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Abstract Runtime enforcement is a dynamic analysis technique that uses
monitors to enforce the behaviour specified by some correctness property on
an executing system. The enforceability of a logic captures the extent to which
the properties expressible via the logic can be enforced at runtime for a speci-
fied operational model of enforcing monitors. We study the enforceability of
branching-time, first-order properties expressed in the Hennessy-Milner Logic
with Recursion (µHML) with respect to monitors that can enforce behaviour
involving events that carry data. To this end, we develop an operational frame-
work for first-order enforcement via suppressions, insertions and replacements.
We then use this model to formalise the meaning of enforcing a branching-time
property. We also show that a safety syntactic fragment of the logic is en-
forceable within this framework by providing an automated synthesis function
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that generates correct suppression monitors from any formula taken from this
logical fragment.

1 Introduction

Runtime monitoring [1–3] is a popular dynamic analysis technique. It uses
code units called monitors to either aggregate system information, compare
system execution against correctness specifications, or steer the execution
of the observed system. Runtime enforcement (RE) [4–6] is a specialized
monitoring technique, used to ensure that the behaviour of a system-under-
scrutiny (SuS) is always in agreement with some correctness specification. It
employs a specific kind of monitor (referred to as a transducer [7–9], shield [10]
or an edit-automaton [4, 5]) to anticipate incorrect behaviour and counter it.
Such a monitor thus acts as a proxy between the SuS and the surrounding
environment interacting with it, encapsulating the system to form a composite
(monitored) system. The behaviour of the composite system may vary from
that of the SuS depending on the actions executed by the SuS in conjunction
with a range of runtime transformations applied by the monitor, including
action suppressions, insertions and replacements.

We extend a recent line of research [3, 11–16] and study the potential of
extending RE approaches to first-order branching-time specifications. Under-
standing the effectiveness of RE over branching-time specifications is important
for modern verification setups where RE is only one option from an arsenal of
verification techniques that can be used, covering both pre- and post-deployment
phases of the software development lifecycle [17–22]. In such cases, it is natural
to consider correctness specifications describing the SuS computation graph,
typically formalised by a branching-time logic. Practical specifications often
also need to describe data relationships over the SuS event payloads, which is
typically achieved using a first-order constructs. Although these specifications
are best verified using a static technique like model checking, there are numer-
ous situations where such a strategy is impractical (e.g., when an exhaustive
static verification is prohibitively expensive, or when a sufficiently detailed SuS
model cannot be obtained due to restrictive licensing agreements of third-party
software components). In such cases, verification engineers need to resort to
other techniques such RE.

The branching-time nature of the specifications considered departs substan-
tially from that of linear-time specifications [23] used by the state-of-the-art
on RE. Whereas linear-time specifications describe properties of the current
execution trace of the SuS, branching-time specifications describe properties
such as what can/cannot be done by the SuS after some/all computations
exhibiting a particular trace. As a result, the standard RE criteria of soundness
(i.e., when the enforced behaviour satisfies the property to be enforced) and
transparency (i.e., when the monitor should not intervene because the property
is not violated), identified by Ligatti et al. [4] for a linear-time setup, are not
immediately applicable to branching-time specifications.
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The branching-time interpretation of a formula also affects the RE handling
of certain logical constructs. For instance, consider the disjunction formula
φ1∨φ2. The linear-time setting requires the current trace to either satisfy φ1

or φ2, and an RE setup can intervene to enforce the property whenever the
monitor observes enough of this trace to determine that neither φ1 nor φ2

are satisfied. The situation is different for a branching-time interpretation
since the subformulas φ1 and φ2 can, in principle, describe computation from
different parts of the computation tree. In turn, although the current execution
observed might provide enough information to determine that either one of
φ1 or φ2 is violated, there would never be an execution that allows a (sound
and transparent) monitor to determine when to intervene in cases where both
subformulas are violated.

These are a few of the issues that are crucial for ensuringmonitor correctness.
Since any analysis tool ought to form part of the trusted computing base, a
monitor synthesised from a specification for enforcement purposes should be,
in and of itself, correct. However, it is unclear what guarantees are to be
expected from a monitor that enforces a branching-time formula. Nor is it
clear for which type of specifications this approach should be expected to work
effectively; it has been well established that a number of properties are not
monitorable [11, 12, 23–27] and it is therefore reasonable to expect similar
limits in the case of enforceability [2, 28].

