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We introduce the completeness problem for Modal Logic (possibly with fixpoint operators) 
and examine its complexity. A formula is called complete, if any two satisfying processes 
are bisimilar. The completeness problem is closely connected to the characterization 
problem, which asks whether a given formula characterizes a given process up to 
bisimulation equivalence. We discover that completeness, characterization, and validity 
have the same complexity — with some exceptions for which there are, in general, 
no complete formulae. To prove our upper bounds, we present a non-deterministic 
procedure with an oracle for validity that combines tableaux and a test for bisimilarity, 
and determines whether a formula is complete.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

We propose and study two related problems, parameterized with respect to a logic: the completeness and the characteri-
zation problem. We prove matching upper and lower complexity bounds for these problems for a variety of modal logics [7]
interpreted over a Labelled Transition System (LTS), including the μ-calculus [24], and a collection of well-known epistemic 
logics [13].

Characteristic formulae are formulae that characterize a process up to some notion of behavioural equivalence or pre-
order, which in our case is bisimilarity [28]: a formula ϕ is characteristic for a process p when every process q is bisimilar 
to p exactly when it satisfies ϕ . A construction of characteristic formulae for variants of CCS processes [28] was introduced 
in [18]. This construction allows one to verify that two CCS processes are equivalent by reducing this problem to model 
checking. Similar constructions were studied later in, for instance, [35,30,1]. We are interested in detecting when a formula 
is characteristic for a certain process. We call this the characterization problem and we determine its complexity for a 
representative collection of logics, including a selection of modal logics without recursion and the μ-calculus [24].
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The completeness problem is similar to the characterization problem. For a logic L that is interpreted over an LTS, we 
call a formula ϕ complete when for every formula ψ on the same propositional variables as ϕ , we can derive from ϕ in L
either the formula ψ or its negation. Asking whether a formula is complete for a modal logic is the same as asking if any 
two processes that satisfy it are bisimilar to each other. Therefore, a complete formula is characteristic if and only if it is 
satisfiable. As we see in the following sections, the completeness and characterization problems, both tend to have the same 
complexity as validity.

Given Modal Logic’s wide applicability and the importance of logical completeness in general, we find it surprising 
that, to the best of our knowledge, the completeness problem for Modal Logic has not been studied as a computational 
problem so far. On the other hand, the complexity of satisfiability (and thus validity) for Modal Logic has been studied 
extensively — for example, see [25,21,20]. We examine the completeness problem for several well-known modal logics, 
namely the extensions of K, the smallest normal modal logic [7], by the axioms Factivity, Consistency, Positive Introspection, 
and Negative Introspection (also known as T , D , 4, and 5, respectively) and their multi-modal variations. We discover that 
the complexity of validity and completeness tend to be the same: the completeness problem is coNP-complete if the logic 
has Negative Introspection and only one box and one diamond modality (which is the case in classic Modal Logic), and 
it is PSPACE-complete otherwise. There are exceptions: for certain logics (namely D, T, and the multi-modal versions of 
their extensions), the completeness problem as we define it is trivial, as these logics have no finite complete theories. On 
the other hand, when we add the μ-calculus recursive operators to the modal language, we can write complete formulae 
for all of these logics, an observation that is consistent with [23], where Ingólfsdóttir et al. show that the fragment of the 
μ-calculus that only uses greatest fixpoints suffices to construct characteristic formulae for any state of any finite model.

Part of our motivation for studying the completeness problem also comes from [4], where Artemov raises the following 
issue. It is standard practice in Game Theory (and Epistemic Game Theory) to reason about a game based on a model of 
the game description. However, in an epistemic setting it is often the case that the game specification is not complete; thus 
any conclusions reached by examining any single model are precarious. Therefore, Artemov argues for the need to verify the 
completeness of game descriptions, and proposes a syntactic, proof-centered approach, which is more robust and general 
than a model-theoretic one, and which is based on a syntactic formal description of the game. Artemov’s approach is more 
sound, in that it allows one to draw only conclusions that can be safely derived from the game specification; on the other 
hand, the model-based approach has been largely successful in Game Theory for a long time. He explains that if we can 
determine that the syntactic specification of a game is complete, then the syntactic and semantic approaches are equivalent 
and we can describe the game efficiently, using one model. Using the previously-introduced terminology from concurrency 
theory, the game specification is, in that case, characteristic for that model modulo bisimilarity.

For a formula/specification ϕ (for example, a syntactic description of a game), if we are interested in the formulae we can 
derive from ϕ (the conclusions we can draw from the game description), knowing that ϕ is complete can give a significant 
computational advantage. If ϕ is complete and consistent, for a model M for ϕ , formula ψ can be derived from ϕ exactly 
when ψ is satisfied in M at the same state as ϕ . Thus, knowing that ϕ is complete allows us to reduce a derivability 
problem to a model checking problem, which is easier to solve (see, for example, [20]). This approach may be useful when 
we need to examine multiple conclusions, especially if the model for ϕ happens to be small. On the other hand, if we 
discover that ϕ is incomplete, then it may need to be refined, as a specification.

Normal forms for Modal Logic were introduced by Fine [14] and they can be used to prove soundness, completeness, and 
the finite frame property for several modal logics with respect to their classes of frames. Normal forms are modal formulae 
that completely describe the behaviour of a Kripke model up to a given distance d from a state, with respect to a number 
of propositional variables. Therefore, every complete formula without fixpoint operators is equivalent to a normal form, but 
not all normal forms are complete, as they may be agnostic with respect to states located further than d steps away.

We focus on a definition of completeness that emphasizes the formula’s ability to either affirm or reject every possible 
conclusion. We can define that a formula is complete up to depth d for logic L when it is equivalent to a normal form of 
modal depth (the nesting depth of a formula’s modalities) at most d. We can then consider a version of the completeness 
problem that asks one to determine if a formula is complete up to a certain depth. If we are interested in completely de-
scribing a setting, the definition we use for completeness is more appropriate. However, it is not hard to imagine situations 
where this variation of completeness is the notion that fits better. For example, we may approximate the epistemic depth 
agents reason with, or, perhaps, only describe process behaviour for a limited amount of time, as is done in the context of 
Bounded Model Checking [5,11]. We examine this variation in Section 7.

Overview. In Section 2, we give the necessary background and definitions. Before delving into the complexity of the com-
pleteness problem for a logic, we must first answer a more fundamental question: does this logic have any complete 
formulae, or are we wasting effort? Section 3 answers this question for each of the logics that we define in the paper. 
Section 4 focuses on logics over one action, with Negative Introspection, but without recursive operators. As that section 
demonstrates, Negative Introspection imposes a special structure on the models for the logic, which affects our algorithms 
and sometimes reduces the complexity of the problem. Section 5 gives a general lower bound for the complexity of the 
completeness problem, and upper bounds for logics without Negative Introspection — but possibly with recursive operators 
— by a nondeterministic procedure that uses an oracle from the logic’s validity problem. Section 6 gives an alternative pro-
cedure to decide the completeness problem for multi-modal logics with Negative Introspection. Section 7 examines certain 
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Table 1
LTS semantics.

�tt,ρ�M = Prc, �ff,ρ�M = ∅, �X,ρ�M = ρ(X),

�ϕ1∧ϕ2,ρ�M = �ϕ1,ρ�M ∩ �ϕ2,ρ�M, �ϕ1∨ϕ2,ρ�M = �ϕ1,ρ�M ∪ �ϕ2,ρ�M,

�[α]ϕ,ρ�M =
{

s
∣∣ ∀t. s

α−→ t implies t ∈ �ϕ,ρ�M
}

,

�〈α〉ϕ,ρ�M =
{

s
∣∣ ∃t. s

α−→ t and t ∈ �ϕ,ρ�M
}

,

�μX .ϕ,ρ�M = ⋂{
S

∣∣ S ⊇ �ϕ,ρ[X �→ S]�M
}
, �p,ρ�M = {s | p ∈ V (s)},

�ν X .ϕ,ρ�M = ⋃{
S

∣∣ S ⊆ �ϕ,ρ[X �→ S]�M
}
, �¬p,ρ�M = {s | p /∈ V (s)}.

variations of the completeness problem, including a discussion of Fine’s normal forms [14], and concludes the paper. The 
results of Sections 3, 4, 5, and 6 are summarized in Table 4 on page 18.

Differences from [2]. This paper’s results about one-action modal logics without recursive operators have already appeared in 
[2]. In this paper, we extend the results of [2] to multi-modal logics that may have recursive operators; we give a simpler 
procedure to decide the completeness (and characterization) problem; moreover, we make the connection between the 
completeness and characterization problems more prominent.

2. Background

This section introduces the logics that we focus on and the problems that we examine in this paper, as well as necessary 
background on bisimulation and on the complexity of the validity problem for Modal Logic and the μ-calculus. We start by 
defining the formulae of our logics.

Definition 1. We consider formulae constructed from the following grammar:

ϕ,ψ ∈ L(P ) :: = p | ¬p | tt | ff | X | ϕ ∧ ψ | ϕ ∨ ψ

| 〈α〉ϕ | [α]ϕ | μX .ϕ | ν X .ϕ,

where X comes from a countably infinite set of logical variables, LVr, α from a finite set of actions, Act, and p from a finite set of 
propositional variables, P . Let PVr be the (countably infinite) set of all propositional variables; therefore, P ⊆ PVr. When Act = {α}, 
we may use �ϕ instead of [α]ϕ , and �ϕ instead of 〈α〉ϕ . We may write [Act]ϕ to mean 

∧
α∈Act

[α]ϕ .

L(P ) is a multi-modal version of the language of the μ-calculus [24] — or an extension of μHML [26] with propositional 
variables. It is the most general language that we consider in this paper.

We interpret formulae on the states of a labelled transition system (LTS). An LTS, or model, is a quadruple 〈Prc, Act, →,

V 〉 where Prc is a set of states or processes, Act is the set of actions, →⊆ Prc × Act × Prc is a transition relation, and V :
Prc → 2PVr determines on which states a propositional variable is true. For P ⊆ PVr a finite set of variables, V P : Prc → 2P

is the restriction of V on P : V P (s) = V (s) ∩ P .
State nil represents any state that cannot transition anywhere: ∀α∀s. nil � α−→ s. The set of reachable sets from state 

s by any sequence of 0 or more transitions is called Reach(s), which we assume to be finite for each s. The size of s is 
|s| = |Reach(s)|, and |ϕ| is the length of ϕ as a string of symbols. All our complexity results are with respect to these 
measures.

