
The Cost of Monitoring Alone?

Luca Aceto1,2[0000−0002−2197−3018], Antonis Achilleos2[0000−0002−1314−333X],
Adrian Francalanza3[0000−0003−3829−7391], Anna

Ingólfsdóttir2[0000−0001−8362−3075], and Karoliina Lehtinen4[0000−0003−1171−8790]

1 Gran Sasso Science Institute luca.aceto@gssi.it
2 Reykjavik University {luca,antonios,annai}@ru.is
3 University of Malta adrian.francalanza@um.edu.mt

4 University of Liverpool karoliina.lehtinen@liverpool.ac.uk

Abstract. We compare the succinctness of two monitoring systems for
properties of infinite traces, namely parallel and regular monitors. Al-
though a parallel monitor can be turned into an equivalent regular mon-
itor, the cost of this transformation is a double-exponential blowup in the
syntactic size of the monitors, and a triple-exponential blowup when the
goal is a deterministic monitor. We show that these bounds are tight and
that they also hold for translations between corresponding fragments of
Hennessy-Milner logic with recursion over infinite traces.

1 Introduction

Runtime Verification is a lightweight verification technique where a computa-
tional entity that we call a monitor is used to observe a system run in order to
verify a given property. That property, which we choose to formalize in Hennessy-
Milner logic with recursion (recHML) [13], can be a potential property of either
the system [1,12], or of the current system run, encoded as a trace of events [4]
— see also, for example, [8, 10, 14] for earlier work on the monitoring of trace
properties, mainly formalized on LTL.

To address the case of verifying trace properties, the authors introduced in [4]
a class of monitors that can generate multiple parallel components that analyse
the same system trace. These were called parallel monitors. When some of them
reach a verdict, they can combine these verdicts into one. In the same paper,
it was determined that this monitoring system has the same monitoring power
as its restriction to a single monitoring component, as it was used in [1, 12],
called regular monitors. However, the cost of the translation from the more
general monitoring system to this fragment, as given in [4], is doubly exponential
with respect to the syntactic size of the monitors. Furthermore, if the goal is a

? This research was partially supported by the projects “TheoFoMon: Theoretical
Foundations for Monitorability” (grant number: 163406-051) and “Epistemic Logic
for Distributed Runtime Monitoring” (grant number: 184940-051) of the Icelandic
Research Fund, by the BMBF project “Aramis II” (project number: 01IS160253) and
the EPSRC project “Solving parity games in theory and practice” (project number:
EP/P020909/1).

deterministic regular monitor [2, 3], then the resulting monitor is quadruply-
exponentially larger than the original, parallel one, in [4].

In this paper, we show that the double-exponential cost for translating from
parallel to equivalent regular monitors is tight. Furthermore, we improve the
translation cost from parallel monitors to equivalent deterministic monitors to
a triple exponential, and we show that this bound is tight. We define monitor
equivalence in two ways, the first one stricter than the second. For the first
definition, two monitors are equivalent when they reach the same verdicts for the
same finite traces, while for the second one it suffices to reach the same verdicts
for the same infinite traces. We prove the upper bounds for a transformation
that gives monitors that are equivalent with respect to the stricter definition,
while we prove the lower bounds with respect to transformations that satisfy the
coarser definition. Therefore, our bounds hold for both definitions of monitor
equivalence. This treatment allows us to derive stronger results, which yield
similar bounds for the case of logical formulae, as well.

In [4], we show that, when interpreted over traces, mxHML, the fragment
of recHML that does not use least fixed points, is equivalent to the syntac-
tically smaller safety fragment sHML. That is, every mxHML formula can be
translated to a logically equivalent sHML formula. Similarly to the aforemen-
tioned translation of monitors, this translation of formulae results in a formula
that that is syntactically at most doubly-exponentially larger than the original
formula. We show that this upper bound is tight.

The first four authors have worked on the complexity of monitor transfor-
mations before in [2, 3], where the cost of determinizing monitors is examined.
Similarly to [2, 3], in [4], but also in this paper, we use results and techniques
from Automata Theory and specifically about alternating automata [9, 11].

In Sec. 2, we introduce the necessary background on monitors and recHML
on infinite traces, as these were used in [4]. In Sec. 3, we describe the monitor
translations that we mentioned above, and we provide upper bounds for these,
which we prove to be tight in Sec. 4. In Sec. 5, we extrapolate these bounds to
the case where we translate logical formulae, from mxHML to sHML. In Sec. 6,
we conclude the paper. Omitted proofs can be found in the appendix.

2 Preliminaries

Monitors are expected to monitor for a specification, which, in our case, is written
in recHML. We use the linear-time interpretation of the logic recHML, as it
was given in [4]. According to that interpretation, formulae are interpreted over
infinite traces.

2.1 The model and the logic

We assume a finite set of actions α, β, . . . ∈ Act with distinguished silent action
τ . We also assume that τ 6∈ Act and that µ ∈ Act∪{τ}, and refer to the actions
in Act as visible actions (as opposed to the silent action τ). The metavariables

2

t, u ∈ Trc = Actω range over (infinite) sequences of visible actions, which
abstractly represent system runs. We also use the metavariable T ⊆ Trc to
range over sets of traces. We often need to refer to finite traces, denoted as
s, r ∈ Act∗, to represent objects such as a finite prefix of a system run, or to
traces that may be finite or infinite (finfinite traces, as they were called in [4]),
denoted as g, h ∈ Act∗∪Actω. A trace (resp., finite trace, resp., finfinite trace)
with action α at its head is denoted as αt (resp., αs, resp., αg). Similarly a trace
with a prefix s is written st.

Syntax

ϕ,ψ ∈ recHML ::= tt | ff | ϕ∨ψ | ϕ∧ψ
| 〈α〉ϕ | [α]ϕ | minX.ϕ | maxX.ϕ | X

Linear-Time Semantics

Jtt, ρK def

= Trc Jff, ρK def

= ∅

Jϕ1∧ϕ2, ρK
def

= Jϕ1, ρK ∩ Jϕ2, ρK Jϕ1∨ϕ2, ρK
def

= Jϕ1, ρK ∪ Jϕ2, ρK

J[α]ϕ, ρK def

= {βt | β 6= α or t ∈ Jϕ, ρK} J〈α〉ϕ, ρK def

= {αt | t ∈ Jϕ, ρK}

JminX.ϕ, ρK def

=
⋂
{T | Jϕ, ρ[X 7→ T]K ⊆ T}

JmaxX.ϕ, ρK def

=
⋃
{T | T ⊆ Jϕ, ρ[X 7→ T]K} JX, ρK def

= ρ(X)

Fig. 1. recHML Syntax and Linear-Time Semantics

The logic recHML [7, 13] assumes a countable set LVar (with X ∈ LVar)
of logical variables, and is defined as the set of closed formulae generated by
the grammar of Fig. 1. Apart from the standard constructs for truth, falsehood,
conjunction and disjunction, the logic is equipped with possibility and necessity
modal operators labelled by visible actions, together with recursive formulae
expressing least or greatest fixpoints; formulae minX.ϕ and maxX.ϕ bind free
instances of the logical variable X in ϕ, inducing the usual notions of open/closed
formulae and formula equality up to alpha-conversion.

We interpret recHML formulae over traces, using an interpretation function
J−K that maps formulae to sets of traces, relative to an environment ρ : LVar→
2Trc, which intuitively assigns to each variable X the set of traces that are
assumed to satisfy it, as defined in Fig. 1. The semantics of a closed formula ϕ
is independent of the environment ρ and is simply written JϕK. Intuitively, JϕK
denotes the set of traces satisfying ϕ. For a formula ϕ, we use l(ϕ) to denote the
length of ϕ as a string of symbols.

