
Science of Computer Programming 168 (2018) 94–117
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Full-abstraction for client testing preorders

Giovanni Bernardi a,∗, Adrian Francalanza b

a Université Paris-Diderot/IRIF, Paris, France
b University of Malta, Msida, Malta

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 October 2017
Received in revised form 9 July 2018
Accepted 20 August 2018
Available online 30 August 2018

Keywords:
Behavioural equivalences
Full-abstraction
Foundations of web-services

Client testing preorders relate tests (clients) instead of processes (servers), and are usually
defined using either must testing or a compliance relation. Existing characterisations of
these preorders are unsatisfactory for they rely on the notion of usable clients which, in
turn, are defined using an existential quantification over the servers that ensure client
satisfaction. In this paper we characterise the set of usable clients wrt must testing
for finite-branching LTSs, and give a sound and complete decision procedure for it. We
also provide novel coinductive characterisations of the client preorders due to must and
compliance, which we use to show that these preorders are decidable, thus positively
answering the question opened in [5,3].

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The testing theory of De Nicola–Hennessy [14,19] is a well-known approach to define preorders and equivalences for
communicating processes. In this theory a process p2 is considered as good as another process p1 if every test r passed by
p1 is also passed by p2, and two processes are equivalent if they pass the same tests. The standard notion of passing a test
is formalised predominantly by the so called must testing relation: p must r whenever every run of the system r || p leads
the test r to a successful state. Concretely, the formal definition of the well-known must preorder is thus

p1 �∼ p2 iff ∀r . (p1 must r) implies (p2 must r) (1)

During the last decade, testing theory has been adapted and enriched to lay the theoretical foundations for web-services,
where processes are seen as servers, and tests as clients (or peers). Adapted in that an alternative relation to must has been
proposed, which fits better the setting of web-services and client/server satisfaction. This novel relation, called compliance,
states that a client r complies with a server p, denoted r cmp p, if whenever a computation of r || p cannot go on or p
diverges, the client is in a successful state [10,29]. Enriched in that in addition to the classical preorder for servers,1 also
preorders for clients and peers have been investigated [2,5]. Preorders for clients have a natural definition similar to (1), for
example the compliance client preorder is defined by letting

r1 � cmp r2 if ∀p . (r1 cmp p) implies (r2 cmp p) (2)

* Corresponding author.
E-mail addresses: gio@irif.fr (G. Bernardi), adrian.francalanza@um.edu.mt (A. Francalanza).

1 Processes according to the classic terminology.
https://doi.org/10.1016/j.scico.2018.08.004
0167-6423/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2018.08.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:gio@irif.fr
mailto:adrian.francalanza@um.edu.mt
https://doi.org/10.1016/j.scico.2018.08.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2018.08.004&domain=pdf

G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117 95
r1 r2 r1 + r2

c.(a.1 + b.0)

a.1 + b.0

1 0

c

a b

c.(a.0 + b.1)

a.0 + b.1

01

c

ab

r1 + r2

a.1 + b.0

01

a.0 + b.1

1

c c

ba a b

Fig. 1. LTS depictions of the behaviours described in Eq. (3).

that is a client r2 is as good as a client r1 whenever every server p that satisfies r1 also satisfies r2. In this paper we dwell
on the client preorders due to the must relation [5] and the compliance relation [3].

Definitions such as (1) and (2) are intuitive and easy to understand, but they are hard to use in practice for they are
contextual: they contain a universal quantification over contexts, and hence give no effective proof method to determine
pairs in the preorders being defined. To overcome this problem, testing preorders are usually presented together with
alternative characterisations that avoid universal quantification over contexts, and that are amenable to the development of
proof methods and decision procedures.

In [5,3] the authors develop such characterisations for the client preorders due to must and compliance, however neither
of these characterisations are fully-abstract, nor are decision procedures for the preorders discussed. In particular, the al-
ternative preorders given in [5, Definition 3.10] and [3, Definition 5.2.16] are not fully-abstract for they are defined modulo
usable clients, i.e., clients that are satisfied by at least one server. In other words, the definitions of these preorders rely
explicitly on the interactions that clients may have with servers.

Usability is a pivotal notion that appears frequently in the literature on process calculi as foundations for web-service:
it has been called viability in [22,30] and controllability in [9,28], and has already been studied in various settings [22,7,5,
30]. While usable clients wrt the compliance relation have been characterised in [29], the situation remains unclear with
respect to the must testing. The characterisation of usable clients is indeed problematic, for solving it requires finding the
conditions under which one can either (a) construct a server p that satisfies a given client, or (b) show that every p does
not satisfy a given client. Whereas proving (b) is complicated by the universal quantification over all servers, the proof of
(a) is complicated by the non-deterministic behaviour of clients. In particular, determining usability using approach (a) is
complicated because client usability is not compositional. For instance consider the following two clients, whose behaviour
is depicted in Fig. 1:

r1 = c.(a.1 + b.0) and r2 = c.(a.0 + b.1) (3)

where 1 denotes satisfaction (success). Both clients are usable, since r1 is satisfied by the server c.a. 0, and r2 is satisfied
by the server c.b. 0. However, their composition r1 + r2 is not a usable client, i.e., p ¬must r1 + r2 for every p; intuitively,
this is because r1 and r2 impose opposite constraints on the processes that pass one or the other (e.g., c.(a. 0 + b. 0) does
not satisfy r1 + r2). A compositional analysis is even more unwieldy for recursive tests. For instance, the recursive client
μx.

(
c.(a. 1 + b.x) + c.(a. 0 + b. 1)

)
is not usable wrt must because of the non-determinism analogous to r1 + r2, and the

unsuccessful computations along the infinite trace (c.b)∗; this argument works because infinite unsuccessful computations
are catastrophic in must testing settings.

This paper presents a sound and complete characterisation for usable clients wrt must within a finite-branching LTS.
Through the results of [5] — in particular, the equivalence of usability for clients and peers stated on [5, pag. 11] — our
characterisation directly yields a fully-abstract characterisation for the must preorder for clients and peers. These character-
isations, though, are still hard to use in practice when reasoning on recursive clients. Spurred by this observation, we define
a new coinductive and fully-abstract characterisation for the client preorders due to must and compliance, which we find
easier to use than the ones of [5,3]. These coinductive characterisation are informed by our study on usability, and differs
subtly from the coinductive characterisations of preorders for servers given in [22,29,6]. Finally, our inductive definition for
usable clients also provides insights into the must client preorder of [5]: we show that limiting contexts to servers offering
only finite interactions preserves the discriminating power of the original preorder. The contributions of this paper are thus:

• a fully-abstract characterisation of usable clients wrt must (Theorem 1);
• two coinductive, fully-abstract characterisations of the client preorders due to must (Theorem 2) and compliance (The-

orem 5);
• a proof that non-recursive contexts are sufficient to define the client preorder due to must (Theorem 3);
• decidability results for usable clients and the client preorder due to must (Theorem 4).

We hope that this work has an impact outside of testing theory and foundations for web-services, in the following sense.
Our original motivation to study usability of clients was to arrive at decision procedures for client preorders. However, it
turns out that our study of usability is relevant to controllability issues in service-oriented and monitor-oriented architec-
tures [25,34,16]. For instance, the symbolic characterisation for consistently-detecting monitors in [16] called controllability

96 G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117
Syntax p, q, r, o ∈ CCSμ ::= 0 | 1 | α.p | p + q | μx.p | x

Semantics

1
�−→ 0

(a-Ok)

α.p
α−→ p

(a-Pre)

μx.p
τ−→ p{μx.p/x}

(a-Unfold)

p
λ−→ p′

p + q
λ−→ p′

(r-Ext-l)

q
λ−→ q′

p + q
λ−→ q′

(r-Ext-r)

Semantics of process composition

p
λ−→ p′

p || r
λ−→ p′ || r

(p-Srv)
r

λ−→ r′

p || r
λ−→ p || r′

(p-Cli)

p
a−→ p′ r

a−→ r′

p || r
τ−→ p′ || r′

(p-Syn)

Fig. 2. Syntax and Semantics of recursive CCSμ with 1.

for the instrumentation relation of [15] is closely related to the behavioural characterisation of usability given in this paper.
Our techniques may also be extended beyond this remit. The ever growing sizes of test suites, together with the ubiquitous
reliance on testing for the increasing quality-assurance requirements in software systems, has recently directed the attention
to flaky (i.e., non-deterministic) tests. Such tests arise frequently in practice and their impact on software development and
productivity has been the subject of various studies in the software engineering field [26,24,23]. By some measures, ≈ 4.56%
of failures of tests the TAP (Test Anything Protocol) system at Google are caused by flaky tests [23]. We believe that our
concepts, models and procedures can be extended to such testing methodologies and analyse detrimental non-deterministic
behaviour arising in test suites, thereby reducing the gap between empirical practices and theory. Concretely, we conjecture
that our techniques can be adapted to identify and filter out flaky tests, thereby improving the quality of test suites and
effectiveness of test procedures.
Structure of the paper: This paper is the full version of an extended abstract presented at COORDINATION 2017 [8], and it
adheres to the general structure of that abstract, but with additional results on the compliance client preorder. Section 2
sketches the preliminaries to define must testing and compliance, and recalls an existing characterisation of the client
preorder due to must. Section 3 presents a fully-abstract characterisation of usable clients wrt must testing, and Section 4
uses this result to give a fully-abstract characterisation of the must client preorder. In Section 5 we present expressiveness
results for servers with finite interactions together with decidability results for client usability. This concludes our study of
the client preorder due to must. Section 6 shifts the attention to compliance, and we present a fully-abstract characterisation
of the compliance client preorder, with a digression on decidability. Section 7 discusses related work and concludes.

2. Preliminaries

We recall the standard definitions of a recursive variant of CCS [27], where processes are used to describe contracts. Let
a, b, c, . . . ∈ Act be a set of actions, and let τ , � be two distinct actions not in Act; the first denotes internal unobservable
activity whereas the second is used to report success. To emphasise their distinctness, we use Actτ to denote Act ∪ { τ }, and
similarly for Act � and Actτ � . We range over Actτ with α, over Act � with α� , and with λ over Actτ � . We assume Act
has an involution function, with a being the complement to a.

A labelled transition system, LTS, consists of a triple 〈 Proc, Actτ �, −→〉, where Proc is a set of processes and −→ ⊆
(Proc × Actτ � × Proc) is a transition relation between processes decorated with labels drawn from the set Actτ �; we write
p λ−→ q in lieu of (p, λ, q) ∈ −→. An LTS is finite-branching if for all p ∈ Proc the set { (p, λ, q) | ∃λ ∈ Act. ∃q ∈ Proc. p λ−→ q }
is finite, and image-finite if for all p ∈ Proc and λ ∈ Act the set { (p, λ, q) | ∃q ∈ Proc. p λ−→ q } is finite [18, Definition 2.7].
For s ∈ (Act �)� we define the standard weak transitions, p s=⇒ q, by ignoring the occurrences of τ s. We say that a state p

is successful if p �−→, and that it is stable if p
τ
/−→.

We limit ourselves to finite-branching LTS to express both servers and clients. Whenever sufficient, we describe such
LTS using a version of CCS with recursion [27] and augmented with a success operator, denoted as 1. The syntax of this
language is depicted in Fig. 2 and assumes a denumerable set of variables x, y, z . . . ∈ Var. For finite I , we use the notation ∑

i∈I pi to denote the respective sequence of summations p1 + . . . + pn where I = 1..n. Similarly, when I is a non-empty
set, we define

⊕
i∈I pi = ∑

i∈I τ .pi to represent process internal choice [19]. As usual, μx.p binds x in p and we identify
terms up to alpha conversion of bound variables. The operation p{μx.p/ x} denotes the unfolding of the recursive process
μx.p, by substituting the term μx.p for the free occurrences of the variable x in p.

G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117 97
In the rest of the paper we use the LTS whose states are the closed terms in CCSμ (i.e. terms that contain only bound
variables), and where the transition relation p λ−→ q between closed terms of the language is the least one determined by
the (standard) rules in Fig. 2. In general though our arguments are independent of the syntax, and rely only on hypothesis
over the LTS.

To model the interactions taking place between the server and the client contracts, we use the standard binary com-
position of contracts [10], p || r, whose operational semantics is given in Fig. 2. A computation consists of a sequence of τ
actions of the form

p || r = p0 || r0
τ−→ p1 || r1

τ−→ . . .
τ−→ pk || rk

τ−→ . . . (4)

It is maximal if it is infinite, or whenever pn || rn is the last state then pn || rn
τ
/−→. A computation may be viewed as

two processes p, r, one a server (p) and the other a client (r) co-operating to achieve individual goals. We say that the
computation (4) is client-successful if there exists some k ≥ 0 such that rk

�−→.

Definition 1 (must client preorder [5]). We write p must r when every maximal computation from p || r is client-successful,
and write r1 �∼ must r2 if, for every p, p must r1 implies p must r2. �

Although intuitive, the universal quantification on servers in Definition 1 complicates reasoning about �∼must . One way of
surmounting this is by defining alternative characterisations for �∼ must of Definition 1, that come equipped with practical
proof methods.

