
Runtime Instrumentation for Reactive Components1

Luca Aceto # �2

Reykjavik University, Reykjavik, Iceland3

Gran Sasso Science Institute, L’Aquila, Italy4

Duncan Paul Attard # �5

University of Glasgow, Glasgow, UK6

Adrian Francalanza #�7

University of Malta, Msida, Malta8

Anna Ingólfsdóttir # �9

Reykjavik University, Reykjavik, Iceland10

Abstract11

Reactive software calls for instrumentation methods that uphold the reactive attributes of systems.12

Runtime verification imposes another demand on the instrumentation, namely that the trace event13

sequences it reports to monitors are sound—that is, they reflect actual executions of the system under14

scrutiny. This paper presents RIARC, a novel decentralised instrumentation algorithm for outline15

monitors meeting these two demands. The asynchronous setting of reactive software complicates the16

instrumentation due to potential trace event loss or reordering. RIARC overcomes these challenges17

using a next-hop IP routing approach to rearrange and report events soundly to monitors.18

RIARC is validated in two ways. We subject its corresponding implementation to rigorous19

systematic testing to confirm its correctness. In addition, we assess this implementation via extensive20

empirical experiments, subjecting it to large realistic workloads to ascertain its reactiveness. Our21

results show that RIARC optimises its memory and scheduler usage to maintain latency feasible for soft22

real-time applications. We also compare RIARC to inline and centralised monitoring, revealing that23

it induces comparable latency to inline monitoring in moderate concurrency settings, where software24

performs long-running, computationally-intensive tasks, such as in Big Data stream processing.25

2012 ACM Subject Classification Software and its engineering→ Software verification and validation26

Keywords and phrases Runtime instrumentation, decentralised monitoring, reactive systems27

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2328

Acknowledgements We thank the anonymous reviewers and the Artifact Evaluation Committee29

for their constructive feedback. We thank Simon Fowler, Phil Trinder, and Keith Bugeja for their30

comments on improving this paper. This work was supported by EPSRC grant EP/T014628/131

(STARDUST).32

1 Introduction33

Modern software is generally built in terms of concurrent components that execute without34

relying on a global clock or shared state [90]. Instead, components interact via non-blocking35

messaging, creating a loosely-coupled architecture known as a reactive system [8, 97], which:36

responds in a timely manner (is responsive),37

remains available in the face of failure (is resilient),38

reacts to inputs from users or their environment (is message-driven), and39

grows and shrinks to accommodate varying computational loads (is elastic).40

The real-world behaviour of reactive systems is hard to understand statically, and monitoring41

is used to inspect their operation at runtime, e.g. for debugging [114], security checking [63],42

profiling [79], resource usage analysis [37], etc. This paper considers runtime verification (RV),43

an application of monitoring used to detect whether the current execution of a system under44

scrutiny (SuS) deviates from its correct behaviour [15, 74, 21]. A RV monitor is a sequence45

© Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:53

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luca@ru.is
https://orcid.org/0000-0002-2197-3018
mailto:duncan.attard@glasgow.ac.uk
https://orcid.org/0000-0002-2448-5394
mailto:adrian.francalanza@um.edu.mt
https://orcid.org/0000-0003-3829-7391
mailto:annai@ru.is
https://orcid.org/0000-0001-8362-3075
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Runtime Instrumentation for Reactive Components

recogniser [130, 104]: a state machine that incrementally analyses a finite fragment of the46

runtime information exhibited by a SuS to reach an irrevocable verdict (see [6, 5] for details).47

Instrumentation lies at the core of runtime monitoring [73, 21, 65]. It is the mechanism48

by which runtime information from a SuS is extracted and reported to monitors as a stream49

of system events called a trace. Software is typically instrumented in one of two ways. Inline50

instrumentation, or inlining, modifies the SuS by injecting tracing instructions at specific51

joinpoints, e.g. using AspectJ [93] or BCEL [54]. Outline instrumentation, or outlining, uses52

an external tracing infrastructure to gather events, e.g. LTTng [56] or OpenJ9 [59], thereby53

treating the SuS as a black box. A key requirement setting RV apart from monitoring, e.g.,54

telemetry [88] or profiling [128, 26], is that the instrumentation must report sound traces.55

▶ Definition 1 (Sound traces). A finite trace T is sound w.r.t. a system component P iff it is56

1. Complete. T contains all the events exhibited by P so far, and57

2. Consistent. The event sequence in T reflects the order these occur locally at P . ◀58

Traces that violate this soundness invariant are unfit for RV, as omitted, spurious, or59

out-of-sequence events incorrectly characterise the system behaviour, nullifying the verdicts60

that monitors flag [21, 52]. Reactive software imposes another requirement: that the61

instrumentation safeguards the responsive, resilient, message-driven, and elastic attributes of62

the SuS. This necessitates an instrumentation method that is itself reactive, such that it:63

1. does not hamper the SuS by inducing unfeasible runtime overhead (is responsive),64

2. permits monitors to fail independently of SuS components (is resilient),65

3. reacts to trace events without blocking the SuS (is message-driven), and66

4. grows and shrinks in proportion to the size of the SuS (is elastic).67

Limitations of current RV instrumentation methods State-of-the-art RV tools use in-68

strumentation methods that do not satisfy all of the conditions 1 – 4 above. This renders69

them inapplicable to reactive software; see [65, Tables 3 and 4] for details. Many approaches,70

including [24, 31, 49, 78, 113, 129, 134, 17], assume systems with a fixed architecture where71

the number of components remains constant at runtime, failing to meet condition 4. Works72

foregoing the assumption of a fixed system size, such as [45, 94, 61, 60, 25, 31, 71, 3], inline73

the SuS with monitors statically. Inlining monitors pre-deployment inherently accommodates74

systems that grow and shrink (condition 4) as a by-product of the embedded monitor code75

that executes on the same thread of system components; see fig. 1a. This scheme, however,76

has shortcomings that make it less suited to reactive software. Recent studies [21, 52] observe77

that the lock-step execution of the SuS and monitors can impair the operation of the instru-78

mented system, e.g. slow runtime analyses manifest as high latencies [38], and faulty monitors79

may break the system [72], which do not meet conditions 1 and 2 (e.g. MQ in fig. 1a). Other80

works [46, 14] argue that errors, such as deadlocks or component crashes, are hard to detect81

since the monitoring logic shares the runtime thread of the affected component. Entwining82

the execution of the SuS and monitors may also diminish the scalability, performance, and83

resource usage efficiency of the monitored system because inlined monitor code cannot be run84

on separate threads [11]. Lastly, inlining is incompatible with unmodifiable software, such as85

closed-source components (e.g. R in figs. 1a – 1c), making outlining the only alternative.86

Outline instrumentation can address the limitations of inlining by isolating the SuS87

and its monitors (works [45, 38, 39] that view externalised monitors as ‘outline’ embed88

tracing code to extract events from the SuS, subjecting them to the cons of inlining). The89

latest survey on decentralised RV [74, Tables 1 and 2] establishes that outlining-based tools,90

e.g. [50, 16, 17, 75, 38, 39, 132, 66], are variations on centralised instrumentation. In this set-up,91

Aceto et al. 23:3

events exhibited by SuS components are funnelled through a global trace buffer (e.g. κ{P ,Q,R}92

in fig. 1b) that a singleton monitor can analyse asynchronously, meeting condition 3. Yet, the93

central buffer introduces contention and sacrifices the scalability of the SuS [10], violating94

condition 4. Centralised architectures are prone to single point of failures (SPOFs) [97, 96]95

(violating condition 2), which is not ideal for monitoring medium-scale reactive systems.96

Contribution We propose RIARC, a decentralised instrumentation algorithm for outline97

monitors that overcomes the above shortcomings, fulfilling conditions 1 – 4. Outline monitors98

minimise latency effects due to slow trace event analyses associated with inlining (meeting99

condition 1). While RIARC does not handle monitor failure explicitly, it intrinsically enjoys a100

modicum of partial failure by isolating the SuS and its decentralised monitor components101

(meeting condition 2); e.g. monitors M{P} and M{Q,R} in fig. 1c. RIARC uses a tracing102

infrastructure to obtain system events passively without modifying the SuS (meeting con-103

dition 3). The algorithm equips each isolated monitor with a local trace buffer, using it104

to report events based on the SuS components a monitor is tasked to analyse (e.g. buffers105

κ{P} and κ{Q,R} in fig. 1c). RIARC reorganises its instrumentation set-up to reflect dynamic106

changes in the SuS. It reacts to specific events in traces to instrument monitors for new107

SuS components and to remove redundant monitors when it detects graceful or abnormal108

component terminations. This enables RIARC to grow and shrink the verification set-up109

on demand (meeting condition 4). Given the challenges in fulfilling the conditions 1 – 4, we110

scope our work to settings where communication is reliable (i.e., no message corruption,111

duplication, and loss) [58] and Byzantine failures do not arise [99].112

To the best of our knowledge, the approach RIARC advocates is novel. One reason why113

outlining has never been adopted for decentralising monitors are the onerous conditions 1 – 4114

imposed by reactive software. Utilising non-invasive tracing makes our set-up necessarily asyn-115

chronous. At the same time, this complicates the instrumentation, which must ensure trace116

soundness (def. 1), notwithstanding the inherent phenomena arising from the concurrent exe-117

cution of the SuS and monitors, e.g. trace event reordering and process crashes. Consequently,118

the second reason is that the overhead incurred to uphold this invariant—in addition to119

scaling the verification set-up as the SuS executes—is perceived as prohibitive when compared120

to inlining. This opinion is often reinforced when the viability of outline instrumentation is121

predicated on empirical criteria tied to monolithic, batch-style programs, that may not apply122

to reactive software (e.g. percentage slowdown); e.g. see [100, 117, 116, 47, 46, 124, 30, 101].123

This paper shows how instrumenting outline monitors under conditions 1 – 4 can be124

achieved using a decentralised approach that guarantees def. 1, and with overheads considered125

feasible for typical soft real-time reactive systems. Concretely, we:126

(i) recall the benefits of the actor model of computation [85, 9] for building reactive systems127

and argue how our model of processes and tracers readily maps to that setting, sec. 2;128

(ii) give a decentralised instrumentation algorithm for outline monitors, detailing how the129

reactive characteristics of the SuS can be preserved whilst ensuring def. 1, sec. 3;130

(iii) show the implementability of our algorithm in an actor language and systematically131

validate the correctness of its corresponding implementation w.r.t. def. 1 by exhaustively132

inducing interleaved executions for a selection of instrumented systems, sec. 4;133

(iv) back up the feasibility of the implemented algorithm via a comprehensive empirical134

study that uses various workload configurations surpassing the state of the art, showing135

that the induced overhead minimally impacts the reactive attributes of the SuS, sec. 5.136

CVIT 2016

23:4 Runtime Instrumentation for Reactive Components

R

SuS

P MP

Q MQ

(a) MQ fails, Q fails

P

R

Q p1r0 M{P ,Q,R}

SuS

κ{P ,Q,R}

p2

p3

q2q1

r1

...q0p0

(b) Bottleneck or SPOF at κ{P ,Q,R}

P

R

Q

p1p2

r0

M{P}

M{Q,R}

SuS

κ{P}

κ{Q,R}

p3

q2

r1

...p0

...q1q0

(c) κ{Q,R} fails, {Q,R} are unaffected

Figure 1 P,Q,R instrumented in inline (left), centralised (middle) and decentralised (right) modes

2 A computational model for reactive systems137

The actor model [85, 9] emerged as the paradigm to design and build reactive systems [33].138

Actors—the units of decomposition in this model—are abstractions of concurrent entities139

that share no mutable memory with other actors. Instead, actors interact through asyn-140

chronous message passing and alter their internal state based on the messages they consume.141

Asynchronous communication decouples actors spatially and temporally, which fully isolates142

system components and establishes the foundation for resiliency and elasticity [32, 97]. Each143

actor is equipped with an incoming message buffer called the mailbox, from which messages144

deposited by other actors can be selectively read. Besides sending and receiving messages,145

actors can spawn other actors. Actors in a system are addressable by their unique process146

identifier (PID), which they use to engage in directed, point-to-point communication. This147

idea of addressability is central to the actor model: it enables reasoning about decentralised148

computation, as the identity of components or messages can be propagated through a system149

and used in handling complex tasks, such as process registration and failure recovery [33]. As150

is often the case in decentralised computations, we assume that messages exchanged between151

pairs of processes are always received in the order in which they have been sent [43].152

Frameworks, notably Erlang [11], Elixir [91], Akka [1] for Scala [120], along with oth-153

ers [123, 139], instantiate the actor model. We adopt Erlang since its ecosystem is specifically154

engineered for highly-concurrent, soft real-time reactive systems [140, 12, 44]. The Erlang155

virtual machine (EVM) implements actors as lightweight processes. It employs per process156

garbage collection that, unlike the JVM, does not subject the virtual machine to global unpre-157

dictable pauses [89, 119]. This factor minimises the impact on the soft real-time properties of158

a system and is also crucial to the empirical evaluation of sec. 5 since it stabilises the variance159

in our experiments. The EVM exposes a flexible process tracing API aimed at reactive160

software [42]. Erlang provides other components, e.g. supervision trees, message queues, etc.,161

for building fault-tolerant distributed applications. While we scope our work to fault-free162

settings (see sec. 1), adopting Erlang gives us the foundation upon which our work can be163

naturally extended to address these aspects. Henceforth, we follow the established convention164

in Erlang literature and use the terms actor, process, and component synonymously.165

Aceto et al. 23:5

2.1 Process tracing and trace partitioning166

Processes in a concurrent system form a tree, starting at the root process that spawns child167

processes, and so forth1. Concurrency induces inherent partitions to the execution of the168

SuS in the form of isolated traces that reflect the local behaviour at each process [17]. RIARC169

exploits this aspect to attain several benefits. First, one can selectively specify the SuS170

processes to be instrumented. The upshot is that fewer trace events need to be gathered,171

improving efficiency. Another benefit of partitioned traces is that each process can be172

dynamically instrumented, free from assumptions about the number of processes the SuS is173

expected to have. This makes the RV set-up elastic. Lastly, the instrumentation set-up can174

partially fail, as faulty SuS or monitor processes do not imperil the execution of one another.175

▶ Example 2 (Trace partitions). Trace partitions enable RIARC to instrument a system in176

various arrangements. Fig. 2a depicts an interaction sequence for the execution of the SuS177

from sec. 1. In this interaction, the root process, P , spawns Q and communicates with it,178

at which point Q spawns process R; P and Q eventually terminate. We denote the process179

spawning and termination trace events by and , and use ! and ? for send and receive180

events respectively. The sound trace partitions for the processes in fig. 2a are ‘ P .!P . P ’ for181

P , ‘?Q . Q . Q’ for Q, and the empty trace for R. ◀182

A centralised set-up such as that of fig. 1b can be obtained by instrumenting {P ,Q,R}183

with one monitor, M{P ,Q,R}, whereas instrumenting the components {P} and {Q,R} with184

monitors M{P} and M{Q,R} gives the decentralised arrangement of fig. 1c. Each of these185

instrumentation arrangements generates different executions.186

▶ Example 3 (Sound traces). For the case of fig. 1b, RIARC can report to M{P ,Q,R} one187

of four possible traces ‘ P .!P . P .?Q . Q . Q’, ‘ P .!P .?Q . P . Q . Q’, ‘ P .!P .?Q . Q . P . Q’, or188

‘ P .!P .?Q . Q . Q . P ’. These sound traces result from the interleaved execution of processes189

P , Q. Any other trace, e.g. ‘ P . P .?Q . Q . Q’ or ‘ P .!P . P .?Q . Q . Q’, is unsound since it190

contradicts the local behaviour at processes P and Q of fig. 2a. The former trace omits the191

request !P that P makes to Q (it is incomplete w.r.t. P), and the latter trace inverts Q and192

Q, suggesting that Q spawns R after Q terminates (it is inconsistent w.r.t. Q). ◀193

▶ Example 4 (Separate instrumentation). Fig. 2b shows another decentralised set-up, where194

P , Q, and R are instrumented separately. In this case, the instrumentation should report to195

M{P}, M{Q} and M{R} the events observed locally at each process, as stated in ex. 2. ◀196

RIARC makes two assumptions about process tracing in order to support the instrument-197

ation arrangements shown in figs. 1b, 1c, and 2b:198

A1 Tracing processes sets. Tracing can gather events for sets of SuS processes, e.g. κ{P ,Q,R}199

in fig. 1b gathers the events of {P ,Q,R}, and κ{Q,R} in fig. 1c gathers the events of {Q,R}.200

A2 Tracing inheritance. Tracing gathers the events of a SuS process and the children it201

spawns by default to eliminate the risk that trace events from child processes are missed.202

We opt for tracing inheritance since it follows established centralised RV monitoring tools,203

including [16, 41, 50, 113]. In fact, tracing assumptions A1 and A2 mean that centralised204

set-ups like that of fig. 1b can be obtained just by tracing the root process P . Tracing205

inheritance requires the instrumentation to intervene if it needs to channel the events of a206

child process into a new trace partition that is independent from that of its parent, e.g. as in207

1 For example, using spawn() in Erlang [42] and Elixir [91], ActorContext.spawn() in Akka [1],
Actor.createActor() in Thespian [123], CreateProcess() in Windows [111], etc.

CVIT 2016

23:6 Runtime Instrumentation for Reactive Components

P

R

Q

spawn send exit

P

receive spawn exit

Q

P !P

?Q
Q

(a) Interaction flow of P , Q and R

P

R

Q

!PP

?QQ M{Q}

M{P}

M{R}

κ{P}

κ{Q}

κ{R}

Q

P

(b) Trace partitions of P , Q, and R

P !P M{Pb}

M{Pa}

M{Pc}

κ{P}

P P

P

P

(c) Event replicas to monitors

Figure 2 SuS with processes P , Q, and R instrumented with independent monitors

fig. 1c. In such cases, the instrumentation must first stop tracing the child process, allocate208

a fresh trace buffer, and resume tracing the child process. The out-of-sync execution of the209

SuS and instrumentation complicates the creation of these new trace partitions because it210

can lead to reordered or missed events. This, in turn, would violate trace soundness, def. 1.211

We supplement A1 and A2 with the following to keep our exposition in sec. 3 manageable:212

A3 Single-process tracing. Any SuS process can be traced at most once at any point in time.213

A4 Causally-ordered spawn events. Tracing gathers the spawn trace event of a parent process214

before all the events of the child process spawned by that parent, e.g. if P spawns Q,215

and Q receives, as in fig. 2a, the reported sequence is ‘ P .?Q’ rather than ‘?Q . P ’.216

The constraint of tracing assumption A3 is easily overcome by replicating trace events for217

a process and reporting them to different monitors (e.g. the events in the trace partition of218

process P are replicated to monitors M{Pa}, M{Pb}, M{Pc} in fig. 2c). Tracing assumption A4219

requires trace buffers to reorder events using the spawner and spawned process information220

carried by each event before reporting them to monitors. Sec. 3.3 gives more details.221

▶ Example 5 (Unsound traces). Fig. 3a shows one possible configuration that can be reached222

by our three-process system introduced in fig. 2a, where the trace buffer κ{P} contains the223

events for both P and Q. The trace in buffer κ{Q} is unsound, as it inaccurately characterises224

the local behaviour of process Q (the sound trace for Q should be ‘?Q . Q . Q’, not ‘ Q’). ◀225

RIARC programs trace buffers to coordinate with one another to ensure that sound traces226

are invariably reported to monitors. We refer to a trace buffer and the coordination logic227

it encapsulates as a tracer. RIARC employs an approach based on next-hop routing in IP228

networks [83, 107] to counteract the effects of trace event reordering and loss by rearranging229

and forwarding events to different tracers. Fig. 3b conveys our organisation of tracers (refer230

to fig. 10 in app. A for legend). Sec. 3 details how RIARC dynamically reorganises the tracer231

choreography and performs next-hop routing.232

2.2 Modelling decentralised instrumentation233

Since RV monitors are passive verdict-flagging machines (refer to sec. 1), they are orthogonal to234

our instrumentation. We, thus, focus our narrative on tracers and omit monitors, except when235

relevant in the surrounding context. The model assumes a set of SuS process, P,Q,R∈Prc,236

and tracer names, T ∈Trc, together with a countable set of PID values to reference processes.237

We distinguish between SuS and tracer PIDs, which we denote respectively by the sets,238

pS,qS ∈PidS and pT,qT ∈PidT. The variables ıS and ȷS, and ıT and ȷT range over PIDs from239

the corresponding sets PidS and PidT. We also assume the function signature sets, fS∈SigS,240

fT ∈SigT, and, fM ∈SigM, to denote SuS, tracer, and RV monitor functions, together with241

Aceto et al. 23:7

P

R

Q

!P?QQP

Q M{Q}

M{P}

M{R}

κ{P}

κ{Q}

κ{R}

P

(a) Buffer κ{Q} missing trace prefix ‘?Q . Q’

P

R

Q

T{P}

T{Q}

T{R}

M{P}

M{Q}

M{R}

P

Q

P

?Q

route(Q) detach(Q)

detach(R)

