
A Theory of System Behaviour in the Presence of
Node and Link Failures (Extended Abstract)

Adrian Francalanza1 and Matthew Hennessy1

University of Sussex, Falmer Brighton BN1 9RH, England,
{adrianf,matthewh}@sussex.ac.uk

Abstract. We develop a behavioural theory of distributed programs (systems) in
the presence of failures such as nodes crashing and links breaking. The frame-
work we use is that of Dπ, a language in which located processes, or agents, may
migrate between dynamically created locations. In our extended framework, these
processes run on a distributed network, in which individual nodes may crash in
fail-stop fashion or the links between these node may become permanently bro-
ken. The original language, Dπ, is also extended by a ping construct for detecting
and reacting to these failures.
We define a bisimulation equivalence between these systems, based on labelled
actions which record, in addition to the effect actions have on the processes, the
effect on the actual state of the underlying network and the view of this state
known to observers. We prove that the equivalence isfully abstract, in the sense
that two systems will be differentiated if and only if, in some sense, there is
a computational context, consisting of a surrounding network and an observer,
which can see the difference.

1 Introduction

It is generally accepted thatpartial failures are one of the principal factors preclud-
ing location transparency in distributed settings such aswide-area networks, [4], large
computational infrastructures which may even span the globe. Because of this, vari-
ouslocation-awarecalculi and programming languages have arisen in the literature to
model the behaviour of distributed programs in the presence of failures, and to study
the correctness of algorithms is such a setting. The purpose of this paper is to:

– invent a simple framework, a distributed process calculus, for describing computa-
tions over a distributed network in which individualnodesand links between the
nodes are subject to failure

– use this framework to develop a behavioural theory of distributed systems in which
these failures are taken into account.

Our point of departure is Dπ [12], a simple distributed version of the standardπ-calculus
[15, 18], where the locations that host processes model closely physical network nodes.
Ignoring the type system developed for Dπ, which is orthogonal to the issues addressed

here, we consider the following three Dπ abstract server implementations as motivation:

server⇐ (ν data)(l[[req?(x, y).data!〈x, y〉]] | l[[data?(x, y).y!〈 f (x)〉]])

servD⇐ (ν data)

(
l[[req?(x, y).go k1.data!〈x, y〉]]
| k1[[data?(x, y).go l.y!〈 f (x)〉]]

)

servD2Rt⇐ (ν data)



l



req?(x, y).(νsync)


go k1.data!〈x, sync〉
| go k2, k1.data!〈x, sync〉
| synch?(x).y!〈x〉







| k1

[[
data?(x, y).

(
go l. y!〈 f (x)〉
go k2, l. y!〈 f (x)〉

)]]



The three systemsserver, servD andservD2Rt implement a lookup server that accepts
a single request for a lookup on channelreq at locationl with two arguments,x being
the value to be looked up andy being the return channel on which to return the required
information. A typical client for these servers would have the following form, sending
the namel as the value to be looked up andret as the return channel:

client⇐ l[[req!〈l, ret〉]]

Every server forwards the request to an internal database hidden from the client, denote
by the scoped channeldata, which looks up the value using an unspecified function
f (x). The three implementations differ by where the internal database is located and
how it is handled. More specifically,server holds the databaselocally at l and carries
out all the processing there; by contrast,servD andservD2Rt distribute the database
remotelyat locationk1. The latter two server implementations also differ by how the
remote database is accessed:servD accesses the database using the direct route froml
to k1; servD2Rt forwards the service requests along two concurrent routes, that is the
direct one froml to k1 and an indirect route using an intermediary nodek2 and non-
deterministically selects one of two results if both routes are active.1. Intuitively, these
three server implementations are not equivalent because they exhibit distinct behaviour
in a setting with node and link failure. For instance, if nodek1 fails,servD and servD2Rt
may not be able to service a client request whereasserver would continue to work
seamlessly. Moreover,servD and servD2Rt are also distinct because if the link between
l andk1 breaks,servDmay block and not service a request whileservD2Rt would still
operate as intended. Despite the fact that these three implementations are qualitatively
different, it is hard to distinguish between them in Dπ theories such as [10].

In this paper, we develop a behavioural theory that tells these three systems apart.
We use extended Dπ configurations of the form

Σ . N

whereΣ is a representation of the current state of the network, andN consists of the sys-
tems such as those we have just seen, being software executing in a distributed manner

1 Here the constructgo l, k.P is shorthand forgo l.go k.P

2

overΣ. HereΣ records the set of nodes in the network, theirstatus, that is whether they
arealive or dead, and theirconnectivity, that is the set of (symmetric) links between
these nodes. On the other hand,N will be more or less a standard system description
from Dπ, augmented with a conditional construct for reacting to network failures. We
believe that this results in a succinct but expressive framework, in which many of the
phenomena associated with practical distributed settings, such as routing algorithms
and ad-hoc network discover, can be examined.

The corresponding behavioural theory takes the form of(weak) bisimulation equiv-
alence, [14] based on labelled actions

Σ . N
µ−→ Σ′ . N′ (1)

where the labelµ represents the manner in which an observer, also running on the net-
work Σ, can interact with the systemN. This interaction may not only change the state
of the system, toN′, in the usual manner, but also affect the nature of the underlying
network. For instance, an observer may extend the network by creating new locations
or otherwise induce faults in the network by killing sites or break links between sites,
thereby capturing, at least, some of the reaction ofN to dynamic failures.

It turns out that the definition of the actions in (1) needs to be relatively sophisti-
cated: although the system and the observer may initially share the same view of the
underlying network,δ, interactions quickly give rise to situations in which these views
diverge. More specifically, observers may learn of new nodes in the system as a result of
interaction, but at the same time, cannot determine the state of such nodes and the code
executing at them because they are not able toreach them. This may happen either
because the newly discovered nodes are completely disconnected or else because the
observer does not have enough information todetermine a routewhich leads to these
nodes. As a result, in (1) above, the network representationΣ needs to somehow record
the actual full state of the underlying network, together with theobserver’s partial view
of it.

We choose to develop the theory in terms of the calculus itself, despite the widely
held view that representation of nodesonly is sufficient; this would typically entail en-
coding a link between locationl andk as an intermediary nodelk, encoding migration
from l to k as a two step migration froml to lk and lk to k and finally encoding link
failure as the intermediary nodelk failing. We believe that a calculus with partial con-
nection between nodes is very natural in itself since WANs are oftennot a clique. This
calculus also gives rise to an interesting theory of partial views that we believe deserves
to be investigated in its own right. In addition, we would also like to explore the inter-
play between node and link failure and their respective observation from the software’s
point of view. With this in mind, we anticipate that any such encoding would be cum-
bersome to use and the corresponding theory of partial views would be too complicated
to develop. Moreover, it is unlikely that this resultant theory would be fully abstract,
due to the fact that any encoding would typically decomposes atomic reductions such
as migration into sub-reductions, which in turn affects the resulting bisimulation equiv-
alence; see [9].

