
Code Management Automation for Erlang Remote Actors

Adrian Francalanza
CS, ICT, University of Malta

adrian.francalanza@um.edu.mt

Tyron Zerafa
CS, ICT, University of Malta

tzer0001@um.edu.mt

Abstract
Distributed Erlang provides mechanisms for spawning actors re-
motely through its remote spawn BIF. However, for remote spawn
to function properly, the node hosting the spawned actor must share
the same codebase as that of the node launching the actor. This as-
sumption turns out to be too strong for various distributed settings.
We propose a higher-level framework for the remote spawn of side-
effect free actors, abstracting from and automating codebase migra-
tion and management.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Control structures

General Terms Distributed Programming, Actors

Keywords Distributed Erlang, Code Migration, Load-Balancing.

1. Introduction
Full location transparency is often unattainable in distributed set-
tings [9], due to either physical constraints such as communication
latencies and partial failures (revealing the underlying distributed
structure), or administrative and security concerns (precluding un-
fettered distributed computation). Instead, various distributed pro-
gramming technologies choose to include locations as part of the
computational model; to facilitate programming, they also provide
constructs for describing computation across these locations, au-
tomating solutions that aim to abstract (as much as possible) from
the differences between local and distributed operations. This is
true for actor-based abstractions [15] of distributed systems—a nat-
ural fit for the inherent concurrency found in distributed settings.
Languages and frameworks such as [10, 14, 16, 27] distribute ac-
tors (processes) across a number of locations (nodes): these actors
are usually allowed to communicate seamlessly with one another,
both locally and remotely, through common interfaces that abstract
away from the intricacies of remote communication.

In a distributed setting, actor locality affects computation in a
variety of ways. For instance, frequently communicating actors
are best co-located at the same node, so as to reduce commu-
nication overhead, whereas replicated actors are best dispersed
across independently-failing locations so as to increase fault tol-
erance. Alternatively, actors accessing an irreplicable resource
e.g., a database, should preferably be co-located next to the re-
source, whereas large systems consisting of numerous and/or

[Copyright notice will appear here once ’preprint’ option is removed.]

computationally-intensive actors may need to distribute them
evenly across locations for load-balancing purposes.

Actor-based distributed technologies usually let the program-
mer control the locality of an actor, since its optimality may best
be determined at runtime (e.g., depending on which location has
the least load), and may vary over the course of an actor’s execu-
tion (e.g., accessing two resources in sequence, located at different
nodes). Some languages, e.g., [19, 27], support actor migration per-
mitting an actor to change its locality. Others provide mechanisms
for mimicking this behaviour through remote evaluations [13]: in-
stead of migrating itself, the actor remotely spawns a new actor at
the location where it intends to continue executing, delegating the
execution to the newly spawned actor (communicating remotely
with it when needed). This option is attractive for a number of rea-
sons (e.g., it circumvents issues relating to the synchronisation, se-
rialisation and transfer of actor states), and is adopted by numerous
industry strength technologies, e.g., [16, 18].

Erlang [1, 10, 20], a cross-platform programming language and
runtime system (ERTS) intended for the development of enterprise
distributed systems, is one such example. It provides a spawn built-
in function (BIF), the basic version of which accepts a module, a
function (in that module) and a list of values as its arguments, and
creates a new process at the local node executing the function ap-
plied to the values in the list; the BIF returns the process identifier
of the newly process to the spawning actor; it also provides a vari-
ant of this BIF that can be used for remote evaluation purposes:
an additional node name argument is passed, specifying the host
node where the new process is spawned. In order to facilitate pro-
gramming, the remote BIF variant aims to emulate the functionality
of Erlang local spawning, by abstracting away from the additional
tasks required to perform the remote process launch [10, 28].

Crucially, remote spawn is able to emulate local spawn only
when an important condition holds: the source node and the service
node must share the same codebase, i.e., the set of modules and
function definitions. When this is not the case, remote spawn exe-
cution may differ from its local counterpart. For instance, if an actor
attempts to spawn a function at a remote node where the function
is not defined, the remote spawn fails; alternatively, if the remote
node holds a definition for the spawned function that differs from
the definition at the spawning node, the eventual outcome may be
different still—similar, but more intricate, discrepancies between
local and remote spawning arise when the spawned function de-
pends on other function definitions, possibly from other modules.

Occasionally, code homogeneity across nodes can either be in-
feasible or even undesirable. Reasons range from local code up-
dates (which may be arbitrarily frequent), different node hardware
(which may require dedicated software or impose codebase restric-
tions due to resource limitations such as memory size) and local
security constraints (e.g., one node trusts the newest code package
version, whereas another prefers an earlier, more stable, version).

Erlang provides lower-level mechanisms for dynamic module
loading inside a remote ERTS, which can be used to program so-

Code Management Automation for Erlang Remote Actors 1 2013/8/16

lutions for issues associated with heterogeneous codebases. How-
ever, this increases the responsibility and effort on the part of the
programmer, who needs to contend with lower level implemen-
tation concerns such as the possibility of codebase name clashes.
There are also efficiency concerns to be considered. For instance,
the programmer cannot blindly upload the entire local codebase
at a remote node, but instead needs to identify the least amount of
(missing) code to load remotely so as to allow remote spawn to em-
ulate its local counterpart. Determining this codebase subset would
typically entail a dependency analysis of the code to be evaluated
remotely. In addition, the developer would also need to establish
conventions such as: (a) whether to migrate missing code depen-
dencies eagerly in one phase, or else incrementally when needed
(lazily), since the branching structure of the spawned computation
may not require all dependencies at runtime; or (b) whether to use
more standard units of migration such as modules, or else finer ones
such as function closures. There are also other disadvantages asso-
ciated with burdening programmers with code migration manage-
ment. For instance, individual programmers may adopt conflicting
decisions wrt. the design alternatives discussed above, which fur-
ther increases the complications associated with remote spawning.
Finally, there are also security issues that may, on the one hand, re-
strict what computation the source node is allowed to delegate, and
on the other, require the destination node to observe.

In this paper we propose a solution that abstracts over the dif-
ficulties associated with Erlang remote spawn in the presence of
heterogeneous codebases, automating the functionality for code-
dependency analysis, function definition correspondence and code
migration, in line with the fine-grain code mobility approaches pro-
posed in [17, 21]. Attuned to the constraint of distributed comput-
ing, our code-management solution is decentralised and able to tol-
erate degrees of failures while using low bandwidth and storage
overheads. Since it is unclear to what extent security issues are to
be abstracted away from the application developer, we only provide
rudimentary mechanisms for enforcing security aspects in our pro-
posed platform, focussing instead on aspects relating to correctness
and efficiency.

In the rest of the paper, we discuss a use-case in Sec. 2 whereas
Sec. 3 presents existing Erlang infrastructure and mechanisms con-
fining the design space. Sec. 4 describes out proposed solution and
Sec. 5 evaluates this solution wrt. the use-case presented in Sec. 2.
Related work is discussed in Sec. 6 and Sec. 7 concludes.