(b) Coordinating tracers T{P}, T{Q}, and T{R}

Figure 3 Choreographed tracers coordinating to ensure sound traces

the variables ςS, ςT, and ςM that range over each signature set. New SuS processes are created242

via the function spwn(ςS) that accepts the function signature ςS to be spawned, and returns243

a fresh PID, ıS. We overload spwn to spawn tracer signatures ςT equivalently, returning244

corresponding PIDs, ıT. The function self obtains the PID of the process invoking it. We245

write P as shorthand for a singleton process set {P} to simplify notation.246

RIARC uses three message types, τ ∈ {evt,dtc,rtd}. These determine when to create or247

terminate tracer processes, and what trace events to route between tracers:248

evt are trace events gathered via process tracing,249

dtc are detach requests that tracers exchange to reorganise the tracer choreography, and250

rtd are routing packets that transport evt or dtc messages forwarded between tracers.251

We encode messages m as tuples. Trace event messages, ⟨evt,ℓ,ıS ,ȷS ,ςS⟩, comprise the event252

label ℓ that ranges over the SuS events (spawn), (exit), ! (send), and ? (receive). The253

PID value ıS identifies the SuS process exhibiting the trace event, and is defined for all254

events. The SuS PID ȷS and function signature ςS depend on the type of the event. Tbl. 1a255

catalogues the values defined for each event. We write trace events in their shorthand form,256

omitting undefined values (denoted by ⊥), e.g. ⟨evt, ,ıS⟩ instead of ⟨evt, ,ıS ,⊥,⊥⟩.257

Detach request messages have the form ⟨dtc,ıT ,ıS⟩. A tracer with the PID ıT uses dtc to258

request that another tracer stop tracing the SuS PID ıS. Routing packet messages, ⟨rtd,ıT ,m⟩,259

Label ℓ Index Description (ıS and ȷS are SuS PIDs)

e.ıS Parent PID spawning new child PID ȷS

e.ȷS Child PID spawned by parent PID ıS

e.ςS Signature ςS spawned by parent PID ıS

e.ıS Terminated PID
e.ȷS,e.ςS Undefined for exit events

!
e.ıS Sending PID
e.ȷS Recipient PID
e.ςS Undefined for send events

?
e.ıS Recipient PID

e.ȷS,e.ςS Undefined for receive events

(a) Messages encoding spawn, exit, send, and receive events

Index Description

m.τ
Message type: event (evt)
detach (dtc), routing (rtd)

d.ıT
PID of tracer requesting
detach of SuS PID ıS

d.ıS
PID of SuS process to
stop tracing

r.ıT
PID of tracer that starts
routing message m

r.m
Embedded evt or dtc
message being routed

(b) Detach and routing messages

Table 1 Trace event (evt), detach request (dtc), and routing packet (rtd) message index names

CVIT 2016

23:8 Runtime Instrumentation for Reactive Components

Requirement Approach

R1 Growing the set-up Instrument tracers on-demand to create new trace partitions
R2 Ensuring complete traces Route trace events to deliver them to the correct tracer
R3 Ensuring consistent traces Prioritise routed trace events before others
R4 Isolating tracers Detach tracers from others once all trace events are routed
R5 Minimising overhead Target specific processes to instrument
R6 Shrinking the set-up Garbage collect redundant tracers and monitors

Table 2 RIARC approach to ensure trace soundness (def. 1) and reactive instrumentation (sec. 1)

move evt and dtc messages between tracers. The PID ıT identifies the tracer that embeds the260

message m into the routing packet and dispatches it to other tracers. Tbl. 1b summarises261

detach request and routing packet messages.262

We reserve the variables e, d, and r for the messages types evt, dtc, and rtd respectively.263

Our model uses the suggestive dot notation (.) to index message fields, e.g. m.τ reads the264

message type, e.ℓ reads the trace event label, etc. (see tbl. 1). For simplicity, we occasionally265

write the label ℓ in lieu of the full trace event form, e.g. we write instead of ⟨evt, ,ıS⟩.266

3 Decentralised instrumentation267

Our reason for encapsulating trace buffers and their coordination logic as tracers stems from268

the actor model. Trace buffers align with actor mailboxes, which localise the tracer state269

and enable tracers to run independently. The main logic replicated at each tracer is given in270

algs. 1 – 3. Tracers operate in two modes, direct (◦) and priority (•), to counteract the effects271

of trace event reordering. We organise our tracer logic in algs. 1 and 3 to reflect these modes,272

respectively. Algs. 1 and 3 use the function AnalyseEvt, tasked with analysing events; see273

app. C.5.2 for details. Auxiliary tracer logic referenced in this section is relegated to app. A.274

Every tracer maintains an internal state σ consisting of the following three maps:275

the routing map, Π, governing how events are routed to other tracers,276

the instrumentation map, Λ, that determines which SuS processes to instrument, and277

the traced-processes map, Γ, tracking the SuS process set that the tracer currently traces.278

Tbl. 2 summarises the challenges that RIARC needs to overcome to attain the reactive279

characteristics stated in sec. 1. Requirements R1 and R6 in tbl. 2 oblige the instrumentation280

to reorganise dynamically while the SuS executes to preserve its elasticity. Requirement R4281

offers a modicum of resiliency between the SuS and tracer processes, whereas R5 minimises282

the instrumentation overhead by gathering only the events monitors require. This keeps the283

overall set-up responsive. Since RIARC builds on the actor model, it fulfils the message-driven284

requirement intrinsically. Trace soundness is safeguarded by requirements R2 and R3.285

The operations Trace, Clear and Preempt give access to the tracing infrastructure.286

Trace(ıS,ıT) enables a tracer with PID ıT to register its interest in receiving trace events of a287

SuS process with PID ıS. This operation can be undone using Clear(ıS,ıT), which blocks the288

calling tracer ıT and returns once all the trace event messages for the SuS process ıS that are289

in transit to the tracer ıT have been delivered to ıT. It is worth remarking that this behaviour290

conforms to our proviso in sec. 1, i.e., no communication faults. Preempt(ıS,ıT) combines291

Clear and Trace. It enables the tracer pre-empting ıT to take control of tracing the SuS292

process ıS from another tracer ı′
T that is currently tracing ıS. Tracers use Clear or Preempt293

Aceto et al. 23:9

to modify the default process-tracing inheritance behaviour that tracing assumption A2294

describes. We refer to alg. 5 for the specifics of these operations.295

We focus our presentation in secs. 3.1 – 3.6 of how RIARC addresses the challenges listed in296

tbl. 2 on the set-up of fig. 2b, where the processes P , Q and R, are instrumented separately.297

This specific case highlights two aspects. First, it emphasises the complications that RIARC298

overcomes to establish the desired set-up while ensuring trace soundness, def. 1. Second,299

fig. 2b covers all other possible instrumentation set-ups. Disjoint sets of SuS processes,300

including the one shown in fig. 1c, can be obtained when tracers do not act on certain301

(spawn) events, as sec. 3.1 explains. Notably, any centralised set-up, e.g. the one in fig. 1b,302

emerges naturally when the root tracer disregards all events exhibited by the SuS.303

▶ Note 6 (Naming conventions). For clarity, we adopt the convention that a SuS process304

P is spawned from the signature fSP
and is assigned the PID pS. A tracer for P is named305

TP (short for T{P}) and has the PID pT. Other processes are treated likewise, e.g. the SuS306

process Q has signature fSQ
, PID qS, while the tracer TQ for Q has PID qT, etc. ◀307

3.1 Growing the set-up308

Fig. 4 illustrates how the hierarchical creation sequence of SuS processes described in sec. 2.1309

is exploited to instrument separate tracers. RIARC programs tracers to react to (spawn)310

events in the trace. In fig. 4a, the root tracer TP traces process P , step 1 . When P spawns311

process Q, Q automatically inherits TP (tracing assumption A2 from sec. 2.1). Steps 2 in312

fig. 4a emphasise that tracing inheritance is instantaneous. The event e = ⟨evt, ,pS ,qS ,fSQ
⟩313

is generated by P when it spawns its child Q, step 3 in fig. 4a. The PID values of the parent314

and child processes carried by e, namely pS and qS, are accessed via the indexes e.ıS and e.ȷS315

respectively (see tbl. 1a). Tracer TP uses this PID information to instrument a new tracer316

TQ for process Q in step 4 of fig. 4b. By invoking Preempt(qS,qT), TQ takes over tracing317

process Q from the former tracer TP going forward. TQ creates a new trace partition for318

process Q that is independent of the partition of P , step 5 . Meanwhile, TP receives the send319

event ⟨evt,!,pS ,qS⟩ in step 10 after P messages Q in step 6 of fig. 4c. Subsequent events320

that TP or TQ may gather are handled as described in steps 3 – 5 . Figs. 4c and 4d show321

P Q

TP

P 3

spawn 2

1 2

(a) P spawns Q; TP also traces Q, assumption A2

P Q

TP TQ

instr. 4

5

(b) TP instruments tracer TQ for process Q

P Q R

TP TQ

send 6

!P 10

receive 7

?Q 9 Q 11

spawn 8

8

(c) TP and TQ analyse trace events separately

P Q R

TP TQ TR

instr. 12

exit 14

Q 15
13

(d) P , Q, R and corresponding tracers

Figure 4 Growing the tracer instrumentation set-up for processes P , Q and R (monitors omitted)

CVIT 2016

23:10 Runtime Instrumentation for Reactive Components

P Q R

TP

send 4

receive 5

spawn 6

?Q 7 Q 9

!P 8
6

Trace buffer

κP P

10

?Q

11

!P Q

(a) Trace events for P , Q, and R received by TP

P Q R

TP TQ TR

instr. 11

?Q 15 Q 19

instr. 22

12 23

Trace buffers and routing maps

κP P

10

?Q

14

!P

17

Q

18

ΠP

PidS PidT

qS qT 13

rS qT 20

κQ ?Q

16

Q

21

ΠQ
PidS PidT

rS rT 24

(b) Trace events for Q routed from TP to TQ

Figure 5 Next-hop trace event routing using tracer routing maps Π (monitors omitted)

how the final tracer TR is instrumented in step 12 after Q spawns R in step 8 . As before,322

TQ traces R automatically in step 8 . TQ receives the event ⟨evt, ,qS ,rS ,fSR
⟩ generated by323

Q in step 11 . TR invokes Preempt(rS,rT) to create the trace partition for R in step 13 .324

3.2 Ensuring complete traces325

The asynchrony between the SuS and tracer processes can induce the interleaved execution326

shown in fig. 5, as an alternative execution to that shown in figs. 4b – 4d. In fig. 5a, TP is slow327

to handle P it receives in 3 of fig. 4a and fails to instrument TQ promptly. Consequently,328

the events ?Q and Q that Q exhibits are sent to TP in steps 7 and 9 of fig. 5a. Step 11329

shows the case where ⟨evt,?,qT⟩ is processed by TP , rather than by the intended tracer TQ330

that would have been instrumented by TP . This error breaches the completeness property of331

trace soundness w.r.t. Q, as the events ?Q and Q meant for Q reach the wrong tracer TP .332

To address this issue, RIARC uses a next-hop routing approach, where tracers retain333

the events they should handle and forward the rest to neighbouring tracers. We use the334

term dispatch tracer (dispatcher for short) to describe a tracer that receives trace events335

meant to be handled by another tracer. For instance, TP in fig. 5a becomes the dispatch336

tracer for Q when it receives the events ?Q and Q exhibited by Q, steps 7 and 9 . We337

expect these events to be handled by TQ once it is instrumented. Dispatchers are tasked338

with embedding trace event (evt) or detach requests (dtc) into routing packet messages (rtd)339

and transmitting them to the next known hop. In fig. 5b, TP dispatches the events ?Q and340

Q as follows. It first instruments TQ with Q in step 11 . Next, TP prepares ⟨evt,?,rS⟩ and341

⟨evt, ,qS ,rS ,fSR
⟩ for transmission by embedding each in rtd messages (steps 14 and 18).342

TP forwards the resulting routing packets, ⟨rtd,⟨evt,?,rS⟩⟩ and ⟨rtd,⟨evt, ,qS ,rS ,fSR
⟩⟩, to its343

next-hop neighbour TQ in steps 15 and 19 . The trace event ⟨evt,!,pS ,qS⟩, however, is not344

forwarded but handled by TP , as step 17 shows. Concurrently, TQ acts on the forwarded345

events ?Q and Q in steps 16 and 21 and instruments TR as a result, step 22 .346

Tracers determine the events to retain or forward using the routing map, Π:PidS ⇀PidT.347

Every tracer queries its private routing map for each message it receives on SuS PID m.ıS.348

A tracer forwards a message to its neighbouring tracer with PID ıT if a next-hop for that349

Aceto et al. 23:11

Algorithm 1 Logic handling ◦ trace events, detach request dispatching, and forwarding
1 def Loop◦(σ,ςM)
2 forever do
3 m← next message from trace buffer κ

4 match m.τ do
5 case evt : σ← HandlEvent◦(σ,ςM,m)
6 case dtc : σ←DispatchDtc(σ,ςM,m)
7 case rtd : σ←ForwdRtd◦(σ,ςM,m)

8 def HandlEvt◦(σ,ςM,e)
9 match e.ℓ do

10 case : return HandlSpwn◦(σ,ςM,e)
11 case : return HandlExit◦(σ,ςM,e)
12 case !,? : return HandlComm◦(σ,ςM,e)

13 def HandlSpwn◦(σ,ςM,e)
14 match σ.Π(e.ıS) do
15 case ⊥ : # No next-hop for e.ıS; handle e

16 AnalyseEvt(ςM,e) # App. C.5.2
17 σ← Instrument◦(σ,e,self())
18 case ȷT : # Next-hop for e.ıS exists via ȷT

19 Dispatch(e,ȷT)
Set next-hop of e.ȷS to tracer of e.ıS

20 σ.Π←σ.Π∪{⟨e.ȷS ,ȷT⟩}
21 return σ

22 def HandlExit◦(σ,ςM,e)
23 match σ.Π(e.ıS) do
24 case ⊥ : # No next-hop for e.ıS; handle e

25 AnalyseEvt(ςM,e) # App. C.5.2
26 σ.Γ←σ.Γ\{⟨e.ıS ,◦⟩}
27 TryGC(σ)
28 case ȷT : Dispatch(e,ȷT)
29 return σ

30 def HandlComm◦(σ,ςM,e)
31 match σ.Π(e.ıS) do
32 case⊥ : AnalyseEvt(ςM,e) # App. C.5.2
33 case ȷT : Dispatch(e,ȷT)
34 return σ

35 def DispatchDtc(σ,d)
36 match σ.Π(d.ıS) do
37 case ⊥ : fail dtc next-hop must be defined
38 case ȷT :
39 Dispatch(d,ȷT)

Next-hop for d.ıS no longer needed
40 σ.Π←σ.Π\{⟨d.ıS ,ȷT⟩}
41 TryGC(σ)
42 return σ

43 def ForwdRtd◦(σ,r)
44 m← r.m # Read embedded message in r

45 match m.τ do
46 case dtc : return ForwdDtc(σ,r)
47 case evt : return ForwdEvt(σ,r)

48 def ForwdDtc(σ,r)
49 d← r.m

50 match σ.Π(d.ıS) do
51 case ⊥ : fail dtc next-hop must be defined
52 case ȷT :
53 Forwd(r,ȷT)

Next-hop for d.ıS no longer needed
54 σ.Π←σ.Π\{⟨d.ıS ,ȷT⟩}
55 TryGC(σ)
56 return σ

57 def ForwdEvt(σ,r)
58 e← r.m

59 match σ.Π(e.ıS) do
60 case ⊥ : fail evt next-hop must be defined
61 case ȷT :
62 Forwd(r,ȷT)

For spawn events, tracer also sets a
new next-hop for e.ȷS

Next-hop of e.ȷS to same tracer of e.ıS

63 if (e.ℓ =)
64 σ.Π←σ.Π∪{⟨e.ȷS ,ȷT⟩}
65 return σ

message exists, i.e., Π(m.ıS) = ıT. When the next-hop is undefined, i.e., Π(m.ıS) =⊥, m is350

handled by the tracer. HandlSpwn, HandlExit and HandlComm in alg. 1 implement351

this forwarding logic on lines 14, 23 and 31.352

Dynamically populating the routing map is key to transmitting messages between tracers.353

A tracer adds the new mapping e.ȷS 7→ ȷT to its routing map Π in case 1 or 2 below whenever354

it processes spawn trace events e = ⟨evt, ,ıS ,ȷS ,ςS⟩. One of two cases is considered for e.ıS:355

1. Π(ıS) =⊥. The next-hop for e is undefined, which cues the tracer to instrument the SuS356

process with PID ȷS. When applicable, the tracer processes the event and instruments a357

separate tracer with PID ȷT. It then adds the mapping e.ȷS 7→ ȷT to Π. The tracer leaves358

Π unmodified and handles the event itself if a separate tracer is not required. Opting for359

a separate tracer is determined by the instrumentation map Λ, as discussed in sec. 3.5.360

CVIT 2016

23:12 Runtime Instrumentation for Reactive Components

Algorithm 2 Tracer instrumentation operations for direct (◦) and priority (•) modes
Expect: e = ⟨evt, ,ıS ,ȷS ,ςS⟩

1 def Instrument◦(σ,e,ıT)
2 if ((ςM←σ.Λ(e.ςS)) ̸=⊥)

New tracer ȷT for new SuS process e.ȷS

3 ȷT← spwn(Tracer(σ,ςM,e.ȷS,ıT))
4 σ.Π←σ.Π∪{⟨e.ȷS ,ȷT⟩}
5 else

In ◦ mode, this tracer has detached
all processes from its dispatcher ıT

This tracer traces new SuS process e.ȷS

by tracing inheritance assumption A2

6 σ.Γ←σ.Γ∪{⟨e.ȷS ,◦⟩}
7 return σ

Expect: e = ⟨evt, ,ıS ,ȷS ,ςS⟩
8 def Instrument•(σ,e,ıT)
9 if ((ςM←σ.Λ(e.ςS)) ̸=⊥)

New tracer ȷT for new SuS process e.ȷS

10 ȷT← spwn(Tracer(σ,ςM,e.ȷS,ıT))
11 σ.Π←σ.Π∪{⟨e.ȷS ,ȷT⟩}
12 else

In • mode, this tracer must detach
SuS process e.ȷS from its dispatcher ıT

13 Detach(e.ȷS,ıT)
This tracer traces new SuS process e.ȷS

14 σ.Γ←σ.Γ∪{⟨e.ȷS ,•⟩}
15 return σ

2. Π(ıS) = ȷT. The next-hop for e is defined, and the tracer forwards the event to the361

neighbouring tracer ȷT. The tracer also records a new next-hop by adding e.ȷS 7→ ȷT to Π.362

The addition of e.ȷS 7→ ȷT in cases 1 and 2 ensures that future events originating from ȷS can363

always be forwarded via a next-hop to a neighbouring tracer ȷT (see invariants on lines 37,364

51, and 60). Fig. 5b shows the routing maps of the tracers TP and TQ. TP adds qS 7→ qT in365

step 13 after processing ⟨evt, ,pS ,qS ,fSQ
⟩ from its trace buffer in 10 . TP then instruments366

Q with the tracer TQ in step 11 ; an instance of case 1. The function Instrument in alg. 2367

details this on line 4, where the mapping e.ȷS 7→ ȷT is added to Π following the creation of368

tracer ȷT, line 3. Step 20 of fig. 5b is an instance of case 2. Here, TP adds rS 7→ qT to ΠP369

after processing ⟨evt, ,qS ,rS ,fSR
⟩ for R in step 18 since ΠP (qS) = qT. Crucially, TP does not370

instrument a new tracer, but delegates the task to TQ by forwarding Q. Lines 20 and 64 in371

alg. 1 (and later line 24 in alg. 3) are manifestations of this, where the mapping e.ȷS 7→ ȷT is372

added after the event e is forwarded to the next-hop ȷT. TQ instruments the SuS process373

R in step 22 with TR, which has the PID rT. It then adds the mapping rS 7→ rT to ΠQ in374

step 24 , as no next-hop is defined for qS, i.e., ΠQ(qS) =⊥. Henceforth, any events exhibited375

by R and received at TP can be dispatched by the latter tracer through TQ to TR.376

We note that every tracer is only aware of its neighbouring tracers. This means messages377

may pass through multiple tracers before reaching their intended destination. Next-hop378

routing keeps the logic inside RIARC straightforward since tracers forward messages based379

solely on local information in their routing map. Such an approach makes the instrumentation380

set-up readily adaptable to dynamic changes in the SuS, is easier to scale, and has been381

shown to induce lower latency when compared to general routing strategies [83, 107]. The382

DAG of interconnected tracers induced by next-hop routing ensures that every message is383

eventually delivered to the correct tracer if a path exists or is handled by the tracer otherwise.384

Fig. 5b illustrates this concept, where the next-hop mappings inside ΠP point to TQ, and the385

mappings in ΠQ point to TR in turn. Consequently, any events that R exhibits and that TP386

receives are forwarded twice to reach the target tracer TR: from tracer TP to TQ, and from387

