Towards a Specification-Based Correctness of Erlang
Systems Through Asynchronous Monitoring

Christian Colombo
Dept. of Computer Science
University of Malta
christian.colombo@um.edu.mt

ABSTRACT

We argue that runtime verification, in the guise of monitor-
oriented programming, is a natural way how to ensure cor-
rectness in dynamically-typed, concurrent languages such as
Erlang. Our proposal involves a methodology for marrying
correctness runtime checking with the fail-fast approach in
Erlang, exploiting the rich failure-handling mechanisms of
the language. This allows us to smoothly integrate correct-
ness analysis within existing language code practices.

1. INTRODUCTION

Erlang [1] is an established, industry strength, concurrent
language for constructing distributed, fault-tolerant scal-
able systems. It is used mainly in the Telecoms industry,
an area where program correctness is of paramount impor-
tance. Ensuring correctness in Erlang is however non triv-
ial mainly because the programs constructed are inherently
non-deterministic: every execution of a concurrent set of
processes may yield a different interleaving, potentially re-
sulting in different behaviour. Unfortunately, exhaustive
methods such as model checking suffer from state explosion,
particularly when applied to concurrent code with multiple
execution paths.

Runtime Verification (RV) is an appealing compromise to-
wards ensuring Erlang code correctness, as it circumvents
this problem by verifying only the current program execu-
tion. RV usually employs a monitor which executes along-
side existing code so as to analyse the execution of the moni-
tored program at runtime. It can sometimes take the guise of
Monitoring-Oriented Programming (MOP) [4], a paradigm
which advocates separation of concerns by delegating cross-
cutting concerns to monitors.

In this paper we argue that an MOP approach is particularly
relevant to programming languages such as Erlang, where
several correctness checks cannot but occur at runtime due
to inherent language features such as dynamic variable typ-
ing, remote execution of code and on-the-fly code modifica-

Adrian Francalanza
Dept. of Computer Science
University of Malta
adrian.francalanza@um.edu.mt

tion, i.e., hot code swapping. These runtime checks often
enhance expressivity (as opposed to static checks) and allow
for rapid prototyping of software. However, they tend to
clutter the code making it hard to understand and maintain
and, if misused, may lead to defensive programming. We
argue that these runtime checks are perfectly eligible to be
treated as cross-cutting concerns: using monitors to handle
such checks would relieve the main code from the clutter
and enable the reuse of monitors across the whole system.

Monitoring is not new to Erlang. In order to build fault-
tolerant code, Erlang common code practices advocate for
the fail-fast design pattern: code is structured in such a way
that errors in a process are not handled by the process it-
self; instead the process is left to fail as a result of such
errors, and its abnormal termination is then detected by
monitoring (supervising) processes linked to the failing pro-
cess; once this is detected, supervising monitors can take the
necessary actions, ranging from the launching of other pro-
cesses replacing the failed process, to failing themselves and
letting other processes handle their failure. In most cases,
this asynchronous way of handling errors suffices to ensure
fault-tolerant behaviour in Erlang, since every process has
its own local memory and the effect of erroneous behaviour
can be readily localised and isolated.

While basic Erlang superisor-style monitoring detects pro-
cess failures, correctness violations are often specification-
dependent, behav-ioural errors that do not necessarily lead
to a process failure. Thus, when a behavioural error occurs,
the monitor might never be notified and the correctness vio-
lation (which constitutes a software failure) goes unnoticed,
breaking the fail-fast convention. This fact complicates the
task of building Erlang code that is fault-tolerant with re-
spect to specification-violating errors.

In this paper, we rectify this problem by proposing a mech-
anism that packages a monitor-oriented approach to cor-
rectness as a fail-fast code pattern, reducing RV monitoring
in Erlang to a fault-tolerance problem. We elaborate more
on the proposed approach in Section 3 and show case it
through an elevator example in Section 4. This is preceeded
by a brief outline of the main Erlang mechanism used in
Section 2. Section 5 concludes.



2. BASIC CONCEPTS IN ERLANG
PROGRAMMING

Erlang is a functional language based on the actor model
of concurrency[6] whereby processes, i.e., actors, identified
by a unique ID, own a message queue, i.e., mailbozr, and a
set of local immutable variables, i.e., local memory. Inter-
process communication occurs through message passing: a
process communicates with another process in two phases by
first sending an asynchronous message to the other process’s
mailbox, uniquely identified by the respective process ID;
the receiving process can then select which messages to read
by pattern matching the messages held in its mailbox queue.

Erlang coding practices discourage defensive programming
[3], which manifestist itself through code that tries to an-
ticipate eventualities of error conditions and handle these
anomalies locally, typically through constructs such as try-
catch blocks. Instead, process code should focus on han-
dling only correct cases and simply crash, i.e., fail-fast, when
unexpected computation occurs. This fail-fast approach car-
ries a number of advantages all of which improve the under-
standing and management of concurrent Erlang code:

(7) it keeps the program logic simple by separating error
recovery from normal code;

(#¢) it standardises the way crashes and recoveries are han-
dled and;

(#47) it simplifies the task of detecting the error and localis-
ing the source of the error.