3

Syntax

m,n ∈Mon ::= v | α.m | m+ n | recx.m | x | m⊗n | m⊕n
v ∈ Verd ::= no | yes | end

Dynamics

Regular monitor rules:

Act
α.m

α−−→ m
RecF

recx.m
τ−−→ m

RecB
x

τ−−→ px

SelL m
µ−−→ m′

m+ n
µ−−→ m′

SelR n
µ−−→ n′

m+ n
µ−−→ n′

Ver
v

α−−→ v

Parallel tracing rules:

Par m
α−−→ m′ n

α−−→ n′

m�n α−−→ m′�n′
TauL m

τ−−→ m′

m�n τ−−→ m′�n
Parallel evaluation rules:

VrE
end�end

τ−−→ end
VrC1

yes⊗m τ−−→ m
VrC2

no⊗m τ−−→ no

VrD1
no⊕m τ−−→ m

VrD2
yes⊕m τ−−→ yes

Fig. 2. Monitor Syntax and Semantics

2.2 Two monitoring systems

We now present two monitoring systems, parallel and regular monitors, that
were introduced in [1,4,12]. A monitoring system is a Labelled Transition System
(LTS) based on Act, the set of actions, that is comprised of the monitor states,
or monitors, and a transition relation. The set of monitor states, Mon, and the
monitor transition relation, −→⊆ (Mon× (Act ∪ {τ})×Mon), are defined in
Fig. 2. There and elsewhere, � ranges over both parallel operators ⊕ and ⊗.
When discussing a monitor with free variables (an open monitor) m, we assume
it is part of a larger monitor m′ without free variables (a closed monitor), where
every variable x appears at most once in a recursive operator. Therefore, we
assume an injective mapping from each monitor variable x to a unique monitor
px, of the form recx.m that is a submonitor of m′.

The suggestive notation m
µ−−→ n denotes (m,µ, n) ∈−→; we also write m 6 µ−−→

to denote ¬(∃n. m µ−−→ n). We employ the usual notation for weak transitions

and write m =⇒ n in lieu of m(
τ−→)∗n and m

µ
=⇒ n for m =⇒ · µ−−→ · =⇒ n. We

write sequences of transitions m
α1=⇒ · · · αk=⇒ mk as m

s
=⇒ mk, where s = α1 · · ·αk.

The monitoring system of parallel monitors is defined using the full syntax and
all the rules from Fig. 2; regular monitors are parallel monitors that do not use
the parallel operators ⊗ and ⊕. Regular monitors were defined and used already
in [1] and [12], while parallel monitors were defined in [4]. We observe that the

4

rules RecF and RecB are not the standard recursion rules from [1] and [12], but
they are equivalent to those rules [4, 5] and more convenient for our arguments.

A transition m
α−−→ n denotes that the monitor in state m can analyse the

(visible) action α and transition to state n. Monitors may reach any one of three
verdicts after analysing a finite trace: acceptance, yes, rejection, no, and the in-
conclusive verdict end. We highlight the transition rule for verdicts in Fig. 2,
describing the fact that from a verdict state any action can be analysed by tran-
sitioning to the same state; verdicts are thus irrevocable. Rule Par states that
both submonitors need to be able to analyse an external action α for their par-
allel composition to transition with that action. The rules in Fig. 2 also allow
τ -transitions for the reconfiguration of parallel compositions of monitors. For
instance, rules VrC1 and VrC2 describe the fact that, in conjunctive parallel
compositions, whereas yes verdicts are uninfluential, no verdicts supersede the
verdicts of other monitors (Fig. 2 omits the obvious symmetric rules). The dual
applies for yes and no verdicts in a disjunctive parallel composition, as described
by rules VrD1 and VrD2 (again, we omit the obvious symmetric rules). Rule
VrE applies to both forms of parallel composition and consolidates multiple
inconclusive verdicts. Finally, rules TauL and its omitted dual TauR are con-
textual rules for these monitor reconfiguration steps.

Definition 1 (Acceptance and Rejection). We say that m rejects (resp.,

accepts) s ∈ Act∗ when m
s

=⇒ no (resp., m
s

=⇒ yes). We similarly say that m
rejects (resp., accepts) t ∈ Actω if m rejects (resp., accepts) some prefix of t.

Just like for formulae, we use l(m) to denote the length of m as a string of
symbols. In the sequel, for a finite nonempty set of indices I, we use

∑
i∈I mi

to denote any combination of the monitors in {mi | i ∈ I} using the operator
+. The notation is justified, because + is commutative and associative with
respect to the transitions that a resulting monitor can exhibit. For each j ∈ I,
mj is called a summand of

∑
i∈I mi (and the term

∑
i∈I mi is called a sum of

mj). The regular monitors in Fig. 2 have an important property, namely that
their state space, i.e., the set of reachable states, is finite (see Remark 1). On the
other hand, parallel monitors can be infinite-state, but they are convenient when
one synthesizes monitors. However, the two monitoring systems are equivalent
(see Prop. 2). For a monitor m, reach(m) is the set of monitor states reachable
through a transition sequence from m.

Lemma 1 (Verdict Persistence, [4, 12]). v
s

=⇒ m implies m = v.

Lemma 2. Every submonitor of a closed regular monitor m can only transition
to submonitors of m.

Remark 1. An immediate consequence of Lem. 2 is that regular monitors are
finite-state. This is not the case for parallel monitors, in general. For example,
consider parallel monitor mτ = recx.(x⊗(a.yes + b.yes)). We can see that there

5

is a unique sequence of transitions that can be made from mτ :

mτ
τ−→ x⊗(a.yes + b.yes)

τ−→ mτ⊗(a.yes + b.yes)
τ−→ (x⊗(a.yes + b.yes))⊗(a.yes + b.yes)
τ−→ (mτ⊗(a.yes + b.yes))⊗(a.yes + b.yes) −→ · · · ut

One basic requirement that we maintain on monitors is that they are not
allowed to give conflicting verdicts for the same trace.

Definition 2 (Monitor Consistency). A monitor m is consistent when

there is no finite trace s such that m
s

=⇒ yes and m
s

=⇒ no.

We identify a useful monitor predicate that allows us to neatly decompose
the behaviour of a parallel monitor in terms of its constituent sub-monitors.

Definition 3 (Monitor Reactivity). We call a monitor m reactive when for

every n ∈ reach(m) and α ∈ Act, there is some n′ such that n
α

=⇒ n′.

The following lemma states that parallel monitors behave as expected with
respect to the acceptance and rejection of traces as long as the constituent sub-
monitors are reactive.

Lemma 3 ([4]). For reactive m1 and m2:

– m1⊗m2 rejects t if and only if either m1 or m2 rejects t.
– m1⊗m2 accepts t if and only if both m1 and m2 accept t.
– m1⊕m2 rejects t if and only if both m1 and m2 reject t.
– m1⊕m2 accepts t if and only if either m1 or m2 accepts t.

The following example, which stems from [4], indicates why the assumption
that m1 and m2 are reactive is needed in Lem. 3.

Example 1. Assume that Act = {a, b}. The monitors a.yes+b.no and recx.(a.x+
b.yes) are both reactive. The monitor m = a.yes⊗b.no, however, is not reactive.
Since the submonitor a.yes can only transition with a, according to the rules
of Fig. 2, m cannot transition with any action that is not a. Similarly, as the
submonitor b.no can only transition with b, m cannot transition with any action
that is not b. Thus, m cannot transition to any monitor, and therefore it cannot
reject or accept any trace.

In general, we are interested in reactive parallel monitors, and the parallel
monitors that we use will have this property.

