A Theory of System Behaviour in the Presence of
Node and Link Failures (Extended Abstract)

Adrian FrancalanZaand Matthew Hennessy

University of Sussex, Falmer Brighton BN1 9RH, England,
{adrianf,matthewh}@sussex.ac.uk

Abstract. We develop a behavioural theory of distributed programs (systems) in
the presence of failures such as nodes crashing and links breaking. The frame-
work we use is that of B, a language in which located processes, or agents, may
migrate between dynamically created locations. In our extended framework, these
processes run on a distributed network, in which individual nodes may crash in
fail-stop fashion or the links between these node may become permanently bro-
ken. The original language,/Dis also extended by a ping construct for detecting
and reacting to these failures.

We define a bisimulation equivalence between these systems, based on labelled
actions which record, in addition to th&ect actions have on the processes, the
effect on the actual state of the underlying network and the view of this state
known to observers. We prove that the equivalendallg abstract in the sense

that two systems will be dfierentiated if and only if, in some sense, there is

a computational context, consisting of a surrounding network and an observer,
which can see the flerence.

1 Introduction

It is generally accepted thaiartial failures are one of the principal factors preclud-

ing location transparency in distributed settings suctvide-area networkq4], large
computational infrastructures which may even span the globe. Because of this, vari-
ouslocation-awarecalculi and programming languages have arisen in the literature to
model the behaviour of distributed programs in the presence of failures, and to study
the correctness of algorithms is such a setting. The purpose of this paper is to:

— invent a simple framework, a distributed process calculus, for describing computa-
tions over a distributed network in which individuabdesandlinks between the
nodes are subject to failure

— use this framework to develop a behavioural theory of distributed systems in which
these failures are taken into account.

Our point of departure is D[12], a simple distributed version of the standardalculus
[15, 18], where the locations that host processes model closely physical network nodes.
Ignoring the type system developed for,vhich is orthogonal to the issues addressed

here, we consider the following threer@bstract server implementations as motivation:

server < (vdata(I[req?(x, y).data(x, y)] | I[[data?(x, y).y!{f (X))])

servD < (vdata) (I[req?(x, y).go ky.data(x,)])

| k[date?(x, y).go Ly!(f(x))]

go k;.datal(x, syn¢
I Nreq?(x, y).(vsyng [| go ko, ky. data(x, syn¢ ”
| synctP(x).y!(x)

| ky [[data?(x, y). (gg Lzy'f;(? 12>(X)>)]l

servD2Rt < (vdata)

The three systenserver, servD andservD2Rt implement a lookup server that accepts
a single request for a lookup on chanreg at locationl with two argumentsx being

the value to be looked up awybeing the return channel on which to return the required
information. A typical client for these servers would have the following form, sending
the naméd as the value to be looked up aret as the return channel:

client < I[reql|l, ret)]

Every server forwards the request to an internal database hidden from the client, denote
by the scoped channeiata which looks up the value using an unspecified function
f(x). The three implementationsftir by where the internal database is located and
how it is handled. More specificallgerver holds the databadecally atl and carries
out all the processing there; by contrastrvD andservD2Rt distribute the database
remotelyat locationk;. The latter two server implementations alsfeli by how the
remote database is accesssgtvD accesses the database using the direct routelfrom
to ki; servD2Rt forwards the service requests along two concurrent routes, that is the
direct one froml to k; and an indirect route using an intermediary négdeand non-
deterministically selects one of two results if both routes are attiksuitively, these
three server implementations are not equivalent because they exhibit distinct behaviour
in a setting with node and link failure. For instance, if négéails, servD and servD2Rt
may not be able to service a client request wherssger would continue to work
seamlessly. MoreoveservD and servD2Rt are also distinct because if the link between
| andk; breaksservDmay block and not service a request whitkgvD2Rt would still
operate as intended. Despite the fact that these three implementations are qualitatively
different, it is hard to distinguish between them im tbeories such as [10].

In this paper, we develop a behavioural theory that tells these three systems apart.
We use extended/Dconfigurations of the form

2>N

whereX is a representation of the current state of the networkNaocdnsists of the sys-
tems such as those we have just seen, being software executing in a distributed manner

1 Here the construdo |, k.P is shorthand fogo l.go k.P

overX. HereX records the set of nodes in the network, ttstétus that is whether they
arealive or dead and theirconnectivity that is the set of (symmetric) links between
these nodes. On the other hahdwill be more or less a standard system description
from Dnr, augmented with a conditional construct for reacting to network failures. We
believe that this results in a succinct but expressive framework, in which many of the
phenomena associated with practical distributed settings, such as routing algorithms
and ad-hoc network discover, can be examined.

The corresponding behavioural theory takes the forifwvefk) bisimulation equiv-
alence [14] based on labelled actions

Z’>NL>Z/I>N/ (1)

where the label represents the manner in which an observer, also running on the net-
work X, can interact with the systei. This interaction may not only change the state

of the system, td\’, in the usual manner, but als@ect the nature of the underlying
network. For instance, an observer may extend the network by creating new locations
or otherwise induce faults in the network by killing sites or break links between sites,
thereby capturing, at least, some of the reactioN ¢d dynamic failures.

It turns out that the definition of the actions in (1) needs to be relatively sophisti-
cated: although the system and the observer may initially share the same view of the
underlying networkg, interactions quickly give rise to situations in which these views
diverge More specifically, observers may learn of new nodes in the system as a result of
interaction, but at the same time, cannot determine the state of such nodes and the code
executing at them because they are not ableeémwhthem. This may happen either
because the newly discovered nodes are completely disconnected or else because the
observer does not have enough informationlétermine a routevhich leads to these
nodes. As a result, in (1) above, the network representatio®eds to somehow record
the actual full state of the underlying network, together withdbserver’s partial view
of it.