TQ to TR. RIARC relies on the operations Dispatch and Forwd to accomplish next-hop388

routing (see alg. 4 in app. A). Dispatch creates a routing packet ⟨ıS ,m⟩ and embeds the389

trace event or detach message m to be routed. Alg. 1 shows how routing packets are handled390

by tracers. For instance, ForwdEvt extracts the embedded message from the routing391

packet on line 58 and queries the routing map to determine the next-hop, line 59. If it does,392

the packet is forwarded, as Forwd(r,ȷT) on line 62 indicates. Crucially, the fail invariant393

on line 60 asserts that the next-hop for a routing packet is always defined. The cases for394

Aceto et al. 23:13

DispatchDtc and ForwdDtc in alg. 1 are analogous.395

3.3 Ensuring consistent traces396

Next-hop routing alone does not guarantee trace consistency, i.e., that the order of events in397

the trace reflects the one in which these occur locally at SuS processes, def. 1. Trace event398

reordering arises when a tracer gathers events of a SuS process (we call these direct events)399

and simultaneously receives routed events concerning said process from other tracers. Fig. 6a400

gives another interleaving to the one of fig. 5b to underscore the deleterious effect such a401

race condition provokes when events are reordered at TQ. In step 12 TQ takes over TP to402

continue tracing process Q. TQ collects the event Q in step 15 , which happens before TQ403

receives the routed event ?Q concerning Q in step 17 of fig. 6a. If TQ processes events from404

its trace buffer κQ in sequence, as in step 18 , it violates trace consistency w.r.t. Q (the405

correct trace should be ‘?Q . Q . Q’). Naïvely handling before ? erroneously reflects that Q406

receives messages after it terminates.407

RIARC tracers resolve this issue by prioritising the processing of routed trace events using408

selective message reception [42]. In doing so, tracers encode the invariant that ‘routed events409

temporally precede all others that are gathered directly by the tracer’. RIARC tracers operate410

in one of two modes, priority (•) and direct (◦), which adequately distinguishes past (i.e.,411

routed) and current (i.e., direct) events from the perspective of the tracer receiving them.412

Fig. 6b illustrates this concept. It shows that when in priority mode, TQ dequeues the413

routed events ?Q and Q labelled by • first. The event ?Q is handled in step 23 , whereas414

Q results in the instrumentation of tracer TR in step 25 of fig. 6b. Meanwhile, TQ can415

still receive events directly from Q while priority events are being handled. Yet, direct trace416

events from Q are considered only after TQ transitions to direct mode. Newly-instrumented417

tracers default to • mode to implement the described logic; see line 14 in alg. 4 of app. A.418

Loop• in alg. 3 shows the logic prioritising routed events, which are dequeued on line 3419

and handled on line 6. HandlSpwn, HandlExit, and HandlComm in Loop◦ and Loop•420

P Q R

TP TQ

instr. 11

?Q 17

exit 14

Q 15
12

Trace buffers and routing maps

κP P

10

?Q

16

!P Q

ΠP
PidS PidT

pS pT 13

κQ Q

18

?Q

ΠQ PidS PidT

(a) TQ receives event Q before TP dispatches ?Q

P Q R

TP TQ TR

instr. 11

dtc 13

exit 15

Q 16

?Q 18 Q 21

instr. 25

dtc 29

12 26

31

Trace buffers and routing maps

κP P

10

?Q

17

!P

19

Q

20

dtc

28

ΠP

PidS PidT

qS qT 14

rS qT 22

κQ Q

32

?Q

23

Q

24

dtc

30

ΠQ
PidS PidT

rS rT 27

(b) TQ processes events forwarded by TP first

Figure 6 Trace event reordering using priority (•) and direct (◦) tracer modes (monitors omitted)

CVIT 2016

23:14 Runtime Instrumentation for Reactive Components

Algorithm 3 Logic handling • trace events, detach request acknowledgements, and forwarding
1 def Loop•(σ,ςM)
2 forever do
3 r← next rtd message from trace buffer κ

4 m← r.m # Read embedded message in r

5 match m.τ do
6 case evt : σ← HandlEvt•(σ,ςM,r)
7 case dtc :

dtc ack relayed from dispatch tracer
8 σ←HandlDtc(σ,ςM,r)

9 def HandlEvt•(σ,ςM,r)
10 e← r.m

11 match e.ℓ do
12 case : return HandlSpwn•(σ,ςM,r)
13 case : return HandlExit•(σ,ςM,r)
14 case !,? : return HandlComm•(σ,ςM,r)

15 def HandlSpwn•(σ,ςM,r)
16 e← r.m

17 match σ.Π(e.ıS) do
18 case ⊥ : # No next-hop for e.ıS; handle e

19 AnalyseEvt(ςM,e) # App. C.5.2
20 ıT← r.ıT # Read PID of dispatch tracer
21 σ← Instrument•(σ,e,ıT)
22 case ȷT : # Next-hop for e.ıS exists via ȷT

23 Forwd(r,ȷT)
Set next-hop of e.ȷS to tracer of e.ıS

24 σ.Π←σ.Π∪{⟨e.ȷS ,ȷT⟩}
25 return σ

26 def HandlExit•(σ,ςM,r)
27 e← r.m

28 match σ.Π(e.ıS) do
29 case ⊥ : # No next-hop for e.ıS; handle e

30 AnalyseEvt(ςM,e) # App. C.5.2
31 σ.Γ←σ.Γ\{⟨e.ıS ,•⟩}
32 TryGC(σ)
33 case ȷT : Forwd(r,ȷT)
34 return σ

35 def HandlComm•(σ,ςM,r)
36 e← r.m

37 match σ.Π(e.ıS) do
38 case⊥ : AnalyseEvt(ςM,e) # App. C.5.2
39 case ȷT : Forwd(r,ȷT)
40 return σ

41 def HandlDtc(σ,ςM,r)
42 d← r.m

43 match σ.Π(d.ȷS) do
44 case ⊥ :
45 assert d.ıT = self() unexpected dtc ack
46 σ.Γ←

(
σ.Γ\{⟨d.ȷS ,•⟩}

)
∪{⟨d.ȷS ,◦⟩}

47 if ({⟨ıS ,γ⟩ | ⟨ıS ,γ⟩ ∈σ.Γ,γ = •}= ∅)
48 Loop◦(σ,ςM) # Put tracer in ◦ mode
49 case ȷT :
50 assert d.ıT ̸= self() dtc meant for ıT

51 Forwd(r,ȷT)
52 return σ

handle events differently. A tracer in direct mode performs one of three actions (see alg. 1):421

1. it analyses events for RV purposes via the function AnalyseEvt(ςM,e), e.g. line 32,422

2. it dispatches events that it directly gathers using Dispatch(e,ȷT), when events ought to423

be handled by other tracers, e.g. line 33, or424

3. it forwards routed events to the next-hop through Forwd(r,ȷT), e.g. line 62.425

Tracers in priority mode exclusively handle routed messages as points 1 and 3 describe, e.g.426

lines 38 and 39 in alg. 3. However, no event dispatching is performed.427

3.4 Isolating tracers428

A tracer in priority mode coordinates with the dispatch tracer of a particular SuS process429

it traces. This enables the tracer to determine when all of the events of that process have430

been routed to it by the dispatch tracer. The negotiation is effected using dtc, which the431

tracer sends to the relevant dispatch tracer. Each tracer records the set of processes it traces432

in the traced-processes map, Γ : PidS ⇀ {◦,•}. A SuS process mapping is added to Γ when a433

tracer starts gathering trace events for that process and removed once the process terminates.434

Lines 6 and 14 in alg. 2 add fresh mappings to Γ; lines 26 in alg. 1 and 31 in alg. 3 purge435

mappings from Γ. A tracer in priority mode must issue a dtc request for each process it436

tracks in Γ before it can transition to direct mode and start operating on the trace events it437

gathers directly. The detach request, d = ⟨dtc,ıT ,ıS⟩, contains the PIDs of the issuing tracer438

Aceto et al. 23:15

and the SuS process to be detached from the dispatch tracer. Once the tracer receives an439

acknowledgement to the dtc request for the SuS PID d.ıS from the dispatch tracer, it updates440

the corresponding entry d.ıS 7→ • in Γ, marking it as detached, d.ıS 7→ ◦. Alg. 3 shows this441

logic on line 46. A tracer transitions from priority to direct mode once all the processes in442

its Γ map are marked detached; line 47 in alg. 3 performs this check. Once in direct mode,443

tracers are isolated from others in the choreography.444

Fig. 6b depicts the tracer TQ in priority mode sending the detach request ⟨dtc,pT ,pS⟩445

for SuS PID Q to the dispatch tracer. This happens in step 13 , after TQ starts tracing Q446

directly in step 12 . Alg. 2 effects this transaction with the dispatch tracer by the operation447

Detach on line 13; see app. A for definition of Detach. The dtc request issued by TQ448

is deposited in the trace buffer of the dispatch tracer TP after the events ?Q and Q. TP449

processes the messages in its buffer sequentially in 10 , 17 , 19 , 20 and 28 , and forwards ?Q450

and Q to TQ, steps 18 and 21 . Crucially, TP acknowledges the dtc request issued by TQ:451

TP dispatches dtc back to tracer TQ, as step 29 indicates. TQ first handles the events ?Q and452

Q (tagged with • in fig. 6b) in steps 23 and 24 . Lastly, TQ handles dtc in 30 and marks453

process Q as detached from its dispatch tracer TP . The update on the traced-process map Γ454

is performed by HandlDtc on line 46 in alg. 3. Tracer TQ in fig. 6b transitions to direct455

mode in step 31 , when the only process Q that it traces is detached. TQ resumes handling456

Q in step 32 , which is consistent w.r.t. the events exhibited locally at Q, i.e., ‘?Q . Q . Q’.457

An acknowledgement to a detach request sent from a dispatch tracer, ⟨dtc,ıT ,ıS⟩, is458

generally propagated through multiple next-hops before it reaches the tracer with PID ıT459

issuing the request. Since a dtc request informs the dispatch tracer that ıT is gathering trace460

events for the SuS PID ıS directly, the next-hop entries in the routing maps of tracers on the461

DAG path from the dispatch tracer to ıT are stale. Each tracer on this DAG path purges462

the next-hop entry for the SuS PID ıS in Γ once it forwards dtc to the neighbouring tracer.463

DispatchDtc and ForwdDtc in alg. 1 perform this clean-up. Fig. 6b does not illustrate464

the latter clean-up flow, which we summarise next. After receiving dtc, the dispatch tracer465

TP removes from ΠP the next-hop mapping qS 7→ qT and calls DispatchDtc to acknowledge466

the detach request ⟨dtc,qT ,qS⟩ it receives from TQ. Similarly, TP removes rS 7→ qT once it467

acknowledges the detach request ⟨dtc,rT ,rS⟩ sent from TR. Once TQ receives the routing468

packet ⟨rtd,pT ,⟨dtc,rT ,rS⟩⟩ that embeds the detach acknowledgement TP sends, it removes469

the next-hop mapping rS 7→ rT from ΠQ. TQ then forwards this dtc acknowledgement to TR.470

RIARC ensures that all routing packets carrying dtc acknowledgements terminate at the471

tracers that issued these dtc requests. This requires one of two tracer conditions to hold:472

1. either the tracer cannot forward the dtc acknowledgement to a next-hop, meaning that473

the tracer sent the dtc request, or474

2. the tracer can forward the dtc acknowledgement via a next-hop, in which case the tracer475

did not issue the dtc request.476

Alg. 3 enforces this invariant on lines 44 and 45 for case 1, and on lines 49 and 50 for case 2.477

3.5 Minimising overhead478

Instrumenting specific processes—in contrast to fully instrumenting the SuS—reduces the479

volume of gathered trace events and helps lower the runtime overhead induced. RIARC uses480

the instrumentation map, Λ:SigS⇀SigM, to this end. Λ specifies the SuS function signatures481

to instrument and the corresponding RV monitor signatures tasked with the analysis via482

AnalyseEvt. RIARC utilises the signature e.ςS carried by spawn events e=⟨evt, ,ıS ,ȷS ,ςS⟩ to483

determine whether the SuS process spawning e.ςS requires a separate tracer. The Instrument484

operations in alg. 2 perform this check against Λ (lines 2 and 9). If a separate tracer is485

CVIT 2016

23:16 Runtime Instrumentation for Reactive Components

not required, e.ȷS is instrumented using the tracer of its parent process, e.ıS; see tracing486

assumptions A1 and A2. This logic caters for all the set-ups shown in figs. 1b, 1c, and 2b.487

3.6 Shrinking the set-up488

RIARC remains elastic by discarding unneeded tracers. Tracers in direct and priority mode489

purge SuS PID references from the traced-process map when handling trace events.490

HandlExit◦ and HandlExit• implement this logic in algs. 1 and 3 on lines 26 and 31.491

Tracer termination does not occur when the tracer has no processes left to trace, i.e., when492

Γ = ∅, since the tracer may be required to forward trace events to neighbouring tracers.493

Instead, tracers perform a garbage collection check each time a mapping from Γ or Π is494

removed. A tracer terminates when Γ = Π = ∅, indicating that it has no SuS processes left to495

trace or any next-hop forwarding to perform. TryGC used on lines 27, 41, and 55 in alg. 1,496

as well as on line 32 in alg. 3 encapsulates this check. Note that garbage collection never497

prematurely disrupts the RV analysis that tracers conduct, as invocations to AnalyseEvt498

always precede TryGC checks in our logic of algs. 1 and 3.499

4 Correctness validation500

We assess the validity of RIARC in two stages. First, we confirm its implementability by501

instantiating the core logic of algs. 1 – 3 to Erlang. Our implementation targets two RV502

scenarios: online and offline monitoring [65, 21]. Second, we subject the implementation503

to a series of systematic tests using a selection of instrumentation set-ups. These tests504

exhaustively emulate the interleaved execution of the SuS and tracer processes by generating505

all the valid permutations of events in a set of traces. This exercises the tracer choreography506

invariants mentioned in sec. 3, confirming the integrity of the tracer DAG topology under507

each interleaving. We also use specialised RV monitor signatures in AnalyseEvt to assert508

the soundness (def. 1) of trace event sequences analysed by tracers; see algs. 1 and 3 in sec. 3.509

4.1 Implementability510

Our implementation of RIARC maps the tracer processes from sec. 3 to Erlang actors2. The511

routing (Π), instrumentation (Λ), and traced-processes (Γ) maps constituting the tracer state512

σ are realised as Erlang maps for efficient access. Trace event buffers κ coincide with actor513

mailboxes, while the remaining logic in algs. 1 – 3 translates directly to Erlang code. This514

one-to-one mapping gives us confidence that our implementation reflects the algorithm logic.515

In online RV, monitors analyse trace events while the SuS executes, whereas the offline516

setting defers this analysis until the system terminates. Fig. 11 in app. B.1 captures the517

distinction in process tracing between online and offline instrumentation in our setting518

(showing trace buffers only). The online instrumentation set-up (fig. 11a) employs the519

tracing infrastructure offered by the EVM, which deposits SuS trace event messages in520

tracer mailboxes. Erlang tracing complies with tracing assumption A1, enabling RIARC to521

instrument disjoint SuS processes sets. We configure the EVM with the set_on_spawn flag522

so that spawned processes automatically inherit the same tracer as their parent [42]. This523

tracer assignment is atomic, meeting tracing assumption A2. We also use the procs, send,524

and receive tracing flags, which constrain the events emitted by the EVM to , , !, and .525

2 The artefact may be found at https://doi.org/10.5281/zenodo.10634182.

https://doi.org/10.5281/zenodo.10634182

Aceto et al. 23:17

The EVM enforces single-process tracing, i.e., tracing assumption A3, and guarantees that526

events of descendant processes are causally-ordered [137], i.e., tracing assumption A4.527

The offline counterpart differs only in its tracing layer, where events are read as recorded528

runs of the SuS. Recorded runs can be obtained externally, e.g. using DTrace [37] or529

LTTng [56], making it possible to monitor systems that execute outside of the EVM. Our530

bespoke offline tracing engine of fig. 11b fulfils tracing assumptions A1 – A4. This is crucial531

since it permits the same implementation of RIARC to be used in online and offline settings.532

Sec. 4.2 leverages this aspect to validate RIARC exhaustively using trace permutations.533

We develop two versions of the Trace, Clear, and Preempt functions of alg. 5 to534

standardise the tracing API for online and offline use. The overloads for online use give access535

to the EVM tracing via the Erlang built-in primitive trace [42]. The second set of overloads536

wraps around our offline tracing engine to replay files containing specifically-formatted trace537

events. Offline tracing relaxes tracing assumption A4, as recorded runs do not generally538

guarantee that the events of descendant SuS processes are causally ordered. Our offline539

tracing logic relies on the PID information carried by events to rearrange them causally540

and recover the causal ordering per tracing assumption A4. Trace(ıS,ıT) registers a tracer541

ıT with the offline tracing engine, which maintains an event buffer for ıT, together with a542

set of SuS PIDs that ıT traces. A tracer can use trace with multiple SuS PIDs to register543

to obtain events for a set of processes, i.e., tracing assumption A1. The tracing engine544

accumulates the events it reads from file in each tracer buffer and delivers events to the545

corresponding tracer mailbox once the casual ordering between events of descendant SuS546

processes is established. Our offline tracing engine implements tracing inheritance (tracing547

assumption A2) and enforces single-process tracing (tracing assumption A3). Ex. 7 in app. B.1548

sketches how the tracing engine uses its internal tracer buffers to deliver events to tracers.549

4.2 Correctness550

Conventional testing does not guarantee the absence of concurrency errors due to the different551

interleaved executions that may be possible [108]. While subjecting the system under test to552

high loads raises the likelyhood of obtaining more coverage, this still depends on external553

factors, such as scheduling, which dictate the executions induced in practice. Controlling554

the conditions for concurrency testing requires a systematic exploration of all the interleaved555

executions [77]. In fact, it is not the size of the testing load that matters, but the choice of556

interleaved executions that exhaust the space of possible system states [13]. Concuerror [48]557

is a tool for systematic Erlang code testing. Unfortunately, we could not use Concuerror to558

test our RIARC implementation, as we were unable to integrate it with Erlang tracing.559

We, nevertheless, adopt the systematic scheme advocated by Concuerror. Our approach560

uses the offline tracing tool described in sec. 4.1 to induce specific interleaved sequences for561

instrumentation set-ups, such as those of figs. 1b, 1c, and 2a. We obtain these sequences562

by taking all the sound (def. 1) event permutations of traces produced by the SuS. These563

sequences are then replayed by the offline tracing engine to systematically induce interleaving564

sequences in the SuS. Our final RIARC implementation embeds additional invariants besides565

the ones mentioned in sec. 3, e.g. the assert and fail statements in algs. 1 and 3. Readers are566

referred to app. B.2 for the full list. We ascertain trace soundness for each SuS interleaving567

that is emulated. This is accomplished via the function AnalyseEvt, which we preload568

with monitors that assert the event sequence expected at each tracer. We also use identical569

tests in our empirical evaluation of sec. 5 under high loads. It is worth mentioning that while570

we systematically drive the execution of the SuS, we do not control the execution of tracers.571

Yet, we indirectly induce various dynamic tracer arrangements in the monitor DAG topology572

CVIT 2016

23:18 Runtime Instrumentation for Reactive Components

under the different groupings of SuS process sets that tracers instrument. For example,573

we fully instrument system depicted in fig. 2a in all its configurations, e.g. C1 = [T{P}⇝574

{P},T{Q}⇝{Q},T{R}⇝{R}], C2 = [T{P ,Q}⇝{P ,Q},T{R}⇝{R}], . . . , C5 = [T{P ,Q,R}⇝{P ,Q,R}],575

as well as instrument it partially, e.g. C6 = [T{P}⇝{P}], C7 = [T{P ,Q}⇝{P ,Q}], etc. Each of576

these configurations, when individually paired with every fabricated interleaved execution of577

the SuS, indicate that our RIARC implementation and corresponding logic of sec. 3 is correct.578

5 Empirical evaluation579

We assess the feasibility of our RIARC implementation, confirming it safeguards the responsive,580

resilient, message-driven, and elastic attributes of the SuS. Sec. 4 targets a small selection of581

instrumentation set-ups to induce interleaved execution sequences and validate correctness582

exhaustively. We now employ stress testing [112] to investigate how RIARC performs in583

terms of the runtime overhead it exhibits. Our study focusses on online monitoring, as584

its overhead requirement is far more stringent than offline monitoring [64, 65, 21, 74]. We585

evaluate RIARC against inline instrumentation since the latter is regarded as the most efficient586

instrumentation technique [63, 62, 21]. This comparison establishes a solid basis for our587

results to be generalised reliably. We also compare RIARC to centralised instrumentation to588

confirm that the latter approach does not scale under typical loads.589

Our experiments are extensive. We use two hardware platforms to model edge-case590

scenarios based on limited hardware and general-case scenarios using commodity hardware.591