In order to conduct our investigation in a systematic manner, we insists on
a separation of concerns between the correctness specification, describing what
properties the SuS should satisfy, and the monitor, describing how to enforce
these properties on the SuS. Our work considers data-oriented properties
expressed in terms of a first-order extension of the logic µHML [29, 30], and
explores what and how first-order branching-time properties can be enforced.
By way of example, we formally demonstrate how these properties can be
operationally enforced by monitors that are instrumented to execute in tandem
with the SuS in order to suppress, insert and replace system events that carry
a payload. A central element for the realisation of such an approach is the
synthesis function which automates the translation from the declarative µHML
specifications to algorithmic descriptions formulated as executable monitors.

This separation of concerns serves a number of purposes. First, the con-
venience of a highly expressive logic such as µHML (a reformulation of the
modal µ-calculus) allows us to achieve a good degree of generality for our
results; by employing this logic, our work also applies to other widely used
logics (such as LTL and CTL [31]) that are embedded within µHML (see
[23, 32] for examples of such embeddings). Second, since such a branching-time
logic is verification-technique agnostic (compared to logics such as LTL3 [33]
tailored for runtime verification), it fits better with the realities of present-day
software verification where, as stated earlier, a variety of techniques (e.g.,
model-checking and testing) straddling both pre- and post-deployment phases
are used. In such cases, knowing which properties can be verified statically
and which ones can be monitored and enforced at runtime is crucial for devis-
ing effective multi-pronged verification strategies [34–44]. Equipped with such
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knowledge, one could also employ standard techniques [45–47] to decompose
a non-enforceable property into a collection of smaller properties, a subset of
which can then be enforced at runtime. Within this setup, this paper makes
the following contributions:

Modelling: We develop a general framework for first-order enforcement instru-
mentation that is parametrisable by any system whose behaviour can be
expressed via labelled transitions. The framework can handle enforcement
of events carrying data via action suppression, insertion and replacement,
Figure 2.

Correctness: We provide two formal definitions for asserting when a monitor
correctly enforces a formula interpreted over labelled transition systems,
namely enforcement, Definition 4, and weak enforcement, Definition 7,
and formally compare the two Theorem 2; these definitions rely on novel
interpretations for enforcement soundness, Definition 2, and transparency,
Definitions 3 and 6. We also define a parametric definition for logic enforce-
ability, Definition 8 (Enforceability), that manifests a black-box treatment
of the SuS, and can also be instantiated to different criteria for correct
enforcement. To our knowledge, all existing studies of RE target linear-time
properties; we are also unaware of any study on the enforceability of logics
with data.

Expressiveness: We identify a subset of µHML formulas that can be mapped
to our monitors enforcing data-dependent behaviour. In fact, we prove an
even stronger result and show that suppression monitors are sufficiently
expressive to conduct such correct enforcement for this logical subset. This
result has benefits from a realisability standpoint, since suppression monitors
are easier to implement in general; data-dependent insertions/replacements
need to determine the payload carried by the inserted/replaced events,
which is not always a function of the data observed by monitoring up to
that point, and may not necessarily be in line with typical default values
in the case of certain data domains (e.g., the value 0 is often chosen as
the default value for the natural numbers but there many be properties
for which this is inadequate). To assess the correctness of this mapping we
provide enforceability results, namely, Theorems 3 (Enforcement) and 5
(Normalisation Equivalence) (but also Theorem 4 (Weak Enforcement)).

As a by-product of this study, we also develop a provably correct synthesis
function, Definition 10, that can then be used for tool construction, along the
lines of [48–53].

Structure of the paper: Section 2 revisits labelled transition systems and
presents our touchstone logic, µHML, extended to a first-order setting. The
operational model for data-oriented enforcement monitors and instrumentation
is given in Section 3. In Section 4 we formalise the interdependent notions of
correct enforcement and enforceability. These notions act as a foundation for
the development of a synthesis function in Section 5, which produces correct-
by-construction monitors from normalised safety formulas. In Section 6 we
then show that when restricted to safety properties, our notions of correct
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enforcement from Section 4 coincide. Section 7 concludes and discusses related
and future work. This article is an extended version of [54]; it includes expanded
explanations and examples, complete proofs and additional results, including
a comparison of our enforcement definitions, Theorem 2 in Section 4 and
Theorem 6 in Section 6, and a detailed explanation in Section 5.2 of a result
showing that every formula definable by a fragment of the safety subset of
µHML can be normalized into an equivalent formula that adheres to a stricter
syntax, Theorem 5.