A manifestation of the fail-fast pattern (in Erlang) is of-
ten attained by organising processes using the linking and
exit-trapping mechanisms [3]. In Erlang, whenever a process
fails, the system generates an ezit-message (containing the
reason why the process failed) and sends it to other pro-
cesses, notifying them about the process failure. The pro-
cesses listening for such exit messages are defined through
process linking: spawned processes can be linked together
(in uni/bidirectional fashion), thus registering themselves to
the listening of exit messages from linked processes. Once an
exit message is delivered, there are two possible outcomes.
If a linked process is set to trap these exits, it receives this
message in its mailbox, which allows for failure detection
once the message is read’; otherwise, a non-trapping pro-
cess fails as well, propagating again the exit message to its
linked processes. Erlang also allows processes to explicitly
send exit messages to other processes (without dying them-
selves), which effectively acts as a kill directive to the non-
exit-trapping receiving process, effectively forcing them to
terminate abnormally.

This code organisation is so prevalent that its operation
has been standardised as an OTP behaviour, i.e., an Erlang
higher-order library module, called the Supervisor behaviour
[7]. Code organisation taking advantage of this behavior
can be depicted as in see Figure 1. There, the exit-trapping
process monitoring other processes for their abnormal ter-
mination, referred to as the supervisor process from now on

Message selection through pattern matching permits the
prioritisation of exit messages.

Process Exit

Supervisor

Process Exit

Figure 1: Standard Erlang supervisor code arrange-
ment.

is linked (unidirectionally) to the processes it is supervis-
ing and set to trap exit messages; the supervised processes
themselves may be linked amongst themselves, but crucially
are not set to trap exit-messages. Thus, if one the super-
vised processes fails, the linked processes automatically re-
cieve exit-messages. However, whereas other supervised pro-
cesses fail and terminate as well (as a form of termination
join), the supervisor process can trap the message and take
corrective action.

3. PROPOSED APPROACH

Correctness violations are often specification-dependent, be-

havioural errors that do not necessarily lead to a process

failure. As a result, rudimentary monitor instrumentation

through Erlang built-in mechanisms would not conform to

the fail-fast practice. This complicates the task of building

Erlang code that is fault-tolerant with respect to specification-
violating errors.

We propose a monitor-oriented programming approach to
ensure program correctness in Erlang that adheres to the
fail-fast pattern, thereby allowing for a smoother integration
within existing language practices. The resulting process or-
ganisation is depicted in Figure 2, employing the supervisor
setup discussed earlier in Section 2. In addition, correctness
criteria (possibly described through an external specifica-
tion logic) is synthesized as an Erlang process that we refer
to as the werifier. The role of the verifier is to act as a
secondary/internal monitor analysing the behaviour of the
program.

Once a correctness violation by the monitored program is
detected, the verifier externally induces the monitored pro-
cess to fail, by sending it a kill exit-message detailing the
violation. Assuming that the program is not set to trap
exits, this will cause it to terminate abnormally? thereby
exposing the specification-based correctness violations.

Crucially, from the point of view of the supervisor process
overseeing the process, the synthesised verifier acting in the
background becomes part of the supervised program itself,

2If the program consists of a number of processes, they can
all be linked to one another in non-exit-trapping fashion
whereby sending an exit signal to any one of them will cause
it to fail and, as a result, propagated the exit message to the
rest of them automatically.



Verifier Kill

!
|
|
|
|
: Events
|
|
|
|
|
|

Supervisor

Figure 2: The fail-fast RV approach proposed.

i.e., the dotted lines in Figure 2, and correctness-violation er-
rors can be handled in uniform fail-fast fashion by the super-
visor, just like any other failure-generating error. This also
means that supervising code, which is often considered to
be higher-priority, last-resort code, is unaffected by our pro-
posal, which facilitates the adoption of our approach within
existing Erlang practices.

4. CASE STUDY

We consider a simple elevator system where a user requests
the elevator at a particular floor by pressing the respective
floor button; once the elevator arrives, the user (enters the
elevator and) presses the button of the destination floor so
that the elevator progresses to the requested floor.

A possible elevator implementation is one that can only ser-
vice one user request at a time; any button pressed while
servicing a request is ignored. Thus a single variable suffices
to keep track of the current floor being served, which can
only be set if no requests are being serviced at the time, as
shown below:

case event of
{press,n}
-> case req of
nil -> _req = n
_ -> _req = req
end,
{serve,n}
-> _req = nil
end;

A button press, i.e., when an event received is of the form
{press,n}, sets the variable req to the requested floor num-
ber, n, whereas servicing a floor (the elevator opens the
door), i.e., when a received event is of the form {serve,n},
resets req to nil indicating that no other request is being
serviced; note that the variable is only modified if it is nil.

This code snippet is not programmed defensively; if event
does not match either of the alternatives, the code crashes.
During correct system behaviour, no other events should be
expected and therefore we should not provide a catch-all
clause which resolves the issue. Nevertheless, the elevator
program is supervised by a designated process, as in Fig-
ure 2, so that if the elevator system crashes, it is restarted
so as to avoid having people trapped inside the elevator.