2.3 Automata, Languages, Equivalence

In [4], we describe how to transform a parallel monitor to a verdict equivalent reg-
ular one. This transformation goes through alternating automata [9,11]. For our
purposes, we only need to define nondeterministic and deterministic automata.

6

Definition 4 (Finite Automata). A nondeterminitic finite automaton (NFA)
is a quintuple A = (Q,Act, q0, δ, F), where Q is a finite set of states, Act is
a finite alphabet (here it coincides with the set of actions), q0 is the starting
state, F ⊆ Q is the set of accepting, or final states, and δ ⊆ Q × Act × Q is
the transition relation. An NFA is deterministic (DFA) if δ is a function from
Q×Act to Q.

Given a state q ∈ Q and a symbol α ∈ Act, δ returns a set of possible
states where the NFA can transition, and we typically use q′ ∈ δ(q, α) instead
of (q, α, q′) ∈ δ. We extend the transition relation to δ∗ : Q × Act∗ → 2Q, so
that δ∗(q, ε) = {q} and δ∗(q, αs) =

⋃
{δ∗(q′, s) | q′ ∈ δ(q, α)}. We say that the

automaton accepts s ∈ Act∗ when δ∗(q0, s) ∩ F 6= ∅, and that it recognizes
L ⊆ Act∗ when L is the set of strings accepted by the automaton.

Definition 5 (Monitor Language Recognition). A monitor m recognizes
positively (resp., negatively) a set of finite traces (i.e., a language) L ⊆ Act∗

when for every s ∈ Act∗, s ∈ L if and only if m accepts (resp., rejects) s. We
call the set that m recognizes positively (resp., negatively) La(m) (resp., Lr(m)).
Similarly, we say that m recognizes positively (resp., negatively) a set of infinite
traces L ⊆ Actω when for every t ∈ Actω, t ∈ L if and only if m accepts (resp.,
rejects) t.

Observe that, by Lem. 1, La(m) and Lr(m) are closed under finite extensions.

Lemma 4. The set of infinite traces that is recognized positively (resp., nega-
tively) by m is exactly La(m) ·Actω (resp., Lr(m) ·Actω).

Proof. The lemma is a consequence of verdict persistence (Lem. 1). ut

To compare different monitors, we use a notion of monitor equivalence from
[3] that focusses on how monitors can reach verdicts.

Definition 6 (Verdict Equivalence). Monitors m and n are verdict equiv-
alent, denoted as m 'v n, if La(m) = La(n) and Lr(m) = Lr(n).

One may consider the notion of verdict equivalence, as defined in Def. 6, to be
too strict. After all, verdict equivalence is defined with respect to finite traces, so
if we want to turn a parallel monitor into a regular or deterministic monitor, the
resulting monitor not only needs to accept and reject the same infinite traces,
but it is required to do so at the same time the original parallel monitor does.
However, one may prefer to have a smaller, but not tight monitor, if possible, as
long as it accepts the same infinite traces.

Definition 7 (ω-Verdict Equivalence). Monitors m and n are ω-verdict
equivalent, denoted as m 'ω n, if La(m) · Actω = La(n) · Actω and Lr(m) ·
Actω = Lr(n) ·Actω.

From Lem. 4 we observe that verdict equivalence implies ω-verdict equivalence.
The converse does not hold, because no 'ω

∑
α∈Act

α.no, but no 6'v

∑
α∈Act

α.no.

7

Definition 8 ([2]). A closed regular monitor m is deterministic iff every sum
of at least two summands that appears in m is of the form

∑
α∈A α.mα, where

A ⊆ Act.

Example 2. The monitor a.b.yes + a.a.no is not deterministic while the verdict
equivalent monitor a.(b.yes + a.no) is deterministic.

2.4 Synthesis

There is a tight connection between the logic from Sec. 2.1 and the monitoring
systems from Sec. 2.2. Ideally, we would want to be able to synthesize a monitor
from any formula ϕ, such that the monitor recognizes JϕK positively and Trc\JϕK
negatively. However, as shown in [4], neither goal is possible for all formulae.
Instead, we identify the following fragments of recHML.

Definition 9 (MAX and MIN Fragments of recHML). The greatest-
fixed-point and least-fixed-point fragments of recHML are, respectively, defined
as:

ϕ,ψ ∈ mxHML ::= tt | ff | ϕ∨ψ | ϕ∧ψ | 〈α〉ϕ | [α]ϕ | maxX.ϕ and

ϕ,ψ ∈ mnHML ::= tt | ff | ϕ∨ψ | ϕ∧ψ | 〈α〉ϕ | [α]ϕ | minX.ϕ.

Definition 10 (Safety and co-Safety Fragments of recHML). The safety
and co-safety fragments of recHML are, respectively, defined as:

ϕ,ψ ∈ sHML ::= tt | ff | ϕ∧ψ | [α]ϕ | maxX.ϕ and

ϕ,ψ ∈ cHML ::= tt | ff | ϕ∨ψ | 〈α〉ϕ | minX.ϕ.

Theorem 1 (Monitorability and Maximality, [4]).

1. For every ϕ ∈ mxHML (resp., ϕ ∈ mnHML), there is a reactive parallel
monitor m, such that l(m) = O(l(ϕ)) and Lr(m) · Actω = Actω \ JϕK
(resp., La(m) ·Actω = JϕK).

2. For every reactive parallel monitor m, there are ϕ ∈ mxHML and ψ ∈
mnHML, such that l(ϕ), l(ψ) = O(l(m)), Lr(m) ·Actω = Actω \ JϕK, and
La(m) ·Actω = JψK.

3. For every ϕ ∈ sHML (resp., ϕ ∈ cHML), there is a regular monitor m, such
that l(m) = O(l(ϕ)) and Lr(m) ·Actω = Actω \JϕK (resp., La(m) ·Actω =
JϕK).

4. For every regular monitor m, there are ϕ ∈ sHML and ψ ∈ cHML, such
that l(ϕ), l(ψ) = O(m), Lr(m)·Actω = Actω\JϕK, and La(m)·Actω = JψK.

We say that a logical fragment is monitorable for a monitoring system, such
as parallel or regular monitors, when for each of the fragment’s formulae there is
a monitor that detects exactly the satisfying or violating traces for that formula.
One of the consequences of Thm. 1 is that the fragments defined in Defs. 9 and 10
are semantically the largest monitorable fragments of recHML for parallel and

8

regular monitors, respectively. As we will see in Sec. 3, every parallel monitor has
a verdict equivalent regular monitor (Props. 3 and 4), and therefore all formulae
in mnHML and mxHML can be translated into equivalent cHML and sHML
formulae respectively, as Thm. 4 later on demonstrates. However, Thm. 5 to
follow shows that the cost of this translation is significant.

3 Monitor Transformations: Upper Bounds

In this section we explain how to transform a parallel monitor into a regular or
deterministic monitor, and what is the cost, in monitor size, of this transforma-
tion. The various relevant transformations, including some from [2] and [9, 11],
are summarized in Fig. 3, where each edge is labelled with the best-known worst-
case upper bounds for the cost of the corresponding transformation in Fig. 3
(AFA abbreviates alternating finite automaton [9]). As we see in [2, 3] and in
Sec. 4, these bounds cannot be improved significantly.

parallel
monitor

AFA

regular
monitor

NFA DFA

deterministic
monitor

O(n)

O(2n)

2O(n·2n)

O(n)

O(2n)

2O(n)

2O(2n)

2O(n logn)

Fig. 3. Monitor Transformations and Costs

Proposition 1 ([4]). For every reactive parallel monitor m, there are an al-
ternating automaton that recognizes La(m) and one that recognises Lr(m), with
O(l(m)) states.