2.1. Alternative characterisation of the must client preorder

Definition 3.10 of [5] gives an alternative characterisation for the preorder �∼ must , which is proven to be sound and com-
plete. We recall this characterisation, restating the respective notation. The alternative characterisation relies on unsuccessful

traces: r s=⇒� � r′ means that r may weakly perform the trace of (weak) external actions s reaching state r′ without passing
through any successful state; in particular neither r nor r′ are successful. Formally, r s=⇒� � r′ is the least relation satisfying

(a) r
�
/−→ implies r ε=⇒� � r, and

(b) if r′′ s=⇒� � r′ and r
�
/−→ then (i) r a−→ r′′ implies r as=⇒� � r′ , and (ii) r τ−→ r′′ implies r s=⇒� � r′ .

The unsuccessful acceptance sets of r after s, are defined as

Acc � �(r, s) = { S(r′) | r
s=⇒� � r′ τ

/−→} (5)

where S(r) = { a ∈ Act | r
a−→} denotes the strong actions of r. Intuitively, for the client r, the set Acc � �(r, s) records all

the actions that lead r out of potentially deadlocked (i.e. stable) states that it reaches performing unsuccessfully the trace s.
It turns out that these abstractions are fundamental to characterise must-testing preorders and also compliance preorders

[3,5,29]. In the sequel, we shall also use the judgement r α−→� � r′ whenever r α−→ r′ , r
�
/−→ and r′ �

/−→ hold.

Example 1. Consider the client r3 = τ .(1 + τ .0) that can perform a silent transition to reach a state where it can produce
the success action �,

τ .(1 + τ .0)
τ−→ 1 + τ .0

�−→
but can also silently transition again to a deadlocked state 0.

τ .(1 + τ .0)
τ−→ 1 + τ .0

τ−→ 0

We have Acc � �(r3, ε) = ∅ since the deadlocked state above can only be reached by passing through the success state 1 + τ . 0.
However, for the client r′

3 = r3 + τ .0 we have Acc� �(r′
3, ε) = {∅} since we can reach a deadlock state without passing

through a success state, namely r′
3

τ−→ 0. In the case of the client r′′
3 = r3 + μx.x, we also have Acc � �(r′′

3, ε) = ∅ since the
additional branch μx.x never reaches a deadlocked state. �

The example above illustrates the fact that, whenever Acc � �(r, s) = ∅, then any sequence of moves with trace s from r
to a stable reduct r′ must pass through a successful state, for otherwise we would have S(r′) ∈ Acc� �(r, s) for some r′ .

The alternative characterisation for the preorder � of [5, Def. 3.10] also relies on the notion of usable clients.
∼ must

98 G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117
Definition 2 (Usable Clients). Umust = { r | ∃p. p must r }. �

Example 2. Recall clients r1 = c.(a. 1 + b. 0) and r2 = c.(a. 0 + b. 1) from (3) and Fig. 1. We can show that despite being
individually usable, the sum of these clients, r1 + r2, is not, i.e., for every p we have p ¬must r1 + r2.

To see why this is the case, fix a process p. If p does not offer an interaction on c, then, plainly, p ¬must r1 + r2. Suppose
that p c−→ p′; to prove p ¬must r1 + r2, it suffices to show that there exists a client r reached by r1 + r2 by performing
action c, namely r ∈ { a. 1 + b. 0, a. 0 + b. 1 }, such that p′ ¬must r. Consider the case r = a. 1 + b. 0. If p′ ¬must r we are
done. Alternatively, if p′ must r, this implies p′ has to interact on a and not on b: in this case we can conclude that p′ does
not satisfy the other derivative r = a. 0 + b. 1, i.e., p′ ¬must r since the composition p′ || r is stable but not client-successful.
Using a symmetric argument we also deduce that if p′ must a. 0 + b. 1 then p′ ¬must a. 1 + b. 0. This means that no process
p exists that satisfies r1 + r2; note that the argument above crucially exploits the external non-determinism of r1 + r2.

The client Recx
(
c.(a.1 + b.x) + c.(a.0 + b.1)

)
from Section 1 is unusable for similar reasons, but the analysis is more

complicated, because we need to consider infinite computations. �

The alternative characterisation for the preorder �∼ must of [5, Def. 3.10] also uses machinery that centres around the
notion of an unsuccessful trace. We let

(r after � � s) = { r′ | r
s=⇒� � r′ }

to denote the residuals of r after performing the unsuccessful trace s. We extend the notion of usability and say that r is
usable along an unsuccessful trace s whenever r usbl � � s, which is the least predicate satisfying the following conditions:

(a) r usbl � � ε whenever r ∈ Umust , and

(b) r usbl � � as if (i) r ∈ Umust and (ii) if r a=⇒� � then
⊕

(r after� � a) usbl� � s.

Note that whenever r usbl� � s, any state reachable from r by performing any unsuccessful subsequence of s is usable [5].
Finally, the set

uaclt(r, s) = {a ∈ Act | r
sa=⇒� � implies r usbl � � sa }

denotes all the usable actions for a client r after the unsuccessful trace s.

Definition 3 (Semantic client-preorder [5]). Let r1 �clt r2 if, for every s ∈ Act� such that r1 usbl� � s, we have

(i) r2 usbl� � s,
(ii) ∀B ∈ Acc � �(r2, s). ∃A ∈ Acc � �(r1, s) such that A ∩ uaclt(r1, s) ⊆ B ,

(iii) r2
s=⇒� � implies r1

s=⇒� � . �

Lemma 1 (König’s infinity lemma [21]). If G is a finite-branching connected graph with infinitely many nodes, then G contains an
infinitely long simple path.

Proposition 1. In any finite-branching LTS, r1 �∼ must r2 if and only if r1 �clt r2 .

Proof. Follows from [5, Theorem 3.13] and Lemma 1. �
Thanks to Proposition 1, Definition 3 sheds light on the behavioural properties observed by clients related by �∼ must .

Moreover, the definition shares a similar structure to well-studied characterisations of the (standard) must -testing preorder
of [14,19], where process convergence is replaced by client usability, and traces and acceptance sets are replaced by their
unsuccessful counterparts (modulo usable actions). In spite of these advantages, Definition 3 has two drawbacks. First, it
is parametric wrt. the set of usable clients Umust (Definition 2), which relies on an existential quantifications over servers.
As a result, the definition is not fully-abstract, and this makes it hard to use as proof technique and to ground decision
procedures for �∼ must on it. Second, Definition 3 requires us to consider an infinite number of (unsuccessful) traces to
establish client inequality. In the next example we show why this is a problem in practice.

Example 3. The use of �clt is hindered by the universal quantification over traces in its definition. Consider for instance
clients r4 and r5,

r4 = a.1 + μy.(a.r′′
3 + b.y + c.1) and r5 = (μz.(b.z + c.1)) + d.1

where r′′
3 = (τ .(1 + τ . 0)) + μx.x from Example 1. One way to prove r4 �∼ must r5 amounts to showing that r4 �clt r5.

The definition of �clt requires us to show that for every trace s ∈ Act� where r4 usbl � � s holds, clauses (i), (ii) and (iii) of

G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117 99
Definition 3 also hold. In this case, there are infinitely many unsuccessful traces s to consider and, a priori, there is no clear
way how to do this in finite time. Specifically, there are unsuccessful traces that r4 can perform while remaining usable at
every step, such as s = bn , and also unsuccessful traces that r4 cannot perform (which trivially imply r4 usbl� � s according
to the definition in Section 2.1), such as s = d(bn), s = (db)n or s = (ac)n . �

We conclude the section gathering a few properties of the must relation, that we will use in some of the proofs hereafter.

Lemma 2. For every p, r ∈ Proc, if p must r then

(1) r ⇓� , and

(2) for every s ∈ Act� , if p s=⇒ p′ then

(i) r
s=⇒� � r′ implies p′ must r′ , and

(ii) r usbl� � s.

Proof. See Lemma 4.5, Lemma 4.1, and Corollary 4.2 in [5]. �
3. Characterising usability

We use the behavioural predicates of Section 2.1, together with the new predicate in Definition 4, to formulate the
characterising properties of the set of usable clients Umust (Definition 5). We use these predicates to construct a set Ubhv

that coincides with Umust (Theorem 1); this gives us an inductive proof method for determining usability.

Definition 4. We write r ⇓� whenever for every infinite sequence of internal moves r
τ−→ r1

τ−→ r2
τ−→ . . ., there exists a

state ri such that ri
�−→. �

Recalling Eq. (5), let Acc� �(r) = Acc� �(r, ε).

Definition 5. Let F :P(Proc) −→P(Proc) be defined by letting r ∈F(S) whenever

1. r ⇓� , and
2. for every A ∈ Acc � �(r) there exists an action a ∈ A such that

r
a=⇒� � implies

⊕
(r after � � a) ∈ S.

We let Ubhv = μx.F(x), the least fix-point of F . �

The function F is continuous over the CPO 〈P(Proc), ⊆〉, thus Kleene fixed point theorem [35, Theorem 5.11] ensures
that μx.F(x) (the least fix-point of F) exists and in particular

μx.F(x) =
∞⋃

n=0

Fn(∅) (6)

where F0(S) = S and Fn+1(S) =F(Fn(S)). We state now the main results of the section, but defer its proof to the end of
this section.

Theorem 1 (Full-abstraction usability). In every finite-branching LTS the sets Umust and Ubhv coincide.

In view of Definition 5 the theorem above guarantees that a client r is usable if and only if, for every potentially
deadlocked state r′ reached via silent moves by r, there exists an action a that leads r′ out of the potential deadlock, i.e.,
into some other state r′′ where r′′ is certainly usable.

Example 4. Theorem 1 and Definition 5 let us discuss the (non) usability of clients from Example 1, from which we recall

r3 = τ .(1 + τ .0) r′
3 = r3 + τ .0 r′′

3 = r3 + μx.x

Since we have r3 ⇓� and Acc � �(r3) = ∅, r3 satisfies both condition of Definition 5, with the second one being trivially
true. As a consequence r3 is usable, and indeed 0 must r3. On the contrary, we have Acc � �(r′

3) = { ∅ }, which means that r′
3

violates Definition 5(2) (since we cannot pick any unblocking action from the set ∅) and thus r′ is unusable. Client r′′ is
3 3

100 G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117
unusable as well, but violates Definition 5(1) instead (due to the unsuccessful infinite trace r′′
3

τ−→ μx.x τ−→ μx.x τ−→ . . .).
Conversely, client r′′′

3 = r3 + τ .(1 + μx.x) satisfies both conditions of Definition 5 and it is usable (note that the infinite

computation r′′′
3

τ−→ (1 + μx.x) τ−→ μx.x τ−→ . . . is successful because 1 + μx.x �−→). In fact, 0 must r′′′
3 .

A more involved client is r1 + r2 from Example 2. There we proved that r1 + r2 �∈ Umust , and indeed r1 + r2 does not
satisfy Definition 5(2). This is true because Acc � �(r1 + r2) = { { c } }, and r′ �∈ Umust , where

r′ =
⊕(

(r1 + r2) after� � c
) = τ .(a.1 + b.0) + τ .(a.0 + b.1).

In turn, the reason why r′ is not usable is that Acc � �(r′) = { { a, b } }, and Definition 5(2) requires us to consider every set in
{ { a, b } } — we have only { a, b } to consider — and show that for some action a′ ∈ { a, b }, we have

⊕
(r′ after� � a′) ∈ Umust . It

turns out that neither action in { a, b } satisfies this condition. For instance, in the case of action b, we have
⊕

(r′ after� � b) =
τ . 1 + τ . 0 and Acc � �(τ . 1 + τ . 0) = { ∅ }, so

⊕
(r′ after� � b) violates Definition 5(2) and as a result

⊕
(r′ after� � b) �∈ Umust .

The reasoning why action a is not a good candidate either is analogous. �

As argued in the Introduction, usability of clients is not compositional, for instance r1, r2 ∈ U does not imply r1 + r2 ∈ U .
This is why Definition 5(2) requires the non-deterministic combination of all the elements of (r after � � a) to be in the set S .

Counterexample 1. Define the function Fbad as F of Definition 5 but replacing point (2) with the following condition,

for every A ∈ Acc � �(r) there exists a ∈ A such that

r
a=⇒� � implies that for very r′ ∈ (r after� � a). r′ ∈ S,

(2bad)

and let Ubad = μx.Fbad(x). We have that Ubad �⊆ Umust , that is Ubad is not sound wrt the set Umust . To see why this is
the case, consider the clients in Eq. (3), namely r1 = c.(a. 1 + b. 0) and r2 = c.(a. 0 + b. 1). We have that 1 ∈ F1

bad(∅), from
which we obtain that a. 1 + b. 0 ∈ F2

bad(∅) and a. 0 + b. 1 ∈ F2
bad(∅). These two facts and Eq. (2bad) above let us prove that

r1 + r2 ∈F3
bad(∅), and so r1 + r2 ∈ Ubad . This is because (2bad) requires us to consider the two clients r1 and r2 in isolation.

However we know that r1 + r2 �∈ Umust because there is no server that passes r1 + r2. This is correctly captured by F of
Definition 5 because r1 + r2 �∈ Ubhv , that is r1 + r1 �∈Fn(∅) for every n. To see why, observe that Acc� �(r1 + r1) = { { c } }, and ⊕

(r1 + r1 after� � c) �∈Fn(∅) for every n. This is the case because
⊕

(r1 + r1 after� � c) = τ .(a.1 + b.0) + τ .(a.0 + b.1)

and Acc � �(
⊕

(r1 + r1 after� � c)) = { { a, b } }, and

⊕
(r1 + r1 after� � ca) �∈ Fn−1(∅),⊕
(r1 + r1 after� � cb) �∈ Fn−1(∅).