The evaluation subjects inline, centralised, and RIARC instrumentation to high loads that go592

beyond the state of the art and use realistic workload profiles. We gauge overhead under593

three performance metrics, the response time, memory consumption, and scheduler utilisation,594

which are crucial for reactive systems [7, 112]. Our results confirm that the overhead RIARC595

induces is adequate for applications such as soft real-time systems [42, 97], where the latency596

requirement is typically in the order of seconds [95]. We also show that RIARC yields overhead597

comparable to inlining in settings exhibiting moderate concurrency.598

5.1 Benchmarking tool599

Benchmarking is standard practice for gauging runtime overhead in software [103, 80, 36].600

Frameworks, including DaCapo [28] and Savina [87], offer limited concurrency, making them601

inapplicable to our case; see App. C.1 for detailed reasons. Industry-proven synthetic load602

testing benchmarking tools cater to reactive systems, e.g. Apache JMeter [70], Tsung [118],603

and Basho Bench [23]. Their general-purpose design, however, necessarily treats systems as604

a black box by gathering metrics externally, which may impact measurement precision [7].605

Moreover, these load testers generate standard workloads, e.g. Poisson processes [82, 105, 92],606

but lack others, e.g. load bursts, that replicate typical operation or induce edge-case stress.607

We adopt BenchCRV [7], another synthetic load tester specific to RV benchmarking for608

reactive systems. It sets itself apart from the tools above because it does not require external609

software (e.g., a web server) to drive tests. Instead, BenchCRV produces different models that610

closely emulate real-world software behaviour. These models are based on the master-worker611

paradigm [127]: a pervasive architecture in distributed (e.g. Big Data frameworks, render612

farms) and concurrent systems [138, 76, 55, 141]. Like Tsung and Basho Bench, BenchCRV613

exploits the lightweight EVM process model to generate highly-concurrent workloads.614

BenchCRV creates master-worker models and induces workloads derived from configurable615

parameters. In these models, the master process spawns a series of workers and allocates616

tasks. The volume of workers per benchmark run is set via the parameter n. Each worker617

Aceto et al. 23:19

task consists of a batch of requests that the worker receives, processes, and echoes back to618

the master process. The amount of requests batched in one task is given by the parameter619

w. Workers terminate when all of their allotted tasks are processed and acknowledged by620

the master. BenchCRV creates workers based on workload profiles. A profile dictates how621

the master spreads its creation of workers along the loading timeline, t, given in seconds.622

BenchCRV supports three workload profiles based on ones typical in practice (e.g. see fig. 13):623

Steady models the SuS under stable workload (Poisson process).624

Pulse models the SuS under gradually rising and falling workload (Normal distribution).625

Burst models the SuS under stress due to workload spikes (Log-normal distribution).626

The tool records three performance metrics to give a multi-faceted view of system overhead:627

Mean response time in milliseconds (ms), gauging monitoring latency effects on the SuS.628

Mean memory consumption in GB, gauging monitoring memory pressure on the SuS.629

Mean scheduler utilisation as a percentage of the total processing capacity, showing how630

monitors maximise the scheduler use.631

The prevalent use of the master-worker paradigm, the veracity with which BenchCRV models632

systems, the range of realistic workload profiles, and the choice of runtime metrics it gathers633

make this tool ideal for our experiments. Readers are referred to app. C.2 and [7] for details.634

5.2 Benchmark configuration635

The BenchCRV master-worker models we generate take the role of the SuS in our experiments.636

We consider edge-case and general-case hardware platform set-ups for the following reasons:637

PE Edge-case captures platforms with limited hardware. It uses an Intel Core i7 M620 64-bit638

CPU with 8GB of memory, running Ubuntu 18.04 LTS and Erlang/OTP 22.2.1.639

PG General-case captures platforms with commodity hardware. It uses an Intel Core i9640

9880H 64-bit CPU with 16GB of memory, running macOS 12.3.1 and Erlang/OTP 25.0.3.641

The EVMs on platforms PE and PG are set with 4 and 16 scheduling threads, respectively.642

These scheduler settings coincide with the processors available on each SMP [11] platform.643

We also use the PE and PG platforms with two concurrency scenarios for reactive systems:644

CH High concurrency scenarios perform short-lived tasks, e.g. web apps that fulfil thousands645

of HTTP client requests by fetching static content or executing back-end commands.646

CM Moderate concurrency scenarios engage in long-running, computationally-intensive tasks,647

e.g. Big Data stream processing frameworks.648

Our benchmark workloads match the hardware capacity afforded by PE and PG:649

High concurrency benchmarks on PE set n = 100k workers and w = 100 work requests650

per worker. These generate ≈ (n×w requests×w responses) = 20M message exchanges651

between the master and worker processes, totalling ≈ (20M× ! events×? events) = 40M652

analysable trace events. Platform PG sets n=500k workers batched with w=100 requests653

to produce ≈ 100M messages and ≈ 200M trace events. The high concurrency model CH654

is studied in sec. 5.4.655

Moderate concurrency benchmarks on PG set n = 5k workers and w = 10k work requests656

per worker. These settings yield roughly the same number of trace events as on PG with657

concurrency scenario CH. The moderate concurrency model CM is studied in sec. 5.5.658

All experiments in secs. 5.4 and 5.5 use a total loading time of t = 100s. Each experiment659

consists of ten benchmarks that apply Steady, Pulse, and Burst workloads. We repeat every660

experiment three times to obtain negligible variability and ensure the accuracy of our results;661

see app. C.4 for a summary of these workloads and app. C.5 for the precautions we take.662

CVIT 2016

23:20 Runtime Instrumentation for Reactive Components

The hardware, OS, and Erlang versions of platforms PE and PG, combined with the663

workloads of concurrency scenarios CH and CM provide generality to our conclusions.664

5.3 Instrumentation configuration665

One challenge in conducting our experiments is the lack of RV monitoring tools targeting666

the EVM. To the best of our knowledge [65, Tables 3 and 4], detectEr [75, 16, 17, 15, 73, 40]667

is the only RV tool for Erlang that implements centralised outline instrumentation3. We are668

unaware of inline RV tools besides [39] and [3, 4]. Since the former tool is unavailable, we669

use the latter, more recent work4. In our experiments, we instrument the master and each670

worker process in the SuS models generated from sec. 5.2 to exert the highest possible load671

and capture worst-case scenarios. BenchCRV annotates work requests and responses with a672

unique sequence number to account for each message in benchmark runs. We leverage this673

numbering to write specialised monitor replicas that ascertain the soundness of trace event674

sequences reported to every RV monitor linked with the master and workers; see app. C.5 for675

details. Equally crucial, this runtime checking introduces a degree of realistic RV analysis676

slowdown that is uniform across all monitors in the inline, centralised, and RIARC monitoring677

set-ups. We empirically estimate this slowdown at ≈ 5µs per analysed event.678

5.4 High concurrency benchmarks679

We study runtime overhead in the high concurrency scenario CH with two aims. First, we show680

the effect overhead has on the SuS as it executes. Specifically, we consider how the memory681

consumption and scheduler utilisation impact the latency a client of the SuS experiences, e.g.682

end-user or application. We use the edge-case platform PE for these experiments; analogous683

results obtained on PG are detailed in app. C. Our second goal targets the general-case684

platform PG to assess the scalability of the instrumentation methods through their optimal685

use of the additional memory and scheduler capacity afforded by PG.686

The charts in secs. 5.4.1 – 5.4.3 plot performance metrics, e.g. memory consumption687

(y-axis) against the number of concurrent worker processes or the execution duration (x-axis).688

Since inline instrumentation prevents us from delineating the SuS and monitoring-induced689

runtime overhead, we follow the standard RV literature practice and include the baseline690

plots, e.g. [17, 75, 46, 39, 102, 117, 115]. Baseline plots show the unmonitored SuS to compare691

the relative overhead between each evaluated instrumentation method.692

5.4.1 Instrumentation overhead693

The first set of experiments isolates the instrumentation overhead induced on the SuS: this694

is the aggregated cost of tracing and reporting the traces soundly per def. 1 to RV monitors.695

Crucially, these experiments omit monitors, as we want to quantify the instrumentation696

overhead and understand its impact on the SuS. This enables us to focus on the differences697

between inlining—regarded as the most efficient instrumentation method [63, 62, 21]—and698

outlining. As far as we know [65, 74], outlining has never been used for decentralised RV in a699

dynamic setting such as ours. While we confirm that inline instrumentation uses less memory700

and scheduler capacity, RIARC dynamically scales and economises their use without adverse701

impact on the latency. In fact, the latency induced by RIARC is a mere 519ms higher than702

3 https://bitbucket.org/duncanatt/detecter-lite
4 https://github.com/ScienceofComputerProgramming/SCICO-D-22-00294

https://bitbucket.org/duncanatt/detecter-lite
https://github.com/ScienceofComputerProgramming/SCICO-D-22-00294

Aceto et al. 23:21

that of inline instrumentation at the peak stress-inducing loading point of 3.7k workers/s703

under Burst workloads. Our experiments indicate that centralised instrumentation manages704

resources poorly due to its inability to scale, increasing the chances of failure; see sec. 5.4.2.705

Fig. 7 plots our results. Centralised instrumentation carries the largest overhead penalty.706

Regardless of the workload applied, it uses the most memory, ≈ 3.8GB, highlighting its707

ineptitude to scale. This stems from the backlog of trace event messages that accumulate in708

the mailbox of the central tracer and is a manifestation of two aspects. First, the central709

tracer does not consume events at the same rate worker processes produce them. Evidence710

of this bottleneck is visible as high scheduler utilisation in fig. 7 (bottom). This values settles711

at ≈ 36% for the benchmarks with ≈ 40k workers under the Steady workload and ≈ 60k712

workers under Pulse and Burst workloads. Interpreting these < 36% scheduler usage values713

in isolation may suggest that centralised instrumentation has the potential to scale. However,714

its memory consumption plots in fig. 7 (middle) contradict this erroneous hypothesis.715

By contrast, RIARC uses fewer resources to yield lower response times across the three716

workloads. The scheduler utilisation for RIARC slightly plateaus in the Steady (≈60k workers)717

and Pulse (≈ 70k workers) workload charts. This is not owed to scalability limitations of718

RIARC but to the intrinsic throttling instigated by the master process [127]. In fact, the719

plots for the baseline system and inline instrumentation in fig. 7 (middle) exhibit analogous720

signs of throttling. Even at a peak Burst workload of 3.7k workers/s, inline and RIARC721

instrumentation consume fairly similar amounts of memory, 1.7GB vs. 1.9GB, respectively.722

5.4.2 Monitoring overhead723

Our second set of experiments extends the results of sec. 5.4.1 and quantifies the cost of RV724

monitoring. The runtime monitoring overhead combines the instrumentation and slowdown725

due to the RV analysis, established at ≈ 5µs per event in sec. 5.3 for our experiments. Fig. 8726

plots the instrumentation (instr.) overhead from sec. 5.4.1 next to the runtime monitoring727

overhead (mon.). It shows that the RV analysis slowdown aggravates centralised monitoring728

to the point of crashing. Inline and RIARC monitoring are minimally affected. Our results729

also reveal that the instrumentation incurs the major overhead portion, not the RV analysis.730

Sec. 5.6 comments on this finding in the context of existing RV tools.731

Fig. 8 plots our results under the Steady and Burst workloads; fig. 14 in app. C.6.1 includes732

all three workloads. The charts for centralised monitoring exhibit a significant disparity733

between the instrumentation and runtime monitoring bar plots as the workload increases.734

This trend is consistent across both workloads in fig. 8. The lack of scalability of centralised735

monitoring in fig. 8 manifests as an increase in memory consumption but stabilised scheduler736

usage, as in fig. 7. Memory consumption and scheduler usage for centralised monitoring grow737

rapidly beyond ≈30k and ≈20k workers under the Steady and Burst workloads, respectively.738

Bottlenecks led our experiments to crash (shown as missing bar plots in fig. 8). Crashes739

occur at ≈ 70k workers under the Steady and at ≈ 80k under Burst workload. By analysing740

the resulting dumps, we could attribute these crashes to memory exhaustion, which caused741

the EVM to fail. The dumps indicate severe memory pressure due to the vast backlog of742

trace event messages in the mailbox of the central tracer.743

Inline and RIARC monitoring scale to accommodate the RV analysis slowdown. This744

is confirmed by cross-referencing the memory consumption and scheduler utilisation in745

fig. 8 for both monitoring methods. Each displays comparable overhead in their respective746

instrumentation and corresponding runtime monitoring bar plots. Fig. 8 (top) shows that747

inline and RIARC monitoring increase the latency, albeit for different reasons. The internal748

operation of RIARC enables us to deduce that its latency stems from message routing and749

CVIT 2016

23:22 Runtime Instrumentation for Reactive Components

0

250

500

750

1000

1250

1500

1750

T
im

e
(m

s)

Steady workload

Response

Pulse workload

Response

Burst workload

Response

2.0

2.5

3.0

3.5

C
on

su
m

pt
io

n
(G

B
)

Memory Memory Memory

20 40 60 80 100

Total workers (k)

15

20

25

30

35

U
ti

lis
at

io
n

(%
)

Scheduler

20 40 60 80 100

Total workers (k)

Scheduler

20 40 60 80 100

Total workers (k)

Scheduler

baseline inline RIARC centralised

Figure 7 Isolated instrumentation overhead (high workload, 100k workers)

dynamic tracer reconfiguration. Its scheduler utilisation plots support this observation. The750

latency due to inlining is a direct effect of RV analysis slowdown, provoked by the lock-step751

execution of monitors and the SuS. Other works, e.g. [46, 38], offer similar observations.752

Dissecting our results uncovers further subtleties. The optimal scheduler utilisation of753

RIARC implies that its monitors are only active when triggered by trace events but remain754

idle otherwise. This inference is supported by the absence of sudden or continued memory755

growth for RIARC in fig. 8 (middle). The instrumentation and runtime monitoring latency756

bar plots for inline monitoring exhibit a growing pairwise gap that starts at ≈ 80k workers757

in fig. 8 (top right). The respective gap for RIARC at this mark is perceptibly lower. We758

credit this lower latency gap to outlining, which absorbs the slowdown effect of RV analyses.759

This leads us to conjecture that RIARC could accommodate monitors that perform richer RV760

analyses with minimal impact on the SuS. Our calculations from fig. 8 (top right) put the761

latency at 1093ms for inline monitoring vs. 1547ms for RIARC at a peak Burst workload of762

3.7k workers/s: a 454ms difference, which is lower than the 519ms gap measured in sec. 5.4.1.763

Sec. 5.5 shows this gap is negligible in moderate concurrency scenarios.764

Aceto et al. 23:23

0

250

500

750

1000

1250

1500

1750

T
im

e
(m

s)

Steady workload

Response

Burst workload

Response

0.0

1.0

2.0

3.0

4.0

C
on

su
m

pt
io

n
(G

B
)

Memory Memory

20 40 60 80 100

Total workers (k)

0

5

10

15

20

25

30

35

U
ti

lis
at

io
n

(%
)

Scheduler

20 40 60 80 100

Total workers (k)

Scheduler

inline (instr.) inline (mon.) RIARC (instr.) RIARC (mon.) cent. (instr.) cent. (mon.)

Figure 8 Instrumentation and RV monitoring overhead gap (high workload, 100k workers)

5.4.3 Resource usage765

We employ platform PG with high concurrency CH to confirm that our observations about766

inline and RIARC monitoring transfer to general cases. Secs. 5.4.1 and 5.4.2 deem centralised767

monitoring to be impractical. We, thus, omit it from the sequel; see app. C.6.3 for results.768

Our experiments now use 16 scheduling threads, n = 500k workers, and w = 100 requests769

per worker, producing ≈100M messages and ≈200M trace events. Fig. 13 in app. C.4 render770

these Steady, Pulse, and Burst workload models. Secs. 5.4.1 and 5.4.2 bound the memory771

and scheduler metrics to the period the SuS executes to portray the actual overhead impact772

on the system. We refocus that view to assess the monitoring overhead in its entirety—from773

the point of SuS launch until monitors complete their RV analysis. Doing so reveals how774

inline and RIARC monitoring optimise the use of added memory and processing capacity.775

Results show that inline and RIARC monitoring are elastic and dynamically adapt to changes776

in the applied workloads. App. C.6.3 reconfirms that centralised monitoring lacks this trait.777

Fig. 9 gives a complete benchmark run under the Steady and Burst workloads. We relabel778

the x-axis with the benchmark duration and omit the response time plots since response time779

is inapplicable to these experiments (latency is an attribute of the SuS, not the monitors).780

CVIT 2016

23:24 Runtime Instrumentation for Reactive Components

In this run, the Steady workload generates a sustained load of ≈ 5k workers/s whereas Burst781

peaks at ≈ 17.8k workers/s under maximum load at ≈ 5s; see fig. 13 in app. C.4.782

Fig. 9 (top) illustrates the memory consumption patterns for inline and RIARC monitoring,783

which exhibit elasticity. This elastic behaviour occurs at different points in the plots. Inline784

monitoring peaks at ≈ 3.7GB at ≈ 72s and RIARC at ≈ 5.7GB at ≈ 100s under the Burst785

workload. The memory consumption for both methods stabilises at around ≈ 36s under the786

Steady workload, with ≈ 2.3GB for inline and ≈ 2.7GB for RIARC monitoring. Elasticity787

in these methods is due to different reasons: it is intrinsic to inline monitoring (see sec. 1),788

whereas the RIARC spawns and garbage collects monitors on demand (secs. 3.1 and 3.6).789

Fig. 16 in app. C.6.3 certifies these observations under the Pulse workload. Centralised790

monitoring is insensitive to the workload applied, as figs. 17 and 18 in app. C.6.3 reconfirm.791

The effect of dynamic message routing and tracer reconfiguration that RIARC performs is792

evident in the scheduler utilisation plots of fig. 9. Under the Steady and Burst workloads,793

scheduler utilisation oscillates continually due to the sustained influx of trace events. Oscil-794

lations corroborate our observation in sec. 5.4.2 about RIARC, namely, that monitors are795

activated by trace events but remain idle otherwise. Active monitor periods manifest as796

peaks in fig. 9. Idle periods, where monitors are placed in the EVM waiting queues, are797

reflected as regions with low and stable scheduler utilisation. These oscillations showcase the798

message-driven aspect of RIARC, which analyses events asynchronously. Inlining exhibits799

minimal scheduler utilisation oscillations due to its lock-step execution with the SuS.800

5.5 Moderate concurrency benchmarks801

Our last experiment studies moderate concurrency scenarios CM. The general-case plat-802

form PG sets n = 5k workers and w = 10k requests per worker, and uses 16 EVM schedulers.803

2.0

3.0

4.0

5.0

C
on

su
m

pt
io

n
(G

B
)

Steady workload

Memory

Burst workload

Memory

0 100 200 300 400 500

Execution duration (s)

0

10

20

30

40

50

U
ti

lis
at

io
n

(%
)

Scheduler

0 100 200 300 400 500

Execution duration (s)

Scheduler

baseline inline RIARC

Figure 9 Inline and RIARC monitoring resource usage (high workload, 500k workers)

Aceto et al. 23:25

We show that under these loads, RIARC induces overhead on par with inline monitoring.804

Moderate concurrency alters the execution of the master-worker model, compared to805

our benchmarks of secs. 5.4.1 – 5.4.3. In this set-up, the master creates most of its worker806

processes at the initial stage of benchmark runs and spends the remaining time allocating work807

requests. This change grows the request throughput markedly, e.g. see tbl. 5 in app. C.4. One808

consequence is that centralised monitoring consistently crashes under the rapid accumulation809

of messages in its mailbox. We, thus, limit our study to inline and RIARC monitoring.810

Tbl. 3 compares the results taken on platform PG from sec. 5.4.3 with 500k workers (high811

concurrency, CH) against the ones on PG with 5k workers (moderate concurrency, CM). The812

figures shown estimate the percentage overhead w.r.t. the baseline systems CH and CM at813

this maximum load. Our ensuing discussion is limited to the overhead under the Steady and814

Burst workloads since each respectively captures the SuS operation in typical and severe815

load conditions. Readers are referred to fig. 20 in app. C.6.4 for the overhead comparison816

given in absolute metric values for the entirety of benchmark runs.817

Tbl. 3 indicates that the memory consumption overhead due to inline monitoring is not818

affected under the Steady workload, which remains at 1% in both the high and moderate819

concurrency scenarios CH and CM. However, it decreases from 16% in CH to 1% in CM.820

We observe the opposite effect on the scheduler utilisation overhead for inline monitoring.821

For the moderate concurrency case CM, the scheduler overhead under the Steady and Burst822

workloads increases to 3% and 4% respectively.823

Tbl. 3 also shows that under the Steady workload, RIARC induces a 23% memory overhead824

in concurrency scenario CH vs. 8% in concurrency scenario CM, a decrease of 15%. Under825

the Burst workload, this overhead is reduced by 46%, from 56% in CH to 10% in CM.826

The scheduler utilisation overhead for RIARC from CH to CM also registers drops of ≈ 71%827

under both Steady and Burst workloads. We attribute these overhead improvements to the828

lower number of worker processes the master creates in the moderate concurrency set-up,829

CM. The long-running worker processes induce stability in the SuS. RIARC adapts to this830

change favourably by performing fewer trace event routing and tracer reconfigurations. The831

ramification of this adaptability is perceivable in the latency overhead discussed next.832