The paper is organised as follows: Section 2 introduces DπF and the reduction se-
mantics. In Section 3 we present an initial definition of actions for DπF, based on the

3

Table 1.Syntax of typed DπF

Types

T, U, W ::= ch | locS[C]
S, R ::= a | d
C, D ::= {u1, . . . , un}

Processes
P,Q ::= u!〈V〉.P | u?(X).P | ∗ u?(X).P | if v=u.PdQe | 0 | P|Q | (ν n:T)P

| go u.P | kill | break u | ping u.PdQe

Systems
M,N,O ::= l[[P]] | N|M | (ν n:T)N

general approach of [11]. The resulting bisimulation equivalence can be used to demon-
strate equivalencies between systems, but we show, by a series of examples, that it is
too discriminating. In Section 4, we revise the definition of these actions, by abstract-
ing from internal information present in the action labels, and show that the resulting
equivalence isfully abstractwith respect to an intuitive form ofcontextual equivalence.
This means that two systems will be differentiated by the bisimulation equivalence if
and only if, in some sense, there is a computational context, consisting of a network and
an observer, which can see the difference. The complete proofs, elaborate discussions
and extensive examples may be found in the corresponding technical report [8].

2 The language

We assume a set ofvariables V, ranged over byx, y, z, . . . and a separate set of
names, N, ranged over byn,m, . . . , which is divided into locations,L, ranged
over byl, k, . . . and channels,C, ranged over bya,b, c, Finally we useu, v, . . .
to range over the set ofidentifiers, consisting of either variables and names.

The syntax of DπF is given in Figure 1, where the main syntactic category is that
of systems, ranged over byM,N; these are essentially a collection oflocated processes,
or agentsl[[P]], but there may also be occurrences of typedscoped names, (ν n : T)N.
Although we could employ the full power of the type system for Dπ [10], for simplicity,
we use a very simple notion of type and adapt it the purpose at hand. Thus, ifn is used
as a channel inN, thenT is simply ch; however if it is a location thenT = locA[L]
records it’sstatusS, whether it is alivea or deadd, and the set of locationsC to which
it is linked, {l1, . . . , ln}.

The syntax for agents,P,Q, is an extension of that in Dπ. There is input and output
on channels; hereV is a tuple of identifiers, andX a tuple of variables, to be interpreted
as a pattern. We also have the standard forms of parallel, replicated input, local decla-
rations, a test for equality between identifiers and an asynchronous migration construct.
We also introduce a ping conditional construct,l[[pingk.PdQe]], in the style of [2, 1, 17],
branching tol[[P]] or l[[Q]] depending on theaccessibilityof k from l. Finally we have
two new constructs to simulate failures;l[[kill]] kills the location l, while k[[break l]]
breaks the link betweenl andk, if it exists. We are not really interested in program-
ming with these last two operators. Nevertheless, when we come to considercontextual

4

behaviour, their presence will mean that the behaviour will take account the effects of
dynamicfailures.

In this extended abstract, we will assume the standard notions offree andbound
occurrences of both names and variables, together with the associated concepts ofα-
conversion andsubstitution. Furthermore, we will assume that all system terms are
closed, that is they have no free occurrences of variables.

Reduction semantics:This takes the form of a binary relation

∆ . N −→ ∆′ . N′ (2)

where∆ and∆′ are representations of the state of the network. Intuitively this must
record the set of locations in existence, whether they are alive or dead, and the existence
of any links between them.

Definition 1 (Network representation).We first introduce some notation to represent
the links in a network. A binary relationL over locations is called alink set if it is:

– symmetric, that is,〈l, k〉 ∈ L implies〈k, l〉 is also inL
– reflexive, that is,〈l, k〉 ∈ L implies〈l, l〉 and〈k, k〉 are also inL.

The latter property allows the smooth handling of the degenerate case of a process
moving from a sitel to l itself. Also, for any linksetL, we letdom(L) denote its domain:
that is the collection of locationsl such that〈l, l〉 ∈ L. In the sequel, we also use the
abbreviationl↔k in link sets to denote the pairs〈l, l〉, 〈k, k〉, 〈l, k〉, 〈k, l〉.

A network representation∆ is any triple2 〈N ,D,L〉 where

– N is a set of names, as before; we now useloc(N) to represent the subset ofN
which are locations

– D ⊆ loc(N) represents the set of dead locations, as before.
– L ⊆ loc(N) × loc(N) represents the set of connections between locations

So we may take∆ and∆′ in (2) above to be simple network representations. For-
mally we call pairs∆ . N configurations, whenever every free name inN occurs in the
name component of∆, and we define reductions to take place between such configu-
rations. Since not all nodes are interconnected, the reduction semantics is based on the
notions ofaccessibilityandreachabilitybetween nodes:k is accessible froml in ∆, de-
noted as∆ ` k← l, if and only if k is alive and there is a (direct) live link betweenl
andk; a nodek is reachablefrom l in ∆, denotes as∆ ` kf l, if there exists achain of
live linksbetween the two nodes, whereevery intermediate node is alive. We refer the
reader to the Appendix for the formal definitions.

For convenience, the rules governing these reductions are given in the three separate
figures. These rely on certain notation for checking the state of nodes and links in a
network and of updating the network; once again, we refer the reader to the Appendix
for the formal definitions of the notation used.

2 In this definition, we only represent live links in∆ and omit dead links; it turns out that the
latter are never used. Nevertheless, the representation can easily be extended to represent dead
links by adding another linkset, sayL.

5

Table 2.Local Reduction Rules for DπF

Assuming ∆ ` l :alive

(r-comm)

∆ . l[[a!〈V〉.P]] | l[[a?(X).Q]] −→ ∆ . l[[P]] | l[[Q{V/X}]]

(r-rep)

∆ . l[[∗a?(X).P]] −→ ∆ . l[[a?(X).(P| ∗ a?(X).P)]]

(r-fork)

∆ . l[[P|Q]] −→ ∆ . l[[P]] | l[[Q]]

(r-eq)

∆ . l[[if u=u.PdQe]] −→ ∆ . l[[P]]

(r-neq)

∆ . l[[if u=v.PdQe]] −→ ∆ . l[[Q]]
u , v

Table 3.Network Reduction Rules for DπF

Assuming ∆ ` l : alive

(r-go)

∆ . l[[go k.P]] −→ ∆ . k[[P]]
∆ ` k← l

(r-ngo)

∆ . l[[go k.P]] −→ ∆ . k[[0]]
∆ 0 k← l

(r-ping)

∆ . l[[ping k.PdQe]] −→ ∆ . l[[P]]
∆ ` k← l

(r-nping)

∆ . l[[ping k.PdQe]] −→ ∆ . l[[Q]]
∆ 0 k← l

(r-kill)

∆ . l[[kill]] −→ (∆ − l) . l[[0]]

(r-brk)

∆ . l[[break k]] −→ (∆ − l↔k) . l[[0]]
∆ ` l↔k

(r-newc)

∆ . l[[(ν c:ch) P]] −→ ∆ . (ν c:ch) l[[P]]

(r-newl)

∆ . l[[(ν k:locS[C]) P]] −→ ∆ . (ν k:locS[D]) l[[P]]
locS[D] = inst(locS[C], l, ∆)

The first set of rules, in Figure 2, give the standard rules for (local) communication,
and the management of replication, matching and parallelism, and are derived from the
corresponding rules for Dπ in [12]. But note that they are all depend on the requirement
that l, the location of the activity, is currently alive; this is the intent of the predicate
∆ ` l : alive.