We choose to develop the theory in terms of the calculus itself, despite the widely
held view that representation of nodasly is suficient; this would typically entail en-
coding a link between locatidnandk as an intermediary nodk, encoding migration
from | to k as a two step migration fromto Ik andlk to k and finally encoding link
failure as the intermediary nodle failing. We believe that a calculus with partial con-
nection between nodes is very natural in itself since WANs are oft¢éa clique. This
calculus also gives rise to an interesting theory of partial views that we believe deserves
to be investigated in its own right. In addition, we would also like to explore the inter-
play between node and link failure and their respective observation from the software’s
point of view. With this in mind, we anticipate that any such encoding would be cum-
bersome to use and the corresponding theory of partial views would be too complicated
to develop. Moreover, it is unlikely that this resultant theory would be fully abstract,
due to the fact that any encoding would typically decomposes atomic reductions such
as migration into sub-reductions, which in tutffierts the resulting bisimulation equiv-
alence; see [9].

The paper is organised as follows: Section 2 introduces &8nd the reduction se-
mantics. In Section 3 we present an initial definition of actions feF based on the

Table 1.Syntax of typed BF

I
Types

. SSRi=a|d
T,U,W ::= ch | locs[C] C.D = {Up.... U}
Processes
P,Q = ul(V).P |u?(X).P | «u?(X).P |ifv=u.P[Q] |0 |PIQ |(vn:T)P
| gou.P kil |break u | ping u.P[Q]
Systems

M,N,O ::=I[P] | N|M [(vn:T)N

general approach of [11]. The resulting bisimulation equivalence can be used to demon-
strate equivalencies between systems, but we show, by a series of examples, that it is
too discriminating. In Section 4, we revise the definition of these actions, by abstract-
ing from internal information present in the action labels, and show that the resulting
equivalence igully abstractwith respect to an intuitive form afontextual equivalence

This means that two systems will befféirentiated by the bisimulation equivalence if

and only if, in some sense, there is a computational context, consisting of a network and
an observer, which can see théfeience. The complete proofs, elaborate discussions
and extensive examples may be found in the corresponding technical report [8].

2 The language

We assume a set ofariables Vars, ranged over by, y,z ... and a separate set of
names Nawmes, ranged over by, m,. .., which is divided into locationsl ocs, ranged
over byl, k, ... and channelsCuans, ranged over by, b, c, Finally we usay, v, ...

to range over the set adentifiers consisting of either variables and names.

The syntax of @F is given in Figure 1, where the main syntactic category is that
of systemsranged over by, N; these are essentially a collectionlofated processes
or agentsl[P], but there may also be occurrences of typedped namegy n: T)N.
Although we could employ the full power of the type system far[DO], for simplicity,
we use a very simple notion of type and adapt it the purpose at hand. Thus u§ed
as a channel ilN, thenT is simply ch; however if it is a location theM = loc,[L]
records it'sstatusS, whether it is alivea or deadd, and the set of locationato which
itis linked,{l4,...,In}.

The syntax for agent®, Q, is an extension of that in/D There is input and output
on channels; her¢ is a tuple of identifiers, an¥ a tuple of variables, to be interpreted
as a pattern. We also have the standard forms of parallel, replicated input, local decla-
rations, a test for equality between identifiers and an asynchronous migration construct.
We also introduce a ping conditional construfping k.P[Q1], in the style of [2, 1, 17],
branching td[P] or I[Q] depending on thaccessibilityof k from I. Finally we have
two new constructs to simulate failurdgkill] kills the location|, while k[break 1]
breaks the link betweehandk, if it exists. We are not really interested in program-
ming with these last two operators. Nevertheless, when we come to coosidektual

behaviour their presence will mean that the behaviour will take account fiieets of
dynamicfailures.

In this extended abstract, we will assume the standard notiofree&nd bound
occurrences of both names and variables, together with the associated coneepts of
conversion andsubstitution Furthermore, we will assume that all system terms are
closed that is they have no free occurrences of variables.

Reduction semanticsThis takes the form of a binary relation
A>N — A4 >N’ (2

where4 and 4’ are representations of the state of the network. Intuitively this must
record the set of locations in existence, whether they are alive or dead, and the existence
of any links between them.

Definition 1 (Network representation). We first introduce some notation to represent
thelinks in a network. A binary relatior over locations is called &nk setif it is:

— symmetric, that is{l, k) € £ implies(k, I} is also inL
— reflexive, that is{l, k) € £ implies(l,|) and(k, k) are also inL.

The latter property allows the smooth handling of the degenerate case of a process
moving from a sitéto | itself. Also, for any linkseL, we letdom(£) denote its domain:
that is the collection of locationksuch that(l,l) € £. In the sequel, we also use the
abbreviationl &k in link sets to denote the paitk 1), (k, k), {I,Kk), (k).

A network representatiofhis any triple? (N, D, £) where

— N is a set of names, as before; we now IE€N) to represent the subset &f
which are locations

— D C loc(N) represents the set of dead locations, as before.

— L Cloc(N) x loc(N) represents the set of connections between locations

So we may takel and4’ in (2) above to be simple network representations. For-
mally we call pairsd » N configurationswhenever every free name hoccurs in the
name component of, and we define reductions to take place between such configu-
rations. Since not all nodes are interconnected, the reduction semantics is based on the
notions ofaccessibilityandreachabilitybetween nodek is accessible frorhin 4, de-
noted a1 + k < I, if and only if k is alive and there is a (direct) live link betweén
andk; a nodek is reachablefrom | in 4, denotes ad + ke« |, if there exists ahain of
live links between the two nodes, whegeery intermediate node is alivéd/e refer the
reader to the Appendix for the formal definitions.

For convenience, the rules governing these reductions are given in the three separate
figures. These rely on certain notation for checking the state of nodes and links in a
network and of updating the network; once again, we refer the reader to the Appendix
for the formal definitions of the notation used.

2 In this definition, we only represent live links ihand omit dead links; it turns out that the
latter are never used. Nevertheless, the representation can easily be extended to represent dead
links by adding another linkset, s&y.