RIARC inflates the latency overhead from 95% in CH to 194% in CM under the Steady833

workload (+99%), and from 97% in CH to 190% in CM under the Burst workload (+93%).834

However, RIARC induces less latency overhead than inline monitoring. Tbl. 3 reveals that835

the latency overhead for inline monitoring grows from 4% in the high concurrency set-up CH836

to 246% in the moderate concurrency set-up CM under the Steady workload (+242%). It837

also grows under the Burst workload, from 55% in CH to 193% in CM (+138%). In fact, our838

calculations confirm that the absolute response time for inline monitoring is slightly worse839

than that of RIARC in CM: 116ms vs. 98ms under the Steady, and 182ms vs. 179ms under840

Concurrency Workload Response time % Memory consumption % Scheduler utilisation %

Inline RIARC Inline RIARC Inline RIARC

CH (500k)
Steady 4 95 1 23 0 123
Burst 55 97 16 56 0 123

CM (5k)
Steady 246 194 1 8 3 52
Burst 193 190 1 10 4 50

Table 3 Percentage overhead on CH (500k) and CM (5k) w.r.t. baseline at maximum workload

CVIT 2016

23:26 Runtime Instrumentation for Reactive Components

the Burst workloads respectively. This latency degradation for inline monitoring stems from841

the ≈5µs slowdown induced by the RV analysis, which results in frequent ‘pausing’ of worker842

processes. Monitors comprising richer analyses produce longer pauses in worker processes,843

which can degrade the response time further [46, 38, 72].844

5.6 Discussion845

The RIARC scheduler utilisation in tbl. 3 is higher than the reported values for inline846

monitoring. This should not be construed as an inefficiency. From a reactive systems847

perspective, growth in the scheduler utilisation indicates scalability, as the low memory848

consumption in tbl. 3 affirms. RIARC benefits from the ample schedulers to improve the849

overall system response time without overtaxing the system. Indeed, fig. 20 in app. C.6.4850

demonstrates that the mean absolute scheduler utilisation in the benchmarks of sec. 5.5 is851

just ≈ 10% under both the Steady and Burst workloads. Tbl. 3 shows that the reduction in852

latency makes RIARC comparable to inline monitoring in moderate concurrency scenarios.853

Sec. 1 names responsiveness as a key reactive systems attribute [97]. RIARC prioritises854

responsiveness by isolating its monitors into asynchronous concurrent units. This design855

naturally exploits the available processing capacity of the host platform by maximising856

monitor parallelism when possible. Inline monitoring reaps fewer benefits in identical settings857

because its lock-step execution with the SuS robs it of potential parallelism gains.858

Secs. 5.4.1 – 5.4.3 attest to the impracticality of centralised monitoring for reactive systems.859

Bottlenecks hinder its ability to scale, compelling it to consume inordinate amounts of memory,860

which can lead to failure, as sec. 5.4.2 shows. Despite these shortcomings, many RV tools in861

this setting use centralised monitoring, e.g. [50, 16, 133, 66, 84, 113, 75, 38, 41, 39, 2, 106].862

6 Conclusion863

Reactive software calls for instrumentation methods that uphold the responsive, resilient,864

message-driven, and elastic attributes of systems. This is attainable only if the instru-865

mentation exhibits these qualities. Runtime verification imposes another demand on the866

instrumentation: that the trace event sequences it reports to monitors are sound, i.e., traces867

do not omit events and preserve the ordering with which events occur locally at processes.868

This paper presents RIARC, a novel decentralised instrumentation algorithm for outline869

monitors meeting these two demands. RIARC uses outline monitors to decouple the runtime870

analysis from system components, which minimises latency and promotes responsiveness.871

Outline monitors can fail independently of the system and each other to improve resiliency.872

RIARC gathers events non-invasively via a tracing infrastructure, making it message-driven873

and suited to cases where inlining is inapplicable. The algorithm is elastic: it reacts to874

specific events in the trace to instrument and garbage collect monitors on demand.875

Our asynchronous setting complicates the instrumentation due to potential trace event876

loss or reordering. RIARC overcomes these challenges using a next-hop IP routing approach877

to rearrange and report events soundly to monitors. We validate RIARC by subjecting its878

corresponding Erlang implementation to rigorous systematic testing, confirming its correctness.879

This implementation is evaluated via extensive empirical experiments. These subject the880

implementation to large realistic workloads to ascertain its reactiveness. Our experiments881

show that RIARC optimises its memory and scheduler usage to maintain latency feasible for882

soft real-time applications. We also compare RIARC to inline and centralised monitoring,883

revealing that it induces comparable latency to inlining under moderate concurrency.884

Aceto et al. 23:27

Related work Works on inlining besides the ones cited in sec. 1, e.g. [81, 25, 50, 49, 53, 52],885

do not separate the instrumentation and runtime analysis. This is common in monolithic886

settings, where the instrumentation is often assumed to induce minimal runtime overhead.887

As a result, many inline approaches focus on the efficiency of the analysis but neglect the888

instrumentation cost (e.g. [64] attributes overhead solely to the analysis). Sec. 5.4.1 shows889

this is not the case. This line of reasoning for monolithic systems is often ported to concurrent890

settings. For instance, [110, 133, 29, 46, 132, 67, 19] propose efficient runtime monitoring891

algorithms but do not account for, nor quantify, the overhead due to gathering trace events.892

Tools, such as [41, 38, 17, 35, 75, 142], that quantify the runtime overhead coalesce the893

instrumentation and runtime analysis costs, making it difficult to gauge whether inefficiencies894

arise from one or the other. We are unaware of empirical studies such as ours that distinguish895

between the instrumentation and runtime analysis overhead.896

Sec. 5.6 remarks that centralised monitoring is used for concurrent runtime verification897

despite its evident limitations. One plausible reason for this is that the empirical scrutiny of898

such tools lacks proper benchmarking (e.g. [50, 16, 133, 66, 84]) or uses insufficient workloads899

that fail to expose the issues of centralised set-ups (e.g. [113, 75, 38, 41, 39, 2, 106]). Gathering900

inadequate metrics can also bias the interpretation of empirical data; see sec. 5.4.1. Works,901

such as [39, 17, 35, 131], consider the memory consumption and latency metrics. Our902

evaluation of inline, centralised, and RIARC monitoring uses (i) combinations of hardware903

and software, with (ii) two concurrency models that test edge-case and general-case scenarios,904

under (iii) high workloads that go beyond the state of the art, applying (iv) realistic workload905

profiles, interpreted against (v) relevant performance metrics that give a multi-faceted view906

of runtime overhead. To the best of our knowledge, this is generally not done in other studies,907

e.g. [117, 116, 47, 46, 124, 30, 109, 39, 41, 17, 50, 51, 53, 75, 60, 61, 27, 113, 100, 35].908

Outline instrumentation decouples the execution of the SuS and monitor components in909

space (i.e., isolated threads) and time (i.e., asynchronous messaging). The tracing infrastruc-910

ture outline instrumentation uses mirrors the publish-subscribe (Pub/Sub) pattern [138].911

In this set-up, consumers subscribe to a broker that advertises events. Centralised instru-912

mentation follows a Pub/Sub approach: the SuS produces trace events and deposits them913

into one global trace buffer that tracers receive from (see fig. 1b). Despite similarities, e.g.914

tracers register and deregister with the tracing infrastructure at runtime, RIARC differs from915

conventional Pub/Sub messaging in three fundamental aspects. Chiefly, Pub/Sub publishers916

are unaware of the subscribers interested in receiving messages because this bookkeeping917

task is appointed to the broker. By contrast, next-hop routing relies on the explicit address918

of recipients to forward messages. Furthermore, in Pub/Sub messaging, subscribers do919

not communicate with publishers, whereas RIARC tracers exchange direct detach requests920

between one another to reorganise the choreography (refer to sec. 3.4). Lastly, Pub/Sub921

brokers are typically predefined and remain fixed, while trace partitioning reconfigures the922

tracing topology, creating and destroying brokers in reaction to dynamic changes in SuS.923

One assumption we make about process tracing is A4, i.e., tracing gathers the spawn924

events of parent processes before all the events of child processes. While A4 induces a partial925

order over trace events, it is weaker than happened-before causality [98], as the events gathered926

from sets of child SuS processes need not be causally ordered. Demanding the latter condition927

would entail additional computation on the part of the tracing infrastructure and could928

increase runtime overhead. Maintaining minimal overhead is critical to our instrumentation929

because it preserves the responsiveness attribute of reactive systems. Tracing assumption A4930

and the RIARC logic detailed in sec. 3 guarantee trace soundness (def. 1), which suffices for931

RV monitoring. Since our work targets soft real-time systems [97, 95] scoped in a reliable932

CVIT 2016

23:28 Runtime Instrumentation for Reactive Components

messaging setting (see sec. 1), we do not tackle the problem of ensuring time-bounded933

causally-ordered message delivery [18] nor implement exactly-once delivery semantics [86].934

We will address these challenges in future extensions of this work.935

References936

1 Francisco Lopez-Sancho Abraham. Akka in Action. Manning, 2023.937

2 Luca Aceto, Antonis Achilleos, Elli Anastasiadi, and Adrian Francalanza. Monitoring Hyper-938

properties with Circuits. In FORTE, volume 13273 of LNCS, pages 1–10, 2022.939

3 Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Léo Exibard, Adrian Francalanza, and940

Anna Ingólfsdóttir. A Monitoring Tool for Linear-Time µHML. In COORDINATION, volume941

13271 of LNCS, pages 200–219, 2022.942

4 Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Léo Exibard, Adrian Francalanza,943

and Anna Ingólfsdóttir. A Monitoring Tool for Linear-time µhml. Sci. Comput. Program.,944

232:103031, 2024.945

5 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.946

Adventures in Monitorability: From Branching to Linear Time and Back Again. PACMPL,947

3:52:1–52:29, 2019.948

6 Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen.949

An Operational Guide to Monitorability with Applications to Regular Properties. Softw. Syst.950

Model., 20:335–361, 2021.951

7 Luca Aceto, Duncan Paul Attard, Adrian Francalanza, and Anna Ingólfsdóttir. On Bench-952

marking for Concurrent Runtime Verification. In FASE, volume 12649 of LNCS, pages 3–23,953

2021.954

8 Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiří Srba. Reactive Systems:955

Modelling, Specification and Verification. Cambridge University Press, 2007.956

9 Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A Foundation for Actor957

Computation. JFP, 7:1–72, 1997.958

10 Gene M. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale959

Computing Capabilities. In AFIPS Spring Joint Computing Conference, volume 30 of AFIPS960

Conference Proceedings, pages 483–485, 1967.961

11 Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf,962

2007.963

12 Joe Armstrong. Erlang. Commun. ACM, 53(9):68–75, 2010.964

13 Stavros Aronis. Effective Techniques for Stateless Model Checking. PhD thesis, Uppsala965

University, Sweden, 2018.966

14 Duncan Paul Attard, Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir,967

and Karoliina Lehtinen. Better Late than Never or: Verifying Asynchronous Components at968

Runtime. In FORTE, volume 12719 of LNCS, pages 207–225, 2021.969

15 Duncan Paul Attard, Ian Cassar, Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir.970

Introduction to Runtime Verification. In Behavioural Types: from Theory to Tools, Automation,971

Control and Robotics, pages 49–76. River, 2017.972

16 Duncan Paul Attard and Adrian Francalanza. A Monitoring Tool for a Branching-Time Logic.973

In RV, volume 10012 of LNCS, pages 473–481, 2016.974

17 Duncan Paul Attard and Adrian Francalanza. Trace Partitioning and Local Monitoring for975

Asynchronous Components. In SEFM, volume 10469 of LNCS, pages 219–235, 2017.976

18 Roberto Baldoni, Achour Mostéfaoui, and Michel Raynal. Causal Delivery of Messages with977

Real-Time Data in Unreliable Networks. Real Time Syst., 10(3):245–262, 1996.978

19 Howard Barringer, Yliès Falcone, Klaus Havelund, Giles Reger, and David E. Rydeheard.979

Quantified Event Automata: Towards Expressive and Efficient Runtime Monitors. In FM,980

volume 7436 of LNCS, pages 68–84, 2012.981

Aceto et al. 23:29

20 Ezio Bartocci, Yliès Falcone, Borzoo Bonakdarpour, Christian Colombo, Normann Decker,982

Klaus Havelund, Yogi Joshi, Felix Klaedtke, Reed Milewicz, Giles Reger, Grigore Rosu, Julien983

Signoles, Daniel Thoma, Eugen Zalinescu, and Yi Zhang. First International Competition984

on Runtime Verification: Rules, Benchmarks, Tools, and Final Results of CRV 2014. STTT,985

21:31–70, 2019.986

21 Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to Runtime987

Verification. In Lectures on Runtime Verification, volume 10457 of LNCS, pages 1–33. Springer,988

2018.989

22 Ezio Bartocci, Yliès Falcone, and Giles Reger. International Competition on Runtime Verifica-990

tion (CRV). In TACAS, volume 11429 of LNCS, pages 41–49, 2019.991

23 Basho. Bench, 2017. URL: https://github.com/basho/basho_bench.992

24 David A. Basin, Felix Klaedtke, and Eugen Zalinescu. Failure-Aware Runtime Verification of993

Distributed Systems. In FSTTCS, volume 45 of LIPIcs, pages 590–603, 2015.994

25 Andreas Bauer and Yliès Falcone. Decentralised LTL Monitoring. FMSD, 48:46–93, 2016.995

26 André Bento, Jaime Correia, Ricardo Filipe, Filipe Araújo, and Jorge Cardoso. Automated996

Analysis of Distributed Tracing: Challenges and Research Directions. J. Grid Comput., 19(1):9,997

2021.998

27 Shay Berkovich, Borzoo Bonakdarpour, and Sebastian Fischmeister. Runtime Verification999

with Minimal Intrusion through Parallelism. FMSD, 46:317–348, 2015.1000

28 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S. McKinley,1001

Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin1002

Hirzel, Antony L. Hosking, Maria Jump, Han Bok Lee, J. Eliot B. Moss, Aashish Phansalkar,1003

Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The1004

DaCapo Benchmarks: Java Benchmarking Development and Analysis. In OOPSLA, pages1005

169–190, 2006.1006

29 Eric Bodden. The Design and Implementation of Formal Monitoring Techniques. In OOPSLA1007

Companion, pages 939–940, 2007.1008

30 Eric Bodden, Laurie J. Hendren, Patrick Lam, Ondrej Lhoták, and Nomair A. Naeem.1009

Collaborative Runtime Verification with Tracematches. J. Log. Comput., 20:707–723, 2010.1010

31 Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum, David A. Rosenblueth, and1011

Corentin Travers. Decentralized Asynchronous Crash-Resilient Runtime Verification. In1012

CONCUR, volume 59 of LIPIcs, pages 16:1–16:15, 2016.1013

32 Jonas Bonér, Dave Farley, Roland Kuhn, and Martin Thompson. The Reactive Manifesto.1014

Technical report, 2014.1015

33 Jonas Bonér and Viktor Klang. Reactive Programming vs. Reactive Systems. Technical report,1016

Lightbend Inc., 2016.1017

34 Werner Buchholz. A Synthetic Job for Measuring System Performance. IBM Syst. J., 8:309–318,1018

1969.1019

35 Christian Bartolo Burlò, Adrian Francalanza, and Alceste Scalas. On the Monitorability of1020

Session Types, in Theory and Practice. In ECOOP, volume 194 of LIPIcs, pages 20:1–20:30,1021

2021.1022

36 Rajkumar Buyya, James Broberg, and Andrzej M. Goscinski. Cloud Computing: Principles1023

and Paradigms. Wiley-Blackwell, 2011.1024

37 Bryan Cantrill. Hidden in Plain Sight. ACM Queue, 4:26–36, 2006.1025

38 Ian Cassar and Adrian Francalanza. On Synchronous and Asynchronous Monitor Instru-1026

mentation for Actor-based Systems. In FOCLASA, volume 175 of EPTCS, pages 54–68,1027

2014.1028

39 Ian Cassar and Adrian Francalanza. On Implementing a Monitor-Oriented Programming1029

Framework for Actor Systems. In IFM, volume 9681 of LNCS, pages 176–192, 2016.1030

40 Ian Cassar, Adrian Francalanza, Duncan Paul Attard, Luca Aceto, and Anna Ingólfsdóttir.1031

A Suite of Monitoring Tools for Erlang. In RV-CuBES, volume 3 of Kalpa Publications in1032

Computing, pages 41–47, 2017.1033

CVIT 2016

https://github.com/basho/basho_bench

23:30 Runtime Instrumentation for Reactive Components

41 Ian Cassar, Adrian Francalanza, and Simon Said. Improving Runtime Overheads for detectEr.1034

In FESCA, volume 178 of EPTCS, pages 1–8, 2015.1035

42 Francesco Cesarini and Simon Thompson. Erlang Programming: A Concurrent Approach to1036

Software Development. O’Reilly Media, 2009.1037

43 Bernadette Charron-Bost, Friedemann Mattern, and Gerard Tel. Synchronous, Asynchronous,1038

and Causally Ordered Communication. Distributed Comput., 9(4):173–191, 1996.1039

44 Natalia Chechina, Kenneth MacKenzie, Simon J. Thompson, Phil Trinder, Olivier Boudeville,1040

Viktoria Fordós, Csaba Hoch, Amir Ghaffari, and Mario Moro Hernandez. Evaluating Scalable1041

Distributed Erlang for Scalability and Reliability. IEEE Trans. Parallel Distributed Syst.,1042

28(8):2244–2257, 2017.1043

45 Feng Chen and Grigore Rosu. Java-MOP: A Monitoring Oriented Programming Environment1044

for Java. In TACAS, volume 3440 of LNCS, pages 546–550, 2005.1045

46 Feng Chen and Grigore Rosu. Mop: An Efficient and Generic Runtime Verification Framework.1046

In OOPSLA, pages 569–588, 2007.1047

47 Feng Chen and Grigore Rosu. Parametric Trace Slicing and Monitoring. In TACAS, volume1048

5505 of LNCS, pages 246–261, 2009.1049

48 Maria Christakis, Alkis Gotovos, and Konstantinos Sagonas. Systematic Testing for Detecting1050

Concurrency Errors in Erlang Programs. In ICST, pages 154–163. IEEE Computer Society,1051

2013.1052

49 Christian Colombo and Yliès Falcone. Organising LTL Monitors over Distributed Systems1053

with a Global Clock. FMSD, 49:109–158, 2016.1054

50 Christian Colombo, Adrian Francalanza, and Rudolph Gatt. Elarva: A Monitoring Tool for1055

Erlang. In RV, volume 7186 of LNCS, pages 370–374, 2011.1056

51 Christian Colombo, Adrian Francalanza, Ruth Mizzi, and Gordon J. Pace. polyLarva: Runtime1057

Verification with Configurable Resource-Aware Monitoring Boundaries. In SEFM, volume1058

7504 of LNCS, pages 218–232, 2012.1059

52 Christian Colombo and Gordon J. Pace. Runtime Verification - A Hands-On Approach in1060

Java. Springer, 2022.1061

53 Christian Colombo, Gordon J. Pace, and Gerardo Schneider. LARVA — Safer Monitoring of1062

Real-Time Java Programs (Tool Paper). In SEFM, pages 33–37, 2009.1063

54 Markus Dahm. Byte Code Engineering with the BCEL API. Technical report, Java Informa-1064

tionstage 99, 2001.1065

55 Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large1066

Clusters. Commun. ACM, 51:107–113, 2008.1067

56 Mathieu Desnoyers and Michel Dagenais. The LTTng Tracer: A Low Impact Performance and1068

Behavior Monitor for GNU/Linux. Technical report, École Polytechnique de Montréal, 2006.1069

57 Jay L. Devore and Kenneth N. Berk. Modern Mathematical Statistics with Applications.1070

Springer, 2012.1071

58 Jean Dollimore, Tim Kindberg, and George Coulouris. Distributed Systems: Concepts and1072

Design. Addison-Wesley, 2005.1073

59 Eclipse/IBM. OpenJ9, 2021. URL: https://www.eclipse.org/openj9.1074

60 Antoine El-Hokayem and Yliès Falcone. Monitoring Decentralized Specifications. In ISSTA,1075

pages 125–135, 2017.1076

61 Antoine El-Hokayem and Yliès Falcone. On the Monitoring of Decentralized Specifications:1077

Semantics, Properties, Analysis, and Simulation. ACM Trans. Softw. Eng. Methodol., 29:1:1–1078

1:57, 2020.1079

62 Úlfar Erlingsson. The Inlined Reference Monitor Approach to Security Policy Enforcement.1080

PhD thesis, Cornell University, US, 2004.1081

63 Úlfar Erlingsson and Fred B. Schneider. SASI Enforcement of Security Policies: A Retrospective.1082

In NSPW, pages 87–95, 1999.1083

https://www.eclipse.org/openj9

Aceto et al. 23:31

64 Yliès Falcone, Klaus Havelund, and Giles Reger. A Tutorial on Runtime Verification. In1084

Engineering Dependable Software Systems, volume 34 of NATO Science for Peace and Security1085