2. Case Study
We consider an illustrating scenario where Erlang nodes offer an
execution-platform-as-a-service to other nodes for load-balancing
purposes. Actors at a client node are able to delegate computation-
ally expensive tasks to service nodes offering this service, by re-
motely spawning an actor executing the expensive computation at
these nodes. Crucially, service nodes cannot be expected to hold ho-
mogeneous codebases, wrt. the client nodes or other service nodes.

1 −module (cpx math) .
2 −export ([f a c /1 , f i b / 1 , . . .]) .
3
4 f a c (0) −> 1 ;
5 f a c (X) −> bsc math : mlt (X, f a c (X − 1)) .
6
7 f i b (0) −> . . .

Listing 1: Complex Math Module containing a Factorial Function

Consider the module cpx math (complex math) defined in
List. 1, exporting a factorial function, fac/1, amongst others. Its im-
plementation relies on a multiplication function, mlt/2, defined in
another module containing basic functions, bsc math (see List. 2).

1 −module (bsc math) .
2 −export ([mlt /2 , dvd /2]) .
3
4 mlt (, 0) −> 0 ;
5 mlt (X, Y) −> add (X, mlt (X, Y−1)) .
6
7 dvd (X, Y) −> i f X > Y −> 0 ;
8 t rue −> 1+dvd (X, sub (Y, X))
9 end .

10
11 add (X, Y) −> . . .
12
13 sub (X, Y) −> . . .

Listing 2: A Basic Maths Module

In Erlang, we may remotely evaluate the factorial of a large
value, e.g., 42, on a service node, nodeL, through the code in
List. 3: line 4 remotely spawns on nodeL the higher-order function
sndRes, with the arguments to execute fac/1 from cpx math with
value 42, sending back the result to the caller process, self().

1 sndRes (Md, Fn , Ar , I d) −>
2 I d ! { r e s u l t , (apply (Md, Fn , [Ar])) } ,
3 . . .
4 I d = spawn (nodeL , ?MODULE, sndRes ,
5 [cpx math , fac , 4 2 , s e l f ()]) ,
6 r e ce i v e
7 { r e s u l t , Res} −> Res
8 end .

Listing 3: Remote Evalutation of fac/1

We can go a step further, and construct higher-order abstractions
for remote evaluations (akin to mobility skeletons [5, 11]) over our
execution-platform-as-a-service framework, where service nodes
become client nodes themselves. The code in List. 4 implements
a distributed version of the lists:foldl/3 function: apart from the
usual three parameters representing the function, Fn, the accumu-
lator, Ac, and the list of values over which to perform the folding,
Vs, the function foldlR/5 takes a list of nodes, [Nd|Ns], and a con-
tinuation function, Cn, resp. denoting the service nodes that may
be used to delegate the folding computation, and the operation to
be performed on the final value of the computation—typically, the
continuation sends the result back to the originating actor.

1 f o l d l R (Fn , Cn , Ac , Vs , [Nd |Ns]) −>
2 spawn (Nd , f o l d l R E , [Fn , Cn , Ac , Vs , Ns++[Nd]]) .
3
4 f o l d l R E (Fn , Cn , Ac , [V | Vs] , [Nd |Ns]) −>
5 A = Fn (V, Ac) ,
6 spawn (Nd , f o l d l R E , [Fn , Cn , A, Vs , Ns++[Nd]]) ;
7 f o l d l R E (, Cn , Ac , [] ,) −> Cn (Ac) .

Listing 4: Implementation of foldlR/5

The distributed foldl of List. 4 assumes that the folding opera-
tion is expensive, and thus distributes the individual folding opera-
tions over the service nodes available so as to share the computation
burden: e.g., if foldlR/5 is applied for some function f() and ini-
tial accumulator a1 over the list of values [42,53,64] with service
nodes [nodeL,nodeK,nodeM] it would execute the distributed code
depicted in Fig. 1, distributing the three applications of f() with the
accumulating arguments over the three service nodes.

In List. 4, foldlR/5 acts as a wrapper function for foldlRE/5
after launching the initial remote spawn: foldlRE/5 applies the

Code Management Automation for Erlang Remote Actors 2 2013/8/16

nodeL

f(a1, 42)

nodeK

f(a2, 53)

nodeM

f(a3, 64)

Client

foldlRE foldlRE

foldlR result

Figure 1: An execution of foldlR applied to f() with a1 and value
list [42,53,64] over service nodes [nodeL,nodeK,nodeM] with a
continuation sending the final answer to the client, where a2 =
f (a1 , 42) and a3 = f (a2 , 53)

function, Fn, once on the first value, V, and accumulator, Ac,
obtaining a recomputed accumulator, A, (line 5); it then recursively
spawns the next iteration with the remaining values, Vs, and the
new accumulator, A, on the next service node (line 6) until the value
list is exhausted, at which point the continuation function, Cn, is
applied to the accumulated value (line 7). The functions foldlR/5
and foldlRE/5 rotate amongst the service nodes when the number
of foldl operations exceed the number of service nodes, i.e., they
are appended back to the node list as Ns++[Nd] on lines 2 and 6.

1 I d = s e l f () ,
2 Cn = fun (X) −> I d ! { r e s u l t , X} end ,
3
4 Fn = fun (X, Ac) −> cpx math : f a c (X) ∗Ac end ,
5
6 Vs = [42 ,53 ,64] ,
7 Ns = [nodeL , nodeK , nodeM] ,
8 f o l d l R (Fn , Cn , 1 , Vs , Ns) ,
9 r e ce i v e

10 { r e s u l t , Res} −> Res
11 end .

Listing 5: Using foldlR/5 with cpx math:fac/1

We can use foldlR/5 to compute the product of the factorials
of the values 42,53 and 64 using the code in List. 5. Lines 1 and
2 define the continuation, Cn, as an anonymous function [1, 10].
The folding function that incrementally calculates the product of
the factorials, Fn, is also defined as an anonymous function (line
4), using functions fac/1 from module cpx math; the accumulator
is initialised to 1 when foldlR/5 is called (line 8).

2.1 Issues relating to Remote Evaluation
There are a number of correctness and efficiency considerations
to take into account when executing the distributed computations
discussed in List. 3 and List. 5. For instance, for the remote spawn
in List. 3 to run as expected, the ERTS at nodeL must have the code
for module cpx math with function fac/1 from List. 1 loaded,1

even if one assumes that all service nodes come equipped with
the generic wrapper function sndRes/4. Whenever a module is not
loaded at the respective service node, the developer needs to load
it explicitly; moreover if the respective code to be loaded is not
present at the node, it needs to be migrated as well.

In the proposed framework, standard Erlang mechanisms for
dynamic remote code loading such as c:nl/1 are too coarse, be-

1 Erlang provides mechanisms to check for loaded code, such as
rpc:call(nodeL, code, all loaded, []).

cause they broadcast code-migration and update to all partici-
pating nodes. Instead, a developer would need to resort to using
the load binary/3 BIF (together with some mechanism for re-
mote evaluation), which would require direct handling of code
binaries as data. In cases where it is acceptable for the program-
mer to manage code migration explicitly, mechanisms such as
load binary/3 may still be inadequate. For starters, these mecha-
nisms do not perform any code dependency analysis. For instance,
in the case of List. 3, the developer would also need to ensure that
bsc math:mlt/2, used in the implementation of cpx math:fac/1,
is also loaded at the ERTS at nodeL; such dependencies need, in
turn, to be explicitly determined through BIFs such as those found
in module xref (further increasing the burden on the programmer).