2 Preliminaries

The Model: We assume image-finite systems that are described as labelled
transition systems (LTSs), consisting of triples ⟨Sys,Act∪ {τ} ,→⟩ defining a
set of system states, s, r, q ∈Sys, a set of observable actions, α, β ∈Act, and
a distinguished silent action τ /∈Act along with a transition relation, −→ ⊆
(Sys×Act∪{τ}×Sys). We use the dedicated variable µ∈Act∪ {τ} to range

over both silent and observable actions. We write s
µ−−→ r in lieu of (s, µ, r) ∈→,

and s
α
==⇒ r to denote weak transitions representing s(

τ−→)∗· α−−→ ·( τ−→)∗r and

refer to r as a α-derivative of s. The syntax of the regular fragment of CCS [55]
is occasionally used to concisely describe LTSs in our examples. We include
its syntax and LTS semantics for completeness. Apart from recursion, recx.s,
the two main constructs of regular CCS are action prefixing, µ.s, and n-ary
choice,

∑
i∈I si where |I| = n (for the binary case when n = 2, we simply write

s1 + s2). Their behaviour is fairly standard, as their respective transition rules
show (e.g., µ.s transitions to state s by emitting the action µ).

s, r ∈ rCCS ::= nil | µ.s |
∑

i∈I si | recx.s | x

µ.s
µ−−→ s

sj
µ−−→ rj∑

i∈I si
µ−−→ rj

j∈I
s{recx.s/x} µ−→ r

recx.s
µ−→ r

Traces t, u ∈ Act∗ range over (finite) sequences of observable actions, and

we write s
t
=⇒ r to denote a sequence of weak transitions s

α1===⇒ . . .
αn===⇒ r for

t = α1, . . . , αn for some n ≥ 0. When n = 0, t is the empty trace ε and s
ε
==⇒ r

means s
τ−→*r. We also assume the classic notions of strong similarity, s⊏∼ r,

and bisimilarity, s ∼ r, for our model [55, 56], using them as our touchstone
system preorder and equivalence relations respectively.

Definition 1 (Strong Similarity and Bisimilarity)
A relation R over a set of system states is a strong simulation iff whenever
(s, r) ∈ R for every action µ:

– every s
µ−−→ s′ implies there exists a transition r

µ−−→ r′ such that (s′, r′) ∈ R
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Syntax

φ,ψ ∈ µHML ::= tt (truth) | ff (falsehood) |
∨

i∈I ψi (disjunction)

|
∧

i∈I ψi (conjunction) | ⟨⁅p, c⁆⟩φ (possibility) | [⁅p, c⁆]φ (necessity)

| minX.φ (least fp.) | maxX.φ (greatest fp.) | X (fp. variable)

Semantics

Jtt, ρK def
= Sys Jff, ρK def

= ∅ JX, ρK def
= ρ(X)

J
∧

i∈I φi, ρK
def
=

⋂
i∈IJφi, ρK JmaxX.φ, ρK def

=
⋃{

S | S ⊆ Jφ, ρ[X 7→ S]K
}

J
∨

i∈I φi, ρK
def
=

⋃
i∈IJφi, ρK JminX.φ, ρK def

=
⋂{

S | Jφ, ρ[X 7→ S]K ⊆ S
}

J [⁅p, c⁆]φ, ρK def
=
{
s | (∀α, r, σ · s α

=⇒ r and mtch(p, α)=σ and cσ ⇓ true) implies r ∈ Jφσ, ρK
}

J⟨⁅p, c⁆⟩φ, ρK def
=
{
s | ∃α, r, σ · (s

α
=⇒ r and mtch(p, α)=σ and cσ ⇓ true and r ∈ Jφσ, ρK)

}
Fig. 1 The syntax and semantics for µHML.

States s and r are similar, s⊏∼ r, iff they are related by a strong simulation.
A relation R over a set of system states is a strong bisimulation iff whenever

(s, r) ∈ R for every action µ, the following transfer properties are satisfied:

– every s
µ−−→ s′ implies there exists a transition r

µ−−→ r′ s.t. (s′, r′) ∈ R; and

– every r
µ−−→ r′ implies there exists a transition s

µ−−→ s′ s.t. (s′, r′) ∈ R.