Series, D: Information and Communication Security, pages 141–175. IOS Press, 2013.1086

65 Yliès Falcone, Srdan Krstic, Giles Reger, and Dmitriy Traytel. A Taxonomy for Classifying1087

Runtime Verification Tools. STTT, 23:255–284, 2021.1088

66 Yliès Falcone, Hosein Nazarpour, Saddek Bensalem, and Marius Bozga. Monitoring Distributed1089

Component-Based Systems. In FACS, volume 13077 of LNCS, pages 153–173, 2021.1090

67 Yliès Falcone, Hosein Nazarpour, Mohamad Jaber, Marius Bozga, and Saddek Bensalem.1091

Tracing Distributed Component-Based Systems, a Brief Overview. In RV, volume 11237 of1092

LNCS, pages 417–425, 2018.1093

68 Yliès Falcone, Dejan Nickovic, Giles Reger, and Daniel Thoma. Second International Com-1094

petition on Runtime Verification CRV 2015. In RV, volume 9333 of LNCS, pages 405–422,1095

2015.1096

69 Dror G. Feitelson. From Repeatability to Reproducibility and Corroboration. ACM SIGOPS1097

Oper. Syst. Rev., 49:3–11, 2015.1098

70 Apache Software Foundtation. JMeter, 2020. URL: https://jmeter.apache.org.1099

71 Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. On the Number of Opinions1100

Needed for Fault-Tolerant Run-Time Monitoring in Distributed Systems. In RV, volume 87341101

of LNCS, pages 92–107, 2014.1102

72 Adrian Francalanza. A Theory of Monitors. Inf. Comput., 281:104704, 2021.1103

73 Adrian Francalanza, Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Ian Cassar, Dario1104

Della Monica, and Anna Ingólfsdóttir. A Foundation for Runtime Monitoring. In RV, volume1105

10548 of LNCS, pages 8–29, 2017.1106

74 Adrian Francalanza, Jorge A. Pérez, and César Sánchez. Runtime Verification for Decentralised1107

and Distributed Systems. In Lectures on RV, volume 10457 of LNCS, pages 176–210. Springer,1108

2018.1109

75 Adrian Francalanza and Aldrin Seychell. Synthesising Correct Concurrent Runtime Monitors.1110

FMSD, 46:226–261, 2015.1111

76 Sukumar Ghosh. Distributed Systems: An Algorithmic Approach. CRC, 2014.1112

77 Patrice Godefroid. Model Checking for Programming Languages using Verisoft. In POPL,1113

pages 174–186. ACM Press, 1997.1114

78 Susanne Graf, Doron A. Peled, and Sophie Quinton. Monitoring Distributed Systems Using1115

Knowledge. In FORTE, volume 6722 of LNCS, pages 183–197, 2011.1116

79 Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: A Call Graph Execution1117

Profiler. In SIGPLAN Symposium on Compiler Construction, pages 120–126. ACM, 1982.1118

80 Jim Gray. The Benchmark Handbook for Database and Transaction Processing Systems.1119

Morgan Kaufmann, 1993.1120

81 Radu Grigore, Dino Distefano, Rasmus Lerchedahl Petersen, and Nikos Tzevelekos. Runtime1121

Verification Based on Register Automata. In TACAS, volume 7795 of LNCS, pages 260–276,1122

2013.1123

82 Duncan A. Grove and Paul D. Coddington. Analytical Models of Probability Distributions for1124

MPI Point-to-Point Communication Times on Distributed Memory Parallel Computers. In1125

ICA3PP, volume 3719 of LNCS, pages 406–415, 2005.1126

83 Eric A. Hall. Internet Core Protocols: The Definitive Guide. O’Reilly Media, 2000.1127

84 Klaus Havelund, Giles Reger, Daniel Thoma, and Eugen Zalinescu. Monitoring Events that1128

Carry Data. In Lectures on Runtime Verification, volume 10457 of LNCS, pages 61–102.1129

Springer, 2018.1130

85 Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. A Universal Modular ACTOR1131

Formalism for Artificial Intelligence. In IJCAI, pages 235–245, 1973.1132

86 Yongqiang Huang and Hector Garcia-Molina. Exactly-Once Semantics in a Replicated Mes-1133

saging System. In ICDE, pages 3–12. IEEE Computer Society, 2001.1134

CVIT 2016

https://jmeter.apache.org

23:32 Runtime Instrumentation for Reactive Components

87 Shams Mahmood Imam and Vivek Sarkar. Savina - An Actor Benchmark Suite: Enabling1135

Empirical Evaluation of Actor Libraries. In AGERE!@SPLASH, pages 67–80, 2014.1136

88 Justin Iurman, Frank Brockners, and Benoit Donnet. Towards Cross-Layer Telemetry. In1137

ANRW, pages 15–21. ACM, 2021.1138

89 Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection Handbook: The Art1139

of Automatic Memory Management. CRC, 2020.1140

90 Nicolai M. Josuttis. SOA in Practice: The Art of Distributed System Design: Theory in1141

Practice. O’Reilly Media, 2007.1142

91 Saša Jurić. Elixir in Action. Manning, 2019.1143

92 Bill Kayser. What is the expected distribution of website response times?, 2017. URL: https:1144

//blog.newrelic.com/engineering/expected-distributions-website-response-times.1145

93 Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.1146

Griswold. An Overview of AspectJ. In ECOOP, volume 2072 of LNCS, pages 327–353, 2001.1147

94 Moonzoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, and Oleg Sokolsky. Java-1148

MaC: A Run-Time Assurance Approach for Java Programs. FMSD, 24:129–155, 2004.1149

95 Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applications1150

(Real-Time Systems Series). Springer, 2011.1151

96 Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing: Principles, Algorithms,1152

and Systems. Cambridge University Press, 2011.1153

97 Roland Kuhn, Brian Hanafee, and Jamie Allen. Reactive Design Patterns. Manning, 2016.1154

98 Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Commun.1155

ACM, 21(7):558–565, 1978.1156

99 Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine Generals Problem.1157

ACM Trans. Program. Lang. Syst., 4:382–401, 1982.1158

100 Julien Lange and Nobuko Yoshida. Verifying Asynchronous Interactions via Communicating1159

Session Automata. In CAV, volume 11561 of LNCS, pages 97–117, 2019.1160

101 Paul Lavery and Takuo Watanabe. An Actor-Based Runtime Monitoring System for Web and1161

Desktop Applications. In SNPD, pages 385–390. IEEE Computer Society, 2017.1162

102 Philipp Lengauer, Verena Bitto, Hanspeter Mössenböck, and Markus Weninger. A Compre-1163

hensive Java Benchmark Study on Memory and Garbage Collection Behavior of DaCapo,1164

DaCapo Scala, and SPECjvm2008. In ICPE, pages 3–14, 2017.1165

103 Bryon C. Lewis and Albert E. Crews. The Evolution of Benchmarking as a Computer1166

Performance Evaluation Technique. MIS Q., 9:7–16, 1985.1167

104 Jay Ligatti, Lujo Bauer, and David Walker. Edit Automata: Enforcement Mechanisms for1168

Run-Time Security Policies. Int. J. Inf. Sec., 4:2–16, 2005.1169

105 Zhen Liu, Nicolas Niclausse, and César Jalpa-Villanueva. Traffic Model and Performance1170

Evaluation of Web Servers. Perform. Evaluation, 46:77–100, 2001.1171

106 Qingzhou Luo and Grigore Rosu. EnforceMOP: A Runtime Property Enforcement System for1172

Multithreaded Programs. In ISSTA, pages 156–166, 2013.1173

107 Deep Medhi and Karthik Ramasamy. Chapter 3 - routing protocols: Framework and principles.1174

In Network Routing (Second Edition), The Morgan Kaufmann Series in Networking, pages1175

64–113. Morgan Kaufmann, 2018.1176

108 Silvana M. Melo, Jeffrey C. Carver, Paulo S. L. Souza, and Simone R. S. Souza. Empirical1177

Research on Concurrent Software Testing: A Systematic Mapping Study. Inf. Softw. Technol.,1178

105:226–251, 2019.1179

109 Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore Rosu. An1180

Overview of the MOP Runtime Verification Framework. STTT, 14:249–289, 2012.1181

110 Patrick O’Neil Meredith and Grigore Rosu. Efficient Parametric Runtime Verification with1182

Deterministic String Rewriting. In ASE, pages 70–80, 2013.1183

111 Microsoft. MSDN, 2021. URL: https://msdn.microsoft.com.1184

112 Ian Molyneaux. The Art of Application Performance Testing 2e. O’Reilly Media, 2014.1185

https://blog.newrelic.com/engineering/expected-distributions-website-response-times
https://blog.newrelic.com/engineering/expected-distributions-website-response-times
https://blog.newrelic.com/engineering/expected-distributions-website-response-times
https://msdn.microsoft.com

Aceto et al. 23:33

113 Menna Mostafa and Borzoo Bonakdarpour. Decentralized Runtime Verification of LTL1186

Specifications in Distributed Systems. In IPDPS, pages 494–503, 2015.1187

114 Nicholas Nethercote and Julian Seward. Valgrind: A Framework for Heavyweight Dynamic1188

Binary Instrumentation. In PLDI, pages 89–100. ACM, 2007.1189

115 Rumyana Neykova. Multiparty Session Types for Dynamic Verification of Distributed Systems.1190

PhD thesis, Imperial College London, UK, 2017.1191

116 Rumyana Neykova and Nobuko Yoshida. Let it Recover: Multiparty Protocol-Induced Recovery.1192

In CC, pages 98–108, 2017.1193

117 Rumyana Neykova and Nobuko Yoshida. Multiparty Session Actors. LMCS, 13, 2017.1194

118 Nicolas Niclausse. Tsung, 2017. URL: http://tsung.erlang-projects.org.1195

119 Scott Oaks. Java Performance: In-Depth Advice for Tuning and Programming Java 8, 11,1196

and Beyond. CRC, 2020.1197

120 Martin Odersky, Lex Spoon, Bill Venners, and Frank Sommers. Programming in Scala. Artima1198

Inc., 2021.1199

121 Athanansios Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw Hill,1200

1991.1201

122 Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tuma, Martin1202

Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and1203

Walter Binder. Renaissance: Benchmarking Suite for Parallel Applications on the JVM. In1204

PLDI, pages 31–47, 2019.1205

123 Kevin Quick. Thespian, 2020. URL: https://thespianpy.com/doc.1206

124 Giles Reger, Helena Cuenca Cruz, and David E. Rydeheard. MarQ: Monitoring at Runtime1207

with QEA. In TACAS, volume 9035 of LNCS, pages 596–610, 2015.1208

125 Giles Reger, Sylvain Hallé, and Yliès Falcone. Third International Competition on Runtime1209

Verification - CRV 2016. In RV, volume 10012 of LNCS, pages 21–37, 2016.1210

126 Giles Reger and David E. Rydeheard. From First-Order Temporal Logic to Parametric Trace1211

Slicing. In RV, volume 9333 of LNCS, pages 216–232, 2015.1212

127 Sartaj Sahni and George L. Vairaktarakis. The Master-Slave Paradigm in Parallel Computer1213

and Industrial Settings. J. Glob. Optim., 9:357–377, 1996.1214

128 Raja R. Sambasivan, Ilari Shafer, Jonathan Mace, Benjamin H. Sigelman, Rodrigo Fonseca,1215

and Gregory R. Ganger. Principled Workflow-Centric Tracing of Distributed Systems. In1216

SoCC, pages 401–414. ACM, 2016.1217

129 Torben Scheffel and Malte Schmitz. Three-Valued Asynchronous Distributed Runtime Verific-1218

ation. In MEMOCODE, pages 52–61, 2014.1219

130 Fred B. Schneider. Enforceable Security Policies. ACM Trans. Inf. Syst. Secur., 3:30–50, 2000.1220

131 Joshua Schneider, David A. Basin, Frederik Brix, Srdan Krstic, and Dmitriy Traytel. Scalable1221

Online First-Order Monitoring. Int. J. Softw. Tools Technol. Transf., 23:185–208, 2021.1222

132 Koushik Sen, Grigore Rosu, and Gul Agha. Runtime Safety Analysis of Multithreaded1223

Programs. In ESEC / SIGSOFT FSE, pages 337–346, 2003.1224

133 Koushik Sen, Grigore Rosu, and Gul Agha. Online Efficient Predictive Safety Analysis of1225

Multithreaded Programs. Int. J. Softw. Tools Technol. Transf., 8:248–260, 2006.1226

134 Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu. Efficient Decentralized Monitoring1227

of Safety in Distributed Systems. In ICSE, pages 418–427, 2004.1228

135 Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. DaCapo con Scala: design1229

and analysis of a Scala benchmark suite for the JVM. In OOPSLA, pages 657–676, 2011.1230

136 SPEC. SPECjvm2008, 2008. URL: https://www.spec.org/jvm2008.1231

137 Eric Stenman. The Erlang Runtime System. 2023.1232

138 Sasu Tarkoma. Overlay Networks: Toward Information Networking. Auerbach, 2010.1233

139 The Pony Team. Ponylang, 2021. URL: https://tutorial.ponylang.io.1234

140 Ulf T. Wiger, Gösta Ask, and Kent Boortz. World-Class Product Certification using Erlang.1235

ACM SIGPLAN Notices, 37(12):25–34, 2002.1236

CVIT 2016

http://tsung.erlang-projects.org
https://thespianpy.com/doc
https://www.spec.org/jvm2008
https://tutorial.ponylang.io

23:34 Runtime Instrumentation for Reactive Components

141 Jiali Yao, Zhigeng Pan, and Hongxin Zhang. A Distributed Render Farm System for Animation1237

Production. In ICEC, volume 5709 of LNCS, pages 264–269, 2009.1238

142 Teng Zhang, Greg Eakman, Insup Lee, and Oleg Sokolsky. Overhead-Aware Deployment of1239

Runtime Monitors. In RV, volume 11757 of LNCS, pages 375–381, 2019.1240

Aceto et al. 23:35

P
SuS
component

P
unmodifiable
SuS component

M
inlined
monitor

M
outlined
monitor

trace
buffer

p
buffered
event

failed
entity

affected
entity

trace
spawn

exit
message

Figure 10 Legend and notation for figures

A Appendix A: Auxiliary Instrumentation Logic1241

The operations Dispatch(m,ıT) and Forwd(r,ıT) given in alg. 4 enable tracers to perform1242

next-hop routing, as described in sec. 3. Dispatch embeds an evt or dtc acknowledgement1243

message m into a rtd packet, which is sent to the next-hop tracer with PID ıT. In the1244

packet, Dispatch also inserts the PID of the invoker tracer, obtained via the function self().1245

This is the PID of the dispatch tracer, and is used when a forwarded event results in1246

the instrumentation of a new SuS process (line 20 in alg. 3). Upon instrumenting the SuS1247

PID carried by , the tracer issues a dtc request to that dispatch tracer PID. The function1248

Detach(ıS,ıT) encapsulates the detachment logic. It signals the dispatch tracer with PID ıT1249

that the SuS PID ıS is being traced by the current tracer with PID ȷT = self(); see line 131250

in alg. 2 and line 13 in alg. 4. Before sending the dtc request, Detach uses Preempt so1251

that the current tracer ȷT takes over the tracing of SuS PID ıS. Forward(r,ıT) passes on1252

the specified rtd packet r to the next-hop, ıT. TryGC determines whether a tracer can be1253

safely terminated by confirming that the traced-processes and routing maps for a tracer are1254

both empty.1255

Alg. 4 also includes the function Tracer used by alg. 2 to spawn the core logic of algs. 11256

and 3 to execute in a separate tracer process. Tracer accepts four parameters:1257

1. σ, the state of the parent tracer,1258

2. ςM, the RV monitor signature utilised by the function AnalyseEvt in algs. 1 and 3 to1259

analyse trace events incrementally,1260

3. ıS, the PID of the SuS process to instrument, and1261

4. ıT, the PID of the dispatch tracer (from the rtd packet) to which the dtc request is issued.1262

The process tracing functions Trace, Clear and Preempt described in sec. 3 are listed1263

in alg. 5. Trace and Clear abstract the inner workings of the EVM tracing exposed via the1264

Algorithm 4 Operations used by the direct (◦) and priority (•) tracer loops
Expect: m = ⟨evt,ℓ,ıS ,ȷS ,ςS⟩∨m = ⟨dtc,ıT ,ıS⟩

1 def Dispatch(m,ıT)
2 ıT ! ⟨rtd,self(),m⟩

3 def Detach(ıS,ıT)
4 ȷT← self()
5 Preempt(ıS,ȷT) # This tracer takes over
6 ıT ! ⟨dtc,ȷT ,ıS⟩

Expect: r = ⟨rtd,ıT ,m⟩
7 def Forwd(r,ıT)
8 ıT ! r

9 def TryGC(σ)
10 if (σ.Γ = ∅∧σ.Π = ∅) Terminate tracer

11 def Tracer(σ,ςM,ıS,ıT)
New tracer state σ′ initialised with:
1. empty routing map, ∅
2. copy of instrumentation map, σ.Λ
3. traced-process map with first process
to trace, ıS

12 σ′←⟨Π←∅,σ.Λ,Γ←{⟨ıS ,•⟩}⟩
Issue dtc request for SuS PID ıS

to dispatch tracer ıT

13 Detach(ıS,ıT)

Start with empty trace buffer κ and in
• mode to prioritise forwarded messages

14 Loop•(σ′,ςM)

CVIT 2016

23:36 Runtime Instrumentation for Reactive Components

Algorithm 5 Abstraction of the operations offered by process tracing
1 def Trace(ıS,ıT)
2 if (ıS is not traced)
3 Set tracer for SuS PID ıS to ıT

Child processes of ıS, their children, etc.
inherit ıT, tracing assumption A2

4 while tracer of ıS is set do
Read details of next trace event of ıS

5 ℓ,ıS,ȷS,ςS← trace event exhibited by ıS

Encode details as message, see sec. 2.2
6 e = ⟨evt,ℓ,ıS ,ȷS ,ςS⟩
7 ıT ! e # Send event to trace buffer of ıT

8 end while

9 def Clear(ıS,ıT)
10 if (ıS is traced)
11 Clear tracer ıT from SuS PID ıS

Child processes of ıS, their children, etc.
still traced by ıT, tracing assumption A2

12 repeat
13 no-op
14 until events of ıS are delivered to ıT

15 def Preempt(ıS,ıT)
16 ı′

T← current tracer of SuS PID ıS

17 Clear(ıS,ı′
T) # Tracer ı′

T stops tracing ıS

18 Trace(ıS,ıT) # Tracer ıT starts tracing ıS

Erlang built-in primitive trace, and the underlying operation of our offline tracing engine1265

described in sec. 4.1 and app. B.1266

The function Start in alg. 6 launches the SuS and root tracer in tandem. Start accepts1267

the main SuS function signature ςS together with the instrumentation map, Λ. Copies of1268

this map (see line 12 in alg. 4) are propagated between tracers, enabling them to determine1269

whether a spawned SuS process requires instrumentation through a separate tracer. To1270

safeguard against the initial loss of trace events, the SuS is launched in a paused state (line1271

2). This permits the root tracer to start tracing the root system process that runs ςS. Root1272

resumes the system (line 6), and begins its trace inspection in direct mode, as line 8 shows.1273

Algorithm 6 Launching root SuS and tracer processes
1 def Start(ςS,Λ)

Pausing allows root tracer to be set
up; no initial message loss

2 ıS← spwn(ςS) in paused mode
3 ıT← spwn(Root(ıS,Λ))

4 def Root(ıS,Λ)
5 Trace(ıS,self())
6 Resume root SuS process with PID ıS

7 σ←⟨Π←∅,Λ,Γ←{⟨ıS ,◦⟩}⟩
8 Loop◦(σ,⊥)

Aceto et al. 23:37

B Appendix B: Offline Tracing and Algorithm Invariants1274

RIARC can be extended with the event reordering scheme described when the underlying1275

tracing infrastructure does not guarantee tracing assumption A4. This can be done in Erlang1276

by peeking at the mailbox using the built-in primitive process_info. In principle, this1277

is inefficient if the mailbox contains many messages [42]. We, however, remark that in1278

practice, such inefficiency arises only in the extreme case where events are deposited into1279

a tracer mailbox in exactly the reverse order in which descendant processes are spawned.1280

Alternatively, one can use an auxiliary trace buffer (e.g. a list) that is populated by dequeuing1281

the tracer mailbox first. Both amendments can be made on lines 3 of algs. 1 and 3.1282