In the case of List. 5, the problem is even more acute, since
dependency analysis would need to be repeated for every service
node used in the remote evaluation. This introduces further com-
plications: since, ideally, service nodes only load the code that is
required for servicing remote evaluations, the client node in List. 5
could not pre-load service nodes with the missing modules, because
the number of service nodes used in the remote evaluation is depen-
dent on the computation—in fact, this generally cannot be deter-
mined statically. This means that codebase correspondence checks
can only be carried out dynamically, and the code in List. 4 (de-
scribing higher-order remote-evaluation management) would need
to be cluttered with functionality for codebase management.

There are other complications. For instance, if the binaries for
cpx math:fac are already loaded, they must (in some sense) corre-
spond to those compiled from List. 1. Since we envisage nodeL to
be a service node, it is possible that it hosts a different version of
the module cpx math whereby, for example, fac/1 returns the list
of factors for a number instead.2 On the one hand, executing the
remote spawn of List. 3 with different binaries may not yield the
expected results. On the other hand, loading the client’s version of
the module at nodeL may corrupt existing computation hosted at
the service node. Thus service nodes need to handle multiple code-
base versions (originating from different clients).

1 . . .
2 f o l d l R (Fn , Cn , 1 , [42 ,53] , [nodeL , nodeM]) ,
3 f o l d l R (Fn , Cn , 1 , [64 ,75] , [nodeK , nodeM]) .

Listing 6: Repeated calls to foldlR/5 with common service nodes

Service nodes would also need to manage these multiple code-
base versions efficiently. Consider a slight variation to the remote
evaluation call using foldlR/5 in List. 5, described in List. 6, where
the chain of remote evaluations is performed twice, using a com-
mon service node nodeM in each chain, as depicted in Fig. 2. Ide-
ally, the code for cpx math:fac/1 and its dependencies should not
be migrated and stored twice at nodeM, even though they are com-
ing from distinct ”client” nodes, i.e., nodeL and nodeK, since both
remote evaluations at nodeM refer to the same function definitions.

There are other considerations relating to the efficiency and scal-
ability of code migration and loading. For instance, when loading
client specific binaries, it is important to load the least amount
of code necessary at the service nodes’ ERTSs, since these typi-
cally may be servicing a large number of client nodes. In the case
of bsc math:mlt/2 of List. 2 (used by cpx math:fac/1) loading
the entire module would also load the exported function dvd/2 to-
gether with the internal function sub/2, even though these are not
required for cpx math:fac/1 to execute successfully. Similar re-
dundancy issues arises when loading the entire module cpx math
for the sole purpose of executing fac/1: the module can be arbi-

2 Since Erlang is dynamically typed, return-value mismatch is detected late.

Code Management Automation for Erlang Remote Actors 3 2013/8/16

Client

nodeL

Fn(1, 42)
nodeM

Fn(a1, 53)
Fn(a2, 75)

nodeK

Fn(1, 64)

foldlR foldlRE

foldlR foldRE

Figure 2: Repeated calls to foldlR from List. 6. with nodeM as a
common service node.

trarily large in practice, containing at least redundant code for Fi-
bonacci number generation, fib/1 (and possibly a lot more).

Apart from efficiency considerations relating to what to load,
there are also aspects relating to how and when to load this code.
In the case of List. 3, the function cpx math:fac/1 (statically) de-
pends on bsc math:mlt/2, which in turn depends on the internal
function bsc math:add/2. One possible strategy would be to ea-
gerly migrate and load all the static dependencies upfront at the ser-
vice node before execution starts. There are, however, cases when
cpx math:fac/1 does not use its dependencies at runtime (e.g., if
cpx math:fac/1 is called with argument 0, no dependencies from
module bsc math are used; if the same function is called with argu-
ment 1, the execution only uses bsc math:mlt/2). In general, ea-
ger codebase migration/loading—from multiple client nodes using
larger codebases with more dependencies and conditional branch-
ings —may lead to a substantial increase in redundant codebase-
management computation. An alternative strategy would be to mi-
grate missing dependencies only when needed: although this may
introduce an additional runtime cost for the client node’s point of
view, compared to a more eager approach (a lazy approach is bound
to increase the amount of remote communication across nodes), it
guarantees better space usage at the service nodes.

Then there are also restrictions imposed by the service nodes,
which may attach conditions to their service. For instance a service
node may prohibit migrated code of a certain size, originating
from certain nodes or else lacking certain security certificates. In
a setting were multiple codebases are handled, a service node may
also require that certain code dependencies use the local version
of the codebase, as opposed to that of the originating client node;
such restrictions are particularly relevant to dependencies involving
standard Erlang code libraries.

3. Erlang Architecture and Mechanisms
We overview the relevant Erlang characteristic, limitations and con-
straints which define the design space considered by our solution to
the problems outlined in Sec. 2.1.

3.1 Naming Structure and Bindings
Erlang code is structured into (named) modules, e.g., cpx math and
bsc math from List. 1 and List. 2 resp. These contain named func-
tions, e.g., fac/1, mult/2 and add/2 in List. 1 and List. 2, a sub-
set of which are exported by the module, e.g., fac/1 and mult/2.
Named functions may, in turn, contain anonymous functions, e.g.,
the functions defined on lines 2 and 4 in List. 5. This organisation
creates a fixed lexical scoping: since Erlang modules do not de-
fine variable bindings outside of the named function scope, (valid)
named functions do not have any free variables; conversely, anony-
mous functions may contain free variables that are bound outside

the scope of the function definition, e.g., Id on line 2 in List. 5.
Erlang does not support variable updates and enforces single bind-
ing for its variables e.g., Id on line 2 in List. 5 cannot be bound to
another value.

3.2 Higher-Order Code and Parameter-Passing
Erlang supports higher-order code, whereby functions are first-
class citizens that may be passed as data to other functions. For
efficiency reasons, when a function is passed as a parameter, only a
reference to its respective implementation is passed (encapsulated
within a functional object). An external object is created whenever
a named function is assigned to a variable or passed as an argu-
ment to another function. List. 7 presents the external object for
cpx math:fac/1 of List. 1. During its execution, the ERTS loads
and executes the most recent version of the referenced function.

1 [{module , cpx math} ,
2 {name , f a c } ,
3 { a r i t y , 1 } ,
4 {env , [] } ,
5 { type , e x t e r n a l }]

Listing 7: External Object erlang:fun info(fun cpx math:fac/1).

Anonymous functions can also be assigned to variables produc-
ing a local functional object that stores the specific version of the
module (calculated from the compiled code) in which it is defined;
see List. 8 for the anonymous function Cn of List. 5. Local func-
tional objects also store function referencing environments describ-
ing the free variables bindings (line 10 in List. 8).

1 [{pid , <0.31.0 >} ,
2 {module , t e s t } ,
3 { new index , 0 } ,
4 {new uniq , < <101 ,224 ,59 ,0 ,138 ,38 ,206 ,
5 114 ,154 ,210 ,50 ,218 ,246 ,220 ,11 ,224 > > } ,
6 { i ndex , 0 } ,
7 {uniq ,53412312 } ,
8 {name , ’− f a c t p r o d /0− fun−0− ’ } ,
9 { a r i t y , 1 } ,

10 {env , [<0.31.0>] } ,
11 { type , l o c a l }]

Listing 8: Local Functional Object for erlang:fun info(Cn).