The second set, in Figure 3, is more interesting. Rules(r-go) and (r-ngo) state that
a migration is successful depending on the accessibility of the destination. Similarly,
(r-ping) and (r-nping) are subject to the same condition for the respective branchings.
Note thatl[[ping k.PdQe]] yields partial informationabout the state of the underlying
network: it can only determine thatk is inaccessible, but does not give information
on whether this is caused by the failure of nodek, the breaking of the linkl ↔ k, or
both. The rules(r-kill), (r-brk) make the obvious changes to the current network;∆ − l
means changingl to be a dead site in∆, while ∆ − l ↔ k means breaking the link
betweenl andk. Finally (r-newc) and (r-newl) regulates the generation of new names;

6

Table 4.Contextual Reduction Rules for DπF

(r-str)
∆ . N′ ≡ ∆ . N ∆ . N −→ ∆′ . M ∆′ . M ≡ ∆′ . M′

∆ . N′ −→ ∆′ . M′

(r-ctxt-rest)
∆ + n : T . N −→ ∆′ + n : U . M
∆ . (ν n : T)N −→ ∆′ . (ν n : U)M

(r-ctxt-par)
∆ . N −→ ∆′ . N′

∆ . N|M −→ ∆′ . N′|M
∆ . M|N −→ ∆′ . M|N′

∆ ` M

Table 5.Structural Rules for DπF

(s-comm) N|M ≡ M|N
(s-assoc) (N|M)|M′ ≡ N|(M|M′)
(s-unit) N|l[[0]] ≡ N
(s-extr) (ν n:T)(N|M) ≡ N|(ν n:T)M n < fn(N)
(s-flip-1) (ν n:T)(νm:U)N ≡ (νm:U)(ν n:T)N n < fn(U)
(s-flip-2) (ν n:T)(νm:U)N ≡ (νm : U−n)(ν n : T+m)N n ∈ fn(U)
(s-inact) (ν n:T)N ≡ N n < fn(N)

for example,(r-newl) launches a new location with a declared typelocS[C] using the
function inst(locS[C], l, ∆). Intuitively, this functions returns the location typelocS[D],
where the set of locationsD, is the subset of locations inC∪{l} which arereachablefrom
l. We refer the reader to the technical report, [8], for an example explaining how this
function works.

Finally, in Figure 4 we have an adaptation of the standardcontextualrules, which
allow the basic reductions to occur inevaluation contexts. The rule(r-str) allows re-
ductions up to a structural equivalence, in the standard manner, using the identities in
Figure 5. The only non-trivial identities in Figure 5 are(s-flip-1) and(s-flip-2), where the
types of the successively scoped locations need to be changed if they denote a link be-
tween them, thus avoiding unwanted name capture. The rules(r-ctxt-par) and(r-ctxt-rest)
allow reductions to occur under contexts; note that the latter is somewhat non-standard,
but as reductions may induce faults in the network, it may be that the status and con-
nectivity of the scoped (location) namen is affected by the reduction, thereby changing
T to U.

This completes our exposition of the reduction semantics. At this point, we should
point out that in a configuration such as∆ . N, contrary to what we have implied up to
now,∆ does not give a completely true representation of the network on which the code
in N is running; the type information associated with scoped locations encodes parts of
the network∆ that is hidden from the observer.

Example 1 (Syntax).Let ∆ represent the network〈{l,a}; ∅; {l↔ l}〉 consisting of a chan-
nela and a live nodel andM1 the system

(ν k2 :loca[∅]) (ν k1 :locd[{l, k2}]) (l[[a!〈k2〉.P]] | k2[[Q]])

HereM1 generates two new locationsk1, k2, wherek1 is dead and linked to the existing
nodel andk2 is alive linked tok1. Although∆ only contains one nodel, the located

7

processl[[a!〈k2〉.P]] (as well ask2[[Q]]) is running on a network ofthree nodes, two
of which, k1, k2 are scoped, that is not available to other systems. We can informally
represent this network by

d dt¾ ¾- -
l k1 k2

where the nodes◦ and• denote live and dead nodes respectively. Note that the same
network could be denoted by the systemN1

(ν k1 :locd[{l}]) (ν k2 :loca[{k1}]) (l[[a!〈k2〉.P]] | k2[[Q]])

Note also that the two systems are structurally equivalent,M1 ≡ N1, through(s-flip-2).
As a notational abbreviation, in all future example we will omit the status annotation,
a, in location declarations; so for example systemN1 would be given as

(ν k1 :locd[{l}]) (ν k2 : {k1}) (l[[a!〈k2〉.P]] | k2[[Q]])

3 A Labelled transition system

In this section we give a labelled transition system for the language, in which the la-
belled actions are intended to mimic the possible interactions between a system and an
observer; it is natural to assume that both share the same underlying network. However
this first example demontrates that our representation of this joint network is no longer
sufficient, if we want to faithfully record the effect interactions have on systems because
they may lead to a discrepancy between thesystem network viewand theobserver net-
work view.

Example 2 (Observer’s Network view).Let ∆ andM1 be defined as in Example 1. An
observerO at sitel, such asl[[a?(x).P(x)]], can gain knowledge of the new locationk2,
thereby evolving tol[[P(k2)]]. But even though it is in possession of the namek2, it’s
knowledge of the state of the underlying network is no longer represented by∆, and
there is now a mismatch between the observes view of the network, and the systems
view. The system view is now∆′ = 〈{a, l, k2}; ∅; {l↔ l, k2↔ k2}〉, that is∆ augmented
by the scope extrusion of thelive nodek2 linked to a private (dead) nodek1, which is, in
turn, linked tol. But the observer’s view is quite different: the nodel is accessible to the
observer, since it has code running there; nevertheless, even though the observer knows
aboutk2 at l in P(k2), it does not have enough information toreachk2 from l. As a
result, it has no means how to determinek2’s state in terms of its status and connections
nor interact with any code atk2. This means that the representation of the observers
view, requires a new kind of annotation, for nodes such ask2 which are known, but not
accessible

d ?
l k2

Stated otherwise, in order to give an lts semantics, we need to refine our represen-
tations of networks.

8

Table 6.Operational Rules(1) for DπF

Assuming Σ ` l :alive

(l-out)

Σ . l[[a!〈V〉.P]]
l:a!〈V〉−−−−→ Σ . l[[P]]

(l-in)

Σ . l[[a?(X).P]]
l:a?(V)−−−−→ Σ . l[[P{V/X}]]

V ⊆ ΣN

(l-in-rep)

Σ . l[[∗a?(X).P]]
τ−→ Σ . l[[a?(X).(P | ∗a?(Y).P{Y/X})]]

(l-fork)

Σ . l[[P | Q]]
τ−→ Σ . l[[P]] | l[[Q]]

(l-eq)

Σ . l[[if u=u.PdQe]] τ−→ Σ . l[[P]]

(l-neq)

Σ . l[[if u=v.PdQe]] τ−→ Σ . l[[Q]]
u , v

Definition 2 (Effective network representations).An effective network representa-
tion Σ is a triple 〈N ,O,H〉, where:

– N is a set of names, as before, divided intoloc(N) andchan(N),
– O is a linkset, denoting the live locations and links that areobservableby the con-

text.
– H is anotherlinkset, denoting the live locations and links that arehidden(or un-

reachable) to the context.

We also assume three consistency requirements:(i) dom(O) ⊆ loc(N), (ii) dom(H) ⊆
loc(N) and(iii) dom(O)∩dom(H)=∅.