Both statements above are true because of the equalities
⊕

(r1 + r1 after� � ca) = ⊕
(r1 + r1 after� � cb) = τ .1 + τ .0, and also

because τ . 1 + τ . 0 �∈ Fm(∅) for every m. This is indeed the case since Acc � �(τ . 1 + τ . 0) = { ∅ }, and therefore τ . 1 + τ . 0
does not satisfy Definition 5(2). �

The bulk of the soundness result follows from the next lemma, which also lays bare the role of non-recursive servers in
proving usability of clients.

Lemma 3. For every n ∈N and r ∈ Proc, r ∈Fn(∅) implies that there exists a non-recursive server p such that p must r.

Proof. We reason by numerical induction on n. For the base case, n = 0, the lemma is trivially true since there is no r
such that r ∈ F0(∅) = ∅. For the inductive case, we have n = m + 1. We know, by hypothesis, that r ∈ Fm+1(∅); we must
therefore exhibit a non-recursive p such that p must r. The proof proceeds by case analysis on Acc � �(r), where we have two
subcases to consider:

Acc� �(r) = ∅: This means that

r = r0
τ−→ . . .

τ−→ rn = r′ τ
/−→ implies ri

�−→ for some ri (7)

We prove that the non-recursive server 0 is our witness, i.e., 0 must r. Pick a maximal computation of 0 || r
τ−→

0 || r1
τ−→ The computation must exclusively be due to the silent moves r τ−→ r1

τ−→ If the computation is
finite then r =⇒ rn

τ
/−→ for some rn , and (7) above implies that the computation is successful. If the computation

is infinite, then r ⇓� of Definition 5(1) ensures that the computation is successful.

G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117 101
Acc� �(r) �= ∅: Since r is finite-branching, the set Acc � �(r) is finite, that is |Acc � �(r)| = h and denote the elements of this
set as Ai for i ∈ 1..h.

Definition 5(2) ensures that for every Ai there exists an action ai such that, whenever (r after� � ai) �= ∅, then
(r after� � ai) ∈Fm(∅).

By the inductive hypothesis and (r after ai) ∈ Fm(∅), for all i ∈ 1..h such that (r after� � ai) �= ∅, we know that
there exists a non-recursive server pi that satisfies pi must

⊕
(r after� � ai). The required witness (non-recursive)

server proving that r is usable is

p̂ = (∑

{ ai | (r after � �ai) �=∅ }
ai .p

i) + (∑

{ ai | (r after � �ai)=∅ }
ai .0

)
(8)

By construction one can easily see that p̂ is non-recursive, and to conclude the proof we are only left to show that
p̂ must r. Pick a maximal computation

r || p̂ = r0 || p0
τ−→ r1 || p1

τ−→ . . . (9)

To show why this computation is necessarily successful we have to consider two subcases:
• In (9) there is no interaction between derivatives of r and those of p̂. Since p̂ is stable, the computation (9)

must be due to reductions of r. If (9) is infinite, it is because r diverges, and by r ⇓� of Definition 5(1) the

computation must be successful. Else (9) is finite and has the form r || p̂ =⇒ r′ || p̂
τ
/−→. It follows that r =⇒

r′ τ
/−→. Since r′ || p̂

τ
/−→, it also follows that there must be a successful state amongst the silent moves r =⇒ r′ .

For otherwise, we would have r =⇒� � r′ τ
/−→ and by Eq. (5) and Definition 5(2), we know that S(r′) �= ∅ (the

second clause in Definition 5 requires all A ∈ Acc� �(r), one of which is S(r′), to contain at least one a ∈ A). In
such a case, Eq. (8) would then guarantee that r′ || p̂

τ−→ (by an interaction on an action in S(r′)), contradicting

r′ || p̂
τ
/−→.

• In (9) there exists at least one interaction, then assume that the first one results in the reduction rk || pk
τ−→

rk+1 || pk+1. As this is the first reduction, pk = p̂, and Eq. (8) ensures that for some ai , rk
ai−→ rk+1 and pk

ai−→
pk+1. If one of the states between r and rk+1 is successful then the computation is successful. So suppose instead
that in the computation at hand r

ai=⇒� � rk+1. This means that rk+1 ∈ (r after� � ai), hence (r after� � ai) �= ∅.

Now Eq. (8) and pk
ai−→ pk+1 imply that pk+1 = pi . We already know that pi must

⊕
(r after� � ai), and this

implies pi must rk+1. It follows that pk+1 must rk+1, and thus the maximal computation at hand must contain a
successful state.

We have proven that an arbitrary maximal computation of r || p̂ is successful, and thus p̂ must r, as required. �
Corollary 1. For every r ∈ Proc, r ∈ Ubhv implies r ∈ Umust .

An inductive argument let us prove that Ubhv is complete wrt. Umust , where we define the following measure over
which to perform induction. We let MC(r, p) denote the set of maximal computations of a composition r || p and, for every
computation c ∈ MC(r, p), we associate the number #itr(c) denoting the number of interactions that take place between the
initial state of c, and the first successful state of the computation c (#itr(c) = ∞ whenever c is unsuccessful). Let itr(r, p) =
max{ #itr(c) | c ∈ MC(r, p) }. For instance, if r = μx.a.x + b. 1, we have itr(r, a.a.b. 0) = 3, but itr(r, μx.a.x + b. 0) = ∞.

Definition 6 (Tree [13, Appendix B.5]). A (free) tree is a undirected graph in which any two nodes are connected by a unique
simple path.

Lemma 4. In a finite-branching LTS, p must r implies itr(r, p) is finite.

Proof. If p must r, every c ∈ MC(r, p) reaches the first successful state after a finite number of reductions. This number is an
upper bound on the number of interactions that lead to the first successful state in a maximal computation, and thus:

for every c ∈ MC(r, p). #itr(c) ∈ N (10)

The hypothesis that the LTS is finite-branching ensures that a set of successful computations starting from r || p, e.g.,
MC(r, p), may be seen as a computation tree, where common prefixes reach the same node in the tree [19, Lemma 4.4.12].
In general, paths in such a tree may have infinite length. Consider the computation tree T obtained by truncating all the
maximal computations of r || p at their first successful state, and let TMC(r, p) be the set of all the computations obtained
this way. The definition of TMC implies that

102 G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117
r

r2r110 . . .

a
a a a

a a a
�

p

a

r′

1

0

τ

b
a�

q

0

τ

b

a

Fig. 3. Servers and clients to discuss the hypothesis in Lemma 4.

{#itr(c) | c ∈ MC(r, p) } = {#itr(c) | c ∈ TMC(r, p) } (11)

From itr(r, p) = max{ #itr(c) | c ∈ MC(r, p) }, (10) and (11) we know that itr(r, p) is finite if the set { c | c ∈ TMC(r, p) } is
finite. This will follow from Definition 6 if we prove that the tree T has a finite number of nodes. By the contrapositive of
König’s Lemma [21,20], since every node in the tree T above is finite-branching, and there are no paths of infinite length,
then T necessarily contains a finite number of nodes, as required. It follows that we can put a natural number itr(r, p) ∈ N

as an upper bound on the number of interactions required to reach success. �
If the LTS is not image-finite then Lemma 4 is false. To see why, consider the infinite branching client r and the server p

depicted in Fig. 3. Since r engages in finite sequences of a actions which are unbounded in size, and p offers any number
of interactions on action a, we have that p must r, but the set MC(r, p) contains an infinite amount of computations, and
itr(r, p) is not defined. Dually, even if the LTS of a composition r || p is finite-branching and finite state, it is necessary that
p must r for itr(r, p) to be finite. Lemma 4 lets us associate a rank to every usable client r, defined as rank(r) = min{ itr(r, p) |
p must r }. The well-ordering of N ensures that rank(r) is defined for every usable r. When defined, the rank of a client r
gives us information about its usability,2 where we stratify Umust as follows:

Umust = ⋃
i∈N U i

must , where U i
must = { r ∈ Proc | rank(r) = i } (12)

In what follows, we always assume that the LTS is finite-branching.

Lemma 5. For every n ∈ N and r ∈ Un
must , and for every A ∈ Acc � �(r), there exists an a ∈ A such that, whenever r a=⇒� � , then ⊕

(r after� � a) ∈ Um
must for some m < n.

Proof. Fix an r ∈ Un
must . We know by definition that rank(r) = n, and so there exists a server p such that itr(r, p) = rank(r).

This implies that p must r. Now pick a set A ∈ Acc � �(r). This ensures that if Acc � �(r) �= ∅ then there exists a r′ such that

r =⇒� � r′ τ
/−→ (which, in turn, implies that r

�
/−→). Since p must r and r

�
/−→, the process p cannot diverge, meaning that

there exists a p′ such that p =⇒ p′ τ
/−→. Lemma 2(2i) now implies that p′ must r′ . Since r′ �

/−→ and both p′ and r′ are
stable, they must interact (for otherwise p′ ¬must r′). This means that r′ a−→ for some a ∈ Act, and that p′ a−→ p′′ for some
p′′ .

Assume now that r
a=⇒� � , i.e., it may not succeed after weakly performing action a. Since the LTS is finite, the set

(r after� � a) is also finite: we let ra = ⊕
(r after� � a) and proceed to show that ra ∈ Um

must for some m < n.
First observe that p′′ must ra because p′′ must r′′ for every r′′ ∈ (r after� � a): the latter is a consequence of Lemma 2(2ii),

our assumption p must r, p a=⇒ p′′ and the fact that r′′ ∈ (r after� � a) implies r a=⇒� � r′′ .
Let rank(ra) = m. Since p′′ must ra , the definition of rank ensures that m ≤ itr(ra, p′′), and thus all we have to do now is

to show that itr(ra, p′′) < n, from which m < n = rank(r) follows. To prove this fact, observe that every maximal computation
of ra || p′′ can be split into an initial part of internal moves, and a suffix c that contains the interactions between (the
reducts of) ra and (the reducts of) p′′ . The suffix c must be a suffix of a maximal computation of r || p =⇒� � r′′ || p′′ where
r′′ ∈ (r after� � a) and r and p interact on a in r || p =⇒� � r′′ || p′′ . It follows that c must contain at least one less interaction
that the computation starting with r || p =⇒� � r′′ || p′′ , namely the interaction on a. This implies that itr(ra, p′′) < itr(r, p).
But we have by assumption that itr(r, p) = rank(r) = n, thus itr(ra, p′′) < n. �
Lemma 6. For every i ∈N, r ∈ U i

must implies r ∈F(F j(∅)) for some j ≤ i.

Proof. We proceed by strong (complete) induction on i where r ∈ U i
must . For the base case, i = 0, we need to show that

r ∈ F(∅). The first property, r ⇓� , follows from the hypothesis that r ∈ U0
must ⊆ Umust of (12), and Lemma 2(1). For the

second property,

∀A ∈ Acc � �(r). ∃a ∈ A. r
a=⇒� � implies

⊕
(r after � � a) ∈ ∅ (13)

2 Function min is not defined for empty sets, thus rank(r) is undefined whenever r is unusable.

G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117 103
we show that Acc � �(r) = ∅, in which case (13) holds trivially. From r ∈ U0
must we know that there exists a p such that

p must r and itr(r, p) = 0, which means that p and r do not need to interact for r to reach a successful state. We have two
subcases to consider:

• If p diverges then, by p must r, it must be the case that r �−→. But then r does not perform any unsuccessful trace, so
we immediately have Acc � �(r) = ∅.

• If p converges then fix a p′ such that p =⇒ p′ τ
/−→. Independently, pick an arbitrary r′ such that r =⇒ r′ τ

/−→. We need

to show that for any such r′ , a success is reached along r =⇒ r′ τ
/−→, which would mean that r =⇒� � r′ never holds

and, as a result, Acc � �(r) = ∅.
The assumption itr(r, p) = 0 means that all maximal computations are successful and, moreover, that success is always

reached before the first interaction. Thus, zipping p =⇒ p′ τ
/−→ with r =⇒ r′ τ

/−→ as p || r =⇒ p′ || r′ necessarily forms
a prefix of one of these maximal computations right up to the point of the first interaction of the respective maximal
computation (in case there is no interaction in the respective maximal computation, we then have p′ || r′ τ

/−→). This
means that a success must have been reached during p || r =⇒ p′ || r′ , which also means that a success is reached along

r =⇒ r′ τ
/−→ and hence r =⇒� � r′ is false.

For the inductive case, we have r ∈ Um+1
must and need to show that r ∈ F(F j(∅)) for some j ≤ m + 1. By Definition 5, this

means that we need to show that r ⇓� and that

∀A ∈ Acc � �(r). ∃a ∈ A. r
a=⇒� � implies

⊕
(r after� � a) ∈ F j(∅) (14)

The proof for r ⇓� is analogous to that used for the base case. For the proof of (14), we fix an A ∈ Acc� �(r) and then exhibit
an a ∈ A such that if r a=⇒� � then

⊕
(r after� � a) ∈F j(∅). By applying Lemma 5, we know that there exists an action a ∈ A,

such that

r
a=⇒� � implies

⊕
(r after� � a) ∈ Uk

must for some k < m + 1 (15)

By the above and the inductive hypothesis, we know that whenever r
a=⇒� � then we also have that

⊕
(r after� � a) ∈

F(F l(∅)) for some l ≤ k, from which (14) follows. �
We are now ready to prove the main result of this section.