3.3 Architectural Organisation
The ERTS consists of three layers, with the Erlang kernel at the
core, layered over by the Erlang Virtual Machine (EVM) and the
Open Telecoms Platform (OTP). Our proof-of-concept implemen-
tation treats the Kernel layer as a black box and focusses on modi-
fying BIF definitions at the OTP and EVM layer.

3.4 Function dependencies
We are concerned with modifying the underlying mechanisms so
as to automate code migration relating to any dependencies of a
remote spawn. The dependencies of a (remote) spawn consist of
(i) the function that is spawned, (ii) the functions (transitively)
called within its body together and (iii) any functions passed as
parameters to the spawned function (and the functions they depend
on). For instance, in the case of the remote spawn call on lines
5-6 in List. 3, the dependencies would be the function sndRes/4
(whose function body does not call any other function), but also
the function cpx math:fac/1 that is passed as a parameter, which
transitively depends on bsc math:mult/2 and bsc math:add/2.

Code Management Automation for Erlang Remote Actors 4 2013/8/16

3.5 Remote Loading and Migration
In Erlang, modules can be compiled to either native code or BEAM
files, executable code that be loaded and executed on any ERTS;
as in other VM setups, an ERTS presents a homogeneous view for
every Erlang node. Remote spawning requires a serialisation mech-
anism for communicating data across nodes. Erlang’s standard se-
rialisation mechanism encodes data into an intermediate represen-
tation known as the External Term Format (ETF): for functions,
the respective ETF creates a symbolic link to the BEAM file of the
module containing the function passed as data; the linked BEAM
files need to be loaded at the destination node for the remote spawn
to execute properly. Erlang supports the dynamic loading of mod-
ules inside an ERTS, which allows for subsystems to start execut-
ing before their code is fully loaded, an essential feature for long-
running, open systems where the full extent of the code to be used
cannot be determined prior to execution. In our case, dynamic load-
ing allows us to rectify missing dependencies for remote spawns.

In Erlang, there is a also mismatch between the code unit for
(remote) spawning, which is the function, as opposed to the code
unit for dynamic loading, which is the BEAM file of the corre-
sponding module. This discrepancy poses efficiency problems for
the dynamic migration and loading of code necessary for a correct
functioning of a remote spawn, as discussed earlier in Sec. 2.1.

3.6 Mechanisms for Dependency management
Erlang offers a Cross Reference Tool (xref) to statically analyse
BEAM files to determine their relation and the call-graph depen-
dencies between their named functions. Unfortunately, xref lacks
the ability to identify the dependencies of anonymous functions
which are constructed at run-time within the scope of other func-
tions. Furthermore, xref only employs a static code analysis, and is
unable to determine all the function dependencies from the mod-
ules’ BEAM files alone (e.g., calls to functions with either a vari-
able module or a function name that is passed as a parameter). This
gives rise to unresolved dependencies.

4. Solution
We present a solution for elevating the abstraction level of the Er-
lang’s remote spawn, addressing both considerations discussed in
Sec. 2.1 and architectural constraints outlined in Sec. 3. Apart from
the code-pushing from the source nodes carrying out the remote
evaluations, the underlying architecture also needs to handle code-
pulling from the destination node (e.g., in the case of lazy migra-
tion, which requires a form of code-on-demand [13]). Distribution
further requires us to provide a solution that is decentralised; this
avoids performance bottlenecks and facilitates fault-tolerance.

Our prototype implementation adopts on a number of (simpli-
fying) assumptions which may be relaxed for more complex imple-
mentations. We limit ourselves to a pure actor-view of the language,
and consider only remote spawning of code that is side-effect free
(apart from inter-process communication side-effects); this limits
bindings to codebase resources, which are stateless, and rules out
bindings to stateful resources such as files and databases. From an
architectural point, we assume that all nodes run the same version
of the ERTS. Nodes are assumed to start off with one codebase ver-
sion which remains fixed through the extent of their computation
(i.e., no updates) and that the respective BEAM files are compiled
with the debug-info flag—this includes the Abstract Syntax Tree
(AST) of the compiled source code within the same BEAM file,
which can be retrieved later.

4.1 Architecture overview
At each node, our implementation uses a designated registered pro-
cess, acting as the service manager that handles incoming requests

Figure 3: Protocol Overview

for remote spawns. Each node also contains a policy file, defining
node specific requirements; in this prototype implementation, pol-
icy files are limited to specifying the mode of code migration, i.e.,
whether eager or lazy, and a list of named functions found locally
at the service node that clients must use when spawning their code.
In addition, every node runs an instance of a distributed reposi-
tory service as presented in [20], used for advertising, locating and
fetching code resources.

Fig. 3 describes the top-level protocol of the augmented remote
spawn BIF of our implementation, involving the client process at
the client node executing the spawn (C), the service manager pro-
cess at the service node (S), and the respective processes running
the distributed repository service at each node (R c and R s). When
a client executes a remote spawn, a REV request message is sent to
the respective service manager of the target (service) node, detail-
ing the function and arguments to be spawned. At this point, the
service manager determines the (immediate) missing code depen-
dencies that are not loaded in the service node ERTS and consults
the local policy file to determine whether the missing code can be
uploaded by the client (blob 1 in Fig. 3). If so, it signals its lo-
cal distributed repository service to fetch the missing code. This
repository, in turn, consults with the repository services at the client
node (and other repositories across the rest of the network) to fetch
the necessary missing code.3 Once the missing code is located and
fetched, the repository process at the service node adds the newly
obtained code to its own repository, and sends it back to the service
manager together with a list of the next level of dependencies. At
this point the service manager consults the policy file again: if a
lazy code-migration policy is to be followed, the service manager
has the necessary code required to spawn the process and return the
remote process identifier to the client process executing the remote
spawn; alternatively, if an eager policy is to be followed, the ser-
vice manager repeats the previous procedure for the next level of
dependencies until there are no missing dependencies left.

4.2 Portable Functions
When named functions are passed as parameters in a remote spawn
call, our implementation uses portable functions [23], instead of the
standard functional objects discussed in 3.2 (which rely on sym-

3 Distributed repositories may hold overlapping code resources originating
from other nodes, and consulting multiple repositories makes that service
faster and more fault-tolerant.

Code Management Automation for Erlang Remote Actors 5 2013/8/16

bolic links to external BEAM files for the respective function im-
plementations). In essence, portable functions encapsulate the con-
crete implementation of the function within the functional object
that is passed around and serialised upon distribution (using ETF);
once loaded within the ERTS of the service node, they preserve the
same semantics of the standard functional object implementation
with external links to BEAM files.

Portable functions carry a number of advantages over the stan-
dard function encodings:

1. they are self contained and do not rely on external links,
which makes them easier to serialise and transport. By con-
trast, communicating functional objects across ERTSs poten-
tially changes their semantics (whenever the codebases differ);

2. they allow a finer-grained management and transport of code,
since they disentangle the function implementation definitions
from their container modules: portable functions only hold the
implementation of the function, as opposed to the implementa-
tion of the entire module, as is the case of the BEAM files;

3. they keep function implementations in a format—namely an
AST—that is more amenable to the processing required by
the protocol of Sec. 4.1: as opposed to BEAM file bytecode
representations, ASTs facilitate code introspection, required
when performing checks against policy files, and simplify code
changes through aspect-oriented tools.