Proof. The construction from [4, Proposition 3.6] gives an automaton that has
the submonitors of m as states. The automaton’s transition function corresponds
to the semantics of the monitor. ut

Corollary 1 (Corollary 3.7 of [4]) For every reactive and closed parallel mon-
itor m, there are an NFA that recognises La(m) and an NFA that recognises
Lr(m), and each has at most 2l(m) states.

Proposition 2. For every reactive and closed parallel monitor m, there exists

a verdict equivalent regular monitor n such that l(n) = 2O(l(m)·2l(m)).

Proof. Let Aam be an NFA for La(m) with at most 2l(m) states, and let Arm
be an NFA for Lr(m) with at most 2l(m) states, which exist by Cor. 1. From

9

these NFAs, we can construct regular monitors ma
R and mr

R, such that ma
R recog-

nizes La(m) positively and mr
R recognizes Lr(m) negatively, and l(ma

R), l(mr
R) =

2O(l(m)·2l(m)) [3, Theorem 2]. Therefore, ma
R +mr

R is regular and verdict equiv-

alent to m, and l(ma
R +mr

R) = 2O(l(m)·2l(m)). ut

The constructions from [4] include a determinization result, based on [2].

Theorem 2 (Corollary 3 of [3]). For every consistent closed regular monitor

m, there is a deterministic monitor n such that n 'v m and l(n) = 22
O(l(m))

.

Proposition 3 (Proposition 3.11 of [4]). For every consistent reactive and
closed parallel monitor m, there is a verdict equivalent deterministic regular mon-

itor n such that l(n) = 22
2
O(l(m)·2l(m))

.

However, the bound given by Prop. 3 for the construction of deterministic
regular monitors from parallel ones is not optimal, as we observe below.

Proposition 4. For every consistent reactive and closed parallel monitor m,

there is a deterministic monitor n such that n 'v m and l(n) = 22
2O(l(m))

.

In the following Sec. 4, we see that the upper bounds of Props. 2 and 4
are tight, even for monitors that can only accept or reject, and even when the
constructed regular or deterministic monitor is only required to be ω-verdict
equivalent to the starting one, and not necessarily verdict equivalent, to the
original parallel monitor. As we only need to focus on acceptance monitors,
in the following we say that a monitor recognizes a language to mean that it
recognizes the language positively.

4 Lower Bounds

We now prove that the transformations of Sec. 3 are optimal, by establishing the
corresponding lower bounds. To this end, we introduce a family of suffix-closed
languages LkA ⊆ {0, 1, e, $,#}∗. Each LkA is a variation of a language introduced

in [9] to prove the 22
o(n)

lower bound for the transformation from an alternating
automaton to a deterministic one. In this section, we only need to consider closed
monitors, and as such, all monitors are assumed to be closed.

A variation of the language that was introduced in [9] is the following:

LkV = {u#w#v$w | u, v ∈ {0, 1,#}∗, w ∈ {0, 1}k}.

An alternating automaton that recognizes LkV can nondeterministically skip
to the first occurrence of w and then verify that, for every number i between 0
and k − 1, the i’th bit matches the i’th bit after the $ symbol. This verification
can be done using up to O(k) states, to count the position i of the bit that
is checked. On the other hand, a DFA that recognizes LkV must remember all

possible candidates for w that have appeared before $, and hence requires 22
k

states. We can also conclude that any NFA for LkV must have at least 2k states,
because a smaller NFA could be determinized to a smaller DFA.

10

A gap language For our purposes, we use a similar family LkA of suffix-closed
languages, which are designed to be recognized by small parallel monitors, but
such that each regular monitor recognizing LkA must be “large”. We fix two
numbers l, k ≥ 0, such that k = 2l. First, we observe that we can encode every
string w ∈ {0, 1}k as a string a1α1a2α2 · · · akαk ∈ {0, 1}(l+1)·k, where a1a2 · · · ak
is a permutation of {0, 1}l and, for all i, αi ∈ {0, 1}. Then, aiαi gives the
information that, for j being the number with binary representation ai, the j’th
position of w holds bit αi. Let

W =

{
a1α1 · · · akαk ∈ {0, 1}(l+1)·k ∣∣ for all 1 ≤ i ≤ k, αi ∈ {0, 1} and

ai ∈ {0, 1}l, and a1 · · · ak ∈ {0, 1}l!

}
.

Let w,w′ ∈ W , where w = a1α1a2α2 · · · akαk and w′ = b1β1b2β2 · · · bkβk, and
for 1 ≤ i ≤ k, ai, bi ∈ {0, 1}l and αi, βi ∈ {0, 1}. We define w ≡ w′ to mean that
for every i, j ≤ k, ai = bj implies αi = βj . Let a = α0 . . . αl−1 ∈ {0, 1}l; then,
enc(a) = bin(0)α0 . . . bin(l− 1)αl−1 is the ordered encoding of a, where bin(i) is
the binary encoding of i. Then, w ∈W is called an encoding of a if w ≡ enc(a).

Let Σ = {0, 1,#} and Σ$ = Σ ∪ {$}. Then,

LkA = {u#w#v$u′#w′#$v′ | u, v′ ∈ Σ∗$, u
′, v ∈ Σ∗, w, w′ ∈W, and w ≡ w′}.

In other words, a finite trace is in LkA exactly when it has a substring of the
form #w#v$u′#w′#$, where w and w′ are encodings of the same string and
there is only one $ between them. Intuitively, # is there to delimit bit-strings
that may be elements of W , and $ delimits sequences of such bit-strings. So,
the language asks if there are two such consecutive sequences where the last
bit-string of the second sequence comes from W and matches an element from
the first sequence. We observe that LkA is suffix-closed.

Lemma 5. s ∈ LkA if and only if ∀t. st ∈ LkA ·Σω
$.

Conventions For the conclusions of Lem. 3 to hold, monitors need to be reactive.
However, a reactive monitor can have a larger syntactic description than an
equivalent non-reactive one, e.g., α.yes vs. α.yes + β.end + γ.end, when Act =
{α, β, γ}. This last monitor is also verdict equivalent to α.yes + end. In what
follows, for brevity and clarity, whenever we write a sum s of a monitor of the
form α.m, we will mean s + end, which is reactive, so it can be safely used
with a parallel operator, and is verdict equivalent to s. We use set-notation for
monitors: for A ⊆ Act, A.m stands for

∑
α∈A α.m (or

∑
α∈A α.m + end under

the above convention). Furthermore, we define {0, 1}0.m = m and {0, 1}i+1.m =
0.{0, 1}i.m + 1.{0, 1}i.m. Notice that l({0, 1}i.m) = 2i · l(m) + 5 · (2i − 1). We
can also similarly define T.m for T ⊆ {0, 1}i.

11

Auxiliary monitors We start by defining auxiliary monitors. Given a (closed)
monitor m, let

skip#(m) := recx.((0.x+ 1.x+ #.x)⊕#.m),

next#(m) := recx.(0.x+ 1.x+ #.m),

next$(m) := recx.(0.x+ 1.x+ #.x+ $.m), and

skip last(m) := recx.(0.x+ 1.x+ #.x+ #.(m⊗rec y.(0.y + 1.y + #.$.yes))).

These monitors read the trace until they reach a certain symbol, and then
they activate submonitor m. We can think that skip#(m) nondeterministi-
cally skips to some occurrence of # that comes before the first occurrence of
$; next#(m) and next$(m) respectively skip to the next occurrence of # and $;
and skip last(m) skips to the last occurrence of # before the next occurrence
of #$.

Lemma 6. skip#(m) accepts g iff there are s and h, such that s#h = g, m
accepts h, and s ∈ {0, 1,#}∗.

The following lemmata are straightforward and explain how the remaining
monitors defined above are used.