Proof. [Theorem 1] We have to show the set inclusions Umust ⊆ Ubhv and Ubhv ⊆ Umust , within a finite-branching LTS. To
show Umust ⊆ Ubhv , pick an r ∈ Umust . By (12), r ∈ U i

must for some i ∈ N, and by Lemma 6 we obtain r ∈ F j(∅) for some
j ∈ N

+ . Eq. (6) implies that r ∈ Ubhv . To show Ubhv ⊆ Umust , pick an r ∈ Ubhv . Eq. (6) ensures that r ∈ ⋃∞
n=0 Fn(∅), thus

r ∈Fn(∅) for some n ∈N. Lemma 3 implies that r ∈ Umust . The reasoning applies to any r ∈ Ubhv , and so Ubhv ⊆ Umust . �
Theorem 1 is a full-abstraction result in the following sense. Clients have a natural denotational semantics defined

by letting �r� = { p ∈ LTS | p must r }, that is the denotation of a client r is the set of servers that pass r. According to this
definition (a) usable clients are the only ones whose denotation is not empty, and (b) r1 �∼ must r2 means that the denotation
of r1 is smaller than the denotation of r2. Theorem 1 implies that the operational characterisation of usability for a client r
let us check the non-emptiness of its denotation �r�, and thanks to Theorem 1, also Proposition 1 becomes a full-abstraction
result, as it characterises the set inclusion �r1 � ⊆ �r2 � entirely via the operational semantics of r1 and r2.

4. The client preorder revisited

In this section we put forth a novel coinductive definition for the must client preorder and exploit the finite-branching
property of the LTS to show that the new coinductive preorder characterises the contextual preorder �∼ must (Theorem 2).
We also argue that the coinductive preorder is easier to use in practice than Definition 3. We do so by using it in the proof
of the second result in this section, namely that servers offering a finite amount of interactions are sufficient and necessary
to distinguish clients (Theorem 3). Subsequently, we also show that the coinductive preorder is decidable for our client
language (Theorem 4).

We start by identifying three characteristic properties of the preorder �∼ must , stated in Lemma 7. At an intuitive level,
r1 �∼ must r2 means that r2 is better than r1. Thus, the first condition in Lemma 7 states that the preorder is preserved by any
unsuccessful reductions performed by the better client. The second condition states that if the better client is unsuccessful
the worse one must be unsuccessful too (this is due to divergent servers). The third condition states that if the better client
may interact unsuccessfully with the environment (via a visible action) then the worse server must engage unsuccessfully
on the same action as well (up-to internal actions) and the non-deterministic continuations of the two servers must still be
in the preorder.

104 G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117
Lemma 7. For every r1, r2 ∈ Proc. r1 �∼ must r2 implies

1. if r2
τ−→� � r′

2 then r1 �∼ must r′
2;

2. if r2
�
/−→ then r1

�
/−→

3. if r2
a−→� � then (r1

a=⇒� � and
⊕

(r1 after� � a) �∼ must

⊕
(r2 after� � a)). �

Lemma 7 partly motivates the conditions defining the transfer function G in Definition 7. Conditions (2) and (3) are
explained in greater detail as discussions to points (2) and (3c) of Definition 7.

Definition 7. Let G :P(Proc × Proc) −→P(Proc × Proc) be the function such that (r1, r2) ∈ G(R) whenever all the following
conditions hold:

1. if r2
τ−→� � r′

2 then r1 R r′
2

2. if r2
�
/−→ then r1

�
/−→

3. if r1 ∈ Ubhv then
(a) r2 ∈ Ubhv

(b) if B ∈ Acc� �(r2) then there exists an A ∈ Acc� �(r1) such that A ∩ uabhv(r1) ⊆ B

(c) if r2
a−→� � then (r1

a=⇒� � and
⊕

(r1 after� � a) R
⊕

(r2 after� � a))

where uabhv(r) = { a | r
a=⇒� � implies

⊕
(r after� � a) ∈ Ubhv }. Let �must = νx.G(x) where νx.G(x) denotes the greatest fix-

point of G . The function G is monotone over the complete lattice 〈P(Proc × Proc), ⊆〉 and thus νx.G(x) exists. �
The definition of G follows a similar structure to that of the respective definitions that coinductively characterise the

must preorder for servers [10, Definition 3.1], [6, Definition 3.36]. Definition 7, however, uses predicates for clients, i.e.,
unsuccessful traces and usability, in place of the predicates for servers, i.e., traces and convergence. Note, in particular, that
we use the fully-abstract version of usability, Ubhv , from Definition 5 and adapt the definition of usable actions accordingly,
uabhv(r). Another subtle but crucial difference in Definition 7 is how unsuccessful states are related by condition (2). The
next example elucidates why such a condition is necessary for �must to be sound.

Counterexample 2. Let Gbad be defined as G in Definition 7, but without part (2). We prove that the pair of clients (1, τ . 1)

is contained in the greatest fixed point of Gbad, and not in �∼ must . Let R = { (1, τ . 1) }. We have that R ⊆ Gbad(R) if the
pair (1, τ . 1) satisfies all the conditions for Gbad: condition (1) is trivially true, condition (3a) is true because 0 must 1
and 0 must τ . 1, condition (3b) holds trivially because Acc � �(τ . 1) = ∅, whereas condition (3c) is satisfied because τ . 1
does not perform any strong actions. It therefore follows that (1, τ . 1) ∈ μx.Gbad(x). Contrarily, 1 /�∼ must τ . 1 because the
divergent server τ∞ distinguishes between the two clients: whereas τ∞ must 1 since the client succeeds immediately, we
have τ∞ ¬must τ . 1 because the composition τ . 1 || τ∞ has an infinite unsuccessful computation due to the divergence
of τ∞ . �

A more fundamental difference between Definition 7 and the coinductive server preorders in [22,29] is that, in Def-
inition 7(3c), the relation R has to relate internal sums of derivative clients on both sides. Although non-standard, this
condition is sufficient to compensate for the lack of compositionality of usable clients (see clients r1 and r2 from (3) in
Section 1, and Counterexample 1). Using the standard weaker condition makes the preorder �must unsound wrt. �∼ must , as
we proceed to show in the next example.

Counterexample 3. Let Gbad be defined as G in Definition 7, but replacing the condition (3c) with the relaxed condition
in (3bad) below, which requires each derivative r′

2 to be analysed in isolation. We show that the greatest fixpoint of Gbad,
namely �bad

must , contains client pairs that are not in �∼ must .

if r2
a−→� � r′

2 then
(
r1

a=⇒� � and
⊕

(r1 after � � a) R r′
2

)
(3bad)

Consider the clients r6 = c.r′
6 and r7 = (r1 + r2) + τ . 1 where

r′
6 = τ .ra

6 + τ .rb
6 ra

6 = a.0 + τ .1 rb
6 = b.0 + τ .1

and r1 and r2 are the clients defined in (3) above. On the one hand, we have that r6 /�∼ must r7, because c. 0 must r6 whereas
c. 0 ¬must r7. On the other hand, we now show that r6 �bad

must r7. Focusing on condition Definition 7(3), we start by de-
ducing that r6 ∈ Ubhv (either directly using Definition 5 or indirectly through c. 0 must r6, recalling Theorem 1). Now,

G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117 105
Definition 7(3a) is true because 0 must r7, thus r7 is usable, and thanks to Theorem 1 we have r7 ∈ Ubhv . Also point (3b) is
satisfied, because Acc � �(r7) = Acc� �(r6) = { { a } }.3 To prove that the (relaxed) condition (3bad) holds, we have to show that

rc
6 �bad

must a.1 + b.0 and rc
6 �bad

must a.0 + b.1,

with rc
6 = τ .r′

6 + τ .ra
6 + τ .rb

6

(16)

Let r′
7 = a. 1 + b. 0. We only show the proof for the inequality rc

6 �bad
must r′

7, since the proof for the other inequality
is analogous. We focus again on conditions (3a), (3b), and (3bad). Condition (3a) is true because 0 must rc

6, and thus
rc

6 ∈ U = Ubhv , and because r′
7 ∈ U = Ubhv as well (e.g., a. 0 must r′

7). Condition (3b) holds because Acc � �(r′
7) = { { c } } and

Acc� �(rc
6) = { { b }, { c } }. Finally for (3bad) we only have to check the case for r′

7
b−→� � 0, which requires us to show that

τ . 0 �bad
must 0; this latter check is routine. As a result, we have rc

6 �bad
must r′

7. Since we can also show that rc
6 �bad

must a. 0 + b. 1
holds, we obtain (16), and consequently r6 �bad

must r7. �

After our digression on Definition 7, we outline why �must coincides with �∼ must . A detailed proof can be found in
Appendix A.

Lemma 8. Whenever r1 �must r2 , for every s ∈ Act� , r1 usbl� � s implies r2 usbl� � s and also that for every B ∈ Acc� �(r2, s), there
exists a set A ∈ Acc � �(r1, s) such that A ∩ uaclt(r2, s) ⊆ B; and that if r2

s=⇒� � then r1
s=⇒� � . �

Theorem 2. In any finite-branching LTS r1 �∼ must r2 if and only if r1 �must r2 .

Proof. We have to show the set inclusions, �∼ must ⊆ �must and �must ⊆ �∼ must . The hypothesis that the LTS is finite-
branching let us apply Proposition 1, which together with Lemma 7 implies that �∼ must ⊆ G(�∼ must), and thus, by the
Knaster–Tarski theorem, we obtain the first inclusion. The second set inclusion follows from Proposition 1 and Lemma 8. �
Example 5. Recall from Example 3 clients r4 = a. 1 + μy.(a.r′′

3 + b.y + c. 1) and r5 = (μz.(b.z + c. 1)) + d. 1. In that example
we argued that the alternative relation �clt is still a burdensome method for reasoning on �∼ must . We now contend that
it is simpler to show r4 �∼ must r5 by proving r4 �must r5, thanks to Theorem 2 and the Knaster–Tarski theorem. By Defi-
nition 7, it suffices to provide a witness relation R such that (r4, r5) ∈ R and R ⊆ G(R). Let R = { (r4, r5), (r′

4, r
′
5) } where

r′′
3 = (τ .(1 + τ . 0)) + μx.x from Example 1, r′

4 = μy.(a.r′′
3 + b.y + c. 1), and r′

5 = μz.(b.z + c. 1). Checking that R satisfies
the conditions in Definition 7 is routine work. To prove condition (3b), though, note that Acc � �(r5) = Acc� �(r′

5) = { { b, c } }
and that Acc � �(r4) = { { a, b, c } }. However uabhv(r4) = { b, c } and thus the required set inclusion ({a,b, c } ∩ {b, c }) ⊆ {b, c }
holds. �

The coinductive preorder of �must may also be used to prove that two clients are not in the contextual preorder �∼ must :
by iteratively following the conditions of Definition 7 one can determine whether a relation including the pair of clients
exists. This approach is useful when guessing a discriminating server is not straightforward; in failing to define such a
relation R one obtains information on how to construct the discriminating server.

Example 6. Recall the clients r6 and r7 considered in Counterexample 3. By virtue of the full-abstraction result, we can show
directly that r6 /�∼ must r7 by following the requirements of Definition 7 and arguing that no relation exists that contains the
pair (r6, r7) while satisfying the conditions of the coinductive preorder. Without loss of generality, pick a relation R such
that r6 R r7: we have to show that R ⊆ G(R). Since r6 ∈ Ubhv , r7

c−→� � and r6
c=⇒� � , Definition 7(3c) requires that we show

that

rc
6 R τ .r′

7 + τ .r′′
7 where rc

6 =
⊕

(r6 after� � c) and (τ .r′
7 + τ .r′′

7) =
⊕

(r7 after � � c) (17)

and rc
6, r′

7 and r′′
7 are the clients defined earlier in Counterexample 3. Since we want to show that R �⊆ G(R), the condition

Definition 7(3a) requires that, if rc
6 ∈ Ubhv , then (τ .r′

7 + τ .r′′
7) ∈ Ubhv . However, even though rc

6 ∈ Ubhv , we have (τ .r′
7 +

τ .r′′
7) �∈ Ubhv , violating Definition 7(3a) and thus showing that no such R satisfying both (r6, r7) ∈ R and R ⊆ G(R) can exist.

We highlight the fact that whereas (16) of Counterexample 3 resulted in r6 �bad
must r7, (17) is instrumental to conclude that

r6 ��must r7. Note also that the path along c leading to a violation of the requirements of Definition 7 is related to the
discriminating server c. 0 used in Counterexample 3 to justify r6 /�∼ must r7. �

3 The restriction of the left hand side of the inclusion of Definition 7(3b) by uabhv(r6) is superfluous.

106 G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117
5. Expressiveness and decidability

We show that servers with finite interactions suffice to preserve the discriminating power of the contextual preorder �∼ must in Definition 1, which has ramifications on standard verification techniques for the preorder, such as counter-example
generation [12]. We also show that for any finite-state LTS, the set of usable clients is decidable. Using standard techniques
[31] we then argue that, in such cases, there exists a procedure to decide whether two finite-state clients are related
by �∼ must .

