations do
not overlap. More formally, each process j can emit a collection of local propo-
sitions AP; (such that AP; N AP; = () whenever i # j). The alphabet of atomic
observations is then X; = 24P Note how the global alphabet X = 2Y:AP g
strictly larger, in general, than U;X; because it can contain relational symbols
like p; V p; where p; and p; are local observations at different processes. We use
relational observations to refer to atomic propositions whose truth value depends
on the observations made at more than one process. For example, consider the
numeric variables x; and y; where the sub-index indicates the process at which
the variable is observed (P; and P; resp). The atomic predicate z; < y; cannot
be evaluated at P; or P; alone, and it cannot be decomposed into a Boolean
combination of local predicates either.

As discussed earlier, even though research in predicate detection has consider
classes of predicates richer than individual observations (regular, linear, etc) and
has characterized that detecting a predicate in 2-CNF is already NP-hard, it
would be interesting to extend other techniques for decentralized and distributed
monitoring beyond combinations of local predicates.

Monitor Orchestrations In |Colombo and Falcone, 2016], a choreographed
decentralized monitoring solution is obtained from a network of local monitors,
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which is statically computed by mapping every subformula to a distributed sys-
tem node. There are many possible ways to create such a network, even if one
restricts the map (as in [Colombo and Falcone, |2016]) to one of the nodes with
the highest number of propositions locally involved in the subformula, because
there can be more than one such node. Even though all choices could lead to a
correct monitoring solution, for a given trace of execution, the choice of network
has an impact in the communication overhead. For every input trace, one could
calculate a-posteriori the best network in the sense of the network that would
have produced the lowest overhead. However, even for the fixed parameter as-
sumed in |[Colombo and Falcone, 2016] (e.g., static number of locations, fixed
specifications, no dynamic remote spawning of new computation, the assumption
of a global clock) it is not clear how to pre-compute an optimal network, even
how to approximate it. Nevertheless, there are alternatives worth investigating.
One plausible solution is to exercise the system in a test-bed to obtain input
traces and compute the optimal network for the observed set of traces, with the
assumption that the traces after deployment will involve similar communication
flows. However, this kind of approach is not considered in [Colombo and Falcone,
2016].

Adequate solutions to this problem are probably even harder to come up with
when proper distributed system constraints are considered, such as computation
asynchrony, distributed clocks, and the possibility of partial failure. In practi-
cal settings, cases may even arise whereby one has to content with conflicting
criteria. For instance, certain locations may not allow monitor processing and
analysis to be carried out locally, forcing events to be communicated remotely
to the analyzing monitor. This, in turn, may conflict with confidentiality and
security concerns.

Monitorability and Correctness In general, the use of runtime analysis im-
pinges on the extent to which a correctness property can be verified.

This aspect is often referred to as monitorability. One of the first works that
introduces monitorability is [D’Angelo et al., [2005] for stream runtime verifica-
tion on finite traces as a class of specification for which efficient monitors can
be generated. Later, Pnueli and Zaks [Pnueli and Zaks|, [2006] formalized moni-
torability for LTL as the possibility of a finite trace to be extended to a finite
witness of a specification satisfaction or violation. A similar notion was presented
in [Bauer et al., [2011] and proved equivalent in |Falcone et al., 2012]. This no-
tion was generalized to w-regular languages in [Bauer] 2010], and later extended
and corrected in [Diekert et al) 2015]. The tight complexity of this notion of
monitorability was finally captured in [Baader and Lippmann| 2014]. An alter-
native definition of monitorability is given in |[Francalanza et all |2017] where
the fragment of formulas of a given branching time logic that can be monitored
at runtime is captured.

Decentralized and distributed monitoring introduces further restrictions and
raises additional issues that may affect the monitorability of certain correctness
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properties. It is worth investigating these limits and establishing firm results
that can guide the engineering of distributed monitoring.

Concurrent and distributed systems are notoriously hard to get right and
these complications extend also to distributed runtime verification: errors arise
only for particular sequences of events that are hard to simulate using pre-
deployment techniques such as testing, and are also hard to trace and reproduce
for analysis once they occur. It is thus imperative to continue to extend existing
work on developing methods for ascertaining the correctness of the decentralized
and distributed monitoring setups constructed along the lines of |[Falcone et al.,
2015aj; Bocchi et all [2017; [Francalanzal, 2016].

6.2 Conclusion

In this chapter we have surveyed the literature on runtime verification for dis-
tributed systems. After showing some practical motivations that have justified
the study of monitoring techniques for distributed and decentralized systems,
we identified a series of features that characterize and that allow to classify the
different problems and approaches. These criteria include whether the solution
involves or exploits the description of the system under analysis, whether there
is a single central monitor or the monitoring task is distributed, whether there
is an assumption on a global clock, and whether the system tolerates failures
or perturbs the execution. Finally, we showed a comprehensive list of results
proposed in the literature and listed some challenges for future work.
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