4.3 Global Naming Convention
Our implementation also devises a new naming convention to
uniquely identify portable functions. This enables it to load mul-
tiple versions of the function f from module m, originating from
different nodes, thereby solving the name clashes problem dis-
cussed in Sec. 2.1. More specifically, the module name containing
a migrated function is modified by appending it with the node
name from where it originates; since node names are guaranteed to
be unique, this would in turn create a unique module name across
the entire network of nodes.

Our naming convention needs to go a step further. For efficiency
reasons, the code included in a portable function object is limited
to that of the function itself (as opposed to that of the entire module
containing it). From the point of view of service node loading the
functions individually, this acts as a form of module partitioning
for every function contained in it. Using the same module name for
each module partition causes problems since the unit of code load-
ing is the module, and the same module cannot be reloaded without
overriding the previously loaded code. Thus, our naming conven-
tion also adds the function name and arity to the module (partition)
when renaming, so as to also uniquely identify each module parti-
tion across the entire network: the uniqueness of a function and its
arity within a module guarantees global uniqueness.

Portable functions and global naming uniqueness also help to
address the problem of storage efficiency and complications asso-
ciated with establishing code correspondence, discussed in 2.1 and
depicted in Fig. 2. In that case, the second remote spawn is able
to determine that the respective code is already present at node no-
deM, since the underlying name of portable function would allow it
to determine the code origin, i.e., the client node (as opposed to the
immediate provenance of the code i.e., nodes nodeL and nodeK).

List. 9 outlines the information contained in the portable func-
tion (stated on line 22) for cpx math:fac/1. The module name is
changed from cpx math to cpx math-fac-1-@NodeA, appended
by both the function name and arity, but also by the unique name
of the originating node (line 1). It contains the respective code of
the function, encoded as an AST, as part of the new code attribute
(lines 5-17).

1 [{module , ’ cpx math−fac−1−@NodeA ’ } ,
2 {name , f a c } ,
3 { a r i t y , 1 } ,
4 {env , [] } ,
5 {code , [
6 [{ a t t r i b u t e , 1 , module , ’ cpx math−fac−1−

@NodeA ’ } ,
7 { a t t r i b u t e , 3 , export , [{ fac , 1 }] } ,
8 { f u n c t i o n , 5 , fac , 1 ,
9 [{ c l a u s e , 5 , [{ i n teger , 5 , 0 }] , [] , [{ i n teger

, 5 , 1 }] } ,
10 { c l a u s e , 6 ,
11 [{ var , 6 , ’X ’ }] ,
12 [] ,
13 [{ c a l l , 6 ,
14 { remote , 6 , {atom , 6 , ’ bsc math−mult@A ’ }

, {atom , 6 , mult}} ,
15 [{ var , 6 , ’X ’ } ,
16 { c a l l , 6 , { remote , 6 , {atom , 6 , ’ cpx math

−fac@A ’ } , {atom , 6 , f a c }} , [{op , 6 , ’
− ’ , { var , 6 , ’X ’ } , { i n teger , 6 , 1 }}] }
] }] }] }]

17] } ,
18 { c a l l s , [{ ’ bsc math−mult@A ’ , {mult , 2 } ,
19 [{ ’ bsc math−add@A ’ , {add , 2 } , [] }]
20 }]
21 } ,
22 { type , p o r t a b l e }]

Listing 9: Portable Functional Object erlang:fun info(fun
cpx math:fac/1)

4.4 Code Dependencies
Portable functions come also equipped with a calls attribute that
describes the (static) dependency call graph of the function; this is
used to determine code dependencies in the remote spawn protocol
presented earlier in Fig. 3. Our implementation relies on Erlang’s
xref tool to build this dependency call graph of a function. For
instance, in the case of cpx math:fac/1 of List. 1, we obtain the
call dependencies described in List. 9 (lines 18-21).

In order to keep code transfer as efficient as possible, we do not
include functions that belong to the Erlang/OTP libraries as part
of the dependency call graph listed in the portable function calls
attribute, since it is assumed that all computational environments
engaged in code mobility contain the same version of the ERTS.
Thus, for example, if cpx math:fac/1 of List. 1 had to be altered to
the code in List. 10, calling the standard OTP function io:format/2,
we would still obtain the same call dependencies of List. 9.

1 −module (cpx math) .
2 −export ([f a c /1 , f i b / 1 , . . .]) .
3
4 f a c (0) −> 1 ;
5 f a c (X) −> i o : fo rmat (” F a c t o r i a l : ˜p” , [X]) ,
6 bsc math : mult (X, f a c (X − 1)) .
7 . . .

Listing 10: Complex Math Module containing a Factorial Function

Code dependencies may also be dynamic, as in the case of the
function test module:variable mod fac/2 in List. 11. This func-
tion allows the caller to specify which module to use when calling

Code Management Automation for Erlang Remote Actors 6 2013/8/16

the factorial function4 but since this module is only known at run-
time, it cannot be determined statically.

1 −module (t e s t m o d u l e) .
2 −export ([v a r i a b l e m o d f a c /2]) .
3
4 v a r i a b l e m o d f a c (Mod ,N) −> Mod : f a c (N) .

Listing 11: Unresolved Call

Our prototype implementation handles dynamic code depen-
dencies by modifying the code of the migrated function. More pre-
cisely, after applying xref we end up with a list of unresolved
calls: for each of these calls we inject a statement within the func-
tion’s AST that explicitly checks and requests possibly missing call
dependencies at runtime, by which time the parametrisable call in-
formation would be instantiated. List. 12 presents the function def-
inition of the modified AST that will be encoded in the respective
portable function of test module:variable mod fac/2 in List. 11;
the dynamic check is performed at line 5 through the command
mcode:demand load code(Mod,fac,2), immediately preceding
the (previously unresolved) call.

1 −module (t e s t m o d u l e) .
2 −export ([v a r i a b l e m o d f a c /2]) .
3
4 v a r i a b l e m o d f a c (Mod ,N) −>
5 mcode : demand load code (Mod , fac , 2) ,
6 Mod : f a c (N) .

Listing 12: Encoding Variable Function Call

4.5 Distributed Repository
A distributed repository holds resources and code replicas at differ-
ent nodes so as to facilitate their discovery and exchange. Fig. 4
depicts resource discovery in the case of the multi-node remote
evaluation in Fig. 1 of Sec. 2. When the client node invokes the
first remote spawn on nodeL, the distributed repository at the ser-
vice node requests the missing code from the distributed reposi-
tory of client node and registers it locally, indexed by the unique
naming convention discussed in Sec. 4.3. Crucially, when nodeL
invokes the remote spawn on nodeK, the distributed repository at
the latter service node may obtain the missing code from either the
distributed repository at either nodeL or the client node. This repli-
cation leads to a decentralised and fault-tolerant organisation of
code repositories. Stated otherwise, should nodeL fail or become
unreachable at the point when nodeK is fetching its missing code,
it can still be obtained from the client node.