5.1. On the power of finite interactions

We employ the coinductive characterisation of the client preorder, Theorem 2, to prove an important property of
the client preorder of Definition 1, namely that servers that only offer a finite amount of interactions to clients are
necessary and sufficient to distinguish all the clients according to our touchstone preorder �∼ must of Definition 1. Let
CCS f ::= 0 | 1 | α.p | p + q | τ∞ , and

�∼ f
must = { (r1, r2) | for every p ∈ CCS f . p must r1 implies p must r2 }
U f = { r | there exists p ∈ CCS f . p must r }

In what follows, we find it convenient to use the definitions above: CCS f excludes recursively-defined processes, but ex-
plicitly adds the divergent process τ∞ because of its discriminating power (see Counterexample 2). Accordingly, �∼ f

must and
U f restrict the respective sets to the syntactic class CCS f .

Corollary 2. The sets Umust and U f coincide.

Proof. The inclusion U f ⊆ Umust is immediate. Suppose that r ∈ Umust . By Theorem 1 we have r ∈ Ubhv . By Lemma 3, there
exists a non-recursive p ∈ CCS f such that p must r, thus r ∈ U f follows. �
Theorem 3. In any finite-branching LTS r1 �∼ f

must r2 if and only if r1 �∼ must r2 .

Proof. The inclusion �∼ must ⊆ �∼ f
must follows immediately from the respective definitions. On the other hand, Theorem 2

provides us with a proof technique for showing the inclusion �∼ f
must ⊆ �∼ must : if we show that �∼ f

must ⊆ G(�∼ f
must) then

thanks to the Knaster–Tarski theorem we obtain the set inclusion �∼ f
must ⊆ �must and so thanks to Theorem 2 �∼ f

must =�∼ must . In turn, this requires us to prove the three conditions stated in Definition 7. The argument for the first two conditions
is virtually the same to that of Lemma 7. Similarly, the arguments for the third condition follow closely those used in
Proposition 1 (albeit in a simpler setting of unsuccessful traces of length 1). The only new reasoning required is that servers
that exists because of r1 ∈ Umust also belong to CCS f , which we know from Corollary 2. �

We claim that an analogous result holds for the server-preorder, for the proofs of completeness in [5, Theorem 3.1] rely
on clients written in the language CCS f .

5.2. Deciding the must client preorder

Fig. 5 describes the code for the function is_usable(r,acm), which decides whether a client r is usable. It adheres closely
to the conditions of Definition 5 for Ubhv , using acm as an accumulator to keep track of all the terms that have already been
explored. Thus, if an r is revisited, the algorithm rejects it on the basis that a loop of unsuccessful interactions (leading to
an infinite sequence of unsuccessful interactions that makes the client unusable) is detected (lines 2–3). If not, the algorithm
checks for the conditions in Definition 5 (lines 4–6).

Line 4 checks that infinite sequences of internal moves are always successful (using the function conv� of Fig. 4), while
line 5 checks that partially deadlocked clients reached through a finite number of unsuccessful internal moves contain at
least one action that unblocks them to some other usable client. This latter check employs the function unblock_action
(lines 8–11) which recursively calls is_usable to determine whether the client reached after an action is indeed usable.

Lemma 9. For every finite-branching r we have that if is_usable(r,[]) terminates then is_usable(r,[]) = true if and only if
r ∈ U .

Proof. To prove the only-if case we use Theorem 1 and show that r ∈ Ubhv implies is_usable(r,[]) = true; we do so
by numerical induction on n ∈ N

+ where r ∈ Fn(∅). For the if case we dually show that is_usable(r,[]) = true implies
r ∈ Ubhv , by numerical induction on the least number n ∈ N

+ of (recursive) calls to is_usable that yield the outcome true.

G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117 107
Fig. 4. An algorithm to decide the predicate ⇓� .

Fig. 5. An algorithm for deciding inclusion in the set Ubhv .

We note that in either direction there is a direct correspondence between the respective inductive indices (e.g., for the base
case n = 1, r ∈F1(∅) =F(∅) implies that r ⇓� and that Acc � �(r) = ∅).

The function is_usable(r,acm) of Fig. 5 relies on the LTS of r being finite-state in order to guarantee termination via the
state accumulation held in acm. This is indeed the case for our expository language CCSμ of Fig. 2. Concretely, we define
the set of internal-sums for the derivatives that a client r reaches via all the finite traces s ∈ Act� , and show that this set is
finite. Let

sumsRdx(r) = {
⊕

(r after� � s) | for some s ∈ Act� }

Lemma 10. For every r ∈ CCSμ , the set sumsRdx(r) is finite. �
Proof. Let Reachr = { r′ | r

s=⇒ r′ for some s ∈ Act� } denote the set of reachable terms from client r, and PwrRr = { ⊕ B | B ∈
P(Reachr) } denote the elements of the powerset of Reachr , expressed as internal summations of the elements of P(Reachr).
By definition, we have that sumsRdx(r) ⊆ PwrRr . Hence, it suffices to prove that Reachr is finite to show that PwrRr is finite,
from which the finiteness of sumsRdx(r) follows. The proof of the finiteness of Reachr is the same as that of [33, Lemma
4.2.11] for the language serial-CCS, which is homologous to CCSμ of Fig. 2 modulo the satisfaction construct 1. �

The previous lemma and the monotone growth of the accumulator acm are enough to prove that the function is_usable
terminates.

Lemma 11. For every r ∈ CCSμ the algorithm is_usable(r,[]) terminates.

Theorem 4. For every r ∈ CCSμ we have is_usable(r,[]) = true if and only if r ∈ U .

Proof. Follow Lemma 9 and Lemma 11. �
Thanks to Theorem 4 and Theorem 2, Definition 7 let us decide �∼ must for languages such as CCSμ of Fig. 2. In particular,

using the terminology of [31] we have that reachableG(X) is finite, essentially because the respective LTS is finite-state and
Lemma 10., and thus the decidability of �∼ must follows from a result analogous to [31, Theorem 21.5.9 and Theorem 21.5.12].

6. The compliance preorder for clients

Thus far we have studied the client preorder due to must testing. The theory of web-services [10], though, relies on a
notion of client/server satisfaction formalised by a different testing relation, called compliance. Intuitively, a client r complies
with a server p if whenever r and p cannot interact or p diverges the client is in a satisfied state.

108 G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117
In this section we present the preorder for clients due to the compliance relation, and we give a behavioural characteri-
sation of the preorder. The proofs omitted here are in Appendix B.

Despite the difference between must and compliance preorders [4], it is known that preorders for servers have similar
alternative characterisations [6, Theorems 3.38, 3.50]. The main result of this section (Theorem 5) shows that also the
characterisations for client preorders share a common structure. To define compliance we need a predicate for divergence.
A process p diverges, written p ⇑, whenever p engages in an infinite sequence of τ actions.

Definition 8 (Compliance). Let C : P(Proc × Proc) → P(Proc × Proc) be defined by letting (r, p) ∈ C(R) if all the following
conditions are true:

1. if p ⇑ then r �−→
2. if p || r

τ
/−→ then r �−→

3. if p || r
τ−→ p′ || r′ then (r′, p′) ∈ R

A pre-fixed point of C is a coinductive compliance, and we define the compliance relation as cmp = ν X .C(X). If r cmp p we
say that r complies with p. �

The relation cmp and must are not comparable, that is r cmp p does not imply p must r, and vice-versa. One reason is
the treatment of divergence, another reason is the meaning of successful states. This is laid bare in [4, Example 2.6, Example
2.7], which we recall here.

Example 7. We have that μx.a.x cmp μy.a.y, while μy.a.y ¬must μx.a.x. Intuitively, the two processes are compliant be-
cause they engage in an infinite interaction sequence without ever deadlocking; note also that μy.a.y does not diverge by
itself, even though the composite system μy.a.y || μx.a.x does. On the other hand, the pair is not contained in the must re-
lation because the system μy.a.y || μx.a.x performs an infinite computation in which the client never reaches a successful
state (and according to must unsuccessful divergences are catastrophic). �

Example 8. We have that 0 must 1 + τ . 0, while 1 + τ . 0 ¬cmp 0. The key insight here is the difference between the success
conditions imposed by two relations. We have that 0 must 1 + τ . 0 because 1 + τ . 0 �−→ ensures that every computation
starting from 0 || 1 + τ . 0 is (immediately) successful. On the other hand, we have the transition 0 || 1 + τ . 0 τ−→ 0 || 0 and

the system 0 || 0 violates Definition 8(2) since 0
�
/−→, and hence no coinductive compliance contains the pair (1 + τ . 0, 0). In

other terms, the compliance requires stable clients to be successful, while must does not. �

As for the treatment of divergence, according to compliance ever divergent clients are satisfied by the trivial server 0, as
we show in the next lemma.

Lemma 12. For every r ∈ Proc such that r =⇒ r′ implies r′ ⇑ we have r cmp 0.

Proof. Let R = { (r,0) | r ∈ Proc. r =⇒ r′ implies r′ ⇑ }. It suffices to show that the relation R is a coinductive compliance. Let
(r, p) ∈ R . By definition p = 0, thus p converges (trivially satisfying Definition 8(1)). Since r =⇒ r we know that r diverges,
and thus we have p || r

τ−→ (trivially satisfying Definition 8(2)). Let p || r
τ−→ p′ || r′ . We have that p′ = p = 0 and r =⇒ r′ ,

and hence for every r′ =⇒ r′′ implies r′′ diverges (satisfying Definition 8(3)), and thus (r′, p′) ∈ R . �
Let us now move on from compliance to the preorder for clients due to the compliance relation.

Definition 9. We write r1 � cmp r2 if for every p, r1 cmp p implies r2 cmp p. �

In view of Example 7 and Example 8, it is not surprising that the preorders due to cmp and must , namely � cmp

and �∼ must , are not comparable [4, Section 3.1] (� cmp �⊆ �∼ must and �∼ must �⊆ � cmp). Despite the set-theoretic differences,
though, we can characterise the compliance preorder for clients using behavioural predicates similar to the ones we have
seen thus far, and coinductive definition analogous to Definition 7 and [6, Definition 3.36]. While usable clients are defined
as expected,

Ucmp = { r ∈ Proc | there exists p ∈ Proc. r cmp p }
we need to change the definition of acceptance sets to account for every weak reduction instead of just the unsuccessful
ones, and the � action:

G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117 109
Acc �(r) = { S �(r′) | r =⇒ r′ τ
/−→}

where S �(r) = { α� | r
α �−→}.

To amend the definition of usable action we have first to provide a fully-abstract characterisation of the set Ucmp . It turns
out that this set has already been characterised in [29]. Although the compliance relation used in [29] differs slightly from
the one given in Definition 8, the characterisation of usable clients is essentially the same (see [29, Proposition 4.3]).

Definition 10 (Behavioural usability). Let Ubhv
cmp be the greatest set such that r ∈ Ubhv

cmp if for every A ∈ Acc �(r) either (i) � ∈ A

or, (ii) there exists α ∈ A such that
⊕

(r after α) ∈ Ubhv
cmp . �

Lemma 13. The sets Ucmp and Ubhv
cmp coincide.

Note that whereas Definition 5 is an inductive definition, Definition 10 is coinductive. This is so because compliance
allows infinite unsuccessful computations, while must disallows them.

To define our alternative characterisation of � cmp we need to present a notion that in Section 4 we left implicit: fallible
clients. Let

Fcmp = { r ∈ Proc | there exists p ∈ Proc such that r ¬cmp p }
Fallible clients are easy to characterise in terms of their LTS.

Lemma 14. r ∈Fcmp iff there exists s ∈ Act� st r s=⇒ r′ and r′ �
/−→.

Proof. Pick a client r ∈ Fcmp . There exists a pbad such that r ¬cmp pbad . As cmp is the greatest coinductive compliance
this means that for every R such that (r, pbad) ∈ R we have R ⊆ C(R). Let R = { (r′, p′) | pbad || r =⇒ p′ || r′ }. Plainly
(r, pbad) ∈ R and R satisfies Definition 8(3), but R ⊆ C(R). It follows that there exists a pair (r′, p′) in R that does not satisfy

one of the implications in point (1) and point (2) of Definition 8 is not satisfied, and hence r′ �
/−→. In turns this ensures

that for some s ∈ Act� we have the desired r s=⇒ r′ .
Fix a client r such that for some s ∈ Act� we have r

s=⇒ r′ and r′ �
/−→, and let pbad = s.τ∞ . The divergence of τ∞ and

the hypothesis r′ �
/−→ let us prove that r′ ¬cmp τ∞ . The computation pbad || r =⇒ τ∞ || r′ now implies r ¬cmp pbad . �

In passing, note that the notion of fallible client is dual to usable clients, and that while both notions may seem ad-hoc,
there exists in fact a canonical order theoretic explanation for them, which we will give at the end of this section.