Two system states s and r are bisimilar, s ∼ r, iff there exists a strong
bisimulation that relates them.

The Logic: We consider a slightly generalised version of µHML [30, 57] that
uses symbolic actions (SAs) of the form ⁅p, c⁆, in contrast to the conventional
concrete actions, α. Patterns, p, abstract over actions using data variables
d, e, f ∈ DVar. Variables in a pattern may either occur free, d, or as binders,
(d) where a closed pattern is one without any free variables. We use function
bv(p) to denote the set of binders in p, and fv(c) to represent the set of free
variables referenced in condition c.

We assume a (partial) matching function for closed patterns mtch(p, α)
that (when successful) returns a substitution σ mapping variables in p to the
corresponding values in α. For instance, if we match the pattern i?(d) with
the (concrete) action i?5 using mtch(i?(d), i?5) we obtain the data substitution
{d 7→ 5}. The filtering condition, c, contains variables found in p and is
evaluated with respect to the substitutions returned by successful matches,
written as cσ ⇓ b where b ∈ {true, false}. Put differently, a closed SA, ⁅p, c⁆,
is one where p is closed and fv(c) ⊆ bv(p); it denotes the set of actions
J⁅p, c⁆K def

= { α ∃σ ·mtch(p, α)=σ and cσ ⇓ true }. The use of symbolic actions
allows for more adequate reasoning about LTSs with infinite actions (e.g.,
actions carrying data from infinite domains).

Example 1 Symbolic action ⁅(d)?(e), e=1⁆ is valid since (fv(e=1) = {e}) ⊆
(bv((d)?(e)) = {d, e}), but actions ⁅(d)?e, e = 1⁆ and ⁅(d)?1, e = 1⁆ are invalid
since fv(e=1) ⊈ (bv((d)?e) = {d}).
Two symbolic actions, ⁅p1, c1⁆ and ⁅p2, c2⁆, are said to be equivalent when
J⁅p1, c1⁆K = J⁅p2, c2⁆K, and pattern equivalent when J⁅p1, true⁆K = J⁅p2, true⁆K.
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The syntax of the logic is given in Figure 1 and assumes a countably infinite
set of logical variables X,Y ∈LVar. It provides standard logical constructs
such as truth, falsehood, conjunctions and disjunctions:

∧
i∈I φi describes a

compound conjunction, φ1∧ . . .∧φn, where I = {1, .., n} is a finite set of indices,
and similarly for disjunctions. It allows for defining recursive properties using
the greatest and least fixpoints, maxX.φ and minX.φ, both of which bind free
occurrences of X in φ. The logic also uses universal and existential modal
operators defining symbolic actions, [⁅p, c⁆]φ and ⟨⁅p, c⁆⟩φ, where bv(p) bind
free data variables in c and φ. Formulas in µHML are interpreted over the
system powerset domain where S∈P(Sys). The semantic definition of Figure 1,
Jφ, ρK, is given for both open and closed formulas. It employs a valuation from
logical variables to sets of states, ρ ∈ (LVar → P(Sys)), which permits an
inductive definition on the structure of the formulas; ρ′ = ρ[X 7→ S] denotes a
valuation where ρ′(X) = S and ρ′(Y ) = ρ(Y ) for all other Y ≠ X. The semantic
definition of Figure 1 uses also the substitution operation φσ substituting each
free occurrence of data variables in the formula φ by their corresponding values,
according to the substitution σ. The only non-standard cases are those for the
modal formulas, due to the use of SAs.

Note however that we recover the standard logic for symbolic actions,
⁅p, c⁆, when the data variables in pattern p are all equated to a single value
in condition c, e.g., a concrete action α = i?v is equivalent to symbolic action
⁅(d)?(e), d = i ∧ e = v⁆ which can alternatively be written as ⁅i?v, true⁆ in short-
hand notation. We refer to these as singleton symbolic actions and in such cases
we simply write [α]φ and ⟨α⟩φ for short, thus eliding the condition “true”. We
assume closed formulas, i.e., without free logical and data variables, and write
JφK in lieu of Jφ, ρK since the interpretation of a closed φ is independent of the
valuation ρ. A system s satisfies formula φ whenever s∈ JφK; a formula φ is
satisfiable, whenever there exists a system r such that r ∈ JφK, i.e., JφK ̸= ∅.