Formulae are evaluated in the context of an LTS M and an environment, ρ : LVr → 2Prc , which gives values to the logical 
variables. For an environment ρ , variable X , and set S ⊆ Prc, we write ρ[X �→ S] for the environment that maps X to S and 
all Y �= X to ρ(Y ). The semantics for our formulae is given through a function �−�M , defined in Table 1. The negation ¬ϕ
of a formula and implication ϕ ⊃ ψ (to be read as “ϕ implies ψ”) are constructed as usual, where �¬X, ρ�M = Prc\ρ(X). 
A formula is closed when every occurrence of a variable X is in the scope of recursive operator ν X or μX . Henceforth we 
consider only closed formulae. As the environment has no effect on the semantics of a closed formula ϕ , we write M, s |= ϕ
for s ∈ �ϕ,ρ�M . If M, s |= ϕ , we say that ϕ is true, or satisfied, in s. For each of the logics that we consider in this paper, 
we assume a fixed LTS that contains all the possible finite behaviours and only those. That is, we can think of the fixed LTS 
for the logic as the collection of (isomorphic copies of) all other LTSs that are suitable for the logic. When the particular 
LTSs do not matter, we often omit them from the notation, and we can assume that we work in that fixed LTS.

For a formula ϕ , P (ϕ) is the set of propositional variables that appear in ϕ; sub(ϕ) is the set of subformulae of ϕ and 
sub(ϕ) = sub(ϕ) ∪ {¬ψ | ψ ∈ sub(ϕ)}. For � a nonempty finite set of formulae, 

∧
� is a conjunction of all elements of �

and 
∧∅ = tt; we define 

∨
� similarly. The modal depth md(ϕ) of a formula ϕ without recursion is the largest nesting 

depth of its modal operators:

md(p) = md(¬p) = md(tt) = md(ff) = 0;
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md(ϕ ∧ ψ) = md(ϕ ∨ ψ) = max{md(ϕ),md(ψ)}; and

md([α]ϕ) = md(〈α〉ϕ) = md(ϕ) + 1.

For every d ≥ 0, subd(ϕ) = {ψ ∈ sub(ϕ) | md(ψ) ≤ d}.

2.1. A variety of logics

Depending on how we further restrict our syntax, and the LTS, we can describe several logics. Without further restric-
tions, the resulting logic is the μ-calculus [24]. The max-fragment (resp. min-fragment) of the μ-calculus is the fragment 
that only allows the ν X (resp. the μX) recursive operator. If |Act| = k and we allow no recursive operators (or recursion 
variables), then we have the basic modal logic Kk , and further restrictions on the LTS can result in a wide variety of modal 
logics (see [6]).

We give names to the following LTS constraints.1 For every α ∈ Act:

D : there is no nil state in the LTS — in other words, α−→ is serial;
T :

α−→ is reflexive — in other words, ∀s. s α−→ s;
4 :

α−→ is transitive — in other words, ∀s, t, r. (s
α−→ t

α−→ r ⇒ s
α−→ r);

5 :
α−→ is euclidean — in other words, ∀s, t, r. if s α−→ t and s α−→ r, then t α−→ r.

The motivation for these constraints comes from Epistemic Modal Logic (see [13]), where [α]ϕ is interpreted to mean 
that agent α knows or believes ϕ . D ensures that it is not possible to believe contradictory information; T ensures that 
everything known is true; 4 ensures that an agent is aware of their knowledge, as [α]ϕ ⊃ [α][α]ϕ becomes true; while 5
ensures that an agent is aware of their ignorance, as ¬[α]ϕ ⊃ [α]¬[α]ϕ becomes true.

We note that in any LTS that satisfies constraints T , 4, and 5, each α−→ is an equivalence relation. Though, as we will see 
in Section 4, even with only constraints T and 5, we can show that each α−→ is an equivalence relation.

We consider modal logics that are interpreted over LTSs that satisfy a combination of these constraints. Of course, not 
all combinations make sense: D , which we call Consistency, is a special case of T , called Factivity. Constraint 4 is Positive 
Introspection and 5 is called Negative Introspection. Given a logic L and constraint c, L +c is the logic that is interpreted over 
all LTSs that satisfy all the constraints of L and c. Logic Dk is Kk + D , Tk is Kk + T , K4k = Kk + 4, D4k = Kk + D + 4 = Dk + 4, 
S4k = Kk + T + 4 = Tk + 4 = K4k + T , KD45k = D4k + 5, and S5k = S4k + 5. When k = 1, we usually omit it from the subscript 
of a logic’s name. For L being one of the logics above, Lμ is the logic that results from L after we allow recursive operators 
in the syntax. Therefore, the μ-calculus is Kμ

k .
From now on, unless we explicitly say otherwise, by a logic or modal logic, we mean one of the logics we have defined 

above.
For a logic L and formulae ϕ, ψ , we say that ψ is a consequence of ϕ in L and write ϕ |=L ψ when for every state s

of every LTS M for L, M, s |= ϕ implies M, s |= ψ . We call a formula satisfiable (resp. valid) for a logic L, if it is satisfied 
in some (resp. every) state of an LTS (resp. of every LTS) for L. We opt for a semantic presentation and therefore do not 
provide any proof systems for the logics we examine. The following Theorem 1 justifies our approach. For the case of the 
μ-calculus, the theorem comes from [24,36,38]; for the other logics, it has a long history and the reader can consult [9,7].

Theorem 1. Let L be either the μ-calculus or one of the logics without recursive operators. A formula ϕ is valid for L if and only if it is 
provable in L; ϕ is satisfiable for L if and only if it is satisfied in a state of a finite LTS for L.

2.2. Bisimulation

A classic and important notion of equivalence over states in a variety of state-transition models is bisimilarity. Let P be 
a (finite) set of propositional variables. Let M = (Prc, →, V ) and M′ = (Prc

′, →′, V ′) be LTSs. A binary relation R ⊆ Prc ×
Prc

′ is a bisimulation (respectively, bisimulation modulo P ) when the following conditions are satisfied for all (s, s′) ∈R:

• V (s) = V ′(s′) (resp. V P (s) = V ′
P (s′)).

• For all α and t such that s α−→ t , there exists some t′ s.t. (t, t′) ∈R and s′ α−→′ t′ .
• For all α and t′ such that s′ α−→′ t′ , there exists some t s.t. (t, t′) ∈R and s α−→ t .

1 These conditions correspond to the usual axioms for normal modal logics — see [7,6,13].
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We call pairs (M, s), (M′, s′) bisimilar (resp. bisimilar modulo P ) and write (M, s) ∼ (M′, s′) (resp. (M, s) ∼P (M′, s′)) 
if there is a bisimulation (resp. bisimulation modulo P ) R⊆ Prc × Prc

′ , such that s R s′ . When the two LTSs M and M′
are the same, or do not matter, we may omit them from the notation and simply write s ∼ s′ (resp. s ∼P s′).

The following variation on of the Hennessy-Milner Theorem [22] gives a very useful characterization of state equivalence; 
Proposition 3 is its direct consequence.

Theorem 2 (Hennessy-Milner Theorem). s ∼P s′ if and only if s and s′ satisfy the same formulae (without recursion operators) in 
L(P ).2

Definition 2. We call a formula ϕ characteristic for state s when for every state t in an LTS for L, s ∼P (ϕ) t if and only if t |= ϕ . A 
formula ϕ is called complete when for every ψ ∈ L(P (ϕ)), ϕ |=L ψ or ϕ |=L ¬ψ .

Example 1. Let Act = {α} and consider the state s, such that Reach(s) = {s, s1, s2} and s α−→ s1
α−→ s2, with no other transitions 

from states in Reach(s), and such that s |= p, s1 |= ¬p, and s2 |= p. A characteristic formula for s is ϕs = p ∧〈α〉tt∧[α](¬p ∧
〈α〉tt ∧ [α]p) ∧ [α][α][α]ff. Formula ϕs is also complete, as for every ψ ∈ L({p}), s |= ψ or s |= ¬ψ , which implies that 
ϕs |= ψ or ϕs |= ¬ψ , due to Theorem 2.

Now, consider state t , such that Reach(t) = {t}, t α−→ t , and t |= p. On general LTSs, t has no characteristic formula without 
fixpoint operators (the informal intuition is that t is bisimilar to t0

α−→ ta
α−→ · · · α−→ tk

α−→ tk for any k ≥ 0, and any formula ϕ
without fixpoints can only describe the first md(ϕ) such states). On the other hand, ν X .(p ∧ 〈α〉tt∧ [α]X) is characteristic 
for t on general LTSs and p ∧ [α]p is characteristic for t on LTSs with constraints 4 and D . �
Proposition 3. A formula ϕ is complete for a logic L if and only if for every two LTSs M and M′ for L, and states s ∈ �ϕ�M and 
s′ ∈ �ϕ�M′ , (M, s) ∼P (ϕ) (M′, s′).

Proof. For the implication from left to right, assume that ϕ is complete for L. Let M and M′ be LTSs for L, and consider 
states s ∈ �ϕ�M and s′ ∈ �ϕ�M′ . To prove that (M, s) ∼P (ϕ) (M′, s′), by Theorem 2 it suffices to prove that for every 
ψ ∈ L(P (ϕ)), s ∈ �ψ�M iff s′ ∈ �ψ�M′ . Let ψ ∈ L(P (ϕ)). Since ϕ is complete, either ϕ |=L ψ or ϕ |=L ¬ψ , which yields that 
either s ∈ �ψ�M and s′ ∈ �ψ�M′ or s /∈ �ψ�M and s′ /∈ �ψ�M′ .

For the reverse direction, assume that for every two LTSs M and M′ for L, and states s ∈ �ϕ�M and s′ ∈ �ϕ�M′ , 
(M, s) ∼P (ϕ) (M′, s′). If ϕ is not satisfiable, then we can see that it is complete. Otherwise, let s ∈ �ϕ�M for some LTS M
for L. For every ψ ∈ L(P (ϕ)), either s ∈ �ψ�M or s ∈ �¬ψ�M . We assume the first case, as the second one is symmetric. 
Since for every LTS M′ for L and s′ ∈ �ϕ�M′ , (M, s) ∼P (ϕ) (M′, s′), we see that, by Theorem 2, for every LTS M′ for L and 
s′ ∈ �ϕ�M′ , s′ ∈ �ψ�M′ , and therefore, ϕ |=L ψ . This means that ϕ is complete for L, and we are done. �
Corollary 4. A formula ϕ is satisfiable and complete for L if and only if ϕ is characteristic for a state in an LTS for L.

Paige and Tarjan in [32] give an efficient algorithm for checking whether two states are bisimilar. Proposition 5 is a 
variation on their result to account for receiving the set P of propositional variables as part of the algorithm’s input.