4.6 Policy Files and Code Introspection
In our prototype implementation, policy files specify two different
kinds of service side requirement: one relating to efficiency (eager
vs lazy) and another relating to security (what code should be used
locally (or prohibited from being remotely loaded). Although we
do not give a full and proper treatment of service node policies, our
aim is more directed towards introducing a mechanism requiring
a form of introspection and filtering when migrating and loading
code. This allowed us to construct a prototype that can handle such
introspection, and can then be extended through minimal structural
modifications to handle more complex policies.

List. 13 depicts a sample policy file that may be specified by a
node in our implementation. Line 1 states that the destination node

4 The user may have multiple implementations of this function, placed in
different modules.

nodeL

cpx math@cli:fac/1

nodeK nodeM

Client

cpx math@cli:fac/1

foldlREE

get

foldlRE get

Figure 4: Replication Across Distributed repositories

of the remote spawn prefers code to migrate in lazy fashion. Lines
3 and 4 specify functions that are prohibited from being loaded
remotely: for instance line 3 rules out any function named fib with
arity 2 (irrespective of the containing module name, whereas line 4
rules out any function contained in modules called danger.

1 < l a z y >
2
3 <∗, f i b ,2>
4 <danger ,∗ ,∗ >

Listing 13: Sample Policy file

4.7 Anonymous Functions
Our implementation also handles remote spawns involving anony-
mous functions, thereby increasing the flexibility and applicability
of our solution. For instance, it also allows us to handle mobility
skeletons such as the one presented in List. 4 and List. 5.

Anonymous functions pose additional complications to their
named counterparts. For starters, when they are encoded as portable
functions in our setup, they cannot be extracted directly from their
surrounding function and placed in a respective module partition-
ing. There are two obstacles that prohibit this: (i) they would need
to be converted into a named function, since Erlang modules may
only directly contain named functions (see Sec. 3.1); (ii) they may
contain free variables, that are bound in the surrounding function
context.

In our implementation, when anonymous functions are encoded
as portable functions, they are assigned a name akin to that assigned
to them in BEAM files.5 There, anonymous functions are assigned
an indexed name of the form f −a− fun− i, where f is the parent
function name, a is its arity and i denotes the order in the list of
anonymous functions defined inside the parent function. We follow
this naming convention and assign the name

−m− f − a− fun− i− a′ − @n

to the ith anonymous function with arity a′ defined inside function
f with arity a in module m at node n.

Our implementation addresses the binding of free variables in
an anonymous function by altering the code included inside the
portable function, inserting the respective variable bindings before
the function code; this strategy is only possible because of the sin-
gle assignment property of the language.6 For instance, in the case

5 BEAM file bytecode translations represent anonymous functions as named
functions.
6 More precisely, a variable in Erlang may be assigned multiple times, as
long as the expressions assigned to it all evaluate to the same value [1, 10].
Our implementation chooses the first binding occurrence.

Code Management Automation for Erlang Remote Actors 7 2013/8/16

of the anonymous function on line 2 of List. 5, its portable func-
tion would contain the AST representing the anonymous function
of List. 14; note how the binding Id = self() is moved to within the
body of the function (line 1).

1 fun (X) −> I d = s e l f () ,
2 I d ! { r e s u l t , X}
3 end

Listing 14: Encoding fun(X) − > Id!result,X end of List. 5

Anonymous functions also pose a minor implementation obsta-
cle to our implementation when translating them into portable func-
tions. In particular, xref is not able to analyse the dependencies of
anonymous functions and our implementation has to determine de-
pendencies itself in such cases.

1 [{module , ’ test mod−t e s t f u n −0−fun−0−1@NodeA
’ } ,

2 {name , ’ t e s t f u n −0−fun−0−1 ’ } ,
3 { a r i t y , 1 } ,
4 {code , [
5 [{ a t t r i b u t e , 1 , module , ’ test mod−t e s t f u n −0−

fun−0−1@NodeA ’ } ,
6 { a t t r i b u t e , 3 , export , [{ ’ t e s t f u n −0−fun−0−1

’ ,0 }] } ,
7 { f u n c t i o n , 4 , ’ t e s t f u n −0−fun−0−1 ’ , 0 ,
8 [{ c l a u s e , 4 ,
9 [{ var , 4 , ’X ’ }] ,

10 [] ,
11 [{match , 5 , { var , 5 , ’ Pid ’ } , {pid

,5 , <0.30.0 >}} ,
12 {op , 6 , ’ ! ’ ,
13 { var , 6 , ’ Pid ’ } ,
14 { tuple , 6 , [{atom , 6 , r e s u l t } , { var , 6 , ’X

’ }] }}
15]
16 }]
17 }]
18] } ,
19 { c a l l s , [] } ,
20 { type , p o r t a b l e }]

Listing 15: Portable Functional Object erlang:fun info(Cn)

The portable function produced for the anonymous function
fun(X) − > Id!result,X end of List. 5 is given in List. 15,
assuming that it is defined inside the name function test fun/0 in
module test mod.

5. Results
We have produced a series of Erlang modules implementing the
architecture discussed in Sec. 4. In particular, module mcode, an
extended gen server (a standard OTP behaviour/module [20]), con-
tains the code used by the service manager in Fig. 3 whereas
mcode cb acts as the callback module to mcode. Module re-
source service contains the code used by the distributed reposi-
tories; it is a gen server extension as well. Policy files are pro-
cessed using functions contained in policy file parser and recon-
ciliation service. The logic that constructs our portable function
is contained in module closure rep. Finally mcode app is the ini-
tial module that calls service manager and distributed repository
supervisor, by calling the function resource service found in the
mcode supervisor; we therefore just start up mcode app at every
participant node. The code can be downloaded from [29].

5.1 The Case Study
Our implementation allows us to execute the code discussed Sec. 2
in settings were only the client node contains the codebase relating
to the functions spawned. This is done through minimal changes
to the code, without having to clutter it with additional low-level
mechanisms for code migration, loading and management. List. 16
presents the code required by our implementation, corresponding
to the driver code of List. 3 (List. 1 and List. 2 are unaffected).
The new code is in fact shorter than that of List. 3: it creates the
new remote process as before; upon termination, however, this pro-
cess (automatically) returns the result to the client’s node service
manager process, which can be retrieved via an asynchronous call
to mcode:get result/1 using the new process identifier. This ap-
proach avoids having to use the sendRes wrapper function.

1 I d = spawn (nodeL , cpx math , fac , [42]) ,
2 Res = mcode : g e t r e s u l t (I d) .

Listing 16: New Remote Evalutation of fac/1

List. 17 presents the code corresponding to that of List. 5, of-
floading a series of computations over a set of service node and ag-
gregating their results. This time the new code corresponds more to
the original code of Sec. 2, where the only change required regards
anonymous functions: they are specified using the fun! construct
(lines 2 and 4) which forces them to be compiled differently, giving
us access to the bindings of their free variables; this change was
necessary because our implementation did not have access to the
Erlang kernel internals.