Definition 11. Let G :P(Proc×Proc) −→P(Proc×Proc) be the function such that (r1, r2) ∈ G(R) whenever all the following
conditions hold:

1. if r2
τ−→ r′

2 then r1 R r′
2

2. if r1 ∈ Ubhv
cmp then

(a) r2 ∈ Ubhv
cmp

(b) if (r1 =⇒ r′
1 implies r′

1
�−→) then (r2 =⇒ r′

2 implies r′
2

�−→)
(c) for every B ∈ Acc �(r2) if � �∈ B then there exists an A ∈ Acc �(r1) such that A ∩ uabhv(r1) ⊆ B

(d) if r2
a−→ r′

2 and r′
2 ∈Fcmp then (r1

a=⇒ and
⊕

(r1 after a) R
⊕

(r2 after a))

where uabhv(r) = { a | r
a=⇒ implies

⊕
(r after a) ∈ Ubhv

cmp }. Let �clt = νx.G(x) where νx.G(x) denotes the greatest fixpoint
of G . The function G is monotone over the complete lattice 〈P(Proc × Proc), ⊆〉 and thus νx.G(x) exists. �

Lemma 15. For every r1, r2 ∈ Proc, if r1 � cmp r2 and r2
τ−→ r′

2 then r1 � cmp r′
2 .

Proof. Fix two clients r1 and r2 satisfying the hypotheses, and let r1 cmp p. We have to show that r′
2 cmp p. Hypothesis

r1 � cmp r2 ensures that r2 cmp p. By Definition 8(3) and the reduction p || r2
τ−→ p || r′

2 we obtain r′
2 cmp p. �

Lemma 16. If r1 � cmp r2 , r1 ∈ Ubhv
cmp , and r2

a−→ r′
2 with r′

2 ∈Fcmp , then

1. r1
a=⇒, and

2.
⊕

(r1 after a) R
⊕

(r2 after a).

110 G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117
Proof. The hypothesis that r′
2 ∈ Fcmp ensures that there exists a pbad such that r′

2 ¬cmp pbad , and the hypothesis that
r1 ∈ Ubhv

cmp implies that there exists a p such that r1 cmp p. Let p̂ = p + a.pbad . Thanks to an interaction on the action a
we have the computation p̂ || r2 =⇒ pbad || r′

2, and thus the definition of r′
2 ¬cmp pbad and Definition 8(3) ensures that

r2 ¬cmp p̂.
It follows that r1 ¬cmp p̂. To prove that r1

a=⇒ consider the following relation,

R = { (r, p + a.q) | r, p,q ∈ Proc, r cmp p, r
a
/=⇒} ∪ cmp

The relation R is a coinductive compliance, i.e. (r, p + a.q) ∈ C(R) for the C given in Definition 8. To see why this is the
case, pick a pair r R p + a.q, we have that either (r cmp p + a.q) or r cmp p and r performs no a action (not even weakly).
In both cases it is routine work to check that (r, p + a.q) ∈ C(R). Now r1 ¬cmp p̂ ensures that r1 �R p̂, but r1 cmp p, thus it
must be the case that r a=⇒.

To prove point (2), let r̂i = ⊕
(ri after a) for i ∈ 1,2, and fix a process p such that r̂1 cmp p. We have to ex-

plain why r̂2 cmp p. By hypothesis r1 ∈ Ucmp , thus there exists a process pgood such that r1 cmp pgood . Let p̂ =
pgood + a.p. The assumptions on p and pgood ensure that r1 cmp p̂, as witnessed by the coinductive compliance R =
{ (r′, p + a.q) | r1 =⇒ r′, r1 cmp p, r̂1 cmp q } ∪ cmp. The hypothesis that r1 � cmp r2 implies r2 cmp p̂. For every r′ ∈ (r2 after a)

there exists the computation p̂ || r̂2 =⇒ p || r′ , and thus r′ cmp p. This suffices to show that r̂2 cmp p as desired. �
Lemma 17. If r1 � cmp r2 and r1 ∈ Ubhv

cmp then for every B ∈ Acc �(r2) such that � �∈ B there exists an A ∈ Acc � �(r1) such that
A ∩ uabhv(r1) ⊆ B.

Theorem 5. The preorders � cmp and �clt coincide.

Proof. See Appendix B. �
6.1. Order theoretic meaning of usable and fallible clients

To begin with, observe that also Definition 7 can be formulated using fallible clients wrt must testing. Indeed, if we let

Fmust = { r ∈ Proc | ∃p ∈ Proc such that p ¬must r }
then thanks to divergent servers we have that

r ∈ Fmust if and only if r
�
/−→ (18)

and thus Definition 7(2) is equivalent to

if r2 ∈ Fmust then r1 ∈ Fmust (2F)

and unsuccessful traces s=⇒� � are equivalent to traces that cross only fallible clients. In Section 4 we omitted the discussion
of fallible clients merely to simplify the presentation.

While usable and fallible clients have somewhat intuitive definitions respectively in terms of being satisfied by at least
one server and of being not satisfied by every server, they also have alternative less ad-hoc characterisations as clients that
are not bottom and not top wrt the preorder at issue.

Proposition 1. For every r ∈ Proc,

1. r ∈ Umust if and only if r not bottom in �∼ must ;
2. r ∈ Ucmp if and only if r not bottom in � cmp .

Proof. We prove the two parts of the proposition in order. For point (1), let r ∈ Umust . By definition there exists a pgood
such that pgood must r, but pgood ¬must 0, and so r ��∼ must 0. That is r is not a bottom element of �∼ must . Now fix a client r
that is not bottom in �∼ must . By definition for some r′ we have r ��∼ must r′ , that is there exists a server p such that p must r
and p ¬must r′ . But then by definition r ∈ Umust .

The second part of the proposition can be shown using the proof of point (1), but with cmp in place of must . �
Proposition 2. For every r ∈ Proc,

1. r ∈Fmust if and only if r is not top in �∼;
2. r ∈Fcmp if and only if r is not top in � cmp .

G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117 111
Proof. Fix a r ∈ Fmust . By definition pbad ¬must r for some pbad . It follows that 1 ��∼ must r, because pbad must 1, and thus r
is not top in �∼ must . Now pick a client r that is not top in �∼ must . By definition there exists some r′ such that r′ ��∼ must r,
and hence for some pbad we have pbad must r′ while pbad ¬must r, that is r ∈Fmust .

The proof for the second part of the proposition is the same but with cmp in place of must . �
Interestingly, the arguments to show Proposition 1 and Proposition 2 depend respectively only on one property of the

relation of satisfaction employed (must , cmp, . . .), namely that there exists one client that is satisfied by no server, in our
case 0, and that there exists one client satisfied by every server, in our case 1. We believe therefore that the order-theoretic
justification of usable and fallible clients extend to other notions of passing a test/satisfaction, such as fair testing, and also
that our results reveal a possible approach to characterising testing preorders: first study the elements that are not bottom
and not top, and afterwards define an alternative characterisation.

7. Conclusion

We present a study that revolves around the notion of usability and preorders for clients (tests). Preorders for clients and
peers first appeared for compliance [2], to tie testing theory with session type theory: these preorders are instrumental in
defining semantic models of the Gay & Hole subtyping [17] for first-order session types [3, Theorem 6.3.4] and [6, Theorem
5.7]. Client and peer preorders have subsequently been investigated in [3,5] for must testing [14]. The characterisations
given in [5,3] rely fundamentally on the sets Umust , Ucmp of usable clients, which make them not fully-abstract and hard to
automate. This provided the main impetus for our study. In general, recursion poses obstacles when characterising usable
terms wrt must , but the very nature of must testing — which regards infinite unsuccessful computations as catastrophic —
let us treat recursive terms in a finite (inductive) manner (see Definition 5).

We focus on the client preorders, even though [5,3] presents preorders for both client and peers; note however that [5,
Theorem 3.20] and Theorem 1 imply full-abstraction for the peer preorders as well. Our investigations and the respective
proofs for Theorem 1, Theorem 2 and Theorem 3 are conducted in terms of finitely-branching LTS, which cover the semantics
used by numerous other work describing client and server contracts [9,22,10,5] — we only rely on an internal choice
construct to economise on our presentation, but this can be replaced by amending the respective definitions to work on
sets of processes instead. As a consequence, the results obtained should also extend to arbitrary languages enjoying the
finite-branching property. Theorem 4 relies on a stronger property, namely that the language is finite-state. In [33], it is
shown that this property is also enjoyed by larger CCS fragments, and we therefore expect our results to extend to these
fragments as well.

7.1. Related work

Client usability depends both on language expressiveness and on the notion of testing employed. Our comparison with
the related work is organised accordingly.

Session types [17] do not contain unsuccessful termination, 0, restrict internal (respective external) choices to contain
only pair-wise distinct outputs (respective inputs) and are, by definition, strongly convergent [29] (i.e., no infinite sequences
of τ -transitions). E.g., τ .!a. 1 + τ .!b.?c. 1 corresponds to a session type in our language (modulo syntactic transformations
such as those for internal choices), whereas τ .!a. 0 + τ .!b.?c. 1, τ .!a. 1 + τ .!a.?b. 1 and ?a. 1 + ?a.!b. 1 do not. Since they
are mostly deterministic — only internal choices on outputs are permitted — usability is relatively easy to characterise. In
fact [7, Section 5] shows that every session type is usable wrt. compliance testing (even in the presence of higher-order
communication) whereas, in [30, Theorem 4.3], non-usable session types are characterised wrt. fair testing. First-order ses-
sion types are a subset of our language, and hence, Theorem 1 is enough to (positively) characterise usable session types
wrt. must testing; we leave the axiomatisation of U in this setting as future work. Testing theories have proven fit to lay the
semantic foundations of session types, for instance [7] shows that the compliance preorder for peers is a semantic model of
subtyping [17], and the compliance relation itself is a semantic definition of type duality. This suggests that testing relations
should be seen as semantic dualities, and the preorders that they induce as semantic subtypings.

Contracts [29] are usually formalised as (mild variants of) our language CCSμ . In the case of must testing and the sublan-
guage CCS f , the pre-congruences associated to the client, peer and server preorders have been equationally characterised
in [5]. In particular Theorem 6.9 and Lemma 7.8(2) there characterise non-usable clients (and peers) as the terms that can
be re-written into 0 via equational reasoning. Full-abstraction for usable clients wrt. compliance testing has been achieved
for strongly convergent terms in [29, Proposition 4.3] via a coinductive characterisation of viable (i.e., usable wrt. compliance)
contracts. If we restrict our language to strongly convergent terms, that characterisation is neither sound nor complete wrt.
must testing. It is unsound because clients such as μx.a.x are viable but not usable. It is incomplete because of clients such
as r = 1 + τ . 0; this client is usable wrt. must because, for arbitrary p, any computation of p || r is successful (since we
have r �−→ immediately). On the other hand, r is not viable wrt. compliance testing of [29] (where every server is strongly
convergent), because for any server p we observe the computation starting with the reduction p || r

τ−→ p || 0, and once
p stabilises to some p′ , the final state p′ || 0 contains an unsuccessful client. This argument relies on subtle discrepancies
in the definitions of the testing relations: in must testing it suffices for maximal computations to pass through a successful

112 G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117
state, whereas in compliance testing the final state of the computation (if any) is required to be successful. This aspect im-
pinges on the technical development: although our Definition 5(2) resembles [29, Definition 4.2], the two definitions have
strikingly different meanings: we are forced to reason wrt. unsuccessful actions and unsuccessful acceptance sets whereas [29,
Definition 4.2] is defined in terms of (standard) weak actions and acceptance sets (note that Definition 5(1) holds trivially
in the strongly convergent setting of [29]). We note also that our Definition 5 is inductive whereas [29, Definition 4.2] is
coinductive. More importantly, our work lays bare the non-compositionality of usable terms and how it affects other notions
that depend on it, such as Definition 7 (and consequently Theorem 2). We are unaware of any full-abstraction results for
contract usability in the case of should-testing [32,9,28].

Controllable, Usable, Viable: [28, Definition 5] states that a process x is controllable if and only if there exists a partner
for x. This is the essential idea behind usability, as in our setting we say that a client r is usable if and only if “there exists a
partner for r” means “there exists a server that must pass r”. Viable [29] is yet another term to express the same idea, which
we think should be phrased using the notion of satisfaction as parameter, for instance must -controllable, cmp-controllable,
etc. . . We hope that this observation will encourage practitioners to adopt a uniform terminology.

Future work: In the line of [11], we plan to show a logical characterisation of the client and peer preorder. We also intend
to investigate coinductive characterisations for the peer preorder of [5] and subsequently implement decision procedures
for the server, client, and peer preorders in Caal [1]. Usability is not limited to tests. We expect it to extend naturally to
runtime monitoring [15,16], where it can be used as a means of lowering runtime overhead by not instrumenting unusable
monitors.

Acknowledgements

This research was supported by the COST Action STSMs IC1201-130216-067787 and IC1201-170214-038253. The first
author was supported by the EU FP7 ADVENT project. The second author is partly supported by the RANNIS THEOFOMON
project 163406-051. The authors acknowledge the Dagstuhl seminar 17051 and thank L. Aceto, M. Bravetti, A. Gorla, M.
Hennessy, C. Spaccasassi and anonymous reviewers for their help and suggestions.

Appendix A. Proofs for the coinductive characterisation of must preorder

Lemma 7. r1 �∼ must r2 implies

(i) if r2
τ−→� � r′

2 then r1 �∼ must r′
2;

(ii) if r2
�
/−→ then r1

�
/−→

(iii) if r1 ∈ U and r2
a−→� � then (r1

a=⇒� � and
⊕

(r1 after� � a) R
⊕

(r2 after� � a)).