The intuition is that an observer running on a network representationΣ, knows about
all the names inΣ, denoted asΣN , and has access to all the locations indom(O). As a
result, it knows the state of every location indom(O) and the live links between these
locations. The observer, however, does not have access to the live locations indom(H);
as a result, it cannot determine the live links between them nor can it distinguish them
from dead nodes. Dead nodes are encoded inΣ asloc(N)/dom(O ∪H), that is, all the
location names inN that are not mentioned in eitherO or H ; these are conveniently
denoted as the deadsetΣD . We also note that the effective network representationΣ
does not represent live links where either end point is a dead node, since these can
never be used nor observed. Summarising,Σ hold all the necessary information from
the observer’s point of view, that is, the names known,N , the state known,O, and the
state that can potentially become known in future, as a result of scope extrusion,H .
As a shorthand notation, we omit channel names from anyΣN in the remainder of the
paper.

With this refined notion, we can now represent the observers view of Example 2 as
N = {l, k2}, O = {l↔ l} andH = {k2↔ k2}. In the sequel, we will useconfigurations
of the formΣ . N, whereΣ is a network representation, andN satisfies the obvious
consistency constraints with respect to it.

We now define a labelled transition system for DπF, which consists of a collection

of actions over configurations,Σ . N
µ−→ Σ′ . N′, defined by the transition rules in

Figures 6, 7 and 8, whereµ can be an internal action,τ, a bound input, (˜n : T̃)l : a?(V)

9

Table 7.Network Operational Rules(2) for DπF

Assuming Σ ` l : alive

(l-kill)

Σ . l[[kill]]
τ−→ (Σ − l) . l[[0]]

(l-brk)

Σ . l[[break k]]
τ−→ Σ − (l↔k) . l[[0]]

Σ ` l↔k

(l-halt)

Σ . N
kill:l−−→ (Σ − l) . N

Σ `obs l : alive

(l-disc)

Σ . N
l=k−→ Σ − (l↔k) . N

Σ `obs l↔k

(l-go)

∆ . l[[go k.P]]
τ−→ ∆ . k[[P]]

∆ ` k← l

(l-ngo)

∆ . l[[go k.P]]
τ−→ ∆ . k[[0]]

∆ 0 k← l

(l-ping)

∆ . l[[ping k.PdQe]] τ−→ ∆ . l[[P]]
∆ ` k← l

(l-nping)

∆ . l[[ping k.PdQe]] τ−→ ∆ . l[[Q]]
∆ 0 k← l

(l-newc)

∆ . l[[(ν c:ch) P]]
τ−→ ∆ . (ν c:ch) l[[P]]

(l-newl)

∆ . l[[(ν k:locS[C]) P]]
τ−→ ∆ . (ν k:locS[D]) l[[P]]

locS[D] = inst(locS[C], l, ∆)

or bound output, (˜n : T̃)l : a!〈V〉, adopted from [11, 10], or the new labels,kill : l and
l=k, denoting external location killing and link breaking respectively. In this extended
abstract we refrain from commenting on the definition of these actions and refer the
full paper, [8]. We only highlight the fact that the transition rules introducing external
actions such as(l-out), (l-in), (l-halt) and (l-disc) are subject to judgements of the form
Σ `obs l : alive, requiring thatl is alive andaccessible by the observer.

With these actions we can now define in the standard manner a bisimulation equiv-
alence between configurations, which can be used as the basis for contextual reasoning.
Let us write

Σ |= M ≈int N

to mean that there is a (weak) bisimulation between the configurationsΣ . M andΣ .N

Example 3 (Server Implementations Revisited).Consider the network:

d

d

d-¾

³³³³³1

³³³³³)

PPPPPi

PPPPPq

l

k2

k1

formally represented asΣ = 〈N ,O,H〉, whereN = {l, k1, k2},O = {l↔k1, l↔k2, k1↔
k2} andH = ∅. If we assume that the three server implementations presented earlier in
the Introdcuction were running overΣ, we are able to formally argue that

Σ |= server 6≈int servD 6≈int servD2Rt

10

Table 8.Contextual Operational Rules(3) for DπF

(l-open)

Σ+n:T . N
(ñ:T̃)l:a!〈V〉−−−−−−−→ Σ′ . N′

Σ . (ν n:T)N
(n:U,ñ:T̃)l:a!〈V〉−−−−−−−−−−→ Σ′ . N′

l, a , n ∈ V, U = T/ΣD

(l-weak)

Σ+n:T . N
(ñ:T̃)l:a?(V)−−−−−−−−→ Σ′ . N′

Σ . N
(n:T,ñ:T̃)l:a?(V)−−−−−−−−−−→ Σ′ . N′

l,a , n ∈ V, (Σ + ñ: T̃) `obs T

(l-rest-typ)

Σ+k:T . N
(ñ:T̃)l:a!〈V〉−−−−−−−→ (Σ+ñ: Ũ) +k:U . N′

Σ . (ν k:T)N
(ñ:Ũ)l:a!〈V〉−−−−−−−→ Σ+ñ: Ũ . (ν k:U)N′

l,a , k ∈ fn(T̃)

(l-rest)

Σ+n:T . N
µ−→ Σ′+n:U . N′

Σ . (ν n:T)N
µ−→ Σ′ . (ν n:U)N′

n < fn(µ)

(l-par-ctxt)

Σ . N
µ−→ Σ′ . N′

Σ . N|M µ−→ Σ′ . N′|M
Σ . M|N µ−→ Σ′ . M|N′

Σ ` M

(l-par-comm)

↑ (Σ) . N
(ñ:T̃)l:a!〈V〉−−−−−−−→ Σ′ . N′ ↑ (Σ) . M

(ñ:T̃)l:a?(V)−−−−−−−−→ Σ′′ . M′

Σ . N|M τ−→ Σ . (ν ñ: T̃)(N′|M′)

Σ . M|N τ−→ Σ . (ν ñ: T̃)(M′|N′)

To see this, it is sufficient to examine the behaviour of these systems subsequent to an

actions such as
l=k1−→ and

kill:k1−−−−→.

One can also use the lts to establish positive results. For example, forΣl,k = 〈{l, k}, {l↔
k}, ∅〉, one can prove

Σl,k |= l[[ping k.a!〈〉d0e]] ≈int k[[go l.a!〈〉]]
Nevertheless, we can argue, at least informally, that this notion of equivalence is too
discriminatingand the lts labels toointentional, because we distinguish between con-
figurations where the differences in behaviour are difficult to observe. Problems arise
when there is an interplay betweenhiddennodes, links and dead nodes.

Example 4 (Inaccessible Network State).Let Σ be the network in which there is only
one node,l, which is alive and consider the two systems

M2 ⇐ (ν k1 : {l}) (ν k2 : {k1}) (ν k3 : {k1, k2}) l[[a!〈k2, k3〉.P]]

N2 ⇐ (ν k1 : {l}) (ν k2 : {k1}) (ν k3 : {k1}) l[[a!〈k2, k3〉.P]]

WhenM2 andN2 are running onΣ, the codel[[a!〈k2, k3〉.P]], present in bothM2 andN2,
is effectively running on the following respective networks, due to the newly declared
locations:

11

d d

d

d

-¾
©©©*

©©©¼

HHHj
HHHY

6

?

l k1

k3

k2

d d

d

d

-¾
©©©*

©©©¼

HHHj
HHHY

l k1

k3

k2

Using our lts, we determine thatΣ |= M2 6≈int N2 because the configurations give rise to
differentoutput actions:

Σ . M2
(k2:∅, k3:{k2})l:a!〈k2,k3〉−−−−−−−−−−−−−−−−→ Σ+k2 :∅ + k3 : {k2} . (ν k1 : {l, k2, k3}) l[[P]]

Σ . N2
(k2:∅, k3:∅)l:a!〈k2,k3〉−−−−−−−−−−−−−−→ Σ+k2 :∅ + k3 :∅ . (ν k1 : {l, k2, k3}) l[[P]]

The difference lies in the type at which the locationk3 is exported:M2 exportsk3 con-
nected tok2 whereas inN2 exports a completely disconnectedk3.