Table 2.Local Reduction Rules forAF

I
Assuming 4 + | : alive

(r-comm)
A»1[al(V).P] [1[a?(X).Q] — 4»>I[P] [1[Q{V/X]
(r-rep) (r-fork)

A 1[#a?(X).P] — 4eI1[a?(X).(P|*a?(X).P)] 4-I[PIQ] — 4»~I[P]|I[Q]

(r-eq) (r-neq)

As[fu=uPO] — A-1[P] A»I[fu=v.P[O]] — A-1[Q] "

Table 3.Network Reduction Rules fordP

I
Assuming 4 + | : alive

(r-go) (r-ngo)
Ar kel A¥ kel
1[0 kPl — 4- K[P] T 1[90kP] — 4 K[0]
(r-ping) (r-nping)

¥ kel

T Tpng KPTOT = 7171 © "' Z+i[ping KPTOT — 4-1[0]

(r-kill) (r-brk)

TS0k — (A=1)-1[0] A»I[break] — —ToR-T00] ~ ¢

(r-newc)

Av1[(vc:ch)P] — 4> (vc:ch)I[P]

(r-newl)

locs[D] = inst(locs[C], 1, 4)
> [(vKk: Tocs[C]) P] — 4> (vk: Locs[D]) I[P]
1

The first set of rules, in Figure 2, give the standard rules for (local) communication,
and the management of replication, matching and parallelism, and are derived from the
corresponding rules forDin [12]. But note that they are all depend on the requirement
thatl, the location of the activity, is currently alive; this is the intent of the predicate
A+ alive.

The second set, in Figure 3, is more interesting. Rulgs) and (r-ngo) state that
a migration is successful depending on the accessibility of the destination. Similarly,
(r-ping) and (r-nping) are subject to the same condition for the respective branchings.
Note thatl[ping k.P[Q1] yields partial informationabout the state of the underlying
network: it can only determine thdtis inaccessible, but does not give information
on whether this is caused by the failure of ndgéhe breaking of the link « k, or
both. The rulegr-kill), (r-brk) make the obvious changes to the current netwark; |
means changingj to be a dead site ial, while 4 — | & k means breaking the link
betweenl andk. Finally (r-newc) and (r-newl) regulates the generation of new names;

Table 4.Contextual Reduction Rules fonB
I
(r-str)
AN =4>N AN —DA>M A>M=4>M
AN — A M

(r-ctxt-par)

(r-ctxt-rest) , N
A+n:TeN — A +n:UsM 4N — LN

: T 4>NM — 4> N'M
Ad>(vn:T)IN — 4> (vn:U)M A>MIN — 4> M|N’

Table 5.Structural Rules for BF

(s-comm) NIM = M|N

(s-assoc) NIM)IM” = N|((M|M")

(s-unit) N|I[O] =N

(s-extr) ¢n:T)(NIM) = N|(vn:T)M n ¢ fn(N)
(s-flip-1) vn:T)(vm:UN = (vm:U)(vn:T)N n¢ fn(U)
(s-flip-2) ¢n:T)(vm:U)N = (vm:U-n)(vn: T+m)N ne fn(U)
(s-inact) ¢n:T)N=N n¢ fn(N)

for example(r-newl) launches a new location with a declared type[C] using the
functioninst(locs[C], I, 4). Intuitively, this functions returns the location typecs[D],
where the set of locations is the subset of locations @{l} which arereachablefrom

I. We refer the reader to the technical report, [8], for an example explaining how this
function works.

Finally, in Figure 4 we have an adaptation of the standamntextualrules, which
allow the basic reductions to occur @valuation contextsThe rule(r-str) allows re-
ductions up to a structural equivalence, in the standard manner, using the identities in
Figure 5. The only non-trivial identities in Figure 5 gseflip-1) and(s-flip-2), where the
types of the successively scoped locations need to be changed if they denote a link be-
tween them, thus avoiding unwanted name capture. The (rdespar) and(r-ctxt-rest)
allow reductions to occur under contexts; note that the latter is somewhat non-standard,
but as reductions may induce faults in the network, it may be that the status and con-
nectivity of the scoped (location) names afected by the reduction, thereby changing
TtoU.

This completes our exposition of the reduction semantics. At this point, we should
point out that in a configuration such 4s N, contrary to what we have implied up to
now, 4 does not give a completely true representation of the network on which the code
in N is running; the type information associated with scoped locations encodes parts of
the network/ that is hidden from the observer.

Example 1 (Syntax).et 4 represent the networkl, a}; 0; {| <> 1}) consisting of a chan-
nela and a live nodé andM; the system

(v k2:1oc,[0]) (v ki :1ocq[{l, ka}]) (I[al(k2).P] [ko[Q)

HereM; generates two new locatioksg k;, wherek; is dead and linked to the existing
nodel andk; is alive linked tok;. Although4 only contains one nodk the located

procesd[al(ky).P] (as well ask;[Q]) is running on a network ofhree nodestwo
of which, k;, k, are scoped, that is not available to other systems. We can informally
represent this network by

| k1 ko
O > @ < o)

where the nodes ande denote live and dead nodes respectively. Note that the same
network could be denoted by the systéin

(vki:Locg[{l}]) (vkz:1oca[tki}]) (I[al<kz).P] k[Q])

Note also that the two systems are structurally equivalat= N, through(s-flip-2).
As a notational abbreviation, in all future example we will omit the status annotation,
a, in location declarations; so for example systiimwould be given as

(vki:1ocg[{l}]) (vk2:{ka}) (I[al¢k2).P] [k2[QI)

3 A Labelled transition system

In this section we give a labelled transition system for the language, in which the la-
belled actions are intended to mimic the possible interactions between a system and an
observer; it is natural to assume that both share the same underlying network. However
this first example demontrates that our representation of this joint network is no longer
suficient, if we want to faithfully record thefiect interactions have on systems because
they may lead to a discrepancy betweengpstem network vieand theobserver net-

work view

Example 2 (Observer's Network vievet 4 andM; be defined as in Example 1. An
observelO at sitel, such ad[a?(x).P(x)], can gain knowledge of the new locatig,
thereby evolving td[P(k2)]. But even though it is in possession of the nakagit's
knowledge of the state of the underlying network is no longer represented dryd
there is now a mismatch between the observes view of the network, and the systems
view. The system view is nowt’ = ({a, |, kz}; 0; {l & 1, ko & ko}), that is4 augmented
by the scope extrusion of thige nodek; linked to a private (dead) node, which is, in
turn, linked tol. But the observer’s view is quiteftierent: the nodéis accessible to the
observer, since it has code running there; nevertheless, even though the observer knows
aboutk; at| in P(ky), it does not have enough information ieachk, from |. As a
result, it has no means how to determkais state in terms of its status and connections
nor interact with any code &. This means that the representation of the observers
view, requires a new kind of annotation, for nodes suck.aghich are known, but not
accessible

I ko

o ?