Proof. To show point (i), suppose that r1 �∼ must r2 and that r2
τ−→� � r′

2. Pick a p such that p must r1. The hypotheses imply

that p must r2. Every maximal computation of r′
2 || p is a suffix of a maximal computation of r2 || p. Since r2

�
/−→ and r′

2

�
/−→

it must be the case that every maximal computation of r′
2 || p contains a successful state, thus p must r′

2. It follows that
r1 �∼ must r′

2.

To show point (ii), suppose that r1 �∼ must r2 and that r2
�
/−→. It follows that

τ∞ ¬must r2,

(where τ∞ is a divergent server performing an infinite number of τ transitions) thus τ∞ ¬must r1. In turn, this implies

that r1
�
/−→.

To show point (iii), assume that r2
a−→� � . This implies that r2

a=⇒� � and thus, by Definition 3 and Proposition 1, we
obtain r1

a=⇒� � .
Let ra

1 = ⊕
(r1 after� � a) and ra

2 = ⊕
(r2 after� � a). We have to prove that ra

1
�∼ must ra

2, and Definition 1 requires us to show
that whenever p must ra

1 then p must ra
2. Pick a p such that p must ra

1.
To prove that p must ra

2, we first state an ancillary fact: The hypothesis that r1 ∈ U ensure that there exists a q such that
q must r1. Thus, the assumption that p must ra

1 ensures that q + a.p must r1. The hypothesis r1 �∼ must r2 now implies that

q + a.p must r2 (A.1)

Back to the main argument, without loss of generality pick a maximal computation c of

p || ra
2 = p0 || r0 τ−→ p1 || r1 . . . (A.2)

Note that since p must ra
2 and ra

2

�
/−→, then the server p converges (otherwise we could construct an unsuccessful com-

putation contradicting p must ra). This, in turn, ensures that the maximal computation c contains a prefix of τ -transitions
2

G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117 113
whose last τ -action is due to an internal choice of ra
2, and whose other τ -transitions are due internal choices of p. In other

terms, the computation in Eq. (A.2) above contains a prefix

p0 || r0 =⇒ pi || ri =⇒ . . .

such that ri ∈ (r2 after� � a), and that p τ=⇒ pi . Observe now that

q + a.p || r2
τ=⇒ p || ri =⇒ pi || ri =⇒ . . . (A.3)

is a maximal computation of q + a.p || r2, whose suffix pi || ri =⇒ . . . is a suffix of the computation in Eq. (A.2), and whose
first τ is due a weak synchronisation on the action a. It follows that to show a successful state in Eq. (A.2), it is sufficient
to prove that the successful state in the computation in Eq. (A.3) appears after the state pi || ri . But this is true because by
assumption ri ∈ (r2 after� � a), thus (A.2) is successful. Since this argument applies for any maximal computation of p || ra

2,
we also have that p must ra

2 as required. �
Lemma 18 (Monotonicity). Let R, R ′ ⊆ (Proc × Proc). If R ⊆ R ′ then G(R) ⊆ G(R ′).

Proof. Fix a pair (r1, r2) ∈ G(R). To prove that (r1, r2) ∈ G(R ′), Definition 7 requires us to show that the pair enjoys the
following properties,

1. if r2
τ−→� � r′

2 then r1 R r′
2

2. if r2
�
/−→ then r1

�
/−→

3. if r1 ∈ Ubhv then
(a) r2 ∈ Ubhv

(b) if B ∈ Acc� �(r2) then there exists a A ∈ Acc� �(r1) such that A ∩ ua(r1) ⊆ B

(c) if r2
a−→� � then (r1

a=⇒� � and
⊕

(r1 after� � a) R
⊕

(r2 after� � a)).

The only property worth discussing is the last one, which follows from the assumption that (r1, r2) ∈ G(R), from Defini-
tion 7(3c), and the hypothesis R ⊆ R ′ . �

We begin by proving some ancillary technical results, which we spell out in Lemma 19.

Lemma 19. For every as ∈ Act� , and every r ∈ CCS, we have that

1. r
as=⇒� � r′ if and only if (r after� � a) s=⇒� � r′

2. (r after� � as) = (
⊕

(r after� � a) after� � s),
3. Acc� �(r, as) = Acc� �(

⊕
(r after� � a), s),

4. uaclt(r, as) = uaclt(
⊕

(r after� � a), s).

Proof. Point (1) follows easily from the definition of after � � . Moreover, point (2) is a consequence of point (1), and similarly
for point (3). To prove point (4) we have to show two set inclusions, namely

1. uaclt(r, as) ⊆ uaclt(
⊕

(r after� � a), s)
2. uaclt(

⊕
(r after� � a), s) ⊆ uaclt(r, as)

For the first inclusion, let r̂ = ⊕
(r after� � a) and pick an action b ∈ uaclt(r, as); we have to show that b ∈ uaclt(r̂, s). From

the definition of uaclt(−, −) in Section 2.1, we have to prove that if r̂
sb=⇒� � then (

⊕
r̂ after� � sb) ∈ U . Thus, suppose that

r̂
sb=⇒� �; by r̂ = ⊕

(r after� � a) we deduce that r asb=⇒� � , thus the definition of uaclt(−, −) ensures that then r usbl� � asb. Now
observe that

∀s′ ∈ Act�. r usbl s′ if and only if ∀s′′ prefix of s′.
⊕

(r after� � s′′) ∈ U .

It follows that
⊕

(r after� � asb) ∈ U , and the required result, (
⊕

r̂ after� � sb) ∈ U , follows by point (2) of the lemma. The
argument to prove the second set inclusion is analogous to the one above. �
Lemma 20. For every r1 �must r2 , if for every s ∈ Act� , if r1 usbl � � s then r2 usbl� � s.

Proof. As preliminary observation, note that for every s ∈ Act� , r1 usbl � � s implies that r1 ∈ U , thus r1 �must r2 and Defini-
tion 7(3a) imply that r2 ∈ U .

114 G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117
We continue our reasoning by structural induction on the string s. For the base case, s = ε, we have to prove that
r2 usbl � � ε. This is equivalent to showing that r2 ∈ U , which we already know.

For the inductive case we have s = as′ for some a and s′ ∈ Act� . To prove that r2 usbl� � s we have to show that

1. r2 ∈ U , and
2. if r2

a=⇒� � then
⊕

(r2 after� � a) usbl� � s′ .

We have already shown (1). To prove (2) suppose that r2
a=⇒� � . Since r1 ∈ U and r1 �must r2, Definition 7(3c) implies that

r1
a=⇒� � and that

⊕
(r1 after� � a) �must

⊕
(r2 after� � a). The hypothesis r1 usbl� � as′ together with r1

a=⇒� � ensures that ⊕
(r1 after� � a) usbl� � s′ , and so the inductive hypothesis guarantees that

⊕
(r1 after� � a) usbl� � s′ , which proves (2). �

Lemma 21. For every r1 �must r2 , if for every s ∈ Act� , whenever r1 usbl � � s then for every B ∈ Acc� �(r2, s), there exists an A ∈
Acc� �(r1, s) such that A ∩ uaclt(r2, s) ⊆ B.

Proof. We proceed by structural induction on the string s.
For the base case we have s = ε. Fix a B ∈ Acc � �(r2, ε), while recalling that Acc � �(r2) = Acc� �(r2, ε). The hypothesis

r1 usbl � � ε implies that r1 ∈ U = Ubhv . Thus, by r1 �must r2 and Definition 7(3b), we know that there exists an A ∈ Acc � �(r1),
such that A ∩ ua(r1) ⊆ B . The required condition follows since Acc � �(r1) = Acc� �(r1, ε).

For the inductive case we have s = as′ for some a and s′ . Pick a set B ∈ Acc� �(r2, as′): we have to show that there exists

a set A ∈ Acc� �(r1, as′) such that A ∩ uaclt(r1, as′) ⊆ B . The definition of Acc � �(r1, as′) implies that r2
a=⇒� � r′

2
s′=⇒� � , thus

point (3c) and point (1) of Definition 7 let us deduce that

r1
a=⇒� � and that ra

1 �must r′
2 where ra

1 =
⊕

(r1 after� � a). (A.4)

The hypothesis r1 usbl� � as′ ensures that ra
1 usbl � � s′ and, moreover, B ∈ Acc� �(r2, as′) implies that B ∈ Acc� �(r′

2, s
′). Thus,

by (A.4) and the inductive hypothesis, we obtain

∃A ∈ Acc� �(ra
1, s′). A ∩ uaclt(r

a
1, s′) ⊆ B (A.5)

By point (3) and point (4) of Lemma 19, we have the equalities uaclt(r1, as′) = uaclt(ra
1, s

′) and Acc � �(r1, as′) = Acc� �(ra
1, s

′),
and thus from (A.5) we obtain

∃A ∈ Acc� �(r1,as′). A ∩ uaclt(r1,as′) ⊆ B

as required. �
Lemma 22. For every r1 �must r2 , if for every s ∈ Act� , if r1 usbl� � s and r2

s=⇒� � , then r1
s=⇒� � .

Proof. We proceed by structural induction on the string s. In the base case we have s = ε, and we must show that r1 =⇒� � .

Reflexivity ensures that it suffices to show that r1
�
/−→. This follows from the hypothesis r1 �must r2, the hypothesis r2 =⇒� �

which ensures that r2
�
/−→, and Definition 7(2).

For the inductive case we have s = as′ for some a and s′ . The hypotheses ensure that r1 usbl � � as′ and that r2
a=⇒� �

r′
2

s′=⇒� � for some r′
2. We have to show that r1

as′=⇒� � . By the definition of r1 usbl� � as′ , we know r1 ∈ U . Thus by r1 �must r2,
r2

a=⇒� � r′
2, and point (3c) and point (1) of Definition 7 let us deduce that

r1
a=⇒� � and

⊕
(r1 after� � a) �must r′

2 (A.6)

From r1 usbl � � as′ we also know that
⊕

(r1 after� � a) usbl � � s′ . Thus, by (A.6), r′
2

s′=⇒� � , and the inductive hypothesis we

obtain that
⊕

(r1 after� � a) s′=⇒� � . This ensures that for some r′
1 ∈ (r1 after� � a) we have r′

1
s′=⇒� � . The definition of (r1 after� �

a) implies that r1
a=⇒� � r′

1, thus we can construct r1
as′=⇒� � as required. �

Appendix B. Proof for the coinductive characterisation of cmp preorder

Lemma 17. If r1 � cmp r2 and r1 ∈ Ubhv
cmp then for every B ∈ Acc �(r2) such that � �∈ B there exists an A ∈ Acc � �(r1) such that

A ∩ uabhv(r1) ⊆ B.

G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117 115
Proof. Fix a B ∈ Acc �(r2). To begin with, we show that there exists some A ∈ Acc � �(r1). Let r′
2 be the state such that

r2 =⇒ r′
2

τ
/−→ and S �(r′

2) = B . From the computation 0 || r2 =⇒ 0 || r′
2

τ
/−→ and the hypothesis that � �∈ B we have that

r′
2 ¬cmp 0, and thus r2 ¬cmp 0. It follows that r1 ¬cmp 0, and by Lemma 12 r1 =⇒ r′

1

τ
/−→ for some r′

1. Since r′
1 is stable we

have Acc � �(r1) = { Ai | i ∈ I } for some non-empty finite I . Now we proceed by contradiction: suppose that for every i ∈ I
there exists an action αi ∈ Ai ∩ ua(r1) such that αi �∈ B . We use this assumption to provide a witness server p such that (a)
r2 ¬cmp p and (b) r1 cmp p, thereby contradicting the hypothesis r1 � cmp r2.

Observe that αi may be �. In order to reason only on visible actions, let J be the indexes of the actions α̂ j ∈ Act, that is
the indexes of the actions αi that are not �. The definition of uabhv(r1) ensures that for every j ∈ J there exists a p j such
that

⊕
(r1 after α̂ j) cmp p j . Let p = ∑

j∈ J α̂ j .p j .
To prove (a), recall the client r′

2 and consider the state p || r′
2. By construction p offers no action that can interact with

the actions of r′
2, and both p and r′

2 are stable, thus p || r′
2 is stable. As � �∈ B , we have that r′

2 ¬cmp p and hence r2 ¬cmp p.
To prove (b), we define a suitable coinductive compliance. Let

R =R ′ ∪ cmp where R ′ = { (r′,
∑

j∈ J

α̂ j.p j) | r1 =⇒ r′,
⊕

(r1 after α j) cmp p j }

By construction r1 R p and so it suffices to show that R ⊆ C(R). Fix a pair r R p, Definition 8 requires us to show that

1. if p ⇑ then r �−→
2. if p || r

τ
/−→ then r �−→

3. if p || r
τ−→ p′ || r′ then r′ R p′

Since r R p, either (r cmp p) or r R ′ p. In the first case, Definition 8 and cmp ⊆ R ensure that the pair at hand enjoys
the three properties above. Now suppose that r R ′ p. By the definition of R ′ , r1 =⇒ r and p = ∑

j∈ J α̂ j .p j , point (1) holds

trivially for p converges. To prove point (2), suppose that p || r
τ
/−→. This means that r

τ
/−→ and that it does not engage in

any visible actions a j , meaning that S �(r) ∈ Acc� �(r1). Since none of the actions in S �(r) is one of the a j for j ∈ J , this

ensures that � ∈ S �(r), and thus r
�−→. Now we prove point (3). Suppose that r || p τ−→ r′ || p′ . The argument depends

on the rule used to infer the silent move at hand. As p is stable we have only two cases to discuss. If rule (p-Cli) was
used then r

τ−→ r′ , thus p′ = p, and since r1 =⇒ r′ we have r R ′ p, and thus r R p′ . If rule (p-Synch) was applied than
note that the construction of p ensures that for some j ∈ J we have p′ = p j and r′ ∈ (r1 after a j). We already know that ⊕

(r1 after a j) cmp p j , thus r′ cmp p′ , and thus r′ R p′ . �
Lemma 23. Whenever r cmp p, r a−→, and p a−→ p′ then a ∈ uabhv(r).