However, if k1 does not occur inP, thenk1 can never be scope extruded to the
observer and thusk2 andk3 will remain inaccessible in both systems. This means that
the presence (or absence) of the linkk2↔ k3 can never be verified by the observer and
thus there should be no observable difference betweenM2 andN2 running onΣ.

Example 5 (Interplay between Node and Link Failure).We consider the following three
configurations together with the depiction of the respective networks over which the
common located processl[[a!〈k〉.P]] is running:

M1
3 ⇐ 〈{l,a}, {l1↔ l1}, ∅〉 . (ν k:locd[{l}])l[[a!〈k〉.P]] : d t¾ -

l k

M2
3 ⇐ 〈{l,a}, {l1↔ l1}, ∅〉 . (ν k:locd[∅])l[[a!〈k〉.P]] : d tl k

M3
3 ⇐ 〈{l,a}, {l1↔ l1}, ∅〉 . (ν k:loca[∅])l[[a!〈k〉.P]] : d dl k

Intuitively, no observer can distinguish between these three configurations; even though
some observer might obtain the scoped namek by inputting on channela at l, it cannot
determine the difference in the state of network. From rule(l-nping), we conclude that
any attempt to pingk from l will yield the negative branch. However, such an observa-
tion does not give the observer enough information about whether it was caused by a
node fault atk, a link fault betweenl andk or both. As a result, we would like to equate
all three configuration. However, our lts specifies that all three configurations perform
the output with different scope extrusion labels, namely:

〈{l}, {l↔ l}, ∅〉 . M1
3

(k:locd[{l}])l:a!〈k〉−−−−−−−−−−−−−→ 〈{l}, {l↔ l}, ∅〉 . l[[P]]

〈{l}, {l↔ l}, ∅〉 . M2
3

(k:locd[∅])l:a!〈k〉−−−−−−−−−−−−→ 〈{l}, {l↔ l}, ∅〉 . l[[P]]

〈{l}, {l↔ l}, ∅〉 . M3
3

(k:loca[∅])l:a!〈k〉−−−−−−−−−−−−→ 〈{l}, {l↔ l}, {k↔k}〉 . l[[P]]

and as a result, these configurations are differentiated by≈int.

12

4 Reduction barbed congruence

The fundamental problem with the lts of the previous section is that when new loca-
tions are scope extruded, the associated information, coded in the types at which they
are exported, is too detailed. The current actions carry too muchinternal information
and hence, we need a revised form of action, which carry just the right amount of infor-
mation.

However, before we plunge into our revision, it is best to have yardstick with respect
to which we can calibrate the appropriateness of the revised labelled actions, and the
resulting bisimulation equivalence. We adapt a well-known formulation of contextual
equivalence to DπF, [13, 11], calledreduction barbed congruence. This relies on the
notion of abarb, a collection of primitive observations which can be made on systems.
Let us writeΣ . N ⇓a@l to mean that an output on channela at an accessible location
l can be observed. Then, we would expect all reasonable behavioural equivalencies to
preserve these barbs. But the key idea in the definition is to use a notion ofcontextual
relation over configurations, in which the contexts only have access to theobservable
part of the network.

Definition 3 (Contextual Relations).A relationR over configurations iscontextualif:

(Parallel Systems)

• Σ . M R Σ′ . NandΣ `obs O, Σ′ `obs O implies
− Π |= M|O R N|O
− Π |= O|M R O|N

(Network Extensions)
• Σ . M R Σ′ . NandΣ `obs T, Σ

′ `obs T, n fresh implies Π+n:T |= M R N

whereΣ `obs O andΣ `obs T restrict the observerO and connections of location types
to accessible locations only.

Definition 4 (Reduction barbed congruence).Let � be the largest relation between
configurations which iscontextual, preservesbarbsand isreduction-closed.

Note that, apriori, this definition allows us to compare configurations which have dif-
ferent networks. However, it turns out that wheneverΣ . M � Σ′ . N, the external parts
of Σ andΣ′ must coincide. In the sequel, we abbreviateΣ . M � Σ .N, the cases where
both networks are identical, toΣ |= M � N.

We now outline a revision of our labelled actions with the property that the result-
ing bisimulation equivalence coincides with the yardstick relation,�. The idea is to
reuse the same actions but to simply change the types at which bound names appear.
Currently, these are of the formT = ch or locS[C], where the latter indicates the sta-
tus of a location and its connectivity. We change these types to new types of the form
L, K = {l1↔ k1, . . . , l i↔ ki} whereL, K are linksets. these represent the new live nodes
and links, which are made accessible to observers by the extrusion of the new loca-
tion. Alternatively, this is the information which is added to the observable part of the
network representation,ΣO, as a result of the action.

The formal definition is given in Figure 9, which is expressed in terms of a function
lnk(n : T, Σ), the definition of which is relegated to the Appendix. Intuitively, ifn is

13

Table 9.The derived lts for DπF

(l-deriv-1)

Σ . N
µ−→ Σ′ . N′

Σ . N
µ7−→ Σ′ . N′

µ ∈ {τ, kill : l, l=k}

(l-deriv-2)

Σ . N
(ñ:T̃)l:a!〈V〉−−−−−−−→ Σ′ . N′

Σ . N `(ñ:L̃)l:a!〈V〉−−−−−−−→ Σ′ . N′
L̃ = lnk(ñ: T̃, Σ)

(l-deriv-3)

Σ . N
(ñ:T̃)l:a?(V)−−−−−−−−→ Σ′ . N′

Σ . N `(ñ:L̃)l:a?(V)−−−−−−−−→ Σ′ . N′
L̃ = lnk(ñ: T̃, Σ)

a channel (T = ch) or a dead location (T = locd[L]), lnk(n : T, Σ) returns the empty
link set∅. Otherwise, when it is a live location (T = loca[C]), it constructs the linkset
denoting the nodes and links that are made accessible by the addition of the new location
n : loca[C] to the networkΣ.

These revised actions give rise to a new bisimulation equivalence over configura-
tions,≈, and we use

Σ |= M ≈ N

to mean that the configurationsΣ . M andΣ . N are bisimilar.

Example 6 (Derived bisimulations).Recall that, in Example 4, we had different actions
for Σ . M2 andΣ . N2 becauseΣ . M2 exportedk3 with a link to k2 andΣ . N2 did not.
However,Σ contains only one accessible node,l, and extending it with the completely
disconnected new nodek2 does not increase the set of accessible nodes,ΣO. Further-
more, increasingΣ +k2 : ∅ with a new nodek3, linked to the inaccessiblek2 (in the
case ofΣ . M2) or completely disconnected (in the case ofΣ . N2), also leads to no
increase in the accessible nodes. Correspondingly, the calculations oflnk(k2 : ∅, Σ) and
lnk(k3 : {k2}, Σ+k2 : ∅) both lead to the empty linkset type. Formally, we get the same
derived actions

Σ . M2 `
(k2:∅,k3:∅)l:a!〈k2, k3〉−−−−−−−−−−−−−−→ Σ+k2 :∅ + k3 : {k2} . (ν k1 : {l, k2, k3}) l[[P]]

Σ . N2 `
(k2:∅,k3:∅)l:a!〈k2, k3〉−−−−−−−−−−−−−−→ Σ+k2 :∅ + k3 :∅ . (ν k1 : {l, k2, k3}) l[[P]]

Furthermore, ifP contains no occurrence ofk1, we can go on to showΣ |= M ≈ N.
On the other hand, ifP is a!〈k1〉, the subsequent transitions are:-

Σ+k2 :∅ + k3 : {k2} . (ν k1 : {l, k2, k3}) l[[P]] `(k1:L)l:a!〈k1〉−−−−−−−−−→ . . .