An alternative, albeit more intricate, elevator implementa-
tion is one that can handle multiple requests at a time. The
respective code snippet is shown below:

case event of
{press,n}
-> [n | List],
{serve,n}
-> lists:delete(n,List)
end;

It maintains a list of all floors which are awaiting service,
adding a floor upon a key press and removing a floor upon
servicing. However, the enhanced functionality increases
the potential for subtle bugs that are hard to detect be-
fore deployment. For instance this new code does not check
whether the list already contains the floor number being
added, which would result in the multiple servicing of a floor
(one for each key press). This implementation would thus
violate a correctness criteria stating that “multiple requests
for the same floor should only be serviced once”; for an eleva-
tor system with two floors, the respective property checker
can be expressed as the state automaton in Figure 4.

Our methodology exposes this incorrect behaviour by exe-
cuting the elevator program in parallel with a synthesised
version of the property described in Figure 4 in an arrange-
ment akin to Figure 2. This forces program termination
upon a violation detection which, in turn, allows the respec-
tive supervisor to take the necessary corrective measures.
For instance, once the more elaborate elevator controller
terminates abnormally, the supervisor can spawn the tried-
and-tested simple elevator controller (servicing one user at
a time) as the limp-home code, while the new controller is
being fixed. This is shown in Figure 4.

We have preliminary implementations manifesting this method-
ology using a tool called ELARVA [5], which synthesises automata-

based property specifications, described in terms of a LARVA
script, into an Erlang verifier monitor. Behaviour analysis
can carried out through the in-built tracing mechanism pro-
vided by the Erlang Virtual Machine, which sends messages
to the verifier’s mailbox containing the events of interest
carried out by the program, as specified by the property.

S. CONCLUDING REMARKS AND
FUTURE WORK

In Erlang, where scalability, reliability and maintainability
are vital, the fail-fast approach is the order of the day. Un-
fortunately, specification violations do not always lead to
failure. By incorporating a specification-synthesised moni-
tor, such violations can automatically be detected and trans-
formed into failures which are in turn handled by existing
mechanisms in Erlang.



serve 2

serve 1, serve 2

press 2

serve 2

serve 1

press 2

press 1, press 2

Figure 3: The elevator property shown as a state automaton.

Verifier Kill

!
|
|
|
|
: Events
|
|
|
|
|
|

Simple

Supervisor §t§rE =
Elevator

Figure 4: Updated elevator case study configuration.

The form of monitoring employed by our methodology thus
far is often termed as asynchronous monitoring®, which is
renowned for being unobtrusive [2]. At the same time, it
is often found to be inadequate for taking corrective mea-
sures upon violation detection since it may be difficult to
determine the extent of the error’s effects when violations
are detected late. Nevertheless, in the case of Erlang, this
problem is alleviated since each process has its own local
memory. Furthermore, interdependencies among processes
(as a result of message passing) can be explicitly identified
through process linking so that if one process is terminated
abnormally, the others get either notified or else terminated.
Thus, although delayed violation detection might still al-
low unwanted actions to occur after an error, our approach
promises a best-effort fail-fast architecture.

We have so far shown how to synthesise a verifier from the
specification where the only corrective action allowed is the
forced termination of the violating program. As a next step,
we intend to extend this work by allowing violation repa-
rations to be specified as part of the correctness specifica-
tion, possibly allowing supervisors to be synthesised from
the specification as well. Another future direction is that
of automating the linking and exit-trapping settings asso-
ciated with our monitoring setup, so as to ensure that all
dependent processes are killed when a process has violated
a specification.

3 Assuming the asynchronous monitor is executed on (par-
allel) auxiliary resources, it becomes equivalent to offline
monitoring.

6. REFERENCES

[1] J. Armstrong. Programming Erlang - Software for a
Concurrent World. The Pragmatic Bookshelf, 2007.

[2] H. Barringer, A. Groce, K. Havelund, and M. Smith.
An entry point for formal methods: Specification and
analysis of event logs. In Formal Methods in Aerospace
(FMA), 2009.

[3] F. Cesarini and S. Thompson. ERLANG Programming.

O’Reilly, 20009.

F. Chen and G. Rosu. Towards monitoring-oriented

programming: A paradigm combining specification and

implementation. In Workshop on Runtime Verification

(RV’03), volume 89(2) of ENTCS, pages 108 — 127,

2003.

C. Colombo, A. Francalanza, and R. Gatt. Elarva: A

monitoring tool for erlang. In RV: International

Conference on Runtime Verification, pages 370-374.

Springer, 2011.

C. Hewitt, P. Bishop, and R. Steiger. A universal

modular actor formalism for artificial intelligence. In

1JCAI pages 235-245. Morgan Kaufmann, 1973.

[7] M. Logan, E. Merritt, and R. Carlsson. Erlang and
OTP in Action. Manning, 2010.

4

5

6