Lemma 7. next#(m) accepts g iff there are s and h, such that s#h = g, m
accepts h, and s ∈ {0, 1}∗.

Lemma 8. next$(m) accepts g iff there are s and h, such that s$h = g, m
accepts h, and s ∈ {0, 1,#}∗.

Lemma 9. skip last(m) accepts g iff there are s, r, and h, such that s#r#$h =
g, m accepts r#$h, r ∈ {0, 1}∗, and s ∈ {0, 1,#}∗.

The following monitors help us ensure that a bit-string from {0, 1}(l+1)·k is
actually a member of W . Monitor all ensures that all bit positions appear in
the bit-string; no more(s) assures us that the bit position s does not appear any
more in the remainder of the bit-string; and unique guarantees that each bit
position appears at most once. Monitor perm combines these monitors together.

all := ⊗{recx.({0, 1}l+1.x ⊕ s.{0, 1}.yes) | s ∈ {0, 1}l};

for s ∈ {0, 1}l,

no more(s) := recx.
(
#.yes + ({0, 1}l \ {s}).{0, 1}.x

)
;

unique := recx.

#.yes +

{0, 1}l+1.x ⊗
∑

s∈{0,1}l
s.{0, 1}.no more(s)

 ; and

perm := all ⊗ unique.

The purpose of perm is to ensure that a certain block of bits before the
appearance of the # symbol is a member of the set W : it accepts w# exactly

12

when w is a sequence of blocks of bits with length exactly l+ 1 (by unique) and
for every a ∈ {0, 1}l there is some α ∈ {0, 1} such that aα is one of these blocks
(by all), and that for each such a only one block is of the form aα′ (by unique).

Lemma 10. perm accepts g iff w# is a prefix of g, for some w ∈W .

Lemma 11. l(perm) = O(k2).

Given a block s of l + 1 bits, monitor find(s) accepts a sequence of blocks
of l + 1 bits w exactly when s is one of the blocks of w:

find(s) := recx.(s.yes + ({0, 1}l+1 \ {s}).x).

Lemma 12. For s ∈ {0, 1}l+1, find(s) accepts g if and only if there is some
r ∈ ({0, 1}l+1)∗, such that rs is a prefix of g.

For s ∈ {0, 1}l+1, match(s) ensures that right before the second occurrence
of $, there is a #w#, where w ∈ ({0, 1}l+1)+ and s is a (l + 1)-bit block in w.

match(s) := next$(skip last(find(s))).

Lemma 13. For s ∈ {0, 1}l+1, match(s) accepts g if and only if there are
r$r′#w#$h = g, such that r, r′ ∈ Σ∗, w ∈ {0, 1}∗, and there is a prefix w′s
of w, such that w′ ∈ ({0, 1}l+1)∗.

Recognizing LkA with a parallel monitor We can now define a parallel acceptance-
monitor of length O(k2) that recognizes LkA. Monitor matching ensures that
every one of the consecutive blocks of l + 1 bits that follow, also appears in the
block of bits that appears right before the occurrence of #$ that follows the
next $ (and that there is no other $ between these $ and #$). Therefore, if what
follows from the current position in the trace and what appears right before that
occurrence of #$ are elements w,w′ of W , matching ensures that w ≡ w. Then,
mk
A nondeterministically chooses an occurrence of #, it verifies that the block of

bits that follows is an element w of W that ends with #, and that what follows
is of the form v$u′#w′#$v′, where u′, v ∈ Σ∗, w′ ∈ W, and w ≡ w′, which
matches the description of LkA.

matching :=recx.
∑

s∈{0,1}l+1

s.(x ⊗ match(s))

mk
A :=skip# (perm ⊗ next$(skip last(perm)) ⊗ matching)

Lemma 14. mk
A recognizes LkA and l(mk

A) = O(k2).

Proof. The lemma follows from this section’s previous lemmata and from count-
ing the sizes of the various monitors that we have constructed. ut

Lemma 15. If m is a deterministic monitor that recognizes LkA ·Σω
$, then

|m| ≥
((

22
k−1

− 1
)
!
)2

= 2Ω
(
22

k−1+k
)
.

13

Thm. 3 gathers our conclusions about LkA.

Theorem 3. For every k > 0, LkA is recognized by an alternating automaton of

O(k2) states and a parallel monitor of length O(k2), but by no DFA with 2o(2
k)

states and no deterministic monitor of length 2o(2
2k−1+k). LkA ·Σω

$ is recognized
by a parallel monitor of length O(k2), but by no deterministic monitor of length

2o(2
2k−1+k).

Proof. Lem. 14 informs us that there is a parallel monitor m of length O(k2)
that recognizes LkA. Therefore, it also recognizes LkA · Σω

$ by Lem. 1. Prop. 1
tells us that m can be turned into an alternating automaton with l(m) = O(k2)
states that recognizes LkA. Lem. 15 yields that there is no deterministic monitor

of length 2o(2
2k−1+k) that recognizes that language. From [3], we know that if

there were a DFA with 2o(2
k) states that recognizes LkA, then there would be a

deterministic monitor of length 22
o(2k)

that recognizes LkA, which, as we argued,
cannot exist. ut

Hardness for regular monitors Proposition 3 does not guarantee that the 2O(n·2n)

upper bound for the transformation from a parallel monitor to a nondeterministic
regular monitor is tight. To prove a tighter lower bound, let LkU be the language
that includes all strings of the form #w1#w2# · · ·#wn$w where for i = 1, . . . , n,
wi ∈ W , and w ∈ {0, 1,#, $}∗, and for every i < n, wi encodes a string that is
smaller than the string encoded by wi+1, in the lexicographic order.

Lemma 16. s ∈ LkU if and only if ∀t. st ∈ LkU ·Σω
$.

We describe how LkU can be recognized by a parallel monitor of size O(k2).
The idea is that we need to compare the encodings of two consecutive blocks of
l + 1 bits. Furthermore, a string is smaller than another if there is a position in
these strings, where the first string has the value 0 and the second 1, and for
every position that comes before that position, the bits of the two strings are
the same. We define the following monitors:

smaller =
∑

s∈{0,1}l


find(s0) ⊗ next#(find(s1))

⊗

⊗
r<s

∑
b∈{0,1}

(find(rb) ⊗ next#(find(rb)))


last = recx.(0.x+ 1.x+ $.yes)

mU = recx.(next#(perm ⊗ (last ⊕ (smaller ⊗ x))))

Proposition 5. mU recognizes LkU (and LkU · Σω
$) and |mU | = O(k2). Every

regular monitor that recognizes LkU or LkU ·Σω
$ must be of length 2Ω(2k).

14

5 Logical Consequences

We now turn our attention back from the two monitoring systems to the corre-
sponding logical fragments. We observe that the bounds that we have proved in
the previous sections also apply when we discuss formula translations. A version
of Thm. 4 was proven in [4], but without complexity bounds.

Theorem 4. For every ϕ ∈ mnHML (resp., ϕ ∈ mxHML), there is some

ψ ∈ cHML (resp., ψ ∈ sHML), such that l(ψ) = 2O(l(m)·2l(m)) and JϕK = JψK.

Proof. We prove the case for ϕ ∈ mnHML, as the case for ϕ ∈ mxHML is
similar. By Thm. 1, we know that there is a reactive parallel monitor m, such
that La(m) ·Actω = JϕK and l(m) = O(l(ϕ)). By Prop. 2, we know that there

is a regular monitor n, such that La(n) = La(m) and l(n) = 2O(l(m)·2l(m)).

