
E: A Monitoring tool for Erlang

Christian Colombo, Adrian Francalanza, and Rudolph Gatt

Department of Computer Science, University of Malta, Malta.

Abstract. The L monitoring tool has been successfully applied to a number
of industrial Java systems, providing extra assurance of behaviour correctness.
Given the increased interest in concurrent programming, we propose E,
an adaptation of L for monitoring programs written in Erlang, an estab-
lished industry-strength concurrent language. Object-oriented L constructs
have been translated to process-oriented setting, and the synchronous Lmon-
itoring semantics was altered to an asynchronous interpretation. We argue how
this loosely-coupled runtime verification architecture still permits monitors to ac-
tuate recovery actions.

1 Introduction

Ensuring correctness in highly concurrent systems, through either testing or model
checking, is problematic because it is difficult to test for all possible behaviour inter-
leavings. A case in point is code written in Erlang [1], an established industry-strength
functional concurrent language used mainly in the Telecoms industry. Ensuring cor-
rectness in this language is made even harder by the fact that: (i) Erlang is not statically
type-checked, preventing developers from filtering out certain errors at compile time;
and (ii) Erlang supports hot-code swapping i.e., modules can be replaced on-the-fly,
increasing the set of possible outcomes of a system execution.
Runtime Verification (RV) is a promising approach towards ensuring Erlang software
correctness as it provides a disciplined methodology for conducting the runtime checks
necessary in the absence of static guarantees. Importantly, the approach does not suffer
from coverage and state explosion issues associated with standard verification tech-
niques for concurrency.
L is a runtime monitoring tool targeting the correctness of Java code [2] enabling
one to: (i) specify system properties with recovery actions (in case of violation) in terms
of automata-based specifications, (ii) compile the properties into Java monitors, and (iii)
instrument the monitors at byte-code level using techniques from Aspect-Oriented Pro-
gramming (AOP) [5]. Through aspects, synthesised monitors are then automatically
updated with events from the execution of the monitored system, triggering corrective
actions where necessary, providing extra reassurance as to the correctness of the moni-
tored software behaviour.
L supports modular property specification in a number of ways. For instance (i)
each object can be verified by a separate monitor through a mechanism of monitor
parametrisation, and (ii) properties can be decomposed into sub-properties that can
communicate with one another through channels. Erlang’s actor-based concurrency



2 C. Colombo and A. Francalanza and R. Gatt

model [4], which circumvents any shared memory through the use of message pass-
ing, is consistent with such a modular approach, making L a sensible starting point
for a monitoring framework for Erlang.
Porting L to Erlang is however non-trivial, because: (i) Erlang does not have AOP
support, the mechanism used by L for monitor instrumentation; and (ii) Erlang is
process-oriented whereas Java is object-oriented. In the rest of this proposal, we present
E, an adaptation of L to Erlang, giving an overview of how we tackled these
issues and outline how we have evaluated our tool.

2 Solution Overview

In the absence of any AOP support, E employs Erlang’s tracing facility for instru-
mentation; this makes monitoring asynchronous, which alters the nature of recovery
actions. Moreover, adapting monitor parameterising constructs such as foreach to pro-
cesses accentuated a shortcoming in L’s broadcast interpretation of channel com-
munication, the extensive use of which made inter-monitor communication unwieldy;
in E, channel communication was thus given a point-to-point interpretation.

2.1 Eliciting Events Asynchronously

Erlang’s tracing mechanism enables us to hook on to Erlang’s VM and receive the
relevant events as messages to a singleton tracer process [1]. Monitors are set up as
processes executing in parallel with the monitored system, where the tracer acts as a
demultiplexer, reading the trace received and sending parts of it to the relevant mon-
itors in non-blocking fashion, as shown in Fig. 1 (left). This setup has a number of
advantages: (i) the system and the monitor can be running on separate machines, reduc-
ing the monitoring cost to that of tracing (ii) as opposed to L, we can monitor a live
system via E without having to stop the system and trace-compile it (iii) no errors
are introduced in the monitored system as a result of instrumentation.
However, the non-blocking nature of Erlang message passing makes E’s trace-
based monitoring asynchronous, possibly detecting violations late. In general, this com-
plicates a monitor’s assessment of which sub-systems where effected by the violation.
However, in the case of Erlang, adverse effects emanating from a violation can be con-
fined since (i) processes do not share memories (ii) code is typically written in fail-fast
fashion i.e., processes fail as soon as anything abnormal is encountered and (iii) process
dependencies can be explicitly delineated through mechanisms such as process linking
[1], which propagates the failure to linked processes. Erlang process failure detection
then allows the monitor localise the affected sub-system and take appropriate action.
In fact, Erlang programs successfully achieve fault tolerance using these same mecha-
nisms, through code patterns such as the Supervisor behaviour [1].