1 I d = s e l f () ,
2 Cn = fun ! (X) −> I d ! { r e s u l t , X} end ,
3
4 Fn = fun ! (X, Ac) −> cpx math : f a c (X) ∗Ac end ,
5
6 Vs = [42 ,53 ,64] ,
7 Ns = [nodeL , nodeK , nodeM] ,
8 f o l d l R E (Fn , Cn , 1 , Vs , Ns) ,
9 r e ce i v e

10 { r e s u l t , Res} −> Res
11 end .

Listing 17: Using foldlRE/5 with Portable Functions

6. Related Work
There are a number of programming languages offering constructs
and support that enable computation to be distributed across geo-
graphically or logically dispersed computational environments. For
instance, parallel and concurrent languages such as [22, 26] facili-
tate the development of systems that exploit different processors to
hasten the completion of a unit of execution. Distributed languages
facilitate the communication and management of autonomous soft-
ware components making up a system over different computational
environment to improve its scalability, reliability and fault toler-
ance; a subclass of these languages support code and computation
mobility so as to achieve better flexibility and extensibility [5, 13].

6.1 Code mobility
In their seminal work, Fuggetta et al. [13] define code mobility
as the ability to dynamically change the binding between the code
and their computational environment. Computational environment
bindings typically associate code with local resources, e.g., data
files and code binaries, and the execution state of the code. Weak
mobility paradigms migrate only the program code and resources

Code Management Automation for Erlang Remote Actors 8 2013/8/16

bindings between different computational environments whereas
strong mobility abstractions go a step further and facilitate the
transfer of bindings relating to the execution state.

6.2 Mobile Coding Extensions
Programming languages supporting mobile code employ different
combinations of linking and code loading schemes. One of the first
remote evaluation language extensions [24], proposed for the CLU
procedural language, statically links all the required executable
code during the compilation phase and dynamically loads it onto
a service node during remote evaluation. Similar to our distributed
repositories, nodes may expose a set of procedures that can be
dynamically linked to a client’s executable code.

Runtime linking is also employed in mHaskell [4, 6], an exten-
sion that introduces explicit mobility of Haskell computations over
special channels. Local code at each node is partitioned into mi-
gratable (compiled into bytecode and interpreted using the GHCi
compiler) and non-migratable (compiled into native code using the
GHC compiler). When code is sent remotely over the channels,
only the migratable code is sent, and computation would need to
substitute non-migratable code at the source node with correspond-
ing code at the destination node (when available).

Closer to our work is Emerald, an object oriented language that
provides constructs that facilitate the mobility of its objects, com-
posed of data, source code (stored in a special object) and execution
state [17]. In fact, Emerald goes a step further and expresses strong
object mobility: upon object migration, both the data and execution
state gets transferred and loaded on the remote location, which then
has the responsibility to check, retrieve and load missing code.

6.3 Code Mobility in Erlang
Erlang provides lower abstraction mechanisms for code mobil-
ity that only allows dynamically linked modules to be loaded
at remote ERTS [10, 20]: the construct c:nl/1 loads a mod-
ule on all connected nodes, whereas code:get object code/1,
code:load binary/3 and rpc:multicall/4 provide mechanisms for
explicitly obtaining and remotely loading binaries. Erlang portable
functions were suggested in an Enhanced Proposal (EEP) [23] to
aid in the mobility of functions. To the best of our knowledge, no
implementation exists materialising this proposal. Our work pro-
vides a prototype implementation of portable functions that are stat-
ically linked at run-time and explicitly loaded during execution. In
addition to the portable function proposed in [23], our work elim-
inates the restrictions imposed on code dependencies of portable
functions: according to the proposal portable functions could not
use plain (non-portable) functions and dynamic dependencies that
are determined at runtime (e.g., List. 11).

6.4 Mobility in Actor languages
An actor language supporting remote spawning similar to Erlang
is THAL [18]; as in the case of Erlang, the language assumes
homogeneous codebases across nodes. There are also a number
of distributed languages based on the actor model supporting a
weak form of actor mobility such as SALSA [27]: again, these
technologies assume homogeneous codebases across nodes.

ActorNet [19] is an actor programming platform that supports
weak actor mobility and code migration. The migrate function
presented in this language accepts a lambda expression which gets
encoded and transferred to the remote location. However, the plat-
form does not provide any form of code dependency management
and assumes that all the required code is explicitly passed as a pa-
rameter to the migrate function. Similarly, in Scala [14], a clo-
sure may be sent within an Akka [16] message to a remote actor.
This mechanism is nevertheless discouraged by Akka’s develop-

ment team, since Scala closures may contain mutable variables that
introduce state sharing.

STAGE [3] is an actor-based distributed language (built on top
of Python) supporting strong migration, where actors encapsulat-
ing both their behaviour and state can be migrated between differ-
ent nodes. Again, the language assumes homogeneous codebases
across nodes. Actor Foundry [2] is an actor framework for Java
also supporting strong actor migration. The framework relies on the
Java serialisation mechanism to transfer actor state across nodes but
does not provide any automated support for codebase management
in heterogeneous codebase settings.

6.5 Community Cloud Computing
In community cloud computing models, multiple nodes combine
and share their computational and physical resources [7]. The de-
sign space for such models incorporates aspects, ranging from re-
mote service execution to digital currency. Our case study outlines
the basic infrastructure required for such models, viewing Erlang
nodes as executing platforms upon which client nodes can eval-
uate fine grained units of execution. At a lower abstraction level,
our solution includes distributed repositories that store sourced (re-
mote evaluating) programs. We also provide rudimentary (but ex-
tendible) mechanisms for managing and restricting access to these
resources though our policy files.

The domain specific languages (DSL) called Cloud Haskell,
presented in [12], provides Erlang inspired remote evaluation
for community cloud computing, allowing new processes to be
spawned at remote locations. It also provides mechanisms for han-
dling remote spawn function closures (free variables in functions),
as discussed in Sec. 4.7 for anonymous functions. However, similar
to Erlang’s current setup, this DSL does not support code mobility
when it is missing at the destination node.

6.6 Mobility Skeletons
In List. 4 we have presented an implementation of a mobility skele-
ton for a weak form of code mobility, expressed at a higher level
though remote evaluation. Mobility skeletons are high level pro-
gramming abstractions for common mobile coding patterns [5].
They have been successfully implemented in Haskell as a set of
higher order functions that coordinate the execution of a compu-
tation over a static set of predefined locations. Mobility skeletons
have also been extended to auto-mobile skeletons which also ab-
stract from the location details: these self-aware computing patterns
periodically migrate computations over new locations which are
determined at run-time depending on the load of each node within
an open network. Auto-mobile skeletons have been implemented in
a number of Java extensions such as JavaGO and Java Voyager, as
well as in Jocaml (a distributed Caml with join patterns) [11].

6.7 Execution platform safety
Code mobility introduces a number of security vulnerabilities rang-
ing from breaches of confidential data to attacks on the integrity
and availability of a system when compared to more traditional
distributed systems [25]. These threaten the entire service node
and its execution platform requiring safety guarantees about its sta-
bility. One of the most prominent Erlang security extensions pro-
vide a safe execution environment for mobile coding paradigms [8].
This work introduces a constrained environment, i.e. sandbox, that
limits the resources available for running mobile code. These re-
source limit can be set dynamically depending on the authenticated
computational environments in question and the over allocated re-
sources. Our solution does not guarantee such safety of the exe-
cution environment but merely guarantees that remotely evaluated
code does not violate rules specified by service nodes. This mech-
anism, allows a client and a service node to negotiate the details of

Code Management Automation for Erlang Remote Actors 9 2013/8/16

an remote execution as opposed to completely rejecting unresolved
requests.