We can then see that l(n) = 2O(l(ϕ)·2l(ϕ)). According to Thm. 1, there is a
formula ψ ∈ cHML, such that JψK = La(n) ·Actω = La(m) ·Actω = JϕK, and

l(ψ) = O(l(n)), yielding that l(ψ) = 2O(l(ϕ)·2l(ϕ)). ut

The cost of the construction in the proof of Thm. 4 is due to the regularization
of the monitor. Our lower bounds — and specifically Prop. 5 — demonstrate
that this construction is optimal, because a better construction of ψ from ϕ
would lower the cost of regularization via the synthesis functions.

Theorem 5. There is some ϕ ∈ mxHML, such that for every ψ ∈ sHML, if

JϕK = JψK, then l(ψ) = 2
Ω
(
2
√

l(ϕ)
)

.

Proof (Sketch). Otherwise, we could regularize mU from Sec. 4 more efficiently
than Prop. 5 allows, by first turning mU to ϕ ∈ mxHML, then to ψ ∈ sHML,
and finally to a regular monitor m. The full proof is in the appendix. ut

Remark 2. We observe that to prove Thm. 5, it was necessary to prove Prop. 5
for regular monitors that are ω-verdict equivalent, and not just verdict equivalent,
to mU . The reason is that, in the proof of Thm. 5, the monitor m that monitors
for ψ is ω-verdict equivalent to mU and there is no guarantee that it is, in fact,
verdict equivalent to mU . ut

Remark 3. In [2], the authors define a deterministic fragment of sHML, which
they then show to be equivalent to the full sHML. We can claim analogous
bounds for translating formulae into this smaller fragment, using similar argu-
ments to those used above. We omit a full exposition of this claim. ut

6 Conclusion

We determined the cost of turning a parallel monitor into an equivalent regular,
or deterministic, monitor. As a result, we saw that, over infinite traces, mxHML
is doubly-exponentially more succinct than sHML.

15

Regular monitors were introduced in [12] to monitor for sHML over pro-
cesses. The cost of determinization of regular monitors was examined in [2, 3].
Aceto et al. in [6] used a similar determinization process on formulae in the
context of enforcement.

In [4], we also synthesized tight monitors, which are monitors that reach a
verdict as soon as they have analysed enough information from the trace, and
not later. It is often important to reach a verdict as soon as possible, but it is
also important to avoid burdening a monitored system with a very large monitor.
Therefore, it would also be of interest to determine how much it costs to turn
a parallel or regular monitor into a verdict-equivalent tight monitor. This is a
topic that we leave for future work.

References

1. Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. Mon-
itoring for silent actions. In Satya Lokam and R. Ramanujam, editors, FSTTCS,
volume 93 of LIPIcs, pages 7:1–7:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

2. Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Sæ-
var Örn Kjartansson. Determinizing monitors for HML with recursion. CoRR,
abs/1611.10212, 2016.

3. Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Sæ-
var Örn Kjartansson. On the complexity of determinizing monitors. In Arnaud
Carayol and Cyril Nicaud, editors, Implementation and Application of Automata
- 22nd International Conference, CIAA 2017, volume 10329 of Lecture Notes in
Computer Science, pages 1–13. Springer, 2017.

4. Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and
Karoliina Lehtinen. Adventures in monitorability: From branching to linear
time and back again. Proceedings of the ACM on Programming Languages,
3(POPL):52:1–52:29, 2019.

5. Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and
Karoliina Lehtinen. Adventures in monitorability: From branching to linear time
and back again. CoRR, abs/1902.00435, 2019.

6. Luca Aceto, Ian Cassar, Adrian Francalanza, and Anna Ingólfsdóttir. On Runtime
Enforcement via Suppressions. In Sven Schewe and Lijun Zhang, editors, 29th
International Conference on Concurrency Theory (CONCUR 2018), volume 118
of Leibniz International Proceedings in Informatics (LIPIcs), pages 34:1–34:17,
Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

7. Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba. Reactive
Systems: Modelling, Specification and Verification. Cambridge Univ. Press, New
York, NY, USA, 2007.

8. Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification
for LTL and TLTL. ACM Transactions on Software Engineering and Methodology,
20(4):14, 2011.

9. Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. Jour-
nal of the ACM, 28(1):114–133, jan 1981.

10. Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. What can you verify
and enforce at runtime? International Journal on Software Tools for Technology
Transfer, 14(3):349–382, Jun 2012.

16

11. A. Fellah, H. Jürgensen, and S. Yu. Constructions for alternating finite automata∗.
International Journal of Computer Mathematics, 35(1-4):117–132, jan 1990.

12. Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. Monitorability for the
Hennessy-Milner logic with recursion. Formal Methods in System Design, 51(1):87–
116, 2017.

13. Kim G. Larsen. Proof Systems for Satisfiability in Hennessy-Milner Logic with
recursion. Theoretical Computer Science, 72(2):265 – 288, 1990.

14. Amir Pnueli and Aleksandr Zaks. PSL model checking and run-time verification
via testers. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM
2006: Formal Methods, 14th International Symposium on Formal Methods, volume
4085 of Lecture Notes in Computer Science, pages 573–586. Springer, 2006.

17

Appendix

This appendix gathers the omitted proofs from the main text of this paper.

Omitted Proofs from Sec. 3

Proof (of Cor. 1). The alternating automaton that is constructed in the proof
of Prop. 1 has at most as many states as there are submonitors in m which, in
turn, are no more than l(m). To conclude, every alternating automaton with k
states can be converted into an NFA with at most 2k states that recognises the
same language [9, 11]. ut

The following technical lemmata help in proving the improved upper bound
in Prop. 4.

Lemma 17. Let m be a regular monitor and n a submonitor of m, such that
n is a sum of α.yes and of β.yes. Then, there is some s ∈ Act∗, such that m
accepts both sα and sβ.

Proof. By straightforward induction on the construction of m from n. ut

Remark 4. Monitor mτ from Remark 1 demonstrates that Lem. 17 does not hold
for parallel monitors, and so does no⊗(a.yes + b.yes). ut

Lemma 18. Let m be a closed regular monitor that does not have any submon-
itor of the form recx.yes, and let m′ be a submonitor of m. If m′ =⇒ yes, then
m′ = yes.

Proof. If m′ =⇒ yes, then m′
τ−→

k
yes for some k ≥ 0. We prove that if k > 0,

then recx.yes is a submonitor of m. If k = 1, then m′ is a sum of recx.yes, and so

recx.yes is a submonitor of m′, and therefore of m. If m′
τ−→ n and n

τ−→
k−1

yes,
then by Lem. 2, n is a submonitor of m, so recx.yes is a submonitor of n by
induction, and therefore of m. ut

Proof (of Prop. 4). We recall that, in the proof of Prop. 3 given in [4], the
construction starts from a consistent reactive parallel monitor m and turns it
into two NFAs Aa and Ar, such that L(Aa) = La(m), L(Ar) = Lr(m), and
the number of states in Aa and in Ar is at most 2O(l(m)) (Cor. 1). Then, these
automata can be turned into regular monitors ma and mr, and we can conclude
by determinizing ma

R + mr
R. To improve the upper bound for the construction,

we determinize starting from the NFAs. Let Aa = (Qa,Act, δa, q
a
0 , Fa) and

Ar = (Qr,Act, δr, q
r
0, Fr).

18

We first construct a new NFA5, N = (Q,Act∪{♥,♠, ε}, δ, q0, F), such that:
Q = {q0, f} tQa tQr, where t stands for disjoint union; F = {f}; and

δ(q, α) =



{qa0 , qr0} for q = q0, α = ε,

δo(q, α) for q ∈ Qo, α ∈ Act ∪ {ε}, o ∈ {a, r},
{f} for q ∈ Fa, α = ♥,
{f} for q ∈ Fr, α = ♠,
{f} for q = f,

∅ otherwise.

It is not hard to see that the set of minimal traces in L(N), with respect to the
prefix order, is minL(N) = L(Aa) · {♥} ∪ L(Ar) · {♠}.