Proposition 5. There is an algorithm that, given two states s and s′ and a finite set of propositional variables P , determines whether 
s ∼P s′ in time O (|P | · (|s|2 + |s′|2) · log(|s| + |s′|)).

Definition 3 (Characterization and Completeness Problems). The characterization problem for L is the following: Given a formula ϕ
and a state s, is ϕ characteristic for s? The completeness problem for L is: Given a formula ϕ , is ϕ complete?

2.3. The complexity of satisfiability

For logic L, the satisfiability problem for L, or L-satisfiability is the problem that asks, given a formula ϕ , if ϕ is satisfiable. 
Similarly, the validity problem for L asks if ϕ is valid.

The classical complexity results for Modal Logic are due to Ladner [25], who established PSPACE-completeness for the 
satisfiability of K, T, D, K4, D4, and S4 and NP-completeness for the satisfiability of S5. Halpern and Rêgo later characterized 
the NP–PSPACE gap for one-action logics by the presence or absence of Negative Introspection [21], resulting in Theorem 6.

Theorem 6 ([25,21]). If L ∈ {K, T, D, K4, D4, S4}, then L-validity is PSPACE-complete and L + 5-validity is coNP-complete.

2 We remark that, due to our assumptions, our LTSs are image-finite.
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Theorem 7 ([20]). If k > 1 and L has a combination of constraints from D, T , 4, 5 and no recursive operators, then Lk-validity is 
PSPACE-complete.

Remark 1. We note that Halpern and Moses in [20] only prove these bounds for the cases of Kk, Tk, S4k, KD45k , and S5k . 
However, it is not hard to see that their methods also work for the rest of the logics of Theorem 7. �

The following theorems give the complexity of validity for the μ-calculus and its fragments.

Theorem 8 ([24]). The validity problem for the μ-calculus is EXP-complete.

Proposition 9. The validity problem for the min- and max-fragments of the μ-calculus is EXP-complete, even when |Act| = 1 and 
P = ∅.

Proof sketch. It is known that satisfiability for the min- and max-fragments of the μ-calculus (on one or more action) 
is EXP-complete. It is in EXP due to Theorem 8, and these fragments suffice [33] to describe the PDL formula that is 
constructed by the reduction used in [15] to prove EXP-hardness for PDL. Therefore, that reduction can be adjusted to 
prove that satisfiability for the min- and max-fragments of the μ-calculus is EXP-complete. It follows that validity for the 
min- and max-fragments of the μ-calculus (on one or more action) is also EXP-complete. To see that this lower bound 
transfers to the fragment with one action and without propositional variables, we can encode a one-action formula with k
propositional variables into one without any, by replacing each � by �k+1 and each � by �k+1, and for each 1 ≤ i ≤ k, pi
by �i�ff. It is then not hard to see that this encoding is satisfiability-preserving. �
Remark 2. We note that similar techniques as the encodings in the proof of Proposition 9 have been used in [34]; see also 
[19,10,3] for a range of similar techniques in a modal setting. �

To the best of our knowledge, there are no complexity results for the validity of logics with both LTS constraints and 
recursion operators. However, it is not hard to express in such logics that formula ϕ is common knowledge, with formula 
ν X .ϕ ∧ [Act]X . Since validity for Lk with common knowledge (and without recursive operators) and k > 1 is EXP-complete 
[20],3 Lμ

k is EXP-hard.

Lemma 10. Validity for Lμ
k , where k > 1, is EXP-hard.

We conjecture that validity is EXP-complete for these logics, possibly even when k = 1, but proving such bounds for 
validity falls out of the scope of this paper.

In the following, when P is evident from the context, we will often omit any reference to it and instead of bisimulation 
modulo P , we will call the relation simply bisimulation.

2.4. Negative introspection and small states

In this subsection, we adapt Halpern and Rêgo’s techniques from [21], where they prove that the satisfiability problem 
for logics on one action, no recursive operators, and with Negative Introspection, is in NP. The notions that we introduce are 
important later on. Thus, we assume in this section a logic L without recursive operators, and that |Act| = 1. In the course 
of proving the coNP upper bound for validity checking for logics with Negative Introspection, Halpern and Rêgo describe 
in [21] a construction that they attribute to Nagle and Thomason [31], which provides a model of a particular form for a 
satisfiable formula. From this construction, we can extract Lemma 11 to follow.

For a logic L + 5, we call a state s in an LTS for L + 5 flat when there is a set of states W , such that:

• Reach(s) = {s} ∪ W ;
• the restriction of → on Reach(s) is R ∪ W 2, where R ⊆ {s} × W ; and
• if L ∈ {T, S4}, then s ∈ W .

Example 2. A flat state for K5 is, for instance, s, described by the following transitions:

s −→ s1 ←→ s2

In this example, W = {s1, s2} and therefore, s is not a flat state for S5. However, s1 and s2 are flat states for all L + 5. 
Another example is given in Fig. 1. �

3 Similarly to Remark 1, [20] does not explicitly cover all these cases, but the techniques can be adjusted.
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s

W

Fig. 1. A flat state s. The inner circle contains the states that are accessible from s by a single transition.

Lemma 11 informs us that all states are flat for logics with restriction 5.

Lemma 11. In an LTS with restriction 5, every state is a flat state.

Proof. Let W = {s′ ∈ Reach(s) | ∃s′′∈Reach(s). s′′ → s′}. Thus Reach(s) = W ∪ {s} and if L ∈ {T, S4}, then s ∈ W . Since re-
striction 5 is in effect, → is euclidean. Therefore, the restriction of → on W is reflexive. This in turn means that → is 
symmetric over W : if s1, s2 ∈ W and s1 → s2, since s1 → s1, we also have s2 → s1. Finally, → is transitive over W : if 
s1 → s2 → s3 and s1, s2, s3 ∈ W , then s2 → s1, so s1 → s3 by 5. Therefore, for every s1, s2 ∈ W , we have that s → s1, s2. So, 
by 5, s1 → s2 and we are done. �

The construction from [25] and [21] continues to filter the states of W , resulting in a small state for a formula ϕ . 
Using this construction, Halpern and Rêgo prove Corollary 12 [21, Theorem 3.1]; the coNP upper bound for L + 5-validity 
of Theorem 6 is a direct consequence. We present the proof of this result for completeness, and because it is of importance 
for what follows.

Corollary 12. Formula ϕ is L + 5-satisfiable if and only if it is satisfied in a flat state of size at most |ϕ| + 1 in an LTS for L + 5.

Proof. The “if” direction is immediate. To prove the other direction, we continue from the proof of Lemma 11. If W = ∅, 
then we are done. Otherwise, let S� be the set which contains every �ψ subformula of ϕ that is true in s and every �ψ

subformula of ϕ that is not true in s; let T� be the set which contains every �ψ subformula of ϕ that is true in some state 
of Reach(s) and every �ψ subformula of ϕ that is not true in some state of Reach(s). For every �ψ ∈ S� we fix a state 
sψ ∈ W , such that s → sψ and where ψ is true; for every �ψ ∈ S� we fix a state sψ ∈ W , such that s → sψ and where ψ
is not true; for every �ψ ∈ T� \ S� we fix a state sψ ∈ W , where ψ is true; finally, for every �ψ ∈ T� \ S� we fix a state 
sψ ∈ W , where ψ is not true. Notice that each sψ ∈ W and thus it is accessible from every state in W . We construct the 
LTS Mϕ = 〈Wϕ, Act, →ϕ, Vϕ〉 for L + 5, where

Wϕ = {s} ∪ {sψ ∈ W | �ψ ∈ T� or �ψ ∈ T�},
→ϕ is the restriction of R on Wϕ , and Vϕ(a) = V (a) for all a ∈ Wϕ .

It is not hard to confirm that |Wϕ | ≤ |ϕ|, since |T�| ≤ |ϕ| − 1 (at least one of the subformulae of ϕ is a propositional 
variable or ff). Furthermore, Mϕ, s |= ϕ . Specifically, for all t ∈ Wϕ and ψ ∈ sub(ϕ), we prove by induction on ψ that 
M, t |= ψ if and only if Mϕ, t |= ψ , where M is the fixed LTS for L + 5. Propositional cases are easy. If ψ = �χ and 
M, t |= ψ , then there is some tχ , such that M, tχ |= χ and by the definition of tχ , t → tχ . Therefore by the inductive 
hypothesis, Mϕ, tχ |= χ and thus Mϕ, t |= ψ . If ψ = �χ and Mϕ, t |= ψ , then there is some t →ϕ c ∈ Wϕ , such that 
Mϕ, c |= χ ; by the inductive hypothesis, M, c |= χ and since →ϕ is the restriction of → on Wϕ , t → c, so M, t |= ψ . The 
cases where ψ = �χ are similar.

What remains is to demonstrate that Mϕ remains an LTS for L + 5. It is not hard to confirm that through this filtering, 
transitivity, euclidicity, and reflexivity are preserved for →ϕ (since they are preserved by restrictions on subsets of binary 
relations). As for seriality, it is enough to run this construction on ϕ ∧ �tt if necessary, thus increasing the upper bound 
on the number of states from |ϕ| to |ϕ| + 1. �
3. The completeness problem and triviality

A first and fundamental question that we need to answer concerning the completeness problem for L is whether there 
are any satisfiable and complete formulae for it. If the answer is negative, then the problem is trivial. We examine this 
question with parameters the logic L and whether P , the set of propositional variables we use, is empty or not. If for some 
logic L the problem is nontrivial, then we give a complete formula ϕL

P that uses exactly the propositional variables in P . 
We see that when P = ∅, completeness can become trivial for another reason: for some logics, when P = ∅, all formulae 
are complete. On the other hand, when P �= ∅, the formula 

∧
P is incomplete for every logic.
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3.1. Completeness and K

Regardless of whether P = ∅ or not, completeness is nontrivial for Kk and K4k . Indeed, it is easy to see that formula tt
is incomplete for Kk and K4k . On the other hand, let ϕKk

P = ϕ
K4k
P = ∧

P ∧ [Act]ff for every finite set P of propositional 
variables. We have that:

Lemma 13. Formula ϕKk
P is complete and satisfiable for Kk and for K4k.

Proof. A state that satisfies ϕKk
P is s, where V (s) = P and ∀t. s �→ t . If there is another state s′ |= ϕ

Kk
P , then s′ |= [Act]ff, so 

there are no transitions from s′; therefore, R= {(s, s′)} is a bisimulation. �
Notice that if ϕ is complete for L, then it is complete for every bisimulation-invariant extension of L. Therefore, ϕKk

P is 
complete for all the other logics over Act. However, we are looking for satisfiable and complete formulae for the different 
logics, so finding one complete formula for Kk is not enough.