2.2 Parametrised Properties and Channel Communication

In E, the foreach construct was adapted to be parameterised by processes (as
opposed to objects), so that a separate monitor could be replicated for every process



E: A Monitoring tool for Erlang 3

Proc2

VM

.

.

.

System

Tracer

.

.

.

Monitor

Mon1

Mon2

Proc1

Mon1

Global context

Foreach context 2

Instance B

Instance A

Foreach context 1

iv

ii

iii

i

Mon1

Mon2

Mon3 Mon1

Mon1

Mon2

Mon3

Instance A

Fig. 1. Monitoring architecture in E (left), Possible communication configurations (right).

spawned. Modularly decomposing and replicating monitors in this way simplifies spec-
ifications since each monitor can focus on one process instance only, communicating
with other monitors whenever necessary, as opposed to having one monolithic monitor
monitoring multiple processes.
This specification approach is also in line with Erlang code practices, which advocate
for the structuring of programs into as many small shortlived processes as possible.1

However, it quickly became apparent that the existing L communication mecha-
nism, based on broadcasts, created bottlenecks in settings with extensive use of monitor
decomposition i.e., smaller communicating sub-monitors that are replicated on a per-
process basis. As depicted in Fig. 1 (right), this was rectified in E by allowing
monitors to select the destination of their communication from the following: (i) across
monitors of the same instance, (ii) across monitors of different instances, (iii) from
global to foreach context, and (iv) across foreach contexts.

3 Case Study

We consider a hospital management system where patients can place requests for med-
ical reports and medical reports are issued once all the doctors concerned give their
approval; note that patient requests are handled concurrently. Each patient and each
doctor are modelled as a process and interact with a “main office” central process we
refer to as the “hub” for short, see Fig. 2 (left).
Despite its simplicity, a number of correctness properties can be identified over this
system such as: (i) A patient receives a report only if a request has been placed earlier,
(ii) A patient never receives the medical report of another patient, (iii) A report received
by a patient must be approved by at least two doctors overseeing that patient.
In what follows we give an intuition of how we monitor the third property outlined for
this hospital system. A monitor is defined foreach patient process and foreach doctor
process, depicted by dotted boxes in Fig. 2 (right). The following are the steps involved
in a medical report request/response, lead by the labelled solid edges in Fig. 2 (right):
(i) the patient, Pat1, requests a report, and the patient monitor, MP1 detects it (through

1 Often referred to as concurrency-oriented programming, this allows the virtual machine to bet-
ter apportion computation amongst the multiple processing units on a multicore machine [1].



4 C. Colombo and A. Francalanza and R. Gatt

Patient
processes
Doctor 

Pat1

Pat3

Pat2

Doc1

Doc3

Doc2Hub

reports
requests/

approval
requests/

processes

MP 1

i ii

iii

iv

v

vi

HubPat1

Doc1

Doc2

MD2

MD1

Fig. 2. The hospital management system setup (left), with monitors (right).

tracing, denoted by a dashed edge), (ii/iii) the hub forwards the report request to the
doctors, Doc1 and Doc2 (no monitor activity), (iv/v) the doctors reply to the request
by either approving or rejecting the report and the respective doctor monitors, MD1
and MD2, detect this (denoted by the respective dashed edge), (vi) the patient receives
the report and the patient monitor detects it (see respective dashed edge). At this point,
the patient monitor communicates with the doctor monitors (denoted by the respective
dotted edges) to ensure that the report received was indeed authorised by the respective
doctors.2 If no two approving doctors are found then the monitor can conclude that the
property was violated and an action is taken, possibly restarting the patient with the
unauthorised report.
The monitors depicted in Fig. 2 can be setup through the following larva scripts speci-
fying monitor automata, where transitions (backslash-separated triples consisting of an
event detection, a condition, and an action to be executed if the condition is satisfied)
take the property from one state to the next. Using the following event definitions:
EVENTS { RecRep = RECEIVE {backend_response,{Pat,Id,Diagnosis}}