Σ+k2 :∅ + k3 :∅ . (ν k1 : {l, k2, k3}) l[[P]] `(k1:K)l:a!〈k1〉−−−−−−−−−→ . . .

whereL/K = {k2 ↔ k3}. More specifically,L andK hold information directly related
to k1 such ask1↔ l together with information related to previously inaccessible nodes
such ask2↔k3, which has now become accessible as a result of exportingk1. The first
derived action (k1 : L)l : a!〈k1〉 thus exports the extra (previously hidden) information
k2↔k3 in L and based on this discrepancy, we haveΣ |= M2 6≈ N2

Revisiting Example 5, the three different actions ofM1
3, M2

3 andM3
3 now converge

to the same actionMi
3 `

(k:∅)l:a!〈k〉−−−−−−−→ l[[P]], henceΣ |= M1
3 ≈ M2

3 ≈ M3
3.

14

The main result of this paper can now be stated:

Theorem 1. In DπF, Σ |= M ≈ N if and only ifΣ |= M � N

Proof. (Outline) In one direction, this involves showing that≈ as a relation over con-
figurations satisfies the defining properties ofreduction barbed congruence. The main
problem here is to show that≈ is contextual, and in particular thatΣ |= M ≈ N im-
pliesΣ |= M|O ≈ N|O for everyO which only has access to the external (accessible)
part ofΣ. This in turn involves developingDecompositionandCompositionlemmas for
derived actions from configurations of the formΣ . M|O. The overall structure of the
proof is similar to the corresponding result in [10], Proposition 12, but the details are
more complicated because of the presence of the network. We therefore relegate to the
Appendix the formal statement of these lemmas and refer to the full paper, [8], for an
elaborate presentation of the proofs.

The essential part of the converse is to showDefinability, that is for every derived
action, relative to a networkΣ, there is an observer which only uses the external knowl-
edge ofΣ to completely characterises the effect of that action. These observers have
already been constructed for simpler languages such asπ-calculus, in [11], and Dπ, in
[10]. Here the novelty is to be able to characterise the observable effect that actions
have on a network. But it turns out that for everyΣ we can define an observerOΣ which
when run on an arbitrary networkΣ′ can determine whether the external or accessible
part ofΣ′ coincides with that ofΣ using a process calledverNetStatus, which we also
include in the Appendix. The complete proof is included in the full paper, [8].

5 Conclusions and Related Work

We have presented a simple extension of Dπ, in which there is an explicit represen-
tation of the state of the underlying network on which processes execute. Our main
result is afully-abstractbisimulation equivalence with which we can reason about the
behaviour of distributed processes in the presence of specific network configurations
with dead nodes and partial connections and also dynamic network failures. To the best
of our knowledge, this is the first time system behaviour in the presence oflink fail-
ure andpermanentpartial accessibility of nodes has ever been investigated. It is also
the first time the interplay between node and link failure and their respective program
observation has been investigated in a process calculus setting.

Application and Future Work:Our work is best viewed as a well-founded framework
from which numerous variations could be considered such as unidirectional links, ping
constructs that areeventuallycorrect, transient failure and persistent code. In our more
immediate research, we intend to use our present results to develop a theory offault-
toleranceand to apply it to example systems from the literature such as [5].

As it currently stands, we believe our work lends itself well to the study of dis-
tributed software that needs to be aware of thedynamiccomputing context in which it
is executing; various examples can be drawn from ad-hoc networks, embedded systems
and generic routing software. In these settings, the software typicallydiscoversnew
parts of the neighbouring network at runtime andupdatesits knowledge of the current
underlying network with changes caused by failure.

15

Related Work:There have been a number of studies on process behaviour in the pres-
ence ofpermanent node failureonly, amongst which [17], which was our point of de-
parture. In this work, they developed bisimulation techniques for a distributed variant
of CCS with location failure. Our work is also very close to the pioneering work [2,
1]; their approach to developing reasoning tools is however quite different from ours.
Rather than develop, justify and use bisimulations in the source language of interest, in
their caseπl andπ1l , they propose a translation into a version of theπ-calculus with-
out locations, and use reasoning tools on the translations. But most importantly, they
do show that for certainπ1l terms, it is sufficient to reason on these translations. The
closest work to the study of link failure is [6], where distributed Linda-like programs
are studied in the presence of connect and disconnect software primitives that dynami-
cally change the accessibility of locations. The connect construct employed is however
very powerful and can connect any two disconnected sites; this obviates the need for
observer restricted views, thereby simplifying immensely the theory. Elsewhere, per-
manent location failure with hierarchical dependencies have been studied by Fournet,
Gonthier, Levy and Remy in [7]. Berger [3] was the first to study aπ-calculus extension
that modelstransientlocation failure with persistent code and communication failures,
while Nestmann, Merro and Fuzzatti [16] employ a tailor made process calculus to
express standard results in distributed systems, such as [5].

References

1. Roberto M. Amadio. An asynchronous model of locality, failure, and process mobility. In
D. Garlan and D. Le Ḿetayer, editors,Proceedings of the 2nd International Conference on
Coordination Languages and Models (COORDINATION’97), volume 1282, pages 374–391,
Berlin, Germany, 1997. Springer-Verlag.

2. Roberto M. Amadio and Sanjiva Prasad. Localities and failures.FSTTCS: Foundations of
Software Technology and Theoretical Computer Science, 14, 1994.

3. Martin Berger. Basic theory of reduction congruence for two timed asynchronousπ-calculi.
In Proc. CONCUR’04, 2004.

4. Luca Cardelli. Wide area computation. InProceedings of26th ICALP, Lecture Notes in
Computer Science, pages 10–24. Springer-Verlag, 1999.

5. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems.Journal of the ACM, 43(2):225–267, March 1996.

6. Rocco De Nicola, Daniele Gorla, and Rosario Pugliese. Basic observables for a calulus for
global computing. Technical report, Universita di Firenze, 2004.

7. Cedric Fournet, Georges Gonthier, Jean Jaques Levy, and Remy Didier. A calculus of mobile
agents.CONCUR 96, LNCS 1119:406–421, August 1996.

8. Adrian Francalanza and Matthew Hennessy. Location and link failure in a distributedπ-
calculus. Technical report, University of Sussex, 2005.

9. R.J. van Glabbeek and U. Goltz. Equivalence notions for concurrent systems and refinement
of actions (extended abstract). In A. Kreczmar and G. Mirkowska, editors, Proceedings
14th Symposium onMathematical Foundations of Computer Science,MFCS ’89, Pora̧bka-
Kozubnik, Poland, August/September 1989, volume 379 oflncs, pages 237–248. Springer-
Verlag, 1989.

10. Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a behavioural theory of
access and mobility control in distributed systems.Theoretical Computer Science, 322:615–
669, 2004.