Lemma 14. Formula 
∧

P ∧ [Act]ff is complete and satisfiable for the μ-calculus.

Proof. Similar to the proof of Lemma 13. �
On the other hand, if L′ is an extension of L (by a set of LTS restrictions) and a formula ϕ is complete for L and satisfiable 

for L, then we know that ϕ is satisfiable and complete for all logics between (and including) L and L′ . Unfortunately, as 
Lemma 15 in the subsequent subsection demonstrates, we cannot use this convenient observation to reuse ϕKk

P — except 
for K5k and K45k (see Lemma 22).

3.2. Completeness and consistency with no introspection

When L has restriction T or D , but neither 4 nor 5, P determines if a satisfiable formula is complete.

Lemma 15. Let L be either Dk or Tk. A satisfiable formula ϕ is complete with respect to L if and only if P (ϕ) = ∅.

Proof. When P = ∅, all states in an LTS for Dk or Tk are bisimilar through the total bisimulation; therefore, all formulae ϕ
with P (ϕ) = ∅ are trivially complete as every two satisfiable formulae in L(∅) are logically equivalent. We now consider the 
case for P (ϕ) �= ∅; first assume that L = Dk . Let M = 〈W , Act, →, V 〉 be an LTS for Dk . Let d = md(ϕ) and let s |= ϕ; let 
s0 = s and let

	d = {s0 · · · sk ∈ W ∗ | k ≤ d and for all 0 ≤ i < k, ∃α ∈ Act. si
α−→ si+1}.

Then, we define M1 = 〈W ′, Act, →′, V ′
1〉 and M2 = 〈W ′, Act, →′, V ′

2〉, where

W ′ = 	d ∪ {x}, where x /∈ 	d;
α−→′ = {(zt, ztt′) ∈ W ′2 | t

α−→ t′} ∪ {(s0s1 · · · sd, x) ∈ W ′2} ∪ {(x, x)}
V ′

i (zt) = V (t), for i = 1,2, 0 ≤ |z| < d;
V ′

1(x) = ∅; and V ′
2(x) = P .

If L = Tk , the difference is that the transition relation for α must be defined as the reflexive closure of α−→′
, as defined 

above. The remaining arguments are the same. To prove that M1, s |= ϕ and M2, s |= ϕ , we prove that for ψ ∈ sub(ϕ), for 
every i = 1, 2 and z = s0 · · · sk ∈ 	d , where k ≤ d − md(ψ),

Mi, z |= ψ if and only if M, sk |= ψ.

We use induction on ψ . If ψ is a literal or a constant, the claim is immediate and so are the cases of the ∧, ∨ connectives. 
If ψ = [α]ψ ′ , then md(ψ ′) = md(ψ) − 1; Mi, z |= ψ iff for every z

α−→′ z′ , Mi, z′ |= ψ ′ iff for every sk →′ t , M, t |= ψ ′ (by 
the inductive hypothesis) iff M, sk |= ψ ; the case of ψ = 〈α〉ψ ′ is similar.

If (M1, s) ∼ (M2, s) through a bisimulation R, then notice that in both M1 and M2, any path of length at least d + 1
from s will end up at x; therefore, by the conditions of bisimulation, (M1, x) R (M2, x), which is a contradiction, since 
V ′ (x) �= V ′ (x). So, ϕ is satisfied in two non-bisimilar states for L, and is thus incomplete. �
1 2
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The proof of Lemma 15 relies on the fact that Dk and Tk do not allow any recursive operators, and therefore each formula 
can describe an LTS up to a distance equal to its modal depth. On the other hand, if we allow recursion, we can use it to 

characterize a single-state LTS that satisfies all propositions. Let ϕ
Dμ

k
P = ϕ

Tμ
k

P = ν X .(
∧

P ∧ [Act]X). This formula is satisfiable 
and complete for every bisimulation-invariant logic that has at least restriction D .

Lemma 16. Formula ϕ
Dμ

k
P is complete and satisfiable for all Lμ

k + D and Lμ
k + T .

3.3. Completeness, consistency, and positive introspection

For every finite P , let ϕD4
P = ϕS4

P = ∧
P ∧ � 

∧
P . As the following lemma demonstrates, ϕD4

P is a complete formula for 
D4 and S4.

Lemma 17. For every finite P , ϕD4
P is complete for D4 and S4; all formulae in L(∅) are complete for D4 and S4.

Proof. Let s |= ϕD4
P and s′ |= ϕD4

P ; let R= Reach(s) × Reach(s′); it is not hard to verify that R is a bisimulation. Notice 
that if P = ∅, then ϕD4

P is a tautology, thus all formulae are complete. Proposition 3 yields that, in that case, all consistent 
formulae are tautologies. In fact, ∀s, s′. s ∼∅ s′ , so if �ϕ� �= ∅, then �ϕ� = Prc. �

It is straightforward to see that for one action, ϕD4
P is satisfiable for every modal logic L: consider a state s, where 

∧
P

holds at every state in Reach(s). Therefore:

Corollary 18. ϕD4 is satisfiable and complete for every consistent4 logic on one action that extends D4 by a set of conditions for the 
LTS transitions.5

When k > 1, the situation is similar to that for D and T.

Lemma 19. Let L be either D4k or S4k, where k > 1. A satisfiable formula ϕ is complete with respect to L if and only if P (ϕ) = ∅.

Proof. The proof is similar to the one for Lemma 15, only we change the definitions of 	d , W ′ , and α−→′
.

We note that, in contrast to the proof of Lemma 15, and due to the transitivity of the transition relation, one level of the 
nesting of the modalities suffices to affect all the states that are reachable by any repetition of equally-labelled transitions. 
Therefore, it is not the number of transitions, but the number of required alternations of transition labels that keeps a state 
out of reach from the requirements of the formula. Therefore, we must track these alternations and compare them to the 
modal depth of ϕ .

	d = {(s0,α0) · · · (sk,αk) ∈ (W × Act)∗ | for all 0 ≤ i < k, si
αi+1−−→ si+1}.

For (s0, α0) · · · (sk, αk) ∈ 	d , l((s0, α0) · · · (sk, αk)) is defined recursively:

l((s0,α0)) = 0;
l(z(si,αi)(si+1,αi)) = l(z(si,αi)); and

l(z(si,αi)(si+1,αi+1)) = l(z(si,αi)) + 1, if αi �= αi+1.

Then, W ′ = {z ∈ 	d | l(z) ≤ d} ∪ {x}; and α−→′
is the appropriate closure of {(z, z(t, α)) ∈ W ′ × W ′} ∪ {(z, x) | z = x or l(z) = d}. 

The remaining arguments are similar to the ones from the proof of Lemma 15. �
3.4. Consistency and negative introspection

For a logic L = L′ + 5 on one action, let ϕL
P = ∧

P ∧ �� 
∧

P .

Lemma 20. For any logic L = L′ + 5 on one action, ϕL
P is a satisfiable complete formula for L.

4 If the logic is not consistent, then it has no models, and therefore ϕD4 cannot be satisfiable.
5 Although for the purposes of this paper we only consider a specific set of modal logics, it is interesting to note that the corollary can be extended to a 

much larger class of logics.
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Proof. By Lemma 11, all states are flat, and therefore ϕL
P is complete. It is satisfied in state s, where V (s) = P and s

transitions exactly to s. �
When P = ∅, we can distinguish two cases. If L′ ∈ {D, D4, T, S4}, then ϕL

∅ is a tautology, therefore all formulae in L(P )

are complete for L.6 If L′ ∈ {K, K4}, by Lemma 11, a state would either satisfy ϕL
P or �ff, depending on whether it has a 

transition or not, because it is flat. Therefore, if P = ∅ the completeness problem for K5 and K45 is not trivial, but it is easy 
to solve: a formula with no propositional variables is complete for L ∈ {K5, K45} if it is satisfied in at most one of the two 
states for L, which are non-bisimilar modulo ∅.

Corollary 21. If P = ∅, the completeness problem for K5 and K45 is in P.

Lemma 22. Formula 
∧

P ∧ [Act]ff is satisfiable and complete for K5k and K45k.

Proof. By Lemma 13, the formula is complete for Kk and K4k , and therefore also for K5k and K45k; it then suffices to 
observe that it is also satisfiable for K5k and K45k , in a state with no transitions. �

Similarly to the cases of Dk , Tk , D4k , and S4k , for k > 1, a formula is complete for one of the corresponding logics with 
the addition of Negative Introspection, if and only if it has no propositional variables.

Lemma 23. Let L be one of Dk, Tk, D4k, and S4k, where k > 1. A satisfiable formula ϕ is complete for L + 5 if and only if P (ϕ) = ∅.

Proof. Similar to the proof of Lemma 19, with the same constructions, taking the accessibility relation closure conditions 
into account. �
4. The completeness problem and negative introspection: the one-action case

In this section, we explain how to adapt Halpern and Rêgo’s techniques from [21] to prove similar complexity bounds 
for the completeness problem for logics on one action, no recursive operators, and with Negative Introspection. Thus, we 
assume in this section a logic L without recursive operators, and that |Act| = 1. Since here we ask whether a formula is 
complete, instead of whether it is satisfiable, we want to be able to find two small non-bisimilar states for ϕ when ϕ is 
incomplete. In order to do so, it is useful to have a characterization of bisimilarity between flat models.

Lemma 24. Flat states s and s′ are bisimilar modulo P if and only if V P (s) = V P (s′) and:

• ∀t ∈ Reach(s) ∃t′ ∈ Reach(s′). V P (t) = V ′
P (t′);

• ∀t′ ∈ Reach(s′) ∃t ∈ Reach(s). V P (t) = V ′
P (t′);

• ∀t∈Reach(s), if s → t, then ∃t′∈Reach(s′). s′ → t′ and V P (t) = V P (t′); and
• ∀t′∈Reach(s′), if s′ → t′ , then ∃t∈Reach(s). s → b and V P (t) = V ′

P (t′).

Proof. If those conditions are met, we can define a bisimulation R such that s R s′ and for t ∈ Reach(s) and t′ ∈ Reach(s′), 
t R t′ iff V P (t) = V P (t′); on the other hand, if there is a bisimulation relating s and s′ , then it is not hard to see that those 
conditions hold by the definition of bisimulation — for both claims, notice that the conditions above, given that the states 
are flat, correspond exactly to the conditions from the definition of bisimulation. �

This gives us Corollary 25 below, which is a useful characterization of incomplete formulae.