Ack = CHANNEL {doc_response,{Pat,Id,Res}}
AskAck = CHANNEL {mon_commm,{Doc,Id,Time}}
RepRes = SEND {doc_response,{Doc,Res,Pat,Id}} }

For each patient process we need to detect report receipt, communicate with doctor
monitors to confirm the approval of the report, receive an acknowledgement from the
doctor monitors (indicating approval (yes), rejection (no) or indifference (ok)), and
checks whether a violation has occurred. The FOREACH construct below automati-
cally applies the monitoring logic to each patient joining the hospital system: upon the
receipt of a report (RecRep event), the patient monitor sends a channel communication
to all doctors, indicating the identifier and the timestamp of the report involved; the pa-
tient monitor then listens for Ack events and decides whether a violation has occurred.
FOREACH {patient,newPatient,[_]} { TRANSITIONS {
start-> wait [RecRep\\cnt=numDocs,cntYes=0,{channel,{foreach,doctor,{’AskAck’,{_,Id,Time}}}}]
wait -> wait [Ack\Res=="ok" and cnt>1\cnt--]
wait -> wait [Ack\Res=="yes" and cntYes<1\cntYes++]
wait -> ok [Ack\Res=="yes" and cntYes>0\] } }
wait -> violation [Ack\Res=="no" or (Res=="ok" and cnt==1)\] } }

2 Since monitoring is asynchronous, detection for either (iv/v) may not have happened by the
time the doctor monitors receive the patient monitor communications i.e., a race condition.
Hence when a patient monitor detects the received patient report, it communicates with the
relevant doctor monitors to ensure that the report has been approved by at least two of the
doctors. Before the doctor monitors reply to the patient monitors, they are forced to make the
necessary trace detections, thus reaching a synchronisation point with the patient monitor.



E: A Monitoring tool for Erlang 5

Below, the FOREACH construct allows us to dynamically launch a doctor monitor for
every doctor joining the system, so as to detect report response events and communicate
them to the corresponding patient monitors. The doctor monitor goes through all events
which occurred before the report timestamp. Upon detecting a response (RepRes event)
or the lack of it, the doctor monitor replies to the specific patient monitor (Pat) that
requested the information.

FOREACH {doctor,newDoctor,[_]} { TRANSITIONS {
idle -> detect [AskAck\\]
detect -> detect [Event\eventTime<Time\]
detect -> idle [Event\eventTime>Time\{channel,{foreach,patient,{’Ack’,{Pat,Id,"ok"}}}}]
detect -> idle [RepRes\\{channel,{foreach,patient,{’Ack’,{Pat,Id,Res}}}}] } }

4 Evaluation

E was compared to Exago [3], an offline property-based Erlang monitoring tool.
Both were successfully used to specify correctness properties of the hospital manage-
ment system (introduced in the previous section). However, Exago necessitated the in-
clusion of substantial Erlang code-chunks; this blurred the distinction between code
and specification logic and introduced the possibility of inserting further errors through
the code chunks. By contrast, E was able to specify the properties using the tool
logic (called Ds), the translation of which was automated by the monitor compiler.
Another disadvantage of Exago was that it is an offline tool, which exclude the possi-
bilities of applying reparatory actions in case of violations.

5 Conclusion

Through E, we have extended the L tool and provided a minimally intru-
sive runtime monitoring framework to monitor expressive properties on Erlang code,
whereby the limited intrusiveness makes it more palatable to potential adopters from
the Erlang community. We aim to improve E by (i) investigating means of elic-
iting system events in a decentralised fashion, unlike the present centralised tracing
mechanism relying on the Erlang VM and (ii) supporting distribution, so as to enable
monitoring across machines.

References

1. J. Armstrong. Programming Erlang. The Pragmatic Bookshelf, 2007.
2. C. Colombo, G. J. Pace, and G. Schneider. Larva — Safer Monitoring of Real-Time Java

Programs (tool paper). In SEFM, pages 33–37. IEEE, November 2009.
3. A. Erdödi. Exago: Property monitoring via log file analysis. (Presented at the Erlang User

Group Meeting, London, 2010).
4. C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism for artificial intel-

ligence. In IJCAI, pages 235–245. Morgan Kaufmann, 1973.
5. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin.

Aspect-oriented programming. In ECOOP, pages 220–242, 1997.