B.1 Offline Tracing1283

Ex. 7 sketches below how our offline tracing engine operates. Internally, it uses tracer buffers1284

and sets of processes to rearrange process events for descendant SuS processes. The tracing1285

engine rearranges events using the PID information they carry. In doing so, it recovers the1286

happens-before causality between each event. Concurrent events for sibling processes,1287

such as when process P spawns Q and R, are not reordered.1288

▶ Example 7 (Reordering spawn events). Suppose the tracer TP with PID pT registers to1289

trace the SuS process P with PID pS. P spawns process Q, which, in turn, spawns R, as in1290

fig. 5a. TP invokes Trace(pS,pT), which registers its PID pT with the tracing engine. The1291

tracing engine assigns the empty trace buffer B and set S = {pS} to pT.1292

Scan 1. When the event e1 = ⟨evt,?,qS⟩ is read into B, the engine does not deliver it to1293

pT. The occurs because none of the SuS PID values in S match the value of the1294

originator PID in the ?Q event, i.e., e1.ıS = qS /∈{pS}.1295

Scan 2. Event e2 = ⟨evt, ,qS ,rS ,fSR
⟩ is read next into the buffer. A scan is performed but1296

no action is taken, as e2.ıS = qS /∈{pS}. B now contains ‘?Q . Q’.1297

Scan 3. Events e3 = ⟨evt, ,pS ,qS ,fSQ
⟩ and e4 = ⟨evt,!,pS ,qS⟩ are appended to B. The engine1298

scans B and dequeues ⟨evt, ,pS ,qS ,fSQ
⟩ since the value of the originator PID e3.ıS=pS1299

is contained in {pS}. This triggers the event P to be delivered to TP . Additionally,1300

the engine sets S = {pS,qS} per the inheritance tracing assumption A2 of sec. 2.1301

Scan 4. Updating S triggers another buffer scan to check whether any events require1302

dequeuing. The event ⟨evt,?,qS⟩ is dequeued and delivered to TP , since now,1303

e1.ıS = qS ∈ {pS,qS}. Similarly, ⟨evt, ,qS ,rS ,fSR
⟩ is dequeued and delivered to TP .1304

S is updated to {pS,qS,rS}. The engine continues scanning the buffer and dequeues1305

⟨evt,!,pS ,qS⟩, which it delivers to TP .1306

P

R

Q

EV
M

tr
ac

in
g P!P?QQ

Q

κP

κQ

κR

P

(a) Online EVM tracing and trace buffers

P

R

Q
Recorded

traces

Tr
ac

in
g

en
gi

ne P!P?QQ

Q

κP

κQ

κR

P

(b) Offline tracing engine and trace buffers

Figure 11 Online tracing via the EVM and offline tracing based on replayed trace files

CVIT 2016

23:38 Runtime Instrumentation for Reactive Components

Scan 5. Since B is empty, the update in S does not trigger another buffer scan. The engine1307

pauses until new events are read into the buffer.1308

The input trace in the buffer ‘?Q . Q . P .!P ’ has been delivered to TP as ‘ P .?Q . Q .!P ′,1309

matching the one shown in fig. 5a. ◀1310

▶ Example 8 (Other interleaved executions). Other executions are possible. The input buffer1311

‘?Q . P . Q .!P ’ results in the same trace ‘ P .?Q . Q .!P ’ of fig. 5a reaching TP . ◀1312

We underscore that the input traces ‘?Q . Q . P .!P ’ and ?Q . P . Q .!P from exs. 7 and 81313

observe trace consistency of def. 1 w.r.t. P and Q. For instance, the input trace ‘ Q .?Q . P .!P ’1314

is inconsistent w.r.t. Q. Ex. 9 shows that our tracing engine preserves trace identity, i.e.,1315

a consistent trace with the correct causal ordering between events in descendant SuS1316

processes is not modified.1317

▶ Example 9 (Trace identity). For the same tracer set-up of ex. 7, i.e., TP initially tracing1318

P , the buffer ‘e1 = ⟨evt, ,pS ,qS ,fSQ
⟩.e2 = ⟨evt,?,qS⟩.e3 = ⟨evt,!,pS ,qS⟩.e4 = ⟨evt, ,qS ,rS ,fSR

⟩’,1319

and T = {pS}, our trace engine performs the following scans:1320

Scan 1. Event e1 = ⟨evt, ,pS ,qS ,fSQ
⟩ is read and delivered to TP since e1.ıS = pS ∈{pS}. T is1321

updated to {pS,qS}, by tracing assumption A2.1322

Scan 2. The update in T triggers the next scan. Event e2 = ⟨evt,?,qS⟩ is delivered to TP , as1323

e2.ıS = qS ∈ {pS,qS}. The events ⟨evt,!,pS ,qS⟩ and ⟨evt, ,qS ,rS ,fSR
⟩ follow, and T is1324

updated to {pS,qS,rS}.1325

Scan 3. B is empty and no buffer scan is performed.1326

The event sequence ‘ P .?Q .!P . Q’ in our initial buffer is delivered to TP unchanged. ◀1327

B.2 Algorithm Invariants1328

The invariants listed below ensure the correct handling of evt, dtc, rtd and messages by1329

tracers. Lines 37, 51, and 60 in alg. 1, and lines 45 and 50 in alg. 3 include the main invariants1330

below (respectively I17, I20, and I19 in alg. 1 and I22 in alg. 3). We elide the remaining1331

invariants from algs. 1 and 3 in favour of presentation conciseness. As is the case with the1332

invariants I17, I19, I20, and I22, our Erlang realisation of RIARC implements the elided ones1333

as assert and fail statements. These invariants reason about general properties the tracer1334

choreography should observe at all times. For instance, our invariants guarantee properties,1335

such as, ‘every trace event that is dispatched by the dispatch tracer eventually reaches the1336

intended tracer’, that ‘the monitor choreography grows dynamically’, and that ‘redundant1337

tracers are always garbage collected’. The invariants make use of three notions introduced in1338

the main paper, which we recall for the benefit of readers.1339

▶ Note 10 (Tracers and messages).1340

Dispatch tracer , sec. 3.2. A tracer that receives trace events meant to be handled by1341

another tracer,1342

Forwarded message, sec. 3.2. An evt or dtc message that is embedded in a rtd packet1343

dispatched by a dispatch tracer,1344

Direct trace event, sec. 3.3. An evt event that is not dispatched by a dispatched tracer1345

but gathered from a SuS process via tracing. ◀1346

We organise invariants into two categories: the first describes properties of the tracer1347

DAG topology, while the second focusses on tracer coordination and correct message delivery.1348

Aceto et al. 23:39

Tracer choreography invariants Ensure that a DAG topology between tracers is always1349

maintained by dynamic message routing.1350

I1 A tracer never terminates unless its routing (Π) and traced-processes (Γ) maps are empty.1351

I2 A tracer never adds a SuS PID that already exists in its traced-processes map Γ.1352

I3 A tracer never removes an inexistent SuS PID from its traced-processes map Γ.1353

I4 A tracer always acts on a event by adding the spawned SuS PID to its traced-processes1354

map Γ. Requires invariant I2 to hold.1355

I5 A tracer always acts on an event by removing the SuS PID from its traced-processes1356

map Γ. Requires invariant I3 to hold.1357

I6 A tracer never adds a next-hop that already exists in its routing map Π.1358

I7 A tracer never removes an inexistent next-hop from its routing map Π.1359

I8 A tracer always acts on a event by adding a next-hop for the spawned SuS PID to its1360

routing map Π. Requires invariant I6 to hold.1361

I9 A dispatch tracer that dispatches a event always adds a next-hop for the spawned SuS1362

PID to its routing map Π. Requires invariant I6 to hold.1363

I10 A tracer that forwards a event always adds a next-hop for the spawned SuS PID to its1364

routing map Π. Requires invariant I6 to hold.1365

I11 A dispatch tracer that dispatches a dtc acknowledgement always removes the corresponding1366

next-hop for the detached SuS PID from its routing map Π. Requires invariant I7 to1367

hold.1368

I12 A tracer that forwards a dtc acknowledgement always removes the corresponding next-hop1369

for the detached SuS PID from its routing map Π. Requires invariant I7 to hold.1370

Message routing invariants Ensure that trace events are reported soundly to monitors.1371

I13 A tracer never dispatches or forwards an evt or dtc message unless a route exists in its1372

routing map Π. Requires invariants I8 – I10 to hold.1373

I14 A tracer in • mode always prioritises rtd packets until it switches to ◦ mode.1374

I15 A tracer in • mode always transitions to ◦ mode only if all of the SuS PIDs in its1375

traced-processes map Γ are marked as ◦ or Γ is empty.1376

I16 The total amount of dtc requests a tracer issues is always equal to the sum of the number1377

of SuS PIDs in its traced-processes map Γ and the number of terminated SuS PIDs for1378

the tracer. Requires invariants I4 and I5 to hold.1379

I17 A tracer in ◦ mode always acts on a dtc request by dispatching it to the next-hop. Requires1380

invariants I11 and I13 to hold (see line 37 in alg. 1).1381

If dispatching is not possible, the dtc request is incorrectly issued.1382

I18 A tracer in ◦ mode always acts on a direct evt by analysing or dispatching it to the1383

next-hop. Requires invariant I13 to hold.1384

I19 A tracer in ◦ mode always acts on a dispatched evt by forwarding it to the next-hop.1385

Requires invariant I13 to hold (see line 60 in alg. 1).1386

Analysing a dispatched evt in ◦ mode means that the tracer dequeued a priority event,1387

violating invariant I14.1388

I20 A tracer in ◦ mode always acts on a dispatched dtc acknowledgement by forwarding it to1389

the next-hop. Requires invariants I12 and I13 to hold (see line 51 in alg. 1).1390

Handling a dispatched dtc acknowledgement in ◦ mode means that the tracer dequeued a1391

priority acknowledgement, violating invariant I14.1392

I21 A tracer in • mode always acts on a dispatched evt by analysing or forwarding it to the1393

next-hop. Requires invariant I13 to hold.1394

CVIT 2016

23:40 Runtime Instrumentation for Reactive Components

A tracer in • mode never dispatches events. Only tracers in ◦ mode can dispatch events,1395

which are always direct events. Dispatching in • mode means that the tracer dequeued a1396

non-priority event, violating invariant I14.1397

I22 A tracer in • mode always acts on a dispatched dtc acknowledgement by handling or1398

forwarding it to the next-hop. Requires invariants I12 and I13 to hold (see lines 45 and1399

50 in alg. 3).1400

A tracer in • mode never dispatches dtc acknowledgements. Only dispatch tracers in ◦1401

mode can dispatch dtc acknowledgements, which are always received from the tracers1402

wishing to detach a SuS PID from the dispatch tracer. Dispatching in • mode means1403

that the tracer dequeued a non-priority command, violating invariant I14.1404

Aceto et al. 23:41

C Appendix C: Empirical Evaluation1405

App. C.1 details why existing benchmarking tools adopted in monolithic RV are inapplicable1406

to our work. We use BenchCRV, which is tailored for setting up and building experiments1407

that target RV for reactive systems; see apps. C.2 and C.3. The message numbering scheme1408

BenchCRV employs in its master-worker models provides monitoring tools with a hook to1409

implement assertions about trace events. We rely on this feature to ensure trace soundness1410

in experiments. Our experiment set-up is summarised in app. C.4, along with a list of1411

precautions in app. C.5. App. C.6 concludes with results supporting our arguments and1412

conclusions in the main text.1413

C.1 Benchmarking1414

Benchmarking is a standard method of gauging runtime overhead in software [103, 80,1415

36]. Established benchmarks such as SPECjvm2008 [136], DaCapo [28], Renaissance [122]1416

ScalaBench [135]—developed for fine-tuning aspects of the JVM and actor libraries—are used1417

by the RV community to assess the applicability of monitoring, e.g. see [116, 47, 46, 124, 30,1418

109, 81]. These frameworks rely on third-party off-the-shelf (OTS) programs to broaden and1419

diversify benchmark coverage. Synthetic benchmarks, e.g. Savina [87], are an alternative way1420

to perform benchmarking [34] and offer benefits over their OTS program-based analogues.1421

For instance, parameters are used to induce variations in the core benchmark behaviour,1422

enabling them to reproduce and control the repeatability of experiments. Interested readers1423

are referred to [7] for a detailed account of the pros of synthetic benchmarking. All the1424

benchmarking tools cited are not built with concurrency in mind, e.g. cannot generate high1425

workloads that follow profiles typical in practice [7]. Along with synthetic benchmarking1426

tools by the RV community [20, 68, 125, 22], the former ones gather metrics specific to1427

monolithic batch-style programs (e.g. execution slowdown), which are orthogonal to reactive1428

systems. These reasons make these tools inapplicable to our setting.1429

C.2 BenchCRV workload parameters1430

BenchCRV generates workloads based on profiles observed in practice. A workload profile1431

dictates how the master spreads its creation of worker processes along the loading timeline,1432

specified by the parameter t in seconds (s). The volume of workers per run is set via the1433

parameter n. Every task the master allocates a worker consists of a batch of requests that1434

the worker receives and echoes back to the master. The number of requests batched in one1435

task is given by the parameter w. BenchCRV uses w to generate different batch sizes for each1436

worker to induce a modicum of variability in the master-worker models it generates. The1437

actual batch size is generated within the range w by drawing the number of work requests1438

from a normal distribution with mean µ = w and standard deviation σ = µ×0.02.1439

BenchCRV tool offers three load profiles.1440

Steady models scenarios where the SuS operates under stable conditions. The Steady1441

workload is modelled on homogeneous Poisson distribution with rate λ, which specifies1442

the mean number of workers created per second along the loading timeline with the1443

duration t = ⌈n/λ⌉.1444

Pulse models scenarios where the SuS experiences gradually rising and falling loads. The1445

Pulse workload is configured by the spread parameter η, which determines how slowly or1446

sharply the load increases as it nears its peak, halfway along t. Pulses are modelled on a1447

Normal distribution with µ = t/2 and σ = η.1448

CVIT 2016

23:42 Runtime Instrumentation for Reactive Components

Param Description

n Total number of worker
processes per experiment

w Total number of requests
per worker task

t Load timeline (inapplic-
able for Steady workload)

(a) Master-worker model parameters

Param Description

λ Steady workload rate
η Pulse workload spread
π Burst workload pinch

Pr(send) Probability master issues a work request
Pr(recv) Probability master dequeues a work response

(b) Workload and reactiveness parameters

Table 4 BenchCRV configurable parameters for generating master-worker models and workloads

Burst models scenarios where the SuS is stressed due to load spikes. The Burst workload is1449

configured by the pinch parameter π, which controls the concentration of the initial load1450

burst. Bursts are modelled on a Log-normal distribution with µ = ln(m2/
√

p2 +m2) and1451

σ =
√

ln(1+p2/m2).1452

Tbl. 4 summarises the parameters used to generate master-worker models (4a) and1453

workloads (4b). Fig. 13 shows examples of the Steady, Pulse, and Burst workloads for a1454

loading timeline of t = 100. These benchmarks are set with n = 500k workers and w = 1001455

work requests per batch. The Steady workload is configured with λ = 5k, Pulse with η = 25,1456

and Burst with π = 100.1457

Systems respond to load at different rates, e.g. due to the computational demand of tasks,1458

IO, etc. BenchCRV simulates such phenomena via the parameters Pr(send) and Pr(recv).1459

Pr(send) controls the probability that the master allocates requests to workers; Pr(recv)1460

determines the probability that work responses received by the master are dequeued and1461

acknowledged. Sending and receiving are turn-based and modelled on a Bernoulli trial [121].1462

The master picks a worker from its Work queue. It then draws a random number X from1463

a uniform distribution on the interval [0,1] and sends a work request when the Bernoulli1464

trial succeeds, i.e., X ≤Pr(send). The master decrements the work request counter for that1465

worker and keeps sending requests to the same worker by drawing the next X until the1466

Bernoulli trial fails, i.e., X > Pr(send), or the request counter reaches 0. If a Bernoulli trial1467

fails on the first request-sending attempt, the worker misses its turn, and the next worker1468

in the Work queue is picked. The master dequeues work responses it receives from workers1469

using the scheme described. It repeatedly dequeues one response per successful Bernoulli1470

trial, i.e., X≤Pr(recv), until the trial fails or the Receive queue is empty. The master signals1471

workers to terminate once it acknowledges their work responses.1472

The developers of BenchCRV establish that adjusting Pr(send) = Pr(recv) = 0.9 yields1473

SuS models that emulate realistic web-server response times. We use these recommended1474

values in our experiments of sec. 5. Readers are referred to [7] for details.1475

C.3 BenchCRV messaging model1476

The master-worker models that BenchCRV generates use a simple protocol to track the work1477

requests allotted to different workers. Workers are initialised with IDs, which we denote by1478

the placeholder Id, which enable the master to track the progress of tasks assigned. Each1479

worker task comprises a sequence of work requests, NumReqs. The value of NumReqs for all1480

workers is initially set to the value of the batch parameter w; see tbl. 4a. Work requests1481

Aceto et al. 23:43

M

W2W1 Wn

TC

. . .

(a) Centralised monitoring using detectEr

M

W2W1 Wn

TM

TW2TW1 TWn
. . .

(b) Decentralised monitoring using RIARC

Figure 12 Centralised and RIARC monitoring arrangement on the master M and workers Wi

in a task are assigned a unique sequence number, ReqNum, where 1≤ReqNum≤NumReqs,1482

that identifies each request sent to a worker. The master process relies on ReqNum to1483

determine when a task assigned to a particular worker is completed. A worker task completes1484

when ReqNum = NumReqs, whereupon the master sends a special termination message to1485

the worker. The triple ⟨Id , ReqNum , NumReqs⟩ used in BenchCRV uniquely identifies work1486

requests and responses in the system. BenchCRV relies on four messages to emulate work1487

between the master and worker processes:1488

⟨Pidm , ⟨chunk, ⟨Id , ReqNum , NumReqs⟩⟩⟩. Work request message that the master sends1489

to the worker.1490

⟨Pidm , ⟨term, ⟨Id , ReqNum , NumReqs⟩⟩⟩. Termination message that the master sends to1491

the worker once the task is complete, i.e., when ReqNum = NumReqs.1492

⟨Pidw , ⟨ack, ⟨Id , ReqNum , NumReqs⟩⟩⟩. Work response message that the worker sends1493

to the master.1494

⟨Pidw , ⟨end, ⟨Id , ReqNum , NumReqs⟩⟩⟩. Completion message that the worker sends to the1495

master when the last work request in a task is processed, i.e., when ReqNum = NumReqs.1496

C.4 Experiment set-up1497

Our empirical evaluation of sec. 5 configures benchmarks to monitor the master process1498

and each worker that the master spawns. Fig. 12 overviews the arrangements of centralised1499

and RIARC monitoring; inline monitoring follows that of fig. 1a. Inline monitoring uses the1500

tool of [3, 4] to instrument the master and worker components in BenchCRV statically. The1501

resulting modified code is then run in benchmarks. Centralised and RIARC monitoring rely1502

on the EVM tracing to gather events without modifying the BenchCRV code. Our centralised1503

monitoring benchmarks utilise detectEr [75, 16, 17, 15, 73, 40] to collectively instrument the1504

master and every worker process with one central monitor. This central monitor, labelled1505

TC in fig. 12a, analyses all the trace events gathered. The benchmarks set up with RIARC1506

Platform Concurrency Schedulers Workers n Request batch w ≈ Messages ≈ Messages/s

PE CH 4 100k 100 20M 162k

PG
CH 16

500k 100 100M 218k
CM 5k 10k 100M 382k

Table 5 Benchmark configurations and message throughput at maximum Steady workloads

CVIT 2016

23:44 Runtime Instrumentation for Reactive Components

monitoring instrument the master and worker processes with identical monitor replicas, as1507

illustrated in fig. 12b.1508

Tbl. 5 summarises all our experiment configurations from sec. 5.2. The table includes1509

the mean throughput of work request and response messages exchanged between the master1510

and worker processes under the Steady workload at its maximum. This maximum workload1511

is at 100k workers for the high concurrency scenario CH on platform PE, and at 500k1512

workers for the high CH and at 5k workers for the moderate concurrency scenario CM on1513

platform PG. It is worth underscoring that the high and moderate concurrency settings1514

used on platform PG yield an approximate number of messages in the master-worker models1515

generated by BenchCRV. However, the throughput of 328k messages/s generated by CM is1516

≈ 76% higher than that of CH at 218k messages/s. This gap in throughput stems from the1517

task batch size w, which controls the number of requests the master issues to each worker.1518

CH and CM assess two facets of inline, centralised, and RIARC instrumentation:1519

Stress handling CH stresses each instrumentation method by inducing intense concurrency.1520

The master provokes stress by spawning large numbers of workers (n = 500k) continually1521

during benchmark runs. Combined with the short worker lifespan due to modest request1522

processing (w = 100), this induces constant dynamic changes in the master-worker model.1523

Intense concurrency tests the ability of RIARC to reorganise the tracer DAG topology1524

and how this affects runtime overhead.1525

Throughput handling CM studies how instrumentation copes with high message throughput.1526

The master creates comparatively fewer workers (n=1k), which engage in computationally1527

long tasks (w=100k). Most workers are spawned in the first stages of benchmark runs and1528

produce master-worker models exhibiting milder concurrency where workers terminate1529

less frequently. Milder concurrency tests how RIARC operates in stabler conditions and1530

how the infrequent trace event routing and tracer reconfigurations affect runtime overhead.1531

Sec. 5.5 shows that inline and RIARC monitoring deliver similar results in these scenarios.1532

We reshape the stress and throughput factors described using the Steady, Pulse, and1533

Burst workload profiles (see app. C.2). This variation increases our benchmark coverage1534

and, in turn, the generality of our conclusions drawn from the results. Fig. 13 visualises the1535