7. Conclusion
We have presented a prototype implementation [29] of an extended
Erlang remote spawn that abstracts away from the migration, load-
ing and management of missing code across nodes, giving the il-
lusion that every node shares the same codebase; this ensures that
remote spawn emulates the behaviour of a local spawn, its assumed
correct behavioural specification. Our implementation attains this
while transferring minimal codebase subsets, and coordinates code-
base discovery and migration in decentralised fashion, allowing for
degrees of fault-tolerance. We also show how our implementation
facilitates the use of remote evaluations to implement frameworks
offering an execution-platform-as-a-service.

7.1 Future Work
There are a number of possible extensions to our framework that
would enhance its applicability. For instance, our enhanced remote
spawn implementation could be extended to handle function side-
effects such as accesses to files and ETS tables [10]. One possible
solution would be to expose such dependencies over our distributed
repositories and provide abstractions for shared data across nodes;
in special cases where the migrated code has exclusive access to
such stateful handles, these resources could even be migrated with
the code. Policy files can also be extended to specify whether
service nodes access computation with side effects or whether they
accept the migration of resources such as files.

Policy files offer a lot of potential for fine-tuning the service
offered by remote nodes. Service constraints may be extended
with modalities specifying the provenance i.e., source node and
migration path, of migrated code as well as the size of the code.
They could also used provenance information to specify the actions
allowed for certain code e.g., prohibiting them from accessing
certain resources: this could be coupled with sandboxed execution
environments such as in [8]. Policy files may also specify dynamic
requirements, where execution constraints for mobile code could
be relaxed or tightened depending on the performance of the code.
They could also specify codebase redundancy protocols held at
distributed repositories which would improve the fault tolerance
capabilities of the framework.

There are also issues relating to performance that our imple-
mentation needs to address better. For instance, in the current im-
plementation, any loaded modules as a result of remote spawns are
never purged, even though they may never be required again. One
possible solution would be to introduce a notion of a session be-
tween nodes whereby the closing of a session would indicate when
loaded modules can be purged.

Acknowledgments
The authors are grateful to Richard O’Keefe, Steve Vinoski and
other contributors on various Erlang fora for fruitful discussions.

References
[1] Joe Armstrong. Programming Erlang. The Pragmatic Bookshelf,

2007.
[2] Mark Astley. ActorFoundry: A Java-based Actor Programming Env.

http://osl.cs.uiuc.edu/software/actor-foundry/. (Aug
2013 last accessed).

[3] John Ayres. Implementing Stage: the Actor based language. PhD
thesis, Imperial College London, 2007.

[4] André Rauber Du Bois, Hans-Wolfgang Loidl, and Phil Trinder.
mhaskell: Mobile computation in a Purely Functional Language. Jour-
nal of Universal Computer Science, 11(7):1234–1254, 2004.

[5] André Rauber Du Bois, Hans-Wolfgang Loidl, and Phil Trinder. To-
wards Mobility Skeletons. Parallel Processing Letters, 15(3):273–
288, 2005.

[6] André Rauber Du Bois, Hans-Wolfgang Loidl, and Phil Trinder. Im-
plementing Mobile Haskell. In Proc. TFP’03, volume 4, pages 79–94,
September 2003.

[7] Gerard Briscoe and Alexandros Marinos. Digital ecosystems in the
clouds: Towards community cloud computing. In DEST, pages 103–
108. IEEE Press, 2009.

[8] Lawrie Brown and Dan Sahlin. Extending Erlang for Safe Mobile
Code Execution. In ICICS, pages 39–53, London, UK, 1999. Springer-
Verlag.

[9] Luca Cardelli. Abstractions for mobile computing. Secure Internet
Programming, 1603:51–94, 1999.

[10] Francesco Cesarini and Simon Thompson. Erlang Programming.
O’Reilly, June 2009.

[11] Xiao Yan Deng, Greg Michaelson, and Phil Trinder. Autonomous
Mobility Skeletons. Parallel Comput., 32(7):463–478, 2006.

[12] Jeff Epstein, Andrew P. Black, and Simon Peyton-Jones. Towards
Haskell in the Cloud. SIGPLAN Not., 46(12):118–129, 2011.

[13] A. Fuggetta, G.P. Picco, and G. Vigna. Understanding Code Mobility.
IEEE Trans. on Software Eng., 24(5):342 –361, 1998.

[14] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-
based and event-based programming. TCS, 410(23):202 – 220, 2009.

[15] Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular
Actor Formalism for Artificial Intelligence. In IJCAI, pages 235–245.
Morgan Kaufmann, 1973.

[16] Typesafe Inc. Akka Java Documentation, August 2013.
[17] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-

grained Mobility in the Emerald System. ACM Trans. Comput. Syst.,
6(1):109–133, 1988.

[18] Wooyoung Kim. Thal: An actor system for efficient and scalable
concurrent computing. Technical report, University of Illinois at
Urbana-Champaign, Champaign, IL, USA, 1997.

[19] YoungMin Kwon, Sameer Sundresh, Kirill Mechitov, and Gul Agha.
Actornet: an actor platform for wireless sensor networks. In AAMAS,
pages 1297–1300. ACM, 2006.

[20] Martin Logan, Eric Merritt, and Richard Carlsson. Erlang an OTP in
Action. Manning Publications, December 2010.

[21] Cecilia Mascolo, Gian Pietro Picco, and Gruia-Catalin Roman. A
fine-grained model for code mobility. SIGSOFT Softw. Eng. Notes,
24(6):39–56, October 1999.

[22] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent
Haskell. In POPL, pages 295–308, NY, USA, 1996. ACM.

[23] A. O’Keefe Richard. Erlang Enhanced Proposal (EEP) 15: Portable
funs. http://www.erlang.org/eeps/eep-0015.html, 2008.

[24] James W. Stamos and David K. Gifford. Remote evaluation. ACM
Trans. on Prog. Lang. and Sys. (TOPLAS), 12(4):537–564, 1990.

[25] Tommy Thorn. Programming languages for mobile code. ACM
Computing Surveys, 29(3):213–239, Sept 1997.

[26] P. W. Trinder, K. Hammond, J. S. Mattson, Jr., A. S. Partridge, and
S. L. Peyton Jones. Gum: a portable parallel implementation of
Haskell. In PLDI, pages 79–88, NY, USA, 1996. ACM.

[27] Carlos Varela and Gul Agha. Programming Dynamically Reconfig-
urable Open Systems with SALSA. SIGPLAN Not., 36(12):20–34,
December 2001.

[28] Claes Wikström. Distributed Programming in Erlang. In International
Symposium on Parallel Symbolic Computation, pages 412–421, 1994.

[29] Tyron Zerafa. Erlang’s Code Management Extension Source Code.
https://github.com/TyronZerafa/Erlang-Code-Migration.

Code Management Automation for Erlang Remote Actors 10 2013/8/16