Corollary 25. Formula ϕ is incomplete for a logic L on one action, with Negative Introspection, and with no recursive operators, if and 
only if there are two flat states s and s′ in an LTS for L, whose size is O (|ϕ|) such that

1. s and s′ satisfy ϕ , and
2. s and s′ are not bisimilar modulo P (ϕ).

Proof. If ϕ has two non-bisimilar states, then by Proposition 3, it is incomplete. On the other hand, if ϕ is incomplete, 
again by Proposition 3 and Lemma 11, ϕ has two non-bisimilar flat states, s and s′ . We will now construct a distinguishing 
formula ψ for s and s′ . By Lemma 24 and without loss of generality, we can distinguish three cases:

6 This is also a corollary of Lemma 15, as these are extensions of D and T.
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• there is some p ∈ V P (s) \ V P (s′): in this case, let ψ = p;
• there is some t , such that s → t and for all t′ , s′ → t′ implies V P (t) �= V P (t′): in this case, let

ψ = �(
∧

V P (t) ∧ ¬
∨

(P \ V P (t)));
• there is some t ∈ Reach(s), such that for all t′ ∈ Reach(s′), V P (t) �= V P (t′): in this case, let

ψ = ��(
∧

V P (t) ∧ ¬
∨

(P \ V P (t))).

In all these cases, both ϕ ∧ ψ and ϕ ∧ ¬ψ are satisfiable and of size O (|ϕ|), so by Corollary 12, each is satisfied in a 
non-bisimilar flat state of size O (|ϕ|). �

Our first complexity result is a consequence of Corollary 25 and Proposition 5:

Corollary 26. The completeness problem for logic L on one action, with Negative Introspection, and with no recursive operators, is in 
coNP.

5. The complexity of completeness

Our main result is that for a modal logic L, the completeness problem has the same complexity as validity for L, as long 
as we allow for propositional variables in a formula and the completeness problem for L is nontrivial (see also Table 4). 
For the lower bounds, we consider hardness under polynomial-time reductions. As the hardness results are relative to 
complexity classes that include coNP, these reductions suffice.

5.1. A lower bound

We present a lower bound for the complexity of the completeness problem: we show that the completeness problem is 
at least as hard as validity for a logic, as long as it is nontrivial.

Theorem 27. Let L be a logic that has a nontrivial completeness problem (that is, L has recursive operators or L is one of Kk, K4k, D4, 
S4, K5k, K45k, D5, T5, KD45, S5) and let C be a complexity class. If L-validity is C-hard, then the completeness problem for L is C-hard.

Proof. To prove the theorem we present a reduction from LG-validity to the completeness problem for L. The exceptions are 
the min- and max-fragments of the μ-calculus, for which the reduction is from the max- and min-fragment, respectively. 
From a formula ϕ , the reduction constructs in polynomial time a formula ϕc , such that ϕ is provable if and only if ϕc is 
complete. For each logic L with nontrivial completeness and finite set of propositional variables P , in Section 3 we provided 
a complete formula ϕL

P . This formula is satisfied in a state of size at most 2, which can be generated in time O (|P |). Let sL

be such a state for ϕL
P . We assume that P �= ∅.

All states that satisfy ϕL
P are bisimilar to sL (Proposition 3). Given a formula ϕ ∈ L(P ), we determine in linear time if 

sL |= ϕ . Then, we have two cases:

sL �|= ϕ, in which case ϕ is not valid and we set ϕc = ∧
P .

sL |= ϕ, so ¬ϕ ∧ ϕL
P is not satisfiable, in which case we set ϕc = ϕ ⊃ ϕL

P . We demonstrate that ϕ is valid if and only if 
ϕ ⊃ ϕL

P is complete.
If ϕ is valid, then ϕ ⊃ ϕL

P is equivalent to ϕL
P , which is complete.

On the other hand, if ϕ ⊃ ϕL
P is complete and s is any state, we show that s |= ϕ , implying that if ϕ ⊃ ϕL

P is 
complete, then ϕ is valid. If s ∼P sL , then from our assumptions s �|= ¬ϕ , thus s |= ϕ . On the other hand, if 
s �P sL , since sL |= ϕ ⊃ ϕL

P and ϕ ⊃ ϕL
P is complete, s �|= ϕ ⊃ ϕL

P , therefore s |= ϕ . �
Theorem 27 applies to more than the logics that we have defined in Section 2. For Propositional Logic, completeness 

amounts to the problem of determining whether a formula does not have two distinct satisfying assignments, therefore it is 
coNP-complete. By similar reasoning, completeness for First-order Logic is undecidable, as satisfiability is undecidable [17].

5.2. Upper bounds

The purpose of this subsection is to define matching upper bounds for the logics defined in Section 2. The easiest cases 
are the logics on one action with restriction 5. Immediately from Theorem 27 and Corollary 26, we obtain that:

Proposition 28. The completeness problem for a logic L + 5 on one action is coNP-complete.
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Table 2
The CC Procedure on ϕ for a logic L without constraint 5.

Input: a formula ϕ
Output: accept if ϕ is incomplete for L and

reject otherwise

Initialize: Non-deterministically generate formula states a and b that include ϕ; if there are none, then return reject.
If a �= b, then return accept.

Condition A: If |= th(a) ⊃ [Act]ff, then return reject.

Construction: Non-deterministically generate an α-child c of a.

Condition B: If �|= th(a) ⊃ 〈α〉th(c), then return accept.

Next Step: Otherwise, set a := c and continue from Condition A.

For the logics without recursion operators and without restriction 5 or on more than one action, by Theorem 6, satis-
fiability and validity are both PSPACE-complete. So, completeness is PSPACE-hard, if it is nontrivial. It remains to show 
that it is also in PSPACE. Similarly, for the μ-calculus, its min- and max-fragments, and for the variants of the other logics 
with recursive operators, completeness is EXP-hard; it remains to show that completeness is in EXP for the μ-calculus, 
and in NPSPACEC for each Lμ

k , where validity for Lμ
k is in C . To this end we present two similar procedures that decide 

completeness for a formula, depending on whether the logic has Negative Introspection or not. We call them the CC and 
CC5 Procedures. Parts of each procedure are similar to the tableaux by Fitting [16] and Massacci [27] for Modal Logic, in 
that the procedure explores local views of a tableau branch. For more on tableaux the reader can see [12]. The CC and 
CC5 Procedures are non-deterministic polynomial space algorithms that use an oracle for the logic’s satisfiability and valid-
ity problems. They accept exactly the incomplete formulae, thus establishing the required matching upper bounds for the 
completeness problem.

5.2.1. The CC procedure for modal logic L on ϕ
In this subsection, we present the CC Procedure for a fixed logic L that does not have Negative Introspection, but may 

have recursive operators and any number of actions. Intuitively, the procedure tries to construct two satisfying states for 
ϕ and at the same time demonstrate that these states are not bisimilar. We first give a few definitions that we need to 
describe the procedure.

We assume that each fixpoint operator in ϕ applies on a unique recursion variable, and therefore for each recursion 
variable X that appears in ϕ , there is a unique fixpoint operator that binds it. Thus, we can define the closure of a formula 
ψ ∈ sub(ϕ), which we identify with ψ . For our procedure, formula states are maximally L-satisfiable subsets of sub(ϕ). For 
an LTS state s and a formula state a, we often abuse notation and use s |= a to indicate that s |= ψ for every ψ ∈ a. We say 
that a formula state c is an α-child of formula state a when there are LTS states s and t , such that s |= a, t |= c, and s α−→ t . 
For a formula state a, let th(a) = ∧

a.

Lemma 29. For any formula state a:

• if ϕ1 ∧ ϕ2 ∈ a, then ϕ1, ϕ2 ∈ a;
• if ϕ1 ∨ ϕ2 ∈ a, then ϕ1 ∈ a or ϕ2 ∈ a;
• if [α]ψ ∈ a and L has constraint T , then ψ ∈ a;
• for every p ∈ P , either p ∈ a or ¬p ∈ a; and
• |a| ≤ 2 · |ϕ|.

Formula state c is an α-child of formula state a if and only if th(a) ∧ 〈α〉th(c) is satisfiable.

Proof. By straightforward arguments. �
The CC Procedure is given in Table 2. It generates sets of formulae and ensures that they are formula states — so that 

all relevant information is present, due to maximality, and so that they indeed represent LTS states, due to satisfiability. 
Intuitively, the procedure explores two LTS states, represented by one formula state and tries to detect evidence that these 
can be non-bisimilar. If the current state can be satisfied in two non-bisimilar LTS states (say, s and t), then the procedure 
should be able to provide a child, representing a state accessible from s or t that is not bisimilar to any state accessible 
from t or s, respectively. Condition A states that if there is no child state to generate, then the search has failed, and 
Condition B accepts when there are two non-bisimilar states that satisfy a, one that can transition to a state satisfying c
and one that cannot. (Indeed, in that case, the formula th(a) ⊃ 〈α〉th(c) is not valid.) Since the formula states are maximally 
consistent, two states that are not identical can only be satisfied in non-bisimilar LTS states, and therefore the procedure 
accepts immediately if it finds two formula states for ϕ during initialization. We note that a formula state can be generated 
non-deterministically by picking a subset of sub(ϕ) and then verifying that it satisfies the required conditions.
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Remark 3. The CC Procedure is not appropriate for logics with Negative Introspection, as it may accept a formula that is 
complete. For example, consider logic K5 (or, similarly, K5k), and let

ϕ = p ∧ ¬q ∧ �(p ∨ q) ∧ ��(¬p ∨ ¬q) ∧ �¬p ∧ �¬q ∧ ��(¬p ∧ ¬q).

Then, up to bisimilarity, there is only one way to satisfy ϕ: we use states s, t1, t2, t3, such that s → t1, t2 and ti → t j for all 
1 ≤ i, j ≤ 3. Propositional variable p is true exactly at s and t2, and q is true exactly at t1.

It is not hard to see that any other satisfying state for ϕ must be bisimilar to s. However, assuming the procedure 
first generates the formula state that contains all subformulae of ϕ that are satisfied in s, it can then pick the child 
state c that is satisfied at t1. That child state contains ¬p, q, p ∨ q, �(¬p ∧ ¬q), ¬p ∨ ¬q, �(¬p ∨ ¬q), ��(¬p ∨
¬q), �¬p, �¬q, ��(¬p ∧ ¬q), and various conjunctions of these formulae. We let the reader verify that these formulae 
can derive neither �p nor �¬p. Therefore, the procedure can generate a subsequent child c′ that contains p, then see that 
�|= th(c) ⊃ �th(c′), and therefore mistakenly accept the input. �

This subsection’s main theorem is Theorem 30 and informs us that our procedure can determine the completeness of 
formula ϕ in a finite number of steps. That the completeness problem for logics without axiom 5 is in PSPACE is a direct 
corollary, as at every step of the procedure, we only need to store a polynomial amount of information, namely up to two 
formula states, and the size of each state is linear in that of ϕ by Lemma 29. The proof of Theorem 30 is given in Subsection 
5.3.