Stated otherwise, in order to give an Its semantics, we need to refine our represen-
tations of networks.

Table 6.Operational Rules(1) for BF

I
Assuming 2 + | :alive

(l-out) (I-in)

T:al(V) Ta?(v) Vel
2o l[al(V).P] — 2= I[P] s 1[a?(X).P] —> Z» [[P{V/X}]

(I-in-rep) (I-fork)
v I[+a?(X).P] — X » I[a?(X).(P | xa?(Y).P{YX})] Z»I[P|Q] — ZX»I[P]|I[Q]

(I-eq) (I-neq)
2o [ifu=u.P[Q]] — X »I[P] e 1[ifu=v.P[Q]] — Z»1[Q] Y

Definition 2 (Effective network representations).An effective network representa-
tion X is a triple (N, O, H), where:

— N is a set of names, as before, divided ildo(N) and chan(N),

— O s alinkset, denoting the live locations and links that asbservabldy the con-
text.

— H is anotherlinkset, denoting the live locations and links that dr&den(or un-
reachable) to the context.

We also assume three consistency requireméntstom(O) C loc(N), (i) dom(H) C
loc(N) and (iii) dom(@)ndom(H)=0.

The intuition is that an observer running on a network representatiknows about
all the names ¥, denoted agy, and has access to all the locationglom(0). As a
result, it knows the state of every locationdom(Q) and the live links between these
locations. The observer, however, does not have access to the live locatitmms(iH);
as a result, it cannot determine the live links between them nor can it distinguish them
from dead nodes. Dead nodes are encodeédasloc(N)/dom(O U H), that is, all the
location names inV that are not mentioned in eithér or H; these are conveniently
denoted as the deadsg} . We also note that theffective network representatian
does not represent live links where either end point is a dead node, since these can
never be used nor observed. SummarisEidpold all the necessary information from
the observer’s point of view, that is, the names known the state known, and the
state that can potentially become known in future, as a result of scope extrsion,
As a shorthand notation, we omit channel names fromXnyn the remainder of the
paper.

With this refined notion, we can now represent the observers view of Example 2 as
N = {l,ko}, 0 = {| &1} andH = (k, & ky}. In the sequel, we will useonfigurations
of the formX > N, whereZ2' is a network representation, aid satisfies the obvious
consistency constraints with respect to it.

We now define a labelled transition system forF) which consists of a collection

of actions over configurationg; > N AN AN N’, defined by the transition rules in
Figures 6, 7 and 8, whegecan be an internal actiom, a bound input,r{* T)I : a?(V)

Table 7.Network Operational Rules(2) forAF

I
Assuming 2 + | : alive

(I-kill) (I-brk)
Flek

Zel[kil] > (& -D)»1[0] Z»I[breakk] — X — (1 k)»>I[0] :

(I-halt) (I-disc)
PEIH] 2 bops | alive oK bops | ok
ZDN——)(E—')DN ZDN—>Z—(|<—>|()I>N
(--go) (I-ngo)

= Ar kel = A¥ kel
Av1[gokP] — 4>K[P] Av1[gok.P] — 4>K[0]

(I-ping) (I-nping)
7 Ar kel - A
4> 1[ping kP[Q]] — 4+ I[P] A [ping k.PTQ1] — 4»1[Q]

¥ kel

(I-newc)

A»1[(veich)P] — 4» (vcich) I[P

(I-newl)

- locs[D] = inst(locs[C], 1, 4)
A I[(vk: Locs[C]) P] — 4 > (vk:Locs[D]) I[P]
1

or bound output,r(* T)I : al(V), adopted from [11, 10], or the new labekd) : | and
| « k, denoting external location killing and link breaking respectively. In this extended
abstract we refrain from commenting on the definition of these actions and refer the
full paper, [8]. We only highlight the fact that the transition rules introducing external
actions such ag-out), (I-in), (I-halt) and (I-disc) are subject to judgements of the form
X Fops | & alive, requiring that is alive andaccessible by the observer

With these actions we can now define in the standard manner a bisimulation equiv-
alence between configurations, which can be used as the basis for contextual reasoning.
Let us write

2E M~ N

to mean that there is a (weak) bisimulation between the configurafien$ and2 > N

Example 3 (Server Implementations Revisit€nsider the network:

o
/ ko \
(I > O
I kg
formally represented & = (N, O, H), whereN = {I, ki, ko},0 = {l & kg, | ks, ki
ko} andH = 0. If we assume that the three server implementations presented earlier in

the Introdcuction were running over, we are able to formally argue that

2 | server #in servD #in; servD2Rt

10

Table 8.Contextual Operational Rules(3) fordb

I
(l-open)
(A:T)l:al(v)
2+nN:Teo N — "> N’
(n:U,A:T)l:al(V)

Ze(vniTIN ——S 2" N’

l,La#zneV,U=T/2p

(I-weak)
i T):a?
2+n:T>N MZ’> N’
(n:T,A:T):a?(V)

2o N —— 2> N

lLazneV, (Z+f:T) Fops T

(I-rest-typ)
sik:To N IV 5 5:0) +k:Us N _
@A) - l.a#kefn(T)
2> (vk:T)N —— Z+i:U»> (vk:U)N’
(I-par-ctxt)

(I-rest)
Z+n:Te N -5 5 +n:Us N
2> (vn:T)N Ny 5 > (vn:U)N’

2 >N LZWN/
P
ng) TeNM -5 X s N M
s M|N -5 37 M|N’

M

(I-par-comm)
1) N2V s @) M IV, 5
> NIM 5 Zs (vA:T)(N' M)
> MIN 5 2 (v T)(MINY)

,PM/

To see this, it is sfficient to examine the behaviour of these systems subsequent to an
. lesk ill:k
actions such a& and <.

One can also use the Its to establish positive results. For examptgy fer({l, k}, {| &
k}, 0), one can prove

ik E I[ping k. al()[OT] =it k[go l.a! ()]

Nevertheless, we can argue, at least informally, that this notion of equivalence is too
discriminatingand the Its labels tomtentional because we distinguish between con-
figurations where the fferences in behaviour arefiii¢ult to observe. Problems arise
when there is an interplay betwebitidennodes, links and dead nodes.