In [58], Hennessy and Milner proved a powerful result linking the notion of
strong bisimilarity to the logic used in this paper, by establishing that strong
bisimilar image-finite systems satisfy the same set of properties (restated as
Theorem 1 below). A consequence of this theorem is that non-bisimilar systems
can be distinguished by finding a property that is satisfied by one but not the
other. Although this result was originally given in relation to the Hennessy-
Milner logic (without recursion), it still applies to the full µHML [59, 60].

Theorem 1 (Hennessy-Milner Theorem [58]) Let s and r be two states
of an image-finite LTS such that when s ∼ r then both s and r satisfy exactly
the same µHML formulas.

Example 2 Consider two systems (a good system, sg, and a bad one, sb)
implementing a server that interacts on port i, repeatedly accepting requests
that are answered by outputting on the same port, and terminating the service
once a close request is accepted (on the same port). Whereas sg outputs a
single answer (i!ans) for every request (i?req), sb occasionally produces multiple
answers for a given request (see the underlined branch in the description of sb
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below). Both systems terminate with i?cls.

sg = recx.
(
i?req.i!ans.x+ i?cls.nil

)
sb = recx.

(
i?req.(i!ans.x + i!ans.i!ans.x) + i?cls.nil

)
We can specify that a request followed by two consecutive answers on port i
indicates invalid behaviour via the µHML formula φ0.

φ0
def

= [i?req]maxX.[i!ans]([i!ans]ff∧[i?req]X)

It defines an invariant property (maxX. (. . . )) requiring that whenever the
system interacting on port i outputs an answer following a request, it cannot
output a subsequent answer, i.e., [i!ans]ff, unless it inputs a request beforehand,
in which case the formula recurses, i.e., [i?req]X.

Using symbolic actions, we can generalise φ0 to a first-order setting by
requiring the property to hold for any interaction happening on any port
number except j.

φ1
def

= [⁅(d)?req, d̸=j⁆]maxX.[⁅d!ans, true⁆]([⁅d!ans, true⁆]ff∧[⁅d?req, true⁆]X)

In φ1, (d)?req binds the free occurrences of d found in d ̸=j and in the con-
tinuation formula maxX.[⁅d!ans, true⁆]([⁅d!ans, true⁆]ff∧[⁅d?req, true⁆]X). Using
the semantics in Figure 1, one can check that sg∈Jφ1K, whereas sb ̸∈Jφ1K since

sb
i?req−−−→ · i!ans−−−→ · i!ans−−−→ . . .

3 An Operational Model for Enforcement

Our operational mechanism for enforcing properties over systems uses the
(symbolic) transducers m,n ∈ Trn defined in Figure 2. Transducers are a
special kind of monitors that define symbolic transformation triples, ⁅p, c, p′⁆,
consisting of the action pattern and condition, p and c resp., along with the
transformation pattern p′. The action pattern and condition determine whether
or not the transformation should be applied to an action α, or if the monitor
should act independent of the system. The transformation pattern specifies
the kind of transformation that should be applied. Transformations therefore
permit the transducer to suppress, replace or insert actions.

The syntax of our transducers assumes a well-formedness constraint where
for every ⁅p, c, p′⁆.m, bv(c)∪bv(p′) = ∅. The transition rules in Figure 2
assume closed terms, i.e., for every transformation-prefix transducer of the
form ⁅p, c, p′⁆.m, p is closed and

(
fv(c)∪fv(p′)∪fv(m)

)
⊆ bv(p), and yield an

LTS with labels of the form γ▶γ′, where γ, γ′ ∈ (Act∪{•}) and • is a monitor
action − the matching function is lifted to these extended actions in the obvious
way, where mtch(•, •)=∅.