From [3, Theorem 2], there is a deterministic (closed) monitor n′, such that

La(n′) = L(N) and l(n′) = 22
O(|Q|)

= 22
2O(l(m))

. We observe that there cannot
be a submonitor of n′ that is a sum both of ♥.yes and of ♠.yes — otherwise, by
Lem. 17, La(m) ∩Lr(m) 6= ∅, which is a contradiction, because m is consistent.
We further assume that n′ has no submonitors of the form recx.yes, recx.no, as
these can be replaced by yes and no, respectively, yielding an equivalent monitor.
Let n be the result of replacing in n′ all maximal sums of ♥.yes by yes and of
♠.yes by no. In particular, there are monitor variables x1, . . . , xk, y1, . . . , yl that
do not appear in n′ and an open monitor no(x1, . . . , xk, y1, . . . , yl), such that
n′ = no(s1, . . . , sk, s

′
1, . . . , s

′
l), where s1, . . . , sk are (all the occurrences of) sums

of ♥.yes in n′, s′1, . . . , s
′
l are (all the occurrences of) sums of ♠.yes in n′, and

n = no(yes, . . . , yes). We prove that minLa(n′) = La(n) · {♥} ∪ Lr(n) · {♠}.
Let w ∈ minLa(n′). Because La(n′) = L(N), we know that w ∈ L(N),

and therefore w ∈ L(Aa) · {♥} ∪ L(Ar) · {♠}. So, it is either the case that
w = w′♥ for w′ ∈ La(Aa), or that w = w′♠ for w′ ∈ La(Aa) — w.l.o.g. we

assume the first case. Therefore, n′
w′♥

===⇒ yes and since w ∈ minLa(n′), n′ 6w
′

==⇒
yes. We demonstrate that n

w′
==⇒ yes. Specifically, we prove by induction on an

arbitrary submonitor n′o = n′o(x1, . . . , xk, y1, . . . , yl) of no(x1, . . . , xk, y1, . . . , yl)

that if ns = n′o(s1, . . . , sk, s
′
1, . . . , s

′
l)

w′♥
===⇒ yes and ns 6

w′
==⇒ yes for some w′ ∈

Act∗, then ny = n′o(yes, . . . , yes)
w′

==⇒ yes.

The base cases are: n′o is a verdict, which is immediate, because the claim’s
assumptions cannot both hold; or n′o = xi, in which case ny = yes.

If for some α ∈ Act ∪ {♥,♠}, n′o = α.n′′ and ns
w′♥

===⇒ yes and ns 6w
′

==⇒ yes,
then there are two cases. In the first case, α = ♥. Then, as w′ ∈ Act∗, we
have that w′ = ε, so n′′(s1, . . . , sk, s

′
1, . . . , s

′
l) =⇒ yes, and by Lem. 18 (ns is a

submonitor of n′), n′′(s1, . . . , sk, s
′
1, . . . , s

′
l) = yes, and therefore n′o = ♥.yes,

which contradicts our definitions. Otherwise, for α 6= ♥, w′ = α w′′, and

n′′(s1, . . . , sk, s
′
1, . . . , s

′
l)

w′′♥
===⇒ yes and n′′(s1, . . . , sk, s

′
1, . . . , s

′
l) 6

w′′
==⇒ yes. By

the inductive hypothesis, n′′(yes, . . . , yes)
w′′

==⇒ yes, and therefore ny
w′

==⇒ yes.

5 For clarity, the construction of the NFA N makes a mild use of ε-transitions.

19

If n′o = n1 + n2 and ns
w′♥

===⇒ yes and ns 6
w′

==⇒ yes, then we know that ns is not

a sum of ♥.yes. Therefore, w.l.o.g. n1(s1, . . . , sk, s
′
1, . . . , s

′
l)

w′♥
===⇒ yes and

n1(s1, . . . , sk, s
′
1, . . . , s

′
l) 6

w′
==⇒ yes, and we are done by the inductive hypoth-

esis.
The case for n′o = recx.n′′ is more straightforward, as n′o and n′′ have the

same weak transitions.

We now prove that if w ∈ La(n) · {♥} ∪ Lr(n) · {♠}, then w ∈ minLa(n′).
Let w ∈ La(n) · {♥} (the case for w ∈ Lr(n) · {♠} is symmetric). Then there
is a w′ ∈ La(n), such that w = w′.♥. Let w′′ be the shortest prefix of w′,
such that w′′ ∈ La(n). We observe that if w′′.♥ ∈ minLa(n′), then w′′.♥ ∈
minL(N), and therefore w′′ ∈ L(Aa), yielding that w′ ∈ L(Aa), because Aa
is suffix-closed (by verdict-persistence, Lem. 1), and therefore w = w′.♥ ∈
minLa(n′). Furthermore, if w′′.♥ ∈ La(n′), we can see that w′′.♥ ∈ minLa(n′),
as w′′ ∈ Act∗. Thus, it suffices to prove that w′′.♥ ∈ La(n′). By induction
on the derivation, and due to the minimality of w′′, we can see that either

no(x1, . . . , xk, y1, . . . , yl)
w′′

==⇒ yes, in which case n′
w′′

==⇒ yes, and therefore

n′
w′′.♥

====⇒ yes, or no(x1, . . . , xk, y1, . . . , yl)
w′′

==⇒ xi for some xi, in which case

n′
w′′

==⇒ s′i, where s′i is si after applying a number of steps substituting variables

for monitors. As si is a sum of ♥.yes, so is s′i, therefore s′i
♥−−→ yes.

We just demonstrated that minLa(n′) = La(n) · {♥} ∪ Lr(n) · {♠}. But we
have also seen that La(n′) = L(N) and that minL(N) = L(Aa) · {♥} ∪ L(Ar) ·
{♠}, and therefore La(n) = L(Aa) = La(m) and Lr(n) = L(Ar) = Lr(m),
which is what we wanted to show. ut

Omitted Proofs from Sec. 4

Proof (of Lem. 5). The “only if” direction is immediate, and therefore we only
show the “if” direction. Let s be such that ∀t. st ∈ LkA·Σω

$. From our assumptions

about s, s#ω ∈ LkA ·Σω
$. According to the definition of LkA, there must be a finite

prefix r of s#ω, such that r ∈ LkA and ends with $. Since the only symbol in
#ω is #, r is a prefix of s. Therefore, since LkA is suffix-closed, we conclude that
s ∈ LkA. ut

Proof (of Lem. 6). The “if” direction is straightforward, using Lem. 3. For the
“only if” direction, notice that the #.m component of the monitor is the only
component that can produce a yes verdict, and it activates at the occurrences of
the # symbol. Therefore, if skip#(m) accepts g, there must be some s#h = g,
such that m accepts h. Let s be minimal for this to happen.

We now prove by contradiction that s ∈ {0, 1,#}∗. If that is not the case, $
appears in s, so there are s1$s2 = s. When reading s1$, all monitor components
of skip#(m) must fail (reach end), except the ones that have come from #.m.
Therefore, we can split g as s1#h′ = g, such that m accepts h′, which is a
contradiction, due to the assumed minimality of s. Therefore, s ∈ {0, 1,#}∗. ut

20

Hardness of LkA for deterministic monitors We introduce the notion of a simple
trace. As Lem. 19 reveals, the cardinality of a set of simple traces gives a lower
bound on the size of a regular monitor.

Definition 11. We call a derivation m
s

=⇒ m′ simple, if rules RecB and Ver
are not used in the proof of any transition of the derivation. We say that a trace
s ∈ Σ∗$ is simple for monitor m if there is a simple derivation m

s
=⇒ m′. We say

that a set of simple traces for m is simple for m. �

Lemma 19 (Lemma 20 from [2]). Let m be a regular monitor and G a
(finite) simple set of traces for m. Then, l(m) ≥ |G|. ut

The following Lems. 20 and 21 are variations of the Pumping Lemma for
monitors.