Proof. Since, hypothesis r
a−→ means that r

a=⇒, we must show that
⊕

(r after a) ∈ Ubhv
cmp . By Lemma 13, this is equivalent

to showing that
⊕

(r after a) ∈ Ucmp . Observe that from r cmp p for every r′ ∈ (r after a) we have that r′ cmp p′ . We have to
exhibit some p′′ such that

⊕
(r after a) cmp p′′ .

If p′ does not diverge, we choose it as our witness p′′ . We let

R = { (
⊕

(r after a), p′) } ∪ cmp

Thanks to our observation above and the assumption that p′ converges, it is routine work to check that the relation R is a
coinductive compliance, and thus

⊕
(r after a) cmp p′ .

If p′ diverges, then our observation above implies that for every r′′ such that for some r′ ∈ (r after a) r′ =⇒ r′′ we have
r′′ �−→. In this case our candidate p′′ is 0, and we define

R = { (
⊕

(r after a),0) } ∪ { (r′′,0) |
⊕

(r after a) =⇒ r′′ } ∪ cmp

Also in this case it is routine work to check that R is a coinductive compliance. �
Theorem 5. The preorders � cmp and �clt coincide.

Proof. The set inclusion � cmp ⊆ �clt follows from Lemma 15, Lemma 16, and Lemma 17. Thus we only have to prove the
converse inclusion, �clt ⊆ � cmp . It is enough to show that the relation

R = { (r, p) ∈ Proc × Proc | ∃r1 ∈ Proc. r1 �clt r and r1 cmp p }
is a pre-fixed point of G , that is R ⊆ G(R). Fix a pair r R p, Definition 8 requires us to show that

116 G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117
1. if p ⇑ then r �−→
2. if p || r

τ
/−→ then r �−→

3. if p || r
τ−→ p′ || r′ then (r′, p′) ∈ R

By the definition of R , there exists a r1 ∈ Proc such that r1 �clt r and r1 cmp p. We have immediately that r1 ∈ Ucmp .
To prove Point (1), suppose that p ⇑. For every r′

1 such that r1 =⇒ r′
1 there exists the computation p || r1 =⇒ p || r′

1 and

since r1 cmp p we have that r′
1 cmp p. The assumption p ⇑ implies that r′

1
�−→. Since r =⇒ r, Definition 11(2b) implies that

r
�−→ as required.

To prove Point (2) suppose that p || r
τ
/−→; our aim is to show that r

�−→. As the composition p || r is stable we have

that r
τ
/−→, thus Acc � �(r) = { S �(r) }. To prove that � ∈ S �(r) we argue by contradiction and assume that � �∈ S �(r). By

r1 ∈ Ucmp and Definition 11(2c), we know that for some A ∈ Acc � �(r1) we have A ∩ uabhv(r1) ⊆ S �(r), that is there exists a

r′
1 such that r1 =⇒ r′

1

τ
/−→ and A = S �(r′

1), so

S �(r′
1) ∩ uabhv(r1) ⊆ S �(r) (B.1)

We prove that p || r′
1

τ
/−→. Suppose that p a−→ for some action a. Since p || r

τ
/−→, it must be the case that a �∈ S �(r), and

by Eq. (B.1) this ensures that a �∈ S �(r′
1) ∩ uabhv(r′

1). But we know already that r′
1 cmp p, and thus Lemma 23 ensures that if

r′
1

a−→ it must be the case that a ∈ uabhv(r′
1). It follows that a �∈ S �(r′

1), that is r′
1

a
/−→. It follows that p || r′

1

τ
/−→.

Now r′
1 cmp p and p || r′

1

τ
/−→ implies that r′

1
�−→, that is � ∈ S �(r′

1), and (B.1) above implies � ∈ S �(r), contradicting
our assumption that � �∈ S �(r).

Point (3). Suppose that p || r
τ−→ p′ || r′ . Either r′ �∈ Fcmp or r′ ∈ Fcmp . If r′ �∈ Fcmp then by definition r′ cmp p, and since

r′ �clt r′ we have r′ R p′ . If r′ ∈Fcmp , the argument proceeds by case analysis on the rule used to infer the reduction at issue.
If the reduction is due to (p-svr) then p τ−→ p′ and r′ = r. On the one hand r1 �clt r′ , on the other hand r1 cmp p ensures
r1 cmp p′ . Thus, by definition of R , r′ R p′ . If the rule used is (p-Clt) then r

τ−→ r′ and p = p′ . As r1 �clt r Definition 11(1)
implies r1 �clt r′ , and hence r1 cmp p implies that by definition r′ R p′ . If the reduction is due to (p-Syn) then p a−→ p′

and r
a−→ r′ for some a ∈ Act. Since r1 ∈ Ucmp and by assumption r′ ∈ Fcmp Definition 11(2d) implies

⊕
(r1 after a) �clt⊕

(r after a). Plainly
⊕

(r after a) τ−→ r′ , Definition 11(1) ensures that
⊕

(r1 after a) �clt r′ . To show that r′ R p′ it is enough
to prove that

⊕
(r1 after a) cmp p′ . A coinductive compliance that witnesses this is the following relation,

R = R ′ ∪ cmp where R ′ = { (r′, p′) |
⊕

(r1 after a) =⇒ r′, p =⇒ p′ } �
References

[1] J.R. Andersen, N. Andersen, S. Enevoldsen, M.M. Hansen, K.G. Larsen, S.R. Olesen, J. Srba, J. Wortmann, CAAL: concurrency workbench, Aalborg edition,
in: ICTAC, 2015.

[2] F. Barbanera, F. de’Liguoro, Two notions of sub-behaviour for session-based client/server systems, in: PPDP, 2010.
[3] G. Bernardi, Behavioural Equivalences for Web Services, PhD Thesis, TCD, 2013.
[4] G. Bernardi, M. Hennessy, Compliance and testing preorders differ, in: BEAT2, 2013.
[5] G. Bernardi, M. Hennessy, Mutually testing processes, Log. Methods Comput. Sci. 11 (2) (2015).
[6] G. Bernardi, M. Hennessy, Modelling session types using contracts, Math. Struct. Comput. Sci. 26 (2016) 3.
[7] G. Bernardi, M. Hennessy, Using higher-order contracts to model session types, Log. Methods Comput. Sci. 12 (2) (2016).
[8] Giovanni Bernardi, Adrian Francalanza, Full-abstraction for must testing preorders, in: COORDINATION, 2017, extended abstract.
[9] M. Bravetti, G. Zavattaro, A foundational theory of contracts for multi-party service composition, Fundam. Inform. 89 (4) (2008).

[10] G. Castagna, N. Gesbert, L. Padovani, A theory of contracts for web services, ACM Trans. Program. Lang. Syst. 31 (5) (2009).
[11] A. Cerone, M. Hennessy, Process behaviour: formulae vs. tests, in: EXPRESS, 2010.
[12] E.M. Clarke, H. Veith, Counterexamples revisited: principles, algorithms, applications, in: Verification: Theory and Practice, 2003.
[13] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 3rd edition, The MIT Press, 2009.
[14] R. De Nicola, M. Hennessy, Testing equivalences for processes, Theor. Comput. Sci. 34 (1–2) (1984).
[15] A. Francalanza, A theory of monitors, in: FoSSaCS, in: LNCS, vol. 9634, 2016, pp. 145–161.
[16] A. Francalanza, Consistently-Detecting Monitors, in: CONCUR 2017, vol. 85, 2017, pp. 8:1–8:19.
[17] S.J. Gay, M. Hole, Subtyping for session types in the pi calculus, Acta Inform. 42 (2–3) (2005).
[18] R. Gorrieri, C. Versari, Introduction to Concurrency Theory – Transition Systems and CCS, Springer, 2015.
[19] M. Hennessy, Algebraic Theory of Processes, 1988.
[20] D.E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd. edition, Addison Wesley Longman Publishing Co., Inc., 1997.
[21] D. König, Über eine Schlussweise aus dem Endlichen ins Unendliche, Acta Litter. Sci. Szeged 3 (1927).
[22] C. Laneve, L. Padovani, The must preorder revisited, in: CONCUR, 2007.
[23] Q. Luo, F. Hariri, L. Eloussi, D. Marinov, An empirical analysis of flaky tests, in: FSE, 2014.
[24] P. Marinescu, P. Hosek, C. Cadar, Covrig: a framework for the analysis of code, test, and coverage evolution in real software, in: ISSTA, 2014.
[25] A. Martens, Analyzing Web service based business processes, in: FASE, 2005.
[26] A.M. Memon, M.B. Cohen, Automated testing of GUI applications: models, tools, and controlling flakiness, in: ICSE, 2013.

http://refhub.elsevier.com/S0167-6423(18)30327-7/bib44424C503A636F6E662F69637461632F416E64657273656E4145484C4F53573135s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib44424C503A636F6E662F69637461632F416E64657273656E4145484C4F53573135s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib44424C503A636F6E662F707064702F42617262616E657261643130s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib6762746865736973s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib44424C503A636F6E662F7365666D2F4265726E61726469483133s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib44424C503A6A6F75726E616C732F636F72722F4265726E61726469483135s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib4D53433A3130313737363531s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib44424C503A6A6F75726E616C732F636F72722F4265726E61726469483133s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib44424C503A636F6E662F636F6F7264696E6174696F6E2F4265726E61726469463137s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib42726176657474693A323030383A465443s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib44424C503A6A6F75726E616C732F746F706C61732F4361737461676E6147503039s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib44424C503A6A6F75726E616C732F636F72722F6162732D313031312D36343338s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib436C61726B65563033s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib436F726D656E3A323030393A4941543A31363134313931s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib4E4831393834s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib4672613136s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib4672613137s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib44424C503A6A6F75726E616C732F616374612F476179483035s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib44424C503A7365726965732F74787463732F476F727269657269563135s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib48656E6E65737379383861s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib4B6E7574683A31393937s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib6B6F6E6967313932377363686C7573737765697365s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib4C503037s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib4C756F3A323031343A454146s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib4D6172696E657363753A32303134s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib4D617274656E7332303035s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib4D656D6F6E3A32303133s1

G. Bernardi, A. Francalanza / Science of Computer Programming 168 (2018) 94–117 117
[27] R. Milner, Communication and Concurrency, Prentice–Hall, 1989.
[28] A.J. Mooij, C. Stahl, M. Voorhoeve, Relating fair testing and accordance for service replaceability, J. Log. Algebraic Program. 79 (3–5) (2010).
[29] L. Padovani, Contract-based discovery of web services modulo simple orchestrators, Theor. Comput. Sci. 411 (37) (2010).
[30] L. Padovani, Fair subtyping for multi-party session types, Math. Struct. Comput. Sci. 26 (3) (2016).
[31] B. Pierce, Types and Programming Languages, 2002.
[32] A. Rensink, W. Vogler, Fair testing, Inf. Comput. 205 (2) (2007).
[33] C. Spaccasassi, Language Support for Communicating Transactions, PhD Thesis, TCD, 2015.
[34] D. Weinberg, Efficient controllability analysis of open nets, in: WS-FM, 2009.
[35] G. Winskel, The Formal Semantics of Programming Languages: An Introduction, 1993.

http://refhub.elsevier.com/S0167-6423(18)30327-7/bib636373s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib44424C503A6A6F75726E616C732F6A6C702F4D6F6F696A53563130s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib44424C503A6A6F75726E616C732F7463732F5061646F76616E693130s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib44424C503A6A6F75726E616C732F6D7363732F5061646F76616E693136s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib506965726365426F6F6B3032s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib52563035s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib4361726C6F3135s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib5765696E6265726732303039s1
http://refhub.elsevier.com/S0167-6423(18)30327-7/bib57696E736B656C3A31393933s1

	Full-abstraction for client testing preorders
	1 Introduction
	2 Preliminaries
	2.1 Alternative characterisation of the client preorder

	3 Characterising usability
	4 The client preorder revisited
	5 Expressiveness and decidability
	5.1 On the power of ﬁnite interactions
	5.2 Deciding the client preorder

	6 The compliance preorder for clients
	6.1 Order theoretic meaning of usable and fallible clients

	7 Conclusion
	7.1 Related work

	Acknowledgements
	Appendix A Proofs for the coinductive characterisation of must preorder
	Appendix B Proof for the coinductive characterisation of cmp preorder
	References