16

11. Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for processes in the
presence of subtyping.Mathematical Structures in Computer Science, 14:651–684, 2004.

12. Matthew Hennessy and James Riely. Resource access control in systems of mobile agents.
Information and Computation, 173:82–120, 2002.

13. K. Honda and N. Yoshida. On reduction-based process semantics.Theoretical Computer
Science, 152(2):437–486, 1995.

14. R. Milner.Communication and Concurrency. Prentice-Hall, 1989.
15. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, parts I

and II. Information and Computation, 1992.
16. Nestmann, Fuzzati, and Merro. Modeling consensus in a process calculus. InCONCUR:

14th International Conference on Concurrency Theory. LNCS, Springer-Verlag, 2003.
17. James Riely and Matthew Hennessy. Distributed processes and location failures.Theoretical

Computer Science, 226:693–735, 2001.
18. Davide Sangiorgi and David Walker.Theπ-calculus. Cambridge University Press, 2001.

17

A DπF Notation

Network representations in DπF are based on the notion of linksetsL. We define the
following operations and judgements, using a set of locationsC:

L/C def
= {〈k1, k2〉 | 〈k1, k2〉 ∈ Land neitherk1, k2 < C} (filtering)

L`k← l
def
= 〈l, k〉 ∈ L (accessibility)

L`kf l
def
= L ` k← l or∃k′.L ` k′← l andL ` kfk′ (reachability)

l↔C
def
= {l↔k | k ∈ C} (component creation)

Lf l
def
= {k↔k′ | k↔k′ ∈ L andL ` kf l} (component reference)

For DπF we have two kinds of network representations, ranged over by∆ andΣ.
We define the following operations on them:

∆ − l
def
= 〈∆N , ∆D ∪ {l}, ∆L〉 (location killing)

Σ − l
def
= 〈ΣN , ΣO/{l}, ΣL/{l}〉 (location killing)

∆ − l↔k
def
= 〈∆N , ∆D, ∆L/{〈l, k〉, 〈k, l〉}〉 (link breaking)

Σ − l↔k
def
= 〈ΣN , ΣO/{〈l, k〉, 〈k, l〉}, ΣL/{〈l, k〉, 〈k, l〉}〉 (link breaking)

∆ + a:ch
def
= 〈∆N∪{a}, ∆D, ΣL〉 (adding a channel)

Σ + a:ch
def
= 〈ΣN∪{a}, ΣO, ΣH 〉 (adding a channel)

∆ + l :locd[C]
def
= 〈∆N∪{l}, ∆D∪{l}, ΣL∪l↔C〉 (adding a location)

∆ + l :loca[C]
def
= 〈∆N∪{l}, ∆D, ΣL∪l↔C〉

Σ + l :locd[C]
def
= 〈ΣN∪{l}, ΣO, ΣH 〉 (adding a location)

Σ + l :loca[C]
def
=

Case C ∩ dom(ΣO) = ∅ then〈ΣN ∪ {n}, ΣO, H ′〉
where:H ′ = ΣH ∪ (l↔C)

C ∩ dom(ΣO) , ∅ then〈ΣN ∪ {n}, O′, H ′〉
where:O′ = ΣO ∪ (l↔C) ∪ (ΣHfC)

andH ′ = ΣH/(ΣHfC)

We next define translations from one network representation to the other, together with
the definition of the observer network knowledge for every representation.

Σ(∆)
def
= 〈∆N , ∆L/∆D, ∅〉 (from∆ toΣ)

∆(Σ)
def
= 〈ΣN , (loc(ΣN)/dom(ΣO∪ΣH)), ΣO∪ΣH 〉 (fromΣ to∆)

I(Σ)
def
= 〈ΣN , ΣO〉 (observer knowledge)

I(∆)
def
= I(Σ(∆))

Finally, we define judgements made using the various network representations. Ide-
ally we would like that distinct network representations that have the same semantic
interpretations yield the same judgements as shown below.

18

Σ ` l :alive
def
= l ∈ dom(ΣO ∪ ΣH) (live locations)

Σ ` l↔k
def
= l↔k ∈ ΣO ∪ ΣH (live link)

Σ `T def
= fn(T) ⊆ ΣN (valid types)

Σ `n:T, ñ: T̃
def
= Σ ` T andΣ + n:T ` ñ: T̃

Σ `N
def
= fn(N) ⊆ ΣN (valid systems)

Σ `k← l
def
= ΣO `k← l or ΣO `k← l (accessibility)

Σ `kf l
def
= ΣO `kf l or ΣO `kf l (reachability)

∆` l :alive, l↔k, T, N
def
= Σ(∆)` l :alive, l↔k, T, N

I+n:L
def
= 〈IN∪{n}, IO∪L〉 (updates)

I` l :alive
def
= l ∈ dom(IO) (live locations)

I` l↔k
def
= l↔k ∈ IO (live link)

I`T def
= fn(T) ⊆ dom(IO) (valid types)

I` l[[P]]
def
= fn(P) ⊆ IN andl ∈ dom(IO) (valid systems)

I` (ν n:T)N
def
= I`TandI+n: T ` N

I`N|M def
= I`N andI`M

∆`obs l :alive, l↔k, T, N
def
= I(∆) ` l :alive, l↔k, T, N (external judgments)

Σ `obs l :alive, l↔k, T, N
def
= I(Σ) ` l :alive, l↔k, T, N

Finally we outline a number of operations on types used in reduction rules and transition
rules.

ch/{l1, .., ln} def
= ch (type filtering)

loc[C]/{l1, .., ln} def
= loc[C/{l1, .., ln}]

inst(loc[C], l, ∆)
def
= loc[{k | k ∈ Cand∆`kf l}] (instantiate)

inst(loc[C], l, Σ)
def
= loc[{k | k ∈ CandΣ `kf l}]

lnk(n:T, Σ)
def
=

(n↔C) ∪ (ΣHfC)
if T=loca[C] andC∩loc(ΣO),∅
∅ otherwise

(link types)

19

B Main Lemmas and Propositions

B.1 Lemmas and Propositions to proveΣ |= M ≈ N implies Σ |= M � N

Lemma 1 (Composition).

– SupposeΣ . M
µ7−→ Σ′ . M′. If Σ ` N for arbitrary systemN, thenΣ . M|N µ7−→

Σ′ . M′|N andΣ . N|M µ7−→ Σ . N|M.

– SupposeΣ . M `(ñ:L̃)l:a!〈V〉−−−−−−−−→ Σ′ . M′ and Σ . N `(ñ:K̃)l:a?(V)−−−−−−−−→ Σ′′ . N′ where K̃ =

L̃/dom(ΣH). Then
• Σ . M|N τ7−→ Σ . (ν ñ: T̃)M′|N′ whereL̃ = lnk(ñ: T̃, Σ)
• Σ . N|M τ7−→ Σ . (ν ñ: T̃)N′|M′ whereL̃ = lnk(ñ: T̃, Σ)

Proof. (Outline) The proof progresses by extracting the necessary structure of the sys-
temsM, N and the networkΣ to be able to re-compose them using rules such as(l-par-
ctxt), (l-par-comm) and(l-rest)

Lemma 2 (Decomposition).SupposeΣ.M|N µ7−→ Σ′.M′ whereΣ `obs M or Σ `obs N
. Then, one of the following conditions hold:

1. M′ is M′′|N, whereΣ . M
µ7−→ Σ′ . M′′.

2. M′ is M|N′ andΣ . N
µ7−→ Σ′ . N′.

3. M′ is (ν ñ: T̃)M′′|N′, µ is τ, Σ′ = Σ and either

– Σ . M `(ñ:L̃)l:a!〈V〉−−−−−−−−→ Σ′′ . M′′ andΣ . N `(ñ:K̃)l:a?(V)−−−−−−−−→ Σ′′′ . N′

– Σ . M `(ñ:K̃)l:a?(V)−−−−−−−−→ Σ′′ . M′′ andΣ . N `(ñ:L̃)l:a!〈V〉−−−−−−−−→ Σ′′′ . N′
whereK̃ = L̃/dom(ΣH)

Proof. (Outline) The proof progressed by induction on the derivation ofΣ . M|N µ7−→
Σ′ . M′.