Lemma 20 (Lemma 22 from [2]). Let m
s

=⇒ n, such that m is regular and
s is not simple for m. Then, there are s = s1s2s3, such that |s2| > 0 and for

every i ≥ 0, m
s1s

i
2s3====⇒ n. ut

Lemma 21 (Lemma 27 from [2]). Let m
s

=⇒ m′, such that s is not simple
for m and m is deterministic (and regular). Then, there are s = s1s2s3 and

monitor n, such that |s2| > 0 and m
s1==⇒ n

s2==⇒ n
s3==⇒ m′.

Fix a partition {C,D} of {0, 1}k, such that |C| = |D| = 2k−1; let K = 22
k−1

.
Let PC = C0 · · ·CK−2 be a permutation of 2C \ {∅}, and PD = D0 · · ·DK−2 a
permutation of 2D \ {∅}. For every 0 ≤ i < K − 1, let

ti = #enc(w0)#enc(w1)# · · ·#enc(w|Ci|)#,

where w0w1 · · ·w|Ci| is a permutation of Ci and

si = #enc(w′0)#enc(w′1)# · · ·#enc(w′|Di|)#,

where w′0w
′
1 · · ·w′|Di| is a permutation of Di. Thus, each ti and si encodes a

permutation of a distinct subset of {0, 1}k. Let

tK(PC , PD) = t0$s0$t1$s1$ · · · $tK−1$sK−1

and let

T = {tK(PC , PD) | PC ∈ (2C \ {∅})! and PD ∈ (2D \ {∅})!}.

Notice that |T | = ((K − 1)!)2.
The following Lem. 22 characterizes trace tK , as defined in Sec. 4, and is

useful in the proof of Cor. 2, which follows immediately from it.

Lemma 22. If f 6= g are prefixes of tK , then there is some h ∈ {0, 1,#, $}∗,
such that fh ∈ LkA iff gh /∈ LkA.

21

Proof. We can assume that f is a proper prefix of g. We have the following cases:

The symbol $ appears more times in g than in f . Then, for some f ′, g′ ∈
Σ∗ and 0 ≤ i ≤ j:
– f = f ′ and (g = t0$s0$ · · · sjg′ or g = t0$s0$ · · · tjg′); or

– f = t0$s0$ · · · tif ′ and g = t0$s0$ · · · sjg′; or

– f = t0$s0$ · · · sif ′ and g = t0$s0$ · · · tjg′; or

– f = t0$s0$ · · · tif ′ and g = t0$s0$ · · · tjg′ and i < j; or

– f = t0$s0$ · · · sif ′ and g = t0$s0$ · · · sjg′ and i < j.

Then, for all these cases we can immediately see that there is some w ∈ W
that appears in one of ti, si, tj , sj , such that for h = #w#$, fh ∈ LkA iff
gh /∈ LkA.

The symbol # appears more times in g than in f , but $ does not. Then,
for some f ′, g′ ∈ {0, 1}∗,

f = t′$#enc(w0)#enc(w1)# · · ·#enc(wi)#f ′ and

g = t′$#enc(w0)#enc(w1)# · · ·#enc(wj)#g′

Then, for h = $#enc(wj)#$, gh ∈ LkA and fh /∈ LkA.

The symbols $,# appear the same number of times in g and in f . Then,
for some f ′, g′ ∈ {0, 1}∗,

f = t′$#enc(w0)#enc(w1)# · · ·#enc(wi)#f ′ and

g = t′$#enc(w0)#enc(w1)# · · ·#enc(wi)#f ′g′

and |g′| > 0. Therefore, f ′g′ is a prefix of enc(wi+1). Let h0 be such that
f ′g′h0 = enc(wi+1). Then, for h = h0#$#enc(wi+1)#$, gh ∈ LkA and fh /∈
LkA. ut

Corollary 2 If s 6= r are prefixes of tK , then there is some t ∈ Σω
$, such that

st ∈ LkA ·Σω
$ iff rt /∈ LkA ·Σω

$.

Proof. By Lems. 5 and 22. ut

Proposition 6. If m is a deterministic regular monitor that recognizes LkA ·Σω
$,

then tK is a simple trace for m.

Proof. If tK is not simple, then by Lem. 21, tK = s1s2s3, such that |s2| > 0 and

there is a monitor n, such that m
s1==⇒ n

s2==⇒ n. But according to Cor. 2, there
is some t, such that s1t ∈ LkA · Σω

$ iff s1s2t /∈ LkA · Σω
$. This is a contradiction,

because s1t ∈ LkA ·Σω
$ iff n accepts t ·Σω

$ iff s1s2t ∈ LkA ·Σω
$. ut

Proof (of Lem. 15). An immediate consequence of Prop. 6 and Lem. 19. ut

22

The hardness of regularization

Proof (of Prop. 5). First, we sketch the proof of the first part of the proposition.
We observe that smaller accepts a trace w1#w2t, where w1, w2 ∈ W , exactly
when w1 encodes a smaller sequence than w2, with respect to the lexicographic
ordering. Then, mU keeps reading blocks of bits between the # separators, while
ensuring that each of these is an element of W (using monitor perm), and that
it either is the last such block of bits (using monitor last), or that it encodes a
smaller sequence than the next one (using monitor smaller).

It now suffices to prove that, for any ordered sequence a1a2 · · · ac of strings
from {0, 1}k, the finite trace s = #enc(a1)#enc(a2)# · · ·#enc(ac) is simple for
any regular monitor that accepts exactly the infinite extensions of LkU . If s is

not simple for m, then, according to Lemma 20, for every m
s

=⇒ n, there are

s = s1s2s3, such that |s2| > 0 and for every i ≥ 0, m
s1s

i
2s3====⇒ n. Therefore,

if m
s

=⇒ n
$0j

==⇒ yes for some j ≥ 0, then m
s1s

2
2s3====⇒ n

$0j
==⇒ yes and m

s1s
3
2s3====⇒

n
$0j

==⇒ yes. If |s2| is not a multiple of k(l+1)+1, then it is not hard to see that we
reach a contradiction, as s1s

2
2s3$0j /∈ LkU , because it includes a block of bits that

is not in W . Otherwise, s2 is of the form f#g or f#enc(ai)# · · ·#enc(ai+j)#g,
where fg ∈ {0, 1}k(l+1) and j ≥ 0. If gf /∈ W , then s1s

2
2s3$0j /∈ LkU , and again,

we have a contradiction. But even if gf ∈ W , we see that gf appears twice in
s1s

3
2s3, and again we have a contradiction, as s1s

3
2s3$0j /∈ LkU , because there

appear two elements of W in s1s
3
2s3 that encode the same string. ut

Omitted Proofs from Sec. 5

Proof (of Thm. 5). Let k and mU be as defined in Sec. 4. Thm. 1 asserts the
existence of a formula ϕ, such that l(ϕ) = O(l(mU)) and JϕK = La(mU) ·Σω

$ =

LkU ·Σω
$. Now, let ψ ∈ sHML, where JϕK = JψK. According to Thm. 1, there is

a regular monitor m, such that l(m) = O(l(ψ)), and JϕK = JψK = La(m) · Σω
$.

Therefore, m recognizes LkU · Σω
$, and by Prop. 5, l(m) = 2Ω(2k) = 2Ω(2

√
l(ϕ)).

This yields that l(ψ) = 2Ω(2k) = 2Ω(2
√

l(ϕ)). ut

23

	The Cost of Monitoring Alone