Example 4 (Inaccessible Network Statedt 2 be the network in which there is only
one nodel, which is alive and consider the two systems

Mz & (vKe:{l}) (vka:{ke}) (v Ks: (K1, ko}) I[al(kz, ks).P]
N2 & (vki:{l}) (vKk2:{ka}) (vka: {k}) I[al(kz, ks).P]

WhenM; andN; are running oi, the codd[al(k,, k3).P], present in bothM, andN,,
is effectively running on the following respective networks, due to the newly declared
locations:

11

k2 k2
(o] (e}

IR Vel B TRV
\ \

o) o)
k3 k3

Using our Its, we determine thatE M, #i: N; because the configurations give rise to

differentoutput actions:

ko:0, ka:{ka})l:al(ka,k:
oM, lelelelalels v 10 4+ ket (ko) > (vka {1, ko, ka}) I[P]
k>:0, k3:0)l:al(ky,
5o N, LRI o0 ke 05 (vka: Ko, ka)) I[P]
The diference lies in the type at which the locatianis exported:M, exportsks con-
nected td, whereas irN, exports a completely disconnectied
However, ifk; does not occur irP, thenk; can never be scope extruded to the
observer and thuls, andks will remain inaccessible in both systems. This means that
the presence (or absence) of the llak- ks can never be verified by the observer and
thus there should be no observablfatience betweenl, andN, running onX.

Example 5 (Interplay between Node and Link Failu¥¥® consider the following three
configurations together with the depiction of the respective networks over which the
common located proce$fga! (k).P] is running:

M% <= {l,al {li—11},0) > (vk:Locg[{}])I[alk).P]

— 00— O —

M2 < ({l,a}, {l; 11}, 0) > (v k: Toca[0])I[al (k).P]

Ox ex o x

M§<=({I,a},{|1<—>|1},®)>(vk:loca[(b])l[a!(k).P] . O

Intuitively, no observer can distinguish between these three configurations; even though
some observer might obtain the scoped n&rbg inputting on channe atl, it cannot
determine the dierence in the state of network. From ruleping), we conclude that
any attempt to pinds from | will yield the negative branch. However, such an observa-
tion does not give the observer enough information about whether it was caused by a
node fault ak, a link fault betweeh andk or both. As a result, we would like to equate
all three configuration. However, our Its specifies that all three configurations perform
the output with diferent scope extrusion labels, namely:

(Al 1,0y My L0 s, 0y - 10P]

Wty 0ys M2 L= gy 0y 1[P)

{1}

(Locl®F2 1y 1o 1), (ko k) > I[P]

{11y, 0ys M3 2220,

and as a result, these configurations affedéntiated byyiy;.

12

4 Reduction barbed congruence

The fundamental problem with the Its of the previous section is that when new loca-
tions are scope extruded, the associated information, coded in the types at which they
are exported, is too detailed. The current actions carry too rmiemal information

and hence, we need a revised form of action, which carry just the right amount of infor-
mation.

However, before we plunge into our revision, it is best to have yardstick with respect
to which we can calibrate the appropriateness of the revised labelled actions, and the
resulting bisimulation equivalence. We adapt a well-known formulation of contextual
equivalence to BF, [13, 11], calledreduction barbed congruenc@&his relies on the
notion of abarb, a collection of primitive observations which can be made on systems.
Let us writeX > N |,@ to mean that an output on chanmeit an accessible location
| can be observed. Then, we would expect all reasonable behavioural equivalencies to
preserve these barbs. But the key idea in the definition is to use a notiamiafxtual
relation over configurations, in which the contexts only have access mbgervable
part of the network.

Definition 3 (Contextual Relations).A relationR over configurations isontextualf:

(Parallel Systems)

, , N — I = M[OR N|O
e 2> MRY > NandXops O, 27 Fops O implies 7 :z O||M R O||N
(Network Extensions)

e > MR »>NandZ+ops T, 2 Fops T, Nfresh implies T+n:TEM RN

whereX +ops O andX +qps T restrict the observe®© and connections of location types
to accessible locations only.

Definition 4 (Reduction barbed congruence)Let = be the largest relation between
configurations which isontextual preservedarbsand isreduction-closed

Note that, apriori, this definition allows us to compare configurations which have dif-
ferent networks. However, it turns out that wheneVerM = 2’ » N, the external parts
of 2 and>” must coincide. In the sequel, we abbreviateM = >'» N, the cases where
both networks are identical, = M = N.

We now outline a revision of our labelled actions with the property that the result-
ing bisimulation equivalence coincides with the yardstick relatenThe idea is to
reuse the same actions but to simply change the types at which bound names appear.
Currently, these are of the forfh= ch or locs[C], where the latter indicates the sta-
tus of a location and its connectivity. We change these types to new types of the form
L,K = {l; & ky,...,lj &k} whereL,K are linksets. these represent the new live nodes
and links, which are made accessible to observers by the extrusion of the new loca-
tion. Alternatively, this is the information which is added to the observable part of the
network representatiol, as a result of the action.

The formal definition is given in Figure 9, which is expressed in terms of a function
Ink(n : T,), the definition of which is relegated to the Appendix. Intuitivelynifs

13

Table 9.The derived Its for BF
I

(I-deriv-1) (I-deriv-2)
" (A:T)l:al(v)
2eN— 2" N) 2o N—— 3's N .
e —pe kil 1wk AW f = Ink(n: 1, 2)
2eNr—X'»N e N———5 2" N
(I-deriv-3)
2>N M) 2> N e
L = Ink(fA:T,2)

fL)l:a?
5o N A N

a channel T = ch) or a dead locationT(= locq4[L]), Ink(n: T,2) returns the empty
link set®. Otherwise, when it is a live locatiolT = 1oc,[(C]), it constructs the linkset
denoting the nodes and links that are made accessible by the addition of the new location
n: loc,[C] to the networkX.
These revised actions give rise to a new bisimulation equivalence over configura-
tions,~, and we use
2EM=~N

to mean that the configuratiods- M andX » N are bisimilar.