Theorem 30. For a logic without Negative Introspection, the CC Procedure accepts ϕ if and only if ϕ is incomplete.

Corollary 31. The completeness problem for logic L without Negative Introspection, is in NPSPACEC , where L-validity is in complexity 
class C.

Proof. The CC Procedure is a non-deterministic polynomial-space algorithm with an oracle from C . Each condition that it 
needs to check is either a closure condition or a condition for the consistency or validity of formulae of polynomial size 
with respect to |ϕ|; therefore, those conditions can be verified either directly or with an oracle from C . �
Corollary 32. The completeness problem for Kk, K4k, D4, and S4 is PSPACE-complete; the completeness problem for the μ-calculus 
and its min- and max-fragments is EXP-complete.

Proof. PSPACE-hardness and EXP-hardness are consequences of Theorem 27. From Corollary 31, the completeness problem 
for K, K4, D4, and S4 is in NPSPACEPSPACE = PSPACE, and for the μ-calculus and its min- and max-fragments it is in 
NPSPACEEXP = EXP. �

For the characterization problem, we are given one of ϕ ’s satisfying states, so it is a reasonable expectation that the 
problem became easier. Unfortunately, the characterization problem has exactly the same complexity as the completeness 
problem. We can easily use our algorithms for completeness to solve the characterization problem: from Corollary 4, a 
formula ϕ is characteristic for state s if and only if s |= ϕ and ϕ is complete, and the model-checking problem for Modal 
Logic and the μ-calculus is not harder than these logics’ completeness problem. On the other hand, the reduction from 
validity to completeness of Theorem 27 still works in this case, as it can easily be adjusted to additionally provide the 
satisfying model of the complete formula ϕL

P .

Theorem 33. The characterization problem for logic L without Negative Introspection, is in NPSPACEC , where L-validity is in com-
plexity class C. Specifically, the characterization problem for Kk, K4k, D4, and S4 is PSPACE-complete; the characterization problem 
for the μ-calculus and its min- and max-fragments is EXP-complete.

5.3. The proof of Theorem 30

We prove that the CC Procedure has a way to accept ϕ if and only if ϕ is satisfied in two non-bisimilar states. By 
Proposition 3, the theorem follows.

We first assume that there are two non-bisimilar states w and w ′ , such that w |= ϕ and w ′ |= ϕ . We prove that the CC Procedure 
accepts ϕ in a finite number of steps. We call the states w and w ′ the underlying states, or model states, to distinguish them 
from the formula states that the CC Procedure uses. Let f : Prc × Prc × Act → Prc be a partial function that maps every 
pair (s, t) of non-bisimilar pairs and action α to a model state c accessible from s or t by action α that is non-bisimilar to 
every state that t or s, respectively, can transition to with α. We call f a choice-function. We can see that the procedure 
can maintain that the maximal state it generates each time is satisfied in two non-bisimilar states s, t: at the beginning 
these are w and w ′ . At every step, the procedure can pick an action α ∈ Act and an α-child c that is contained in f (s, t, α)
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(this mimics the “Construction” step in 2). If �|= th(a) ⊃ 〈α〉th(c), then the procedure terminates and accepts the input (this 
is “Condition B” in 2). Otherwise, c is satisfied in f (s, t, α) and in another state that is non-bisimilar to f (s, t, α). Let that 
other state be called a counterpart of f (s, t, α).

We demonstrate that if ϕ is incomplete, then the CC Procedure will accept ϕ after a finite number of steps for some 
choice function f . As we have seen above, the procedure, given non-bisimilar states s and t of ϕ , always has a child to 
pick according to f . For convenience, we can assume that the LTS has no cycles, so the choice-function never repeats a 
choice during a process run. If for every choice of f , the process does not terminate, then we show that w ∼ w ′ , reaching a 
contradiction. Let R= ∼ ∪ Z , where ∼ is the bisimilarity relation between states, and xZ y when for some choice-function, 
there is an infinite execution of the procedure, in which y is a counterpart of x, or x a counterpart of y. If x R y, either x ∼ y, 
so V P (x) = V P (y), or xZ y, so, again, V P (x) = V P (y), since x and y satisfy the same maximal state. If x R y and x α−→ x′ , then 
if x ∼ y, immediately there is some y α−→ y′ so that x′ ∼ y′; if x is a counterpart of y or y is a counterpart of x during a non-
terminating run, then for every x′ accessible from x (the case is symmetric for a y′ accessible from y), either x′ is bisimilar 
to some y′ accessible from y, or we can alter the choice-function f that the procedure uses so that x′ = f (x, y, α). Since 
for that altered f , the procedure does not terminate, x′ has a counterpart as well. Therefore, the bisimulation conditions 
are satisfied and R is a bisimulation. If for every choice-function, the procedure never terminates, then w ∼ w ′ , and we 
have reached a contradiction. Therefore, there is a choice-function f that ensures the procedure terminates after a finite 
number of steps. Thus, the procedure can non-deterministically follow an appropriate choice-function f and accept after a 
finite number of steps.

On the other hand, we prove that if ϕ is complete, then the CC Procedure can never accept ϕ . For this, we use the following technical 
lemmata (Lemmata 34–38). Intuitively, these lemmata state that if ϕ is complete, then so are all the formula states that are 
generated by the CC Procedure in any of its runs, and thus Condition B in Table 2 can never be used to accept ϕ .

Lemma 34. If s is a formula state and th(s) is incomplete, then there are some α ∈ Act and [α]ψ ∈ L(P (ϕ)), such that th(s) ∧ [α]ψ
and th(s) ∧ 〈α〉¬ψ are both satisfiable.

Proof. If th(s) is incomplete, then there is some χ ∈ L(P (ϕ)) without recursion operators, such that th(s) ∧χ and th(s) ∧¬χ
are both satisfiable. We can then proceed by induction on χ to prove the claim. Note that χ cannot be a propositional 
constant or variable. �
Lemma 35. If a formula state a has a child c, then formula th(a) ∧ 〈α〉th(c) is satisfiable; if for formula state a, there is some ψ ∈
sub(ϕ), such that th(a) ∧ 〈α〉ψ is satisfiable, then a has a child c, such that ψ ∈ c.

Proof. Immediate from our definitions and Lemma 29. �
Remark 4. The following Lemma 36 ensures that if d is a β-child state for s and d is consistent with a formula of the form 
[α]ψ , then s is consistent with some [β]ψ ′ . Then, Lemma 37 ensures that if d is consistent with 〈α〉ψ , then s is consistent 
with 〈β〉¬ψ ′ . Informally, the overall effect is that the incompleteness of a child state transfers to the parent state, and this 
is how these lemmata are used in the remainder of the proof of Theorem 30. The intuition behind Lemma 36 is that if [α]ψ
is consistent with d, then it should be possible to ensure that [α]ψ holds wherever d holds.

We also observe that Lemma 36 may fail for logics with constraint 5. For instance, if we consider state c and formula 
ϕ from Remark 3, as we have seen, c is consistent with �¬p, but ϕ is inconsistent with ��¬p, and therefore also with �(¬th(c) ∨ �¬p). �
Lemma 36. Let s �= d be formula states and ψ a formula. If for some α ∈ Act, th(d) ∧ [α]ψ is satisfiable (resp. th(d) ∧ψ is satisfiable, 
if L does not have the constraint 4), then for every β ∈ Act, th(s) ∧ [β](¬th(d) ∨ [α]ψ) is satisfiable (resp. th(s) ∧ [β](¬th(d) ∨ ψ)

is satisfiable).

Proof. We can assume that |=L th(s) ⊃ 〈β〉th(d), because otherwise, the lemma follows immediately. Let M, w |= th(s), 
where M = 〈W , Act, →, V 〉 is an LTS for L. Let D, x |= th(d) ∧ [α]ψ , where D = 〈Wd, Act, →d, Vd〉 is an LTS for L; let 
M′ = 〈W ∪ Wd, Act, →2, V ′〉, where V ′(a) = V (a) if a ∈ W and V ′(a) = Vd(a) otherwise, and 

γ−→2 is (resp. when L has 
constraint 4, 

γ−→2 is the transitive closure of) the collection of

• all pairs (a, b) ∈ γ−→ for which b �|= th(d) or γ �= β or w 
β

�→ b,

• all pairs (a, x) for which there is some b ∈ W , such that M, b |= th(d), w 
β−→ b, and a 

γ−→ b, and

• all pairs in 
γ−→d .

The construction of M′ is visualized in Fig. 2. It is not hard to observe that for every a ∈ Wd , (M′, a) ∼P (ϕ) (D, a), and 
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b |= th(d)

x

· · ·

β

γ

β

γ

M
D

M′

Fig. 2. The LTS M′ is constructed from M and D by diverting to x all transitions to a state b that is β-accessible from w , and that satisfies th(d).

therefore, for every χ ∈ sub(ϕ) and a ∈ Wd , M′, a |= χ iff D, a |= χ . For convenience, we now abuse notation and consider 
environments for D, M, and M′ to be defined on the whole of W ′ . Then, by induction on the formulae, we can prove that 
for every χ ∈ sub(ϕ), environment ρ , and a ∈ W , a ∈ �χ,ρ�M iff a ∈ �χ,ρ�M′ . In fact, because sub(ϕ) is closed under 
negation, for each case we can simply prove that if a ∈ �χ,ρ�M , then a ∈ �χ,ρ�M′ :

The cases for constants, literals, variables and their negations, and boolean connectives are immediate.

If χ = [γ ]χ ′, then if γ �= β , nothing changed. For γ = β , let b be such that a 
β−→2 b. If b ∈ W , then by the inductive 

hypothesis, M′, b |= χ ′ . Otherwise, b = x or x 
β−→ b, and therefore, there is some c ∈ W , such that M, c |= th(d)

and a 
β−→ c. We also have that M, c |= χ ′ , and by the maximality of d, this implies that χ ′ ∈ d (resp. χ, χ ′ ∈ d

when the logic has constraint 4). Therefore, D, x |= χ ′ (resp. D, x |= χ, χ ′), meaning that M′, b |= χ ′ .
The case for χ = 〈γ 〉χ ′ is more straightforward.
If χ = ν X .χ ′, then let S = �χ,ρ�M ∪ �χ,ρ�D . From the semantics of Table 1, it suffices now to see that from the inductive 

hypothesis, S = �χ ′,ρ[X �→ S]�M ∪ �χ ′,ρ[X �→ S]�D ⊆ �χ ′,ρ[X �→ S]�M′ .
If χ = μX .χ ′, then ¬χ = ν X .χ ′′ for some χ ′′ ∈ sub(ϕ). Then, it suffices to prove that if M′, a |= ¬χ , then M, a |= ¬χ , 

which can be shown similarly to the previous case.