Steady, Pulse, and Burst workloads for the high concurrency scenario CH with 500k workers1536

for each of the ten benchmark runs we use in experiments.1537

0 25 50 75 100

Timeline (s)

0

1

2

3

4

5

C
on

cu
rr

en
t

w
or

ke
rs

(K
/s

) Steady (Poisson)

25 50 75 100

Timeline (s)

0

2

4

6

8

Pulse (Normal)

25 50 75 100

Timeline (s)

0

5

10

15

Burst (Log-normal)

Benchmark run number: 1 2 3 4 5 6 7 8 9 10

Figure 13 Steady, Pulse and Burst workloads distributions of 500k workers sustained for 100s

Aceto et al. 23:45

C.5 Precautions1538

The following precautions minimise the biases in our benchmarks and enhance the repeatability1539

of our empirical evaluation presented in sec. 5.1540

C.5.1 Repeatability1541

Data variability affects the repeatability of experiments [69]. The coefficient of variation1542

(CV) [57], i.e., the ratio of the standard deviation σ to the mean x̄, can be used to empirically1543

establish the minimum number of experiment repetitions needed to obtain representative1544

data. We denote this number by the variable m. The CV is calulated using CV = σ/x̄.1545

We choose the minimum value of m for our experiments as follows. First, we calculate1546

the CV for the first batch of experiments for an initial number of repetitions m. This result,1547

cv, is then compared to the CV calculation for the next batch of experiment repetitions,1548

m′. The value m′ increments the number of benchmark repetitions to take by some batch1549

offset value b, i.e., m′←m+b. We denote the CV obtained from the new calculation over m′
1550

repetitions as cv′. The value cv is subtracted from cv′: if the difference is sufficiently small1551

for some error threshold ϵ, the former number of repetitions, m, is selected. Otherwise, we1552

repeat this procedure, setting cv← cv′ and calculating the new CV value, cv′, for the next1553

batch increment, m′′←m′ +b. Crucially, the condition (cv′−cv) < ϵ must hold for all the1554

variables measured in the experiment before m can be fixed. We perform these calculations1555

to determine the number of benchmark repetitions used in sec. 5.1556

We also seed the Erlang pseudorandom number generator to minimise the data variability1557

between experiments. Fixing the randomisation seed replicates the same workloads in all1558

our experiments, making them repeatable. The upshot is that it requires fewer benchmark1559

repetitions before the response time, memory consumption, and scheduler utilisation gathered1560

by BenchCRV converge to an acceptable CV. Note that fixing the seed still permits our1561

master-worker models to enjoy a degree of variability, which stems from the interleaved1562

execution of processes due to scheduling.1563

C.5.2 Centralised and decentralised monitoring1564

RIARC projects the global trace into partitions that reflect the local execution at SuS processes.1565

It exploits the natural tree relationship induced by process spawning to create trace partitions,1566

as sec. 2.1 remarks. By contrast, centralised monitoring gathers process events as one global1567

trace sequence capturing the overall SuS behaviour. Existing work [47, 126] shows how1568

a global trace can be efficiently sliced to recover trace partitions via a technique called1569

parametric trace slicing (PTS). PTS generates the same local view of the SuS process1570

execution induced by RIARC. Our centralised monitoring set up with detectEr employs PTS.1571

Its implementation consists of a specialised singleton monitor that dynamically demulti-1572

plexes the incoming stream of trace events. The projection relies on the PID carried by trace1573

events, i.e., e.ıS in tbl. 1a of sec. 2.1, to direct them to corresponding local monitors. PTS1574

enables us to reuse the monitors from our benchmarks with inline and RIARC monitoring.1575

One crucial benefit of monitor reuse is that the same RV analysis logic is executed by the1576

outline, inline, and RIARC monitors in our experiments, eliminating biases. The central1577

monitor maintains a monitor map indexed by this PID to access the associated monitors1578

efficiently and delegate the RV analysis. Our central monitor implementation ensures that1579

every local monitor is created when needed and removed when its RV analysis completes.1580

This measure guarantees the lowest possible overhead and does not bias our results against1581

centralised monitoring.1582

CVIT 2016

23:46 Runtime Instrumentation for Reactive Components

The function AnalyseEvt(ςM,e) conducts the RV analysis. AnalyseEvt takes a monitor1583

signature, ςM, and reduces it by repeatedly applying it to the next event e from a sequence of1584

trace events. Each application, ςM(ei), returns the new monitor state ς ′
M, which is used for1585

the next reduction, ς ′
M(ei+1), and so forth. AnalyseEvt stops reducing ςM when one of two1586

conditions hold:1587

Verdict flag signals that the RV monitor accepts or rejects the behaviour of the SuS process1588

based on the events analysed. We refer interested readers to [21, 15, 73] for an introduction1589

to RV monitoring.1590

End of partition informs the RV monitor that there are no further trace events to analyse1591

for the SuS process. The end of the partition is marked by the event.1592

Either condition terminates the RV analysis, whereupon the monitor becomes stale. Sec. 3.61593

overviews how stale monitors are disposed of when tracers are garbage collected.1594

In our empirical experiments, we use the sequence numbers carried by BenchCRV work1595

request and response messages to ensure trace soundness; see app. C.3. Our specialised1596

monitor signature ςM maintains an internal offset to assert the trace event number, ReqNum,1597

expected next. Monitors also confirm that the trace is reported in its entirety. We rely on1598

NumReqs, which is used by BenchCRV worker processes to detect that all the work request1599

messages from their respective batches are delivered to them. These basic checks guarantee1600

that the trace event sequences monitors receive are complete and consistent per def. 1.1601

C.6 Further results1602

We include further data plots supporting our conclusions of sec. 5.1603

C.6.1 Monitoring overhead1604

Fig. 14 shows the overhead induced by centralised, inline, and RIARC monitoring. Charts1605

include the overhead for the three monitoring methods under the Pulse workload to complete1606

our findings from sec. 5.4.2. We recall that the runtime monitoring overhead combines the1607

instrumentation and slowdown due to the RV analysis. Sec. 5.3 establishes this RV slowdown1608

at ≈5µs per analysed trace event in our experiments. The slowdown stems from the runtime1609

checking that our monitors perform to ensure that the trace event sequences reported by the1610

instrumentation are sound, def. 1; see also app. C.5.2.1611

As fig. 8 from sec. 5.4.2, fig. 14 demonstrates that centralised monitoring crashes in1612

our experiments (marked by ✕ in plots) when the Pulse workload is applied. The dumps1613

recovered from crashes indicate that centralised monitoring fails for the reasons given in1614

sec. 5.4.2. These plots also confirm that inline and RIARC monitoring are not afflicted by the1615

≈ 5µs RV analysis slowdown. We emphasise that RIARC induces almost comparable latency1616

to inline monitoring even under the Pulse workload. Fig. 14 (top right, middle) puts the1617

latency at 212ms for inline monitoring vs. 538ms for RIARC at a peak Pulse workload of 1.7k1618

workers/s. The difference of 326ms between the two methods is lower than the 454ms gap1619

calculated for the Burst workload in sec. 5.4.2.1620

The plots in fig. 14 (bottom) exhibit high scheduling utilisation: a byproduct of the1621

limited number of scheduling threads (4) available on the edge-case platform PE. Our plots1622

in app. C.6.2 for experiments conducted on the general-case platform PG show that the1623

scheduler utilisation is drastically reduced when using 16 scheduling threads. This reduction1624

is exhibited even under the maximum workloads of ≈ 200M trace events, which is five times1625

higher than the ≈ 40M workload used in fig. 14. Inline, and in particular, RIARC monitoring,1626

Aceto et al. 23:47

0

250

500

750

1000

1250

1500

1750

T
im

e
(m

s)

Steady workload

Response

Pulse workload

Response

Burst workload

Response

2.0

2.5

3.0

3.5

4.0

4.5

C
on

su
m

pt
io

n
(G

B
)

Memory Memory Memory

20 40 60 80 100

Total workers (k)

15

20

25

30

35

U
ti

lis
at

io
n

(%
)

Scheduler

20 40 60 80 100

Total workers (k)

Scheduler

20 40 60 80 100

Total workers (k)

Scheduler

baseline inline (instr.) inline (mon.) RIARC (instr.) RIARC (mon.) cent. (instr.) cent. (mon.)

Figure 14 Instrumentation and RV monitoring overhead gap (high workload, 100k workers)

benefit from the added scheduling capacity to scale accordingly. Centralised monitoring does1627

not exhibit this behaviour; see app. C.6.2 for details.1628

C.6.2 Scaled set-up1629

Our experiments on platform PE study how centralised, inline, and RIARC monitoring behave1630

in edge-case situations where the memory is constrained, and the possibility of parallelism1631

is limited; see app. C.6.1. The next set of experiments confirms that the same behaviour1632

observed on platform PE for the three monitoring methods is preserved in general cases.1633

These benchmarks are conducted on the general-case platform PG and use n = 500k workers,1634

w = 100 requests per worker, and 16 scheduling threads.1635

Fig. 15 completes our view of instrumentation and runtime monitoring overhead given1636

in fig. 8 from sec. 5.4.2. The memory consumption and scheduler utilisation plots of fig. 151637

(bottom) magnify the bottleneck that afflicts centralised monitoring in fig. 8 of sec. 5.4.2. In1638

the latter benchmarks taken on the edge-case platform PE with 100k workers, centralised1639

monitoring plateaus to a mean scheduler utilisation of ≈ 31.8% at the ≈ 50k workers mark1640

before eventually crashing. By comparison, the plots in fig. 15 show this to be at ≈4.7% at the1641

CVIT 2016

23:48 Runtime Instrumentation for Reactive Components

0

500

1000

1500

2000

2500

3000

3500

T
im

e
(m

s)

Steady workload

Response

Burst workload

Response

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

C
on

su
m

pt
io

n
(G

B
)

Memory Memory

100 200 300 400 500

Total workers (k)

0

2

4

6

8

10

12

U
ti

lis
at

io
n

(%
)

Scheduler

100 200 300 400 500

Total workers (k)

Scheduler

inline (instr.) inline (mon.) RIARC. (instr.) RIARC. (mon.) cent. (instr.) cent. (mon.)

Figure 15 Instrumentation and RV monitoring overhead gap (high workload, 500k workers)

same workload of 50k workers. This drop in scheduler utilisation for centralised monitoring1642

stems from two reasons. First, the central monitor is limited in its use of the scheduling1643

resources offered by platform PG due to the sequential processing of trace event messages.1644

Second, the mean scheduler utilisation in this set-up is calculated over 16 scheduling threads.1645

Sec. 5.4.2 reports higher scheduler utilisation values on the edge-case platform PE because1646

the EVM scheduling is limited to 4 threads; processes on PG are spread across more schedulers.1647

The added parallelism gained through the extra 12 scheduling threads on platform PG permits1648

workers to increase the message throughput in the corresponding master-worker models. For1649

instance, the throughput of 162k messages/s with 100k workers under the Steady workload is1650

raised to 218k messages/s in the benchmarks using 500k workers; refer to tbl. 5. This higher1651

message throughput exacerbates the stress on the central monitor. We emphasise that the1652

absence of crashes in the plots of fig. 15 is attributable to the considerable memory provided1653

by the general-case platform PG rather than by the ability of centralised monitoring to cope1654

with high workloads. Fig. 15 indicates that the continued increase in memory consumption1655

eventually leads to failure when the memory capacity is exceeded.1656

Inline and RIARC monitoring enjoy the ample resources of platform PE, scaling accord-1657

ingly. This scalability manifests as conservative memory consumption and higher scheduler1658

Aceto et al. 23:49

2.0

2.5

3.0

3.5

C
on

su
m

pt
io

n
(G

B
)

Steady workload

Memory

Pulse workload

Memory

0 100 200 300 400 500

Execution duration (s)

0

10

20

30

40

50

U
ti

lis
at

io
n

(%
)

Scheduler

0 100 200 300 400 500

Execution duration (s)

Scheduler

baseline inline RIARC

Figure 16 Inline and RIARC monitoring resource usage (high workload, 500k workers)

utilisation. Readers may notice the response time gains of centralised monitoring over inline1659

and RIARC monitoring in fig. 15. We attribute this to very different reasons. The RV analysis1660

slowdown causes the response time degradation in the case of inline monitoring. The latency1661

overhead RIARC induces on our master-worker models is a byproduct of outline monitors,1662

which compete for the same pool of scheduling threads used by worker processes. Under1663

fair execution [137], workers reside in the EVM waiting queues for longer periods, impacting1664

their ability to respond to work requests promptly. Fig. 8 in sec. 5.4.2 exhibits analogous1665

behaviour. We conjecture that the response time for RIARC monitoring drastically improves1666

in less extreme scenarios to those used for our benchmarks, which instrument every worker1667

process in the model (see sec. 5.3).1668

C.6.3 Resource usage1669

Sec. 5.4.3 gives an alternative view that studies the overall monitoring overhead—from the1670

point of SuS launch until monitors complete their RV analysis. We supplement those results,1671

showing that centralised monitoring is not scalable, whereas inline and RIARC monitoring1672

leverage the extended processing capacity provided by the general-case platform PG.1673

Fig. 16 complements fig. 9 in sec. 5.4.3, showing that inline and RIARC monitoring display1674

elastic behaviour under Pulse workloads, too. Figs. 17 and 18 put the same plots of figs. 91675

and 16 into the context of centralised monitoring. The former plots attest to the vast amounts1676

of memory centralised monitoring consumes. They also highlight its lack of elasticity, where1677

the memory consumption patterns are insensitive to the workload profile applied.1678

The sequential operation of the central monitor protracts the time taken for the RV1679

analysis to complete. Such delays may render centralised monitoring inapplicable to cases1680

where the RV set-up depends on timely detections, as in online monitoring. For instance, the1681

CVIT 2016

23:50 Runtime Instrumentation for Reactive Components

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

C
on

su
m

pt
io

n
(G

B
)

Steady workload

Memory

Burst workload

Memory

0 500 1000 1500 2000 2500

Execution duration (s)

0

10

20

30

40

50

60

70

U
ti

lis
at

io
n

(%
)

Scheduler

0 500 1000 1500 2000 2500

Execution duration (s)

Scheduler

baseline inline RIARC cent.

Figure 17 Centralised, inline, and RIARC monitoring resource usage (high workload, 500k workers)

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

C
on

su
m

pt
io

n
(G

B
)

Steady workload

Memory

Pulse workload

Memory

0 500 1000 1500 2000 2500

Execution duration (s)

0

10

20

30

40

50

60

70

U
ti

lis
at

io
n

(%
)

Scheduler

0 500 1000 1500 2000 2500

Execution duration (s)

Scheduler

baseline inline RIARC cent.

Figure 18 Centralised, inline, and RIARC monitoring resource usage (high workload, 500k workers)

benchmark runs captured in fig. 17 respectively take ≈ 862% and ≈ 843% longer to finish1682

executing under the Steady and Burst workloads, when compared to the baseline system.1683

Aceto et al. 23:51

0

20

40

60

80

100

U
ti

lis
at

io
n

(%
)

Steady workload

Scheduler (RIARC)

Burst workload

Scheduler (RIARC)

0 500 1000 1500 2000 2500

Execution duration (s)

0

20

40

60

80

100

U
ti

lis
at

io
n

(%
)

Scheduler (cent.)

0 500 1000 1500 2000 2500

Execution duration (s)

Scheduler (cent.)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

Figure 19 Centralised, inline, and RIARC monitoring scheduler load (high workload, 500k workers)

Inline and RIARC monitoring terminate quicker under the same workloads. Inline monitoring1684

registers an execution duration overhead of ≈ 1% and ≈ 31% w.r.t. baseline system in fig. 171685

(bottom). RIARC monitoring prolongs the execution further, at ≈ 73% and ≈ 85% under the1686

Steady and Pulse workloads. Fig. 18 for the Pulse workload shows analogous behaviour.1687

Fig. 9 of sec. 5.4.3 and fig. 16 unify the scheduler utilisation values by averaging over1688

the 16 scheduler threads used in our general-case benchmarks on PG. Scheduler oscillations1689

with high peaks suggest simultaneous use of the scheduling threads. The absence of peaks in1690

figs. 17 and 18 (bottom) for centralised monitoring results from the single-threaded monitor1691

that cannot utilise other unoccupied EVM threads. Fig. 19 records the load on the individual1692

EVM scheduling threads (S1 to S16) for the centralised and RIARC monitoring benchmark1693

runs of fig. 17. The scheduler plots indicate even load distribution amongst the available1694

threads for RIARC (top) under the Steady and Burst workloads. Even load distribution is1695

consistent with the mean scheduler utilisation plots shown in fig. 17 for RIARC monitoring.1696

By contrast, the load distribution for centralised monitoring in fig. 19 (bottom) becomes1697

principally concentrated on scheduler threads S1 and S2 once the master and worker processes1698

terminate. This behaviour is responsible for the right skew (i.e., the right ‘tail’) in the1699

scheduler utilisation plots of figs. 17 and 18 (bottom), which prolongs the execution of our1700

centralised monitoring benchmarks.1701

C.6.4 Moderate concurrency systems1702

Tbl. 3 in sec. 5.5 summarises the percentage overhead due to inline and RIARC monitoring1703

w.r.t. the baseline system under the Steady and Burst workloads. These results are given on1704

the general-case platform PG at maximum workloads with 500k workers (high concurrency,1705

CH) and 5k workers (moderate concurrency, CM). Fig. 20 plots the results of all ten1706

CVIT 2016

23:52 Runtime Instrumentation for Reactive Components

0

500

1000

1500

2000

2500

3000

3500

T
im

e
(m

s)

Steady workload

Response

Burst workload

Response

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
on

su
m

pt
io

n
(G

B
)

Memory Memory

2 4 6 8 10

Benchmark iteration

0

2

4

6

8

10

12

U
ti

lis
at

io
n

(%
)

Scheduler

2 4 6 8 10

Benchmark iteration

Scheduler

baseline (500 k) baseline (5 k) inline (500 k) inline (5 k) RIARC (500 k) RIARC (5 k)

Figure 20 Inline and RIARC monitoring overhead gap (high/moderate workload, 500k/5k workers)

benchmark runs. The master process in our CH spawns substantially more worker processes1707

than the master on CM in each corresponding benchmark run. These differences make1708

the experiments on CH and CM incomparable in the number of processes created in a1709

benchmark. For this reason, we use the benchmark run number (x-axis) to compare the1710

overhead measured on CH and CM in fig. 20. We recall that the benchmarks on CH and CM1711

generate an approximate volume of trace event messages.1712

Fig. 20 (bottom) registers negligible changes in scheduler utilisation between CM and1713

CH for inline monitoring. Inline monitoring reduces its consumption of memory in our1714

experiments with CM. We attribute this to the lower number of workers BenchCRV creates1715

relative to the models with CH. This change lowers the strain on the master process1716

induced by the constant spawning of workers throughout benchmark runs, which shrinks1717

the memory footprint of the generated master-worker models. RIARC benefits from these1718

moderately-sized master-worker models, as the memory consumption plots in fig. 20 (middle)1719

indicate. However, most of the memory gains RIARC shows ensue from the fewer trace event1720

routing and tracer reconfigurations it needs to perform compared to our experiments with1721

concurrency scenario CH. As a result, inline and RIARC monitoring consume comparable1722

amounts of memory. RIARC recruits more scheduler capacity, ≈ 6.4% vs. ≈ 4.2% of inline1723

Aceto et al. 23:53

monitoring under both the Steady and Burst workloads. This slight ≈ 2.2% increase in1724

scheduler utilisation enables RIARC to optimise the latency, bringing it on par with the1725

latency induced by inline monitoring.1726

CVIT 2016

	1 Introduction
	2 A computational model for reactive systems
	2.1 Process tracing and trace partitioning
	2.2 Modelling decentralised instrumentation

	3 Decentralised instrumentation
	3.1 Growing the set-up
	3.2 Ensuring complete traces
	3.3 Ensuring consistent traces
	3.4 Isolating tracers
	3.5 Minimising overhead
	3.6 Shrinking the set-up

	4 Correctness validation
	4.1 Implementability
	4.2 Correctness

	5 Empirical evaluation
	5.1 Benchmarking tool
	5.2 Benchmark configuration
	5.3 Instrumentation configuration
	5.4 High concurrency benchmarks
	5.4.1 Instrumentation overhead
	5.4.2 Monitoring overhead
	5.4.3 Resource usage

	5.5 Moderate concurrency benchmarks
	5.6 Discussion

	6 Conclusion
	A Appendix A: Auxiliary Instrumentation Logic
	B Appendix B: Offline Tracing and Algorithm Invariants
	B.1 Offline Tracing
	B.2 Algorithm Invariants

	C Appendix C: Empirical Evaluation
	C.1 Benchmarking
	C.2 BenchCRV workload parameters
	C.3 BenchCRV messaging model
	C.4 Experiment set-up
	C.5 Precautions
	C.5.1 Repeatability
	C.5.2 Centralised and decentralised monitoring

	C.6 Further results
	C.6.1 Monitoring overhead
	C.6.2 Scaled set-up
	C.6.3 Resource usage
	C.6.4 Moderate concurrency systems