Example 6 (Derived bisimulationdRecall that, in Example 4, we hadi@irent actions

for 2> M, and2 > N, because& » M, exportedks with a link tok, andX > N, did not.
However,2 contains only one accessible notleand extending it with the completely
disconnected new node does not increase the set of accessible nablgsFurther-
more, increasing + k; : 0 with a new nodeks, linked to the inaccessiblk, (in the
case of2 » My) or completely disconnected (in the caseXof N,), also leads to no
increase in the accessible nodes. Correspondingly, the calculatiomglaf. 0, 2) and
Ink(ks : {ko}, 2+ ks : 0) both lead to the empty linkset type. Formally, we get the same
derived actions

o M, EMNRID o0 1 ks (ko) o (vka: (1, ko, Ka)) I[P

o N, (US54 ka0 (v {], ko, kal) I[P]

Furthermore, if° contains no occurrence &f, we can go on to show £ M ~ N.
On the other hand, P is al(k;), the subsequent transitions are:-

Skt 0 + ks (ko) > (vke (I, ko, ka}) I[P] i,
Sakoi0 + k100 (v {l, ko, ka)) I[P] Hlade,

whereL/K = {k, < ks}. More specificallyL andX hold information directly related
to k; such ak; « | together with information related to previously inaccessible nodes
such ask; < ks, which has now become accessible as a result of expdetinthe first
derived actionl; : L)I : al(k;) thus exports the extra (previously hidden) information
ko, & k3 in L and based on this discrepancy, we hae M, £ N,

Revisiting Example 5, the threeftéirent actions oM3, M3 and M3 now converge

. ; k:0)l:al(k
to the same actiom} A I[P], henceX £ M} ~ M3 ~ M3.

14

The main result of this paper can now be stated:
Theorem 1. InDnF, 2 E M ~ Nifandonly ifX = M = N

Proof. (Outline) In one direction, this involves showing thais a relation over con-
figurations satisfies the defining propertieseduction barbed congruenc&he main
problem here is to show that is contextual, and in particular thatE M ~ N im-
pliesX = M|O ~ NJO for everyO which only has access to the external (accessible)
part ofX. This in turn involves developin@ecompositiorandCompositioemmas for
derived actions from configurations of the foin- M|O. The overall structure of the
proof is similar to the corresponding result in [10], Proposition 12, but the details are
more complicated because of the presence of the network. We therefore relegate to the
Appendix the formal statement of these lemmas and refer to the full paper, [8], for an
elaborate presentation of the proofs.

The essential part of the converse is to shoefinability, that is for every derived
action, relative to a netwotk, there is an observer which only uses the external knowl-
edge ofX to completely characterises th&ext of that action. These observers have
already been constructed for simpler languages suahcasculus, in [11], and B, in
[10]. Here the novelty is to be able to characterise the observdiget ¢hat actions
have on a network. But it turns out that for everyve can define an obsernv@g which
when run on an arbitrary netwogk can determine whether the external or accessible
part of 2" coincides with that o’ using a process callegerNetStatuswhich we also
include in the Appendix. The complete proof is included in the full paper, [8].

5 Conclusions and Related Work

We have presented a simple extension af i which there is an explicit represen-
tation of the state of the underlying network on which processes execute. Our main
result is afully-abstractbisimulation equivalence with which we can reason about the
behaviour of distributed processes in the presence of specific network configurations
with dead nodes and partial connections and also dynamic network failures. To the best
of our knowledge, this is the first time system behaviour in the presenivekadfail-

ure andpermanenipartial accessibility of nodes has ever been investigated. It is also
the first time the interplay between node and link failure and their respective program
observation has been investigated in a process calculus setting.

Application and Future Work:Our work is best viewed as a well-founded framework
from which numerous variations could be considered such as unidirectional links, ping
constructs that areventuallycorrect, transient failure and persistent code. In our more
immediate research, we intend to use our present results to develop a théauit-of
toleranceand to apply it to example systems from the literature such as [5].

As it currently stands, we believe our work lends itself well to the study of dis-
tributed software that needs to be aware ofdlipamiccomputing context in which it
is executing; various examples can be drawn from ad-hoc networks, embedded systems
and generic routing software. In these settings, the software typidsitypversnew
parts of the neighbouring network at runtime amtlatests knowledge of the current
underlying network with changes caused by failure.

15

Related Work: There have been a number of studies on process behaviour in the pres-
ence ofpermanent node failurenly, amongst which [17], which was our point of de-
parture. In this work, they developed bisimulation techniques for a distributed variant
of CCS with location failure. Our work is also very close to the pioneering work [2,
1]; their approach to developing reasoning tools is however quiferdint from ours.
Rather than develop, justify and use bisimulations in the source language of interest, in
their caser andny, they propose a translation into a version of thealculus with-

out locations, and use reasoning tools on the translations. But most importantly, they
do show that for certaimry terms, it is stficient to reason on these translations. The
closest work to the study of link failure is [6], where distributed Linda-like programs
are studied in the presence of connect and disconnect software primitives that dynami-
cally change the accessibility of locations. The connect construct employed is however
very powerful and can connect any two disconnected sites; this obviates the need for
observer restricted views, thereby simplifying immensely the theory. Elsewhere, per-
manent location failure with hierarchical dependencies have been studied by Fournet,
Gonthier, Levy and Remy in [7]. Berger [3] was the first to study@alculus extension

that modelgransientlocation failure with persistent code and communication failures,
while Nestmann, Merro and Fuzzatti [16] employ a tailor made process calculus to
express standard results in distributed systems, such as [5].

References

1. Roberto M. Amadio. An asynchronous model of locality, failure, and process mobility. In
D. Garlan and D. Le Mtayer, editorsProceedings of the 2nd International Conference on
Coordination Languages and Models (COORDINATION;%Blume 1282, pages 374-391,
Berlin, Germany, 1997. Springer-Verlag.

2. Roberto M. Amadio and Sanjiva Prasad. Localities and failuFTTCS: Foundations of
Software Technology and Theoretical Computer Sciet¢e1994.

3. Martin Berger. Basic theory of reduction congruence for two timed asynchrancaisuli.

In Proc. CONCUR’042004.

4. Luca Cardelli. Wide area computation. Mroceedings oR6" ICALP, Lecture Notes in
Computer Science, pages 10-24. Springer-Verlag, 1999.

5. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems.Journal of the ACM43(2):225-267, March 1996.

6. Rocco De Nicola, Daniele Gorla, and Rosario Pugliese. Basic observables for a calulus for
global computing. Technical report, Universita di Firenze, 2004.

7. Cedric Fournet, Georges Gonthier, Jean Jaques Levy, and Remy Didier. A calculus of mobile
agents.CONCUR 96LNCS 1119:406-421, August 1996.

8. Adrian Francalanza and Matthew Hennessy. Location and link failure in a distributed
calculus. Technical report, University of Sussex, 2005.

9. R.J.van Glabbeek and U. Goltz. Equivalence notions for concurrent systems and refinement
of actions (extended abstract). In A. Kreczmar and G. Mirkowska, editors, Proceedings
14" Symposium orMathematical Foundations of Computer Sciend&CS 89, Porabka-
Kozubnik, Poland, Augugbeptember 1989, volume 379 lotcs pages 237—-248. Springer-
Verlag, 1989.

10. Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a behavioural theory of
access and mobility control in distributed systefiseoretical Computer Sciencg?22:615—
669, 2004.

16

11.

12.

13.

14.
15.

16.

17.

18.

Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for processes in the
presence of subtypindvathematical Structures in Computer Scient4:651-684, 2004.

Matthew Hennessy and James Riely. Resource access control in systems of mobile agents.
Information and Computatiqri73:82—-120, 2002.

K. Honda and N. Yoshida. On reduction-based process semafitieretical Computer
Sciencel152(2):437-486, 1995.

R. Milner. Communication and Concurrencirentice-Hall, 1989.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, parts |
and Il. Information and Computatiqri992.

Nestmann, Fuzzati, and Merro. Modeling consensus in a process calculCONGUR:

14th International Conference on Concurrency The@NCS, Springer-Verlag, 2003.

James Riely and Matthew Hennessy. Distributed processes and location faihgesetical
Computer Scienc®26:693-735, 2001.

Davide Sangiorgi and David Walkérher-calculus Cambridge University Press, 2001.

17

A DnxF Notation

Network representations inib are based on the notion of linksefs We define the
following operations and judgements, using a set of locatitins

£/C T (ke ko) | (ka, ko) € L£and neitheky, ko ¢ C} (filtering)

Lkl Eawer (accessibility

Lrkenl € £rkelorak. £+ K —landL+ kek' (reachability
loC L ok keC) (component creation
Lol def {kok | ke k € LandL + kewl} (component referenge

For DrF we have two kinds of network representations, ranged ovet agd.>.
We define the following operations on them:

A=1E Up, ApU{l), Ap) (location killing)
-1 L S, o/l 2o (location killing)
A-lok B U, Ap, 4:710,K), kD)) (link breaking

S—lok T sy, o/, K, kD), Z/1d,K), (k1) (link breaking

d+aich & (AyUial, 4p, 2r) (adding a channel
St+aich & Eyulal, Zo, Zu) (adding a channgl
A+1:1oca[C] E (UpUll), 4pU{l), 2,0l C) (adding a locatio
A+1:1oca[C] T (UyUll), dp, Z UloC)
2 +1:1ocq[C] def EnUll}, 2o, Za) (adding a locatioi
S +l:locy[c] &

CaseCndom(Zp) =0 then(Zy U{n}, 2o, H’)
where:H’ = 24U (I Q)
cndom(Xp) # 0 then(Zy U {n}, O, H’)
where:(0' =2p U (I Q) U (Zg «~C)
andH’ = X3 /(Zg <~ C)

We next define translations from one network representation to the other, together with
the definition of the observer network knowledge for every representation.

SU) € Un, Ac/dp, 0) (fomAto)
A2) € (I, (locEy)/dom(EoUZy)), ZoUSy) (fromZtos)
) £ h. 2o (observer knowledge

) € 1(2(4))

Finally, we define judgements made using the various network representations. lde-
ally we would like that distinct network representations that have the same semantic
interpretations yield the same judgements as shown below.

18

2'+1:alive

" | € dom(Zp U Zy)

(live locationg

SHok Elokez,uzy (live link)
Py fn(T) c Zx (valid typed
sene At € sk Tands +niTrA:T
SEN & fn(N) € 2y (valid systems

2 kel
2 FKenr|

Arl:alive, | ok, T, N

5y rkelor Sy rkel

5y kel Or Zp Fkenl

L' >(U)rl:alive, ok T, N

(accessibility
(reachability)

7+n:L € (ryuln), Toul) (update
Trl:alive 1 e dom(7y) (live locationd
Trlok loke 1, (live link)
7+T € fn(T) c dom(Zy) (valid type
TPl € fn(P) ¢ 7 andl € dom(Z,) (valid systems
ITr(yn:T)N ® rrTandZ+n:Tr N

TFNIM

Abrops | :alive, | &k, T, N
2hops |:alive, |k, T, N

Finally we outline a number of operations on types used in reduction rules and transition

rules.

ch/fly, 1) &
Loc[]/{l1, . 10} &

def

def I+Nand7+M

L 74+ 1:alive, 1ok T, N

L 7(2) r 1:alive, l ok, T, N

ch
loc[C/{l1, ... In}]

inst(Loc[C],1,4) &' loc[{k | k e CandArkerl]

def

(external judgmen)s

(type filtering

(instantiatg

inst(loc[C],1,2) = loc[{k| ke CandXrkel}]
(N QU (Zg Q)

if T=1oc,[C] andCnloc(Zp)#0 (link types
0 otherwise

Ink(n:T,2) ol

19

B Main Lemmas and Propositions

B.1 Lemmas and Propositions to prove M = N impliesX E M = N
Lemma 1 (Composition).