Therefore, M′, w |= th(s) ∧ [β](¬th(d) ∨ [α]ψ). �
Using similar constructions, one can prove the following lemma:

Lemma 37. Let s �= d be formula states and ψ a formula. If for some α ∈ Act, th(s) ∧ 〈α〉th(d) and th(d) ∧ ψ are satisfiable, then 
th(s) ∧ 〈α〉(th(d) ∧ ψ) is satisfiable.

Lemma 38. For formula states s and c, for which c is an α-child of s, if th(s) is complete, then so is th(c).

Proof. To reach a contradiction, we assume that th(s) is complete and th(c) is not. Then, s �= c and by Lemma 34, there is 
some [β]ψ ∈ L(P (ϕ)), such that th(c) ∧ [β]ψ and th(c) ∧ 〈β〉¬ψ are both satisfiable. Furthermore, by Lemma 35, th(s) ∧
〈α〉th(c) is satisfiable. Therefore, by Lemmata 36 and 37, th(s) ∧[α](¬th(d) ∨[β]ψ) and th(s) ∧〈α〉(th(d) ∧¬[β]ψ) are both, 
respectively satisfiable for some [β]ψ , and therefore th(s) is not complete. �

We can now finish the proof of Theorem 30. We first observe that if the procedure accepts during the initialization, this 
implies that there are two formula states a and b, such that a �= b and ϕ ∈ a ∩ b. But, in turn, this directly implies that 
there is a ψ ∈ sub(ϕ) (⊆ L(P (ϕ))), such that ϕ ∧ ψ and ϕ ∧ ¬ψ are both consistent, so ϕ is incomplete, contradicting our 
assumptions. By Lemma 38, all states that appear during a run are complete. If at some point, the process picks a child c
of a, then by Lemma 35, th(a) ∧ 〈α〉th(c) is satisfiable; since a is complete, |= th(a) ⊃ 〈α〉th(c). Therefore, Condition B in 
Table 2 never applies and there is no way for the procedure to accept if the input formula is complete. �
6. Multi-action logics with negative introspection

We now consider the case of a logic L with restriction 5. We still consider a formula ϕ that is tested for incompleteness.
As Remark 3 demonstrates, in the presence of Negative Introspection, the child of a complete state might not be com-

plete, which was a crucial ingredient in the correctness proof for the CC Procedure. Therefore, the CC5 Procedure maintains 
a set of sufficiently many children states for a given action α that represent all α-accessible states.

For a formula state a, we call a set C of formula states an α-child set of a when for some C ′ ⊆ C , there are states s and sc
for every c ∈ C , such that

• s |= th(a),
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Table 3
The CC5 Procedure on ϕ for logic L with constraint 5.

Input: a formula ϕ
Output: accept if ϕ is incomplete for L and

reject otherwise

Initialize: Non-deterministically generate formula states a and b that include ϕ; if there are none, then return reject.
If a �= b, then return accept.
Nondeterministically choose some α ∈ Act.

Condition A: If |= th(a) ⊃ [α]ff, then return reject.
Construction: Non-deterministically generate a full α-child set C of a, such that |C | ≤ |ϕ|.
Condition B: If �|= th(a) ⊃ 〈α〉th(c) for some child c ∈ C of a, then return accept.
Condition C: If �|= th(a) ⊃ 〈α〉〈α〉th(c) for some c ∈ C , then return accept.

Next Step: Otherwise, non-deterministically pick a c ∈ C and a β �= α, and set a := c and α := β , and continue from 
Condition A.

• for every c ∈ C , sc |= th(c),

• for every c ∈ C ′ , s α−→ sc , and

• for all c, c′ ∈ C , sc
α−→ sc′ .

C is a full α-child set of a when ∀〈α〉ψ ∈ a. ∃c ∈ C ′. ψ ∈ c and ∀c ∈ C . ∀〈α〉ψ ∈ c. ∃c′ ∈ C . ψ ∈ c′ .
For example, for the states s, t1, t2, t3 from Remark 3, if a is the formula state that is satisfied at s, then a full α-child 

set of a is C = {c1, c2, c3}, where c1 is satisfied at t1, c2 at t2, and c3 at t3. The subset C ′ ⊆ C , as described above would 
then be {c1, c2}, as these formula states correspond to LTS states that are directly accessible from s.

We can now describe the CC5 Procedure for logics with constraint 5. See Table 3. The intuition is the same as the one 
behind the CC Procedure, except for the need to maintain a set of states instead of a single one, and the alternation of the 
actions. To prove the correctness of the procedure, we require the following definition and lemmata. First, to prove that if 
the input formula is incomplete, then the CC5 Procedure can accept, we must know that there is always a full α-child set 
of an appropriate size to generate.

Lemma 39. Let L have constraint 5, α ∈ Act, and a be a formula state. Then, there is a full α-child set C of a, such that |C | ≤ |ϕ|.

Proof. From Corollary 12, we know that a is satisfied in a flat state s in an LTS for L, of size at most |ϕ|. It is then not hard 
to construct C from Reach(s). �

To show that if the formula is complete, then the procedure can never accept, we use a similar argument as for the 
proof of Theorem 30. There, we had to show that the formula state is always complete. However, due to Remark 3, this is
not the case for logics with Negative Introspection. Therefore, completeness is now preserved through the set of states that 
we maintain, and we require an extended definition of completeness for such sets of formulae.

Definition 4. Let L = L′ + 5, α ∈ Act, and let A = {ϕ1, . . . , ϕk} ⊆ L(P ). We say that A is α-complete, when for all states s1, . . . , sk

and t1, . . . , tk in an LTS for L, such that for every 1 ≤ i, j ≤ k si
α−→ s j , ti

α−→ t j , si |= ϕi and ti |= ϕi , it is the case that for every 1 ≤ i ≤ k, 
si ∼P ti .

For the CC5 Procedure to only accept incomplete formulae, we would want to know that completeness is preserved from 
a state to its child sets and from its child sets to their own child sets, and so on. Lemmata 40 and 41 assure us of these 
facts.

Lemma 40. Let L have constraint 5, α ∈ Act, let a be a formula state, such that th(a) is complete, and let C be a full α-child set of a. 
Then, {th(c) | c ∈ C} is α-complete.

Proof. We prove the contrapositive of the lemma, that is, we prove that if {th(c) | c ∈ C} is not α-complete, then th(a) is 
not complete.

Let M = 〈W , Act, →, V 〉 and s ∈ W , such that M, s |= th(a). Let for i = 1, 2, Mi = 〈W i, Act, →i, V i〉 and for every 
c ∈ C , let s1

c ∈ W1 and s2
c ∈ W2, such that for every c, c′ ∈ C , si

c
α−→i si

c′ , Mi, si
c |= th(c), and W ∩ W i = ∅. We know that there 

are appropriate M1, M2, such that for some c ∈ C , M1, s1
c �M2, s2

c , because from our assumptions, {th(c) | c ∈ C} is not 
α-complete.

We construct for each i = 1, 2 an LTS M′
i = (W ∪ W i ∪ {s′}, Act, →′

i, V
′
i ), where s′ /∈ W ∪ W1 ∪ W2. The construction 

simply joins the LTSs M and Mi and adds in a new state s′ that mimics the β-transitions of s for β �= α, and transitions 
into an si

c whenever it needs to make an α-transition. Specifically:
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s s′

sc1 · · · sck

sck+1 · · · scl

β
α

α

β
β

β

M

Mi

M′
i

Fig. 3. The LTS M′
i is constructed from Mi and M by using an extra state s′ that mimics s with respect to β-transitions, for all β �= α, and α-transitions 

to sc1 , . . . , sck , where c1, . . . , ck are the children of a.

β−→′
i = β−→ ∪ β−→i ∪ {(s′, t) | s

β−→ t} ∪ {(t, s′) | t
β−→ s} ∪ {(s′, s′) | L has constraint T }, for β �= α, and

α−→′
i = α−→ ∪ α−→i ∪ {(s′, si

c) | c ∈ C and c is a child of a} ∪ {(s′, s′), (si
c, s′) | c ∈ C and L has constraint T };

and V ′
i (t) = V (t) if t ∈ W , V ′

i (t) = V i(t) if t ∈ W i , and V ′
i (s′) = a ∩ P (ϕ). The construction is visualized in Fig. 3. It is not 

hard to see that, because ∃c ∈ C . (M1, s1
c ) � (M2, s2

c ), it is also the case that (M′
1, s

′) � (M′
2, s

′). To complete the proof of 
the lemma, it remains to demonstrate that for i = 1, 2, Mi, s′ |= th(a). This can be with a similar induction as in the proof 
of Lemma 36. �
Lemma 41. Let L have constraint 5, α, β ∈ Act, where α �= β , let C be a set of formula-states, such that {th(c) | c ∈ C} is α-complete, 
and let C ′ be a full β-child set of some a′ ∈ C. Then, {th(c) | c ∈ C ′} is β-complete.

Proof. Similar to the proof of Lemma 40. �
Using the above lemmata, we can prove the correctness of the CC5 Procedure similarly to what we did for the CC 

Procedure:

Theorem 42. Let L have constraint 5. The CC5 Procedure accepts ϕ if and only if ϕ is not L-complete.

Corollary 43. The Completeness problem for a logic L with more than one action and constraint 5 is PSPACE-complete when recursion 
is not allowed, and otherwise, in NPSPACEC , where Lμ-validity is in C.

Theorem 44. The Characterization problem for a logic L with more than one action and constraint 5 is PSPACE-complete when 
recursion is not allowed, and otherwise, in NPSPACEC , where Lμ-validity is in C.