Proposition 1 (Contextuality of Behavioural Equivalence).If two configurations are
bisimilar, they are also bisimilar under any context. Stated otherwise,Σ1.M1 ≈ Σ2.M2

implies that forΣ1..2 `obs O, T andn fresh inΣ1..2 we have:

– Σ1.M1|O ≈ Σ2.M2|O and Σ1.O|M1 ≈ Σ2.O|M2
– Σ1+n:T.M1 ≈ Σ2+n:T.M2

Proof. (Outline) The proof progresses by the inductive definition a relationR as the
largest typed relation over configurations satisfying:

R =



〈Σ1 . M1, Σ2 . M2〉 | Σ1 . M1≈Σ2 . M2

〈Σ1 . M1|O, Σ2 . M2|O〉
〈Σ1 .O|M1, Σ2 .O|M2〉

∣∣∣∣∣∣ Σ1 . M1RΣ2 . M2

〈Σ1+n:T . M1|O, Σ2+n:T . M2|O〉
∣∣∣∣∣∣
I |= Σ1 . M1 R Σ2 . M2,
I ` T andn is fresh

〈Σ1 . (ν n:T)M1, Σ2 . (ν n:U)M2〉 | Σ1+n:T.M1RΣ2+n:U.M2


and showing thatR ⊆≈; since≈ is the biggest possible relation, this would mean that it
is contextual.

20

B.2 Lemmas and Propositions to proveΣ |= M � N implies Σ |= M ≈ N

Lemma 3 (Observable Network).Consider the process definition verNetStatus〈N ,O〉
k (x)

that is intended to be running at a locationk, connected to all observable locations in
a networkΣ. It returns an output on the parameterised channelx if and only ifN = ΣN
andO = ΣO.

verNetStatus〈N ,O〉k (x)⇐ (ν sync)



verObs〈N ,O〉k (sync)
| verNObs(loc(N)/dom(O), sync)
| sync?(). . . . sync?()︸ ︷︷ ︸

|loc(N)|

.x!〈〉



verObs〈∅,∅〉k (x)⇐ 0
verObs〈N ,O〉+n:∅

k (x)⇐ verObs〈N ,O〉k (x) | ping l.dy!〈〉e
verObs〈N ,O〉+l:L

k (x), L,∅ ⇐ verObs〈N ,O〉k (x) | verLock(l,dom(L), loc(N)/dom(L), x)

verLock(x, y1, y2, z)⇐ (ν sync)go x.



∏

l∈y1

go l.go x.sync!〈〉

|
∏

l∈y2

ping l.dsync!〈〉e

| sync?(). . . . sync?()︸ ︷︷ ︸
|loc(N)|

.go k.z!〈〉



Assume that for arbitrary network representationΣ, Σ+ stands for

Σ + k0 :loca[dom(ΣO)] +  :ch

Then,

Σ+ . k0[[verNetStatus〈N ,O〉k0
()]] −→∗ Σ+ . k0[[!〈〉]] iff N = ΣN andO = ΣO

Proof. (Outline) We prove this lemma by contradiction. We analyse all the possible
cases whyN = ΣN andO = ΣO and then show that for each of these cases,

Σ+ . k0[[verStat〈N ,O〉k0
()]] 6−→∗ Σ+ . k0[[!〈〉]]

Proposition 2 (Definability). Assume that for an arbitrary network representationΣ,
the networkΣ+ denotes:

Σ+ = Σ + k0 :loca[dom(ΣO)],  :ch,  :ch

wherek0,  and are fresh toΣN . Thus, for every external actionµ and network
representationΣ, every non-empty finite set of names Nm whereΣN ⊆ Nm, every fresh
pair of channel names,  < Nm, and every fresh location namek0 < Nm
connected to all observable locations inΣO, there exists a systemTµ(Nm, , , k0)
with the property thatΣ+ `obs Tµ(Nm, , , k0), such that:

1. Σ . N
µ−→ Σ′+bn(µ) . N′ implies

Σ+ . N |Tµ(Nm, , , k0) =⇒ Σ′+ . (ν bn(µ)) N′ | k0[[!〈bn(µ)〉]]

21

2. Σ+ . N |Tµ(Nm, , , k0) =⇒ Σ′+ . N′, whereΣ′+ . N′ ⇓@k0, Σ
′
+ . N′ 6⇓@k0

implies that

N′ ≡ (ν bn(µ))N′′|k0[[!〈bn(µ)〉]] for someN′′ such thatΣ.N
µ

=⇒ Σ′+bn(µ).N′′.

Proof. (Outline) We have to prove that the above two clauses are true for all of the four
external actions. Ifµ is one of the two non-standard actions,kill : l and l = k, the test
required are:

l[[kill]] | k0[[!〈〉]] | k0[[ping l.ping l.d?().!〈〉e]]

and

l[[break k]] | k0[[!〈〉]] | (ν sync)


l[[ping k.ping k.dgo k0.sync!〈〉e]]
| k[[ping l.ping l.dgo k0.sync!〈〉e]]
| k0[[sync?().sync?().?().!〈〉]]



respectively. Ifµ is the bound input action (˜n : L̃)l : a?(V), whereL̃ = lnk(ñ : T̃, Σ) for
someT̃, the required system is

(ν ñ: T̃)(l[[a!〈V〉.go k0.?().!〈〉]] | k0[[!〈〉]])

For the output case whereµ is (ñ: L̃)l : a!〈V〉, the requiredTµ(Nm, , , k0) is

k0[[!〈〉]] |

l





a?(X).(ν sync)



m∏

i=1

if xi <Nm.sync!〈〉 |
|X|∏

j=m+1

if x j =v j .sync!〈〉

| sync?()..sync?()︸ ︷︷ ︸
|X|

.go k0.(νc)


verNwStatus〈N ,O〉k0

(x1..xm, c)

| c?(x).

(
?().!〈x1..xm〉
| go x..kill

)








such that

verNwStatus〈N ,O〉k0
(x1 . . . xm, y)⇐ (ν k′ :Tk′)go k′.(νd)

(
verNetStatus〈N ,O〉+(x1..xm:K̃)

k′ (d)
| d?().go k0.y!〈k′〉

)

andTk′ = loca[Nm∪{x1..xm}], K̃ = L̃{x1..xm/̃n}

For the sake of presentation ,we assume that the firstv1 . . . vm in V = v1 . . . v|V| in µ are
bound, and the remainingvm+1 . . . v|V| are free; a more general test can be construct for
arbitrary ordering of bound names inV using the same principles used for this test. We
also use the conditionalif x<Nm.P as an abbreviation for the obvious nested negative
comparisons betweenx and each name inNm.

22