— Suppose' > M WS 57 ML IS+ N for arbitrary systemN, thenX » M|N N

> M|NandX > N|M - > N|M.)
(A:L)l:al(V) (A:K)l:a?(V) ~
— Suppos& > M —— 2> M andX > N —— 2” » N’ wherek =
L/dom(Z). Then
e Z» MN 5 X (vii: T)M'|N’ whereL = Ink(i: T, 2)
e 2> NIM 5 X» (vii:T)N’IM” wheref = Ink(fi: T, %)
Proof. (Outline) The proof progresses by extracting the necessary structure of the sys-
temsM, N and the network’ to be able to re-compose them using rules suaf@s-
ctxt), (I-par-comm) and(l-rest)

Lemma 2 (Decomposition)Suppose>M|N s 576 M’ whereX Fobs MOr2 Fops N
. Then, one of the following conditions hold:

1. M’ is M”|N, whereZ > M v 37 » M”.

2. M’ isM|N’ andX > N +5 57> N,
3. Mis(vi:T)M”|IN’, uist, 2’ = X and either

(R:Dyl:al(Vv)y (A:K)l:a?(V)
- 2o MH———22">M"and2>N——> 2" > N’
(AK)l:a?(V) (AR:L)l:al(V)y

-2 M —523">M"andX> N —— 2" > N’
whereK = L/dom(Z)

Proof. (Outline) The proof progressed by induction on the derivatioa fM|N N
2> M,
Proposition 1 (Contextuality of Behavioural Equivalence)lf two configurations are
bisimilar, they are also bisimilar under any context. Stated otherwligelM; ~ 2o>M,
implies that for2; , +ops O, T andn fresh inXy , we have:

- 21> M1|O X o> M2|O and 21>O|M1 ~ 22>O|M2

— 21+n:T>M1 = 25+n:T>M>
Proof. (Outline) The proof progresses by the inductive definition a relaiaas the
largest typed relation over configurations satisfying:

(Z1> Mg, 2o My) | 21> M2 > My

(21> M1|O, 25> M3|O)

(Z1> OMy, Z3> O[My) 21> MiRez> Mo

I|=21> M1R22> Mz,

(21+n:T> M¢|O, 25+n:T»> M,|O) |IkTandnisfresh

(1> (vn:T)My, 25> (vn:U)My) | Z1+n:TeM{R25+n:Us Mo

and showing thaR C~; sincex is the biggest possible relation, this would mean that it
is contextual.

20

B.2 Lemmas and Propositions to prove M = N impliesX E M = N

Lemma 3 (Observable Network).Consider the process definition verNetStﬁYé@(x)
that is intended to be running at a locatiémconnected to all observable locations in
a networkX. It returns an output on the parameterised charxiland only if N = 2,
andO = 2.

verobg\? (syng
| verNObgloc(N)/dom(0), syng
| syn&()....syn@().x1{)

[loc(AV)|

verNetStat$"? (x) < (vsyn9

verobg?(x) < 0
verobg¥ 2" (x) < verobg™?(x) | ping 1.1y ()]
verObg™ P (x), L#0 < verObg“ % (x) | verLog(l, dom(L), loc(N)/dom(L),)

I—I gol.go x.synd()
leyy

| [[ping1.Tsynd (1
leyz

| syn@()....syn&().gok.z)
N—— —
lloc(A)I

verLoG(X, Y1, Y2, 2) & (vsynggo x.

Assume that for arbitrary network representatibn’, stands for
2+ Kg:locy[dom(2p)] + succ:ch
Then,
DI ko[verNetStathév’m(succ)] —" 2 p ko[succ!()] if N =2y andO =2p

Proof. (Outline) We prove this lemma by contradiction. We analyse all the possible
cases whyV = Xy, andO = Xy and then show that for each of these cases,

v ko[VGfSta%”w(SUCC)] +-" 2, » ko[succ! ()]

Proposition 2 (Definability). Assume that for an arbitrary network representatibn
the network>, denotes:

2, =2 +Kg:loc,[dom(Zp)], succ: ch, FaiL: ch

whereky, succ andraiL are fresh taXy,. Thus, for every external actignand network
representatior®, every non-empty finite set of names Nm wh&rec Nm, every fresh
pair of channel namessucc, raiL ¢ Nm, and every fresh location nankg ¢ Nm
connected to all observable locationsip, there exists a systeit'(Nm, succ, FaiL, Kg)
with the property that’, +qps T#(NM succ, FaLL, kg), such that:

1. Z» N -5 57 +bn(u) » N’ implies
2, > N|TH(Nm succ, FAIL, Ko) = 2% > (v bn(u)) N’ | ko[succl{bn(u))]

21

2. X, » N|TH(Nm succ, FalL, Ko) = 2% » N’, whereZ, » N’ Jsccaror 2% > N Y@k,
implies that
N’ = (v bn(u))N” ko[succ!(bn(w)y] for someN” such thatts N == "+bn(u)>N".

Proof. (Outline) We have to prove that the above two clauses are true for all of the four

external actions. If: is one of the two non-standard actiok8l, : | andl «+» k, the test
required are:

I[Kill] | ko[rAr! ()] | ko[ping I.ping I.TEATL?().sUCc! ()T]
and
[[ping k.ping k.[go ko.synd{)1]
[[break K] | ko[raiL!{)] | (vsyng| | k[ping I.ping |.[go ko.synd()1]
| Ko[syn@().syn&@().rar.?().succ!)]

respectively. Ify is the bound input actiom(T)l : a?(v), whereL = Ink(fi: T,) for
someT, the required system is

(vA:T)(I[al(V).go ko.FarL?().succ! ()] | ko[FarL! ()])
For the output case wheges (fi:L)I : al(V), the required'#(Nm succ, FarL, ko) is

Ko[FarL!()] |

m IX|
[JifxeNmsynay | [| if x;=v;.syncc)
i=1 j=m+1
| a?(X).(v syng verNwStatu$’” (xq..Xm, €)
| syn@()..syn&@().go Ko.(vC) FAIL?().suchxl..xm))
—_— | C?(X). .
M | go x. kil

such that
verNwStatyg ” (x; ... Xm.y) & (vk': Te)go k’.(vd)(
andT, = loca [NMU{X1..Xm}], K = L{¥1-- X1}

verNetStaty$’ O 0a- X)))
| d?().g0 ko.y!<K')

For the sake of presentation ,we assume that theviitSt v in V = vy... vy in p are

bound, and the remaining,,1 . . . Vjy, are free; a more general test can be construct for
arbitrary ordering of bound names\¥husing the same principles used for this test. We
also use the condition#lx¢ NmP as an abbreviation for the obvious nested negative

comparisons betweenand each name iNm

22