7. Conclusion and variations

From the logics we examined, logics Dk and Tk for k > 0, and multi-action versions of logics with D and T have trivial 
completeness problems, as long as recursion is not allowed in formulae. Table 4 summarizes the results of the previous 
sections regarding the completeness problem. As the table demonstrates, we can distinguish the following cases. For Kk , 
the completeness problem is non-trivial and PSPACE-complete; this does not change when we add axiom 4. Once we 
add axiom D to Kk , but neither 4 nor 5, the completeness problem becomes trivial; adding the stronger axiom T does 
not change the situation. Curiously, adding both 4 and D or T to Kk makes the completeness problem PSPACE-complete 
again, except when P = ∅ or k > 1. Regardless of other axioms, if the logic has Negative Introspection, completeness is 
coNP-complete — unless P = ∅ or k > 1, when the situation depends on whether the logic has D (or the stronger T ) or 
not. As Lemma 14 demonstrates, the μ-calculus and its min- and max-fragments have non-trivial completeness problems. 
In general, adding recursive operators to the language always allows us to write complete formulae, an observation which is 
consistent with the results in [23], where it is shown that the max-fragment of the μ-calculus suffices to give characteristic 
formulae for any state.

There are several variations one may consider for the completeness problem. One may define the completeness of a 
formula in a different way, or consider a different logic, depending on the intended application. One may also wonder 
whether we could attempt a solution to the completeness problem by using Fine’s normal forms [14]. In this section, we 
will examine some of these variations on the completeness theme.

7.1. Characteristic formulae

It may be more appropriate, depending on the case, to check whether a formula is satisfiable and complete, that is, 
whether there is a state for which the formula is characteristic. In this case, we can simply alter the CC Procedure so that it 
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Table 4
The complexity of the completeness problem for different logics. Trivial (all) 
indicates that all formulae in this case are complete for the logic; triv-
ial (none) indicates that there is no satisfiable and complete formula for 
the logic. C is the complexity class for which the validity problem for Lμ

k
is C -complete. All hardness results come from Theorem 27 and the corre-
sponding lower bound for the validity problem.

Logic P = ∅ P �= ∅ see:

Kk , K4k PSPACE-comp. PSPACE-comp. Corollary 32

Dk , Tk trivial (all) trivial (none) Lemma 15

D4, S4 trivial (all) PSPACE-comp. Corollary 32

D4k , S4k

k > 1
trivial (all) trivial (none) Lemma 19

K5, K45 in P coNP-comp. Proposition 28

K5k , K45k

k > 0
PSPACE-comp. PSPACE-comp. Corollary 43

L1 + 5
L1 �= K,K4

trivial (all) coNP-comp. Proposition 28

Lk + 5, k > 1
L �= K,K4

trivial (all) trivial (none) Lemma 23

μ-calculus
(and frags.)

EXP-comp. EXP-comp. Corollary 32

Lμ
k , k > 1 varies

EXP-hard
NPSPACEC Corollaries 31, 43

accepts right away if the formula is not satisfiable. Furthermore, notice that the reduction used in the proof for Theorem 27
constructs satisfiable formulae. Therefore, this problem has the same complexity as the completeness problem, for most 
cases, as long as satisfiability has the same complexity as validity.

For logics on one action and with Negative Introspection (and plain Propositional Logic), this is not necessarily the case. 
For these logics, the language of satisfiable and complete formulae is US-complete, where a language U is in US when there 
is a nondeterministic Turing machine T , so that for every x, x ∈ U if and only if T has exactly one accepting computation 
path for x7 [8]: UniqueSAT is a complete problem for US and a special case of this variation of the completeness problem. 
The class US is not known to be the same as coNP.

From now on, we only consider logics on one action.

7.2. Completeness and normal forms for modal logic

In [14], Fine introduced normal forms for Modal Logic. The sets F d
P are defined recursively on the depth d, which is a 

nonnegative integer, and depend on the set of propositional variables P (we use a variation on the presentation from [29]):

F 0
P =

⎧⎨
⎩

∧
p∈S

p ∧
∧
p /∈S

¬p | S ⊆ P

⎫⎬
⎭ ; and

F d+1
P =

⎧⎨
⎩ϕ0 ∧

∧
ϕ∈S

�ϕ ∧ � ∨
ϕ∈S

ϕ | S ⊆ F d
P , ϕ0 ∈ F 0

P

⎫⎬
⎭ .

For example, formula ϕK
P = ∧

P ∧ �ff from Section 3 is a normal form in F 1
P .

Theorem 45 (from [14]). For every modal formula ϕ of modal depth at most d, if ϕ is K-satisfiable, then there is some finite S ⊆ F d
P , 

so that |=K ϕ ↔ ∨
S.

Furthermore, as Fine [14] demonstrated, normal forms are mutually exclusive: no two distinct normal forms from F d
P can 

be true at the same state of a model. Normal forms are not necessarily complete by our definition (for example, consider 
p ∧ �p ∧ �p for P = {p}), but, at least for K, it is not hard to distinguish the complete ones; by induction on d, one can 
show that:

7 We note that the definition of US is different from UP [37]; for UP, if T has an accepting path for x, then it is guaranteed that it has a unique accepting 
path for x.
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Lemma 46. Formula ϕ ∈ F d
P is complete for K if and only if md(ϕ) < d.

Therefore, for K, the satisfiable and complete formulae are exactly the ones that are equivalent to such a complete 
normal form. However, using this observation to test formulae for completeness by guessing a complete normal form and 
verifying that it is equivalent to our input formula can be very costly, as normal forms can be of very large size: |F 0

P | = 2|P |; 
|F d+1

P | = |P | · 2|F d
P |; and if ψ ∈ F d

P , |ψ | can be up to |P | + 2|F d−1
P |. We would be guaranteed a normal form of reasonable 

(that is, polynomial with respect to |ϕ|) size to compare with ϕ only if ϕ uses a small (logarithmic with respect to |ϕ|) 
number of variables and its modal depth is very small compared to |ϕ| (that is, md(ϕ) = O (log∗(|ϕ|))).

7.3. Completeness up to depth

Fine’s normal forms [14] can inspire us to consider a relaxation of the definition of completeness. We call a formula 
ϕ complete up to its depth for a logic L exactly when for every formula ψ ∈ L(P (ϕ)) of modal depth at most md(ϕ), either 
ϕ |= ψ or ϕ |= ¬ψ . Immediately from Theorem 45, we have that:

Lemma 47. All normal forms are complete up to their depths.

Lemma 48. Formula ϕ is satisfiable and complete up to its depth for logic L if and only if it is equivalent in L to a normal form from 
F md(ϕ)

P .

Proof. From Theorem 45, if ϕ is satisfiable, then it is equivalent to some 
∨

S , where S ⊆ F md(ϕ)

P , but if it is also complete 
up to its depth, then it can derive a normal form ψ ∈ S; so, |= ϕ ⊃ ψ , but also |= ψ ⊃ ∨

S and 
∨

S is equivalent to ϕ . For 
the other direction, notice that every normal form in F md(ϕ)

P is either complete or has the same modal depth as ϕ , so by 
Lemma 47, ϕ is equivalent to a normal form. In the first case, it is complete and, in the second case, it is complete up to 
its depth. �

Therefore, all modal logics have formulae that are complete up to their depth. In fact, for any finite set of propositional 
variables P and d ≥ 0, we can define ϕd

P = ∧d
i=0 �i ∧ P , which is equivalent in T and D to a normal form (by induction 

on d). Then, we can use a reduction similar to the one from the proof of Theorem 27 to prove that, for every modal logic, 
completeness up to depth is as hard as validity.

Proposition 49. For any complexity class C and logic L, if L-validity is C-hard, then completeness up to depth is C-hard.

Proof. The proof is similar to the one for Theorem 27 and is by reduction from L-validity. We are given a formula ϕ ∈ L(P )

— and we assume that P �= ∅. For L �= T, D, ϕL
P (d) = ϕL

P as defined in Section 3; for L = T or D, let ϕL
P (d) = ϕd

P as defined 
above. We also assume an appropriate ML, aL |= ϕL

P (d).

If ML,aL �|= ϕ, let ϕc = ∧
P ∧ �tt, which is incomplete up to its depth.

Otherwise, let ϕc = ϕ ⊃ ϕL
P (d). If ϕ is provable, then ϕc is equivalent to ϕL

P (d), which is complete up to its depth. On the 
other hand, if ϕc is complete up to its depth, then by Lemma 48, it is equivalent to a normal form ψ ∈ F d

P . By 
Theorem 45, ϕ is equivalent to 

∨
S for some S ⊆ F d

P . So, ψ is equivalent to ϕc = ϕ ⊃ ϕL
P (d), which is equivalent 

to ¬ 
∨

S ∨ ϕL
P (d).

Since normal forms are mutually exclusive, 
∨

S is equivalent to ¬ 
∨

(F d
P \ S), so ψ is equivalent to 

∨
(F d

P \ S) ∨
ϕL

P (d). This means that ψ implies ϕL
P (d) and all normal forms in F d

P \ S . But since ψ is itself a normal form, it 
can only imply a unique normal form, itself. Therefore, either S = F d

P and ψ is equivalent to ϕL
P (d), or F d

P \ S is 
a singleton of a normal form that is equivalent to ϕL

P (d). In the first case, ϕ is provable, because by Theorem 45, 
tt is equivalent to 

∨
F d

P , which is equivalent to ϕ . The second case cannot hold, because it would mean that ϕ is 
equivalent to ¬ϕL

P (d), but ML, aL |= ϕ ∧ ϕL
P (d). �

We demonstrate that this variation of the completeness problem is in PSPACE when the logic is K; it seems plausible 
that one can follow similar approaches that use normal forms for the remaining modal logics. We leave this topic for future 
work.

Proposition 50. A formula ϕ is complete up to its depth for K if and only if ϕ ∧ �md(ϕ)+1ff is complete for K.

Proof. Let ψ ∈ F d
P be a normal form. Then, ψ ∧ �d+1ff is equivalent in K to ψ+1 ∈ F d+1

P , which is ψ after we replace 
all �ψ ′ in ψ by �(ψ ′ ∧ �ff), where ψ ′ ∈ F 0 . Notice that ψ1, ψ2 ∈ F d are distinct normal forms if and only if ψ+1, ψ+1
P P 1 2
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are distinct normal forms in F r
P for every r > d. So, ϕ is complete up to its depth for K if and only if ϕ ∧ �md(ϕ)+1ff is 

complete for K. �
7.4. More complexity

There is more to Modal Logic than what we have covered in this paper, so perhaps there is also more to discover about 
the completeness problem. We do expect, in general, completeness to have the same complexity as validity, although it 
remains to be seen if there are relevant exceptions. As we mention in Section 2, we are not aware of any upper complexity 
bounds for logics with both LTS constraints and recursion operators. It would be of interest to find such bounds for validity, 
which would also help complete the picture for completeness. Another natural question in that direction is what kinds of 
epistemic properties one can express using fixpoints. After all, as this paper demonstrates, it is not a big leap to combine 
epistemic axioms (represented in this paper as LTS constraints) and recursion operators.
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