Intuitively, a transition m
α▶γ−−−→ n denotes the fact that the transducer in

state m transforms the visible action α (produced by the system) into action γ
and transitions into state n. In this sense, the transducer action α▶β represents

8



Syntax

m,n ∈ Trn ::= ⁅p, c, p′⁆.m |
∑

i∈I mi | recx.m | x

Dynamics

eSel
mj

γ▶γ′
−−−−→ nj∑

i∈I mi
γ▶γ′

−−−−→ nj

j∈I eRec
m{recx.m/x} γ▶γ′

−−−−→ n

recx.m
γ▶γ′
−−−−→ n

eTrn
mtch(p, γ) = σ cσ ⇓ true γ′ = p′σ

⁅p, c, p′⁆.m
γ▶γ′

−−−−→ mσ

Instrumentation

iTrn s
α−→ s′ m

α▶β−−−→ n

m[s]
β−→ n[s′]

iSup s
α−→ s′ m

α▶•−−−→ n

m[s]
τ−→ n[s]

iIns m
•▶α−−−→ n

m[s]
α−→ n[s]

iAsy s
τ−→ s′

m[s]
τ−→ m[s′]

iDef
s

α−→ s′ m ̸α−→ m ̸•−→

m[s]
α−→ id[s′]

where id
def
= rec y.⁅(d)!(e), true, d!e⁆.y + ⁅(d)?(e), true, d?e⁆.y.

Fig. 2 A model for transducers (I is a finite index set and m ̸γ−−→ means ∄γ′, n ·m γ▶γ′
−−−−→n)

the replacing of α by β, and α▶α denotes the identity transformation. Cases
α▶• and •▶α resp. encode the suppression and insertion transformations of
action α; in the former, • signifies the removal of action α from the execution
of the monitored system, while in the latter it represents a monitor transition
that introduces an action α that was not induced by the system.

The key transition rule in Figure 2 is eTrn. It states that the transformation-
prefix transducer ⁅p, c, p′⁆.m can transform an extended action γ into a different
action γ′, as long as the action matches with pattern p yielding substitution σ
( ̸= undef), mtch(p, γ)=σ, and the condition is satisfied by σ, cσ ⇓ true. In such
a case, the transformed action is γ′=p′σ, i.e., the action γ′ resulting from the
instantiation of the free data variables in pattern p′ with the corresponding
values mapped by σ, and the transducer state reached is mσ. The remaining
rules for recursion (eRec) and selection (eSel) are standard. We encode the
identity monitor, id, as a recursive monitor defining identity transformations
that match every possible action.

Figure 2 also describes an instrumentation relation, which relates the
behaviour of the SuS s with the transformations of a transducer monitor
m that agrees with the (observable) actions Act of s. The term m[s] thus
denotes the resulting monitored system whose behaviour is defined in terms of
Act∪{τ} from the system’s LTS. Concretely, rule iTrn states that when a
system s transitions with an observable action α to s′ and the transducer m
can transform this action into β and transition to n, the instrumented system
m[s] transitions with action β to n[s′]. However, when s transitions with a
silent action, rule iAsy allows it to do so independently of the transducer.
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Rule iSup states that if the system performs an action α that the monitor
can suppress into •, the composite system transitions silently over τ . Dually,
with rule iIns the composite system transitions over an action α when the
transducer is able to insert α independently of the behaviour of s. Rule iDef
is analogous to standard monitor instrumentation rules for premature termina-
tion of the transducer [11, 13, 61, 62], and accounts for underspecification of
transformations. Thus, if a system s transitions with an observable action α
to s′, and the transducer m does not specify how to transform it (m ̸α−→), nor

can it transition to a new transducer state by inserting an action (m ̸•−→), the
system is still allowed to transition while the transducer defaults to acting like
the identity monitor, id, from that point onwards. It is worth highlighting that
the instrumentation is evidence based : the transitions of a monitored system
only rely on actual transitions of the SuS and are never based on other SuS
aspects such as the transitions it cannot do (as is the case for the monitor with

premises m ̸α−→ and m ̸•−→ in rule iDef). This manifests a black-box treatment
of the SuS.

Example 3 Consider the insertion transducer mi and the replacement trans-
ducer mr below:

mi
def

= ⁅(d)?req, true, d?req⁆.⁅•, true, i!ans⁆.id

mr
def

= recx.

(
⁅(d)?req, true, j?req⁆.x + ⁅(d)!ans, true, j!ans⁆.x

+ ⁅(d)?cls, true, j?cls⁆.x

)
.

When instrumented with a system, mi inserts action i!ans, after the system
inputs a request i?req, before behaving as the identity transducer. Concretely,
the system mi[sb], where sb is from Example 2, can only start the computation
as follows:

mi[sb]
i?req−−−→ ⁅•, true, i!ans⁆.id[s′b]

i!ans−−−→ id[s′b]
i!ans−−−→ . . .

(where s′b = i!ans.sb + i!ans.i!ans.sb).

By contrast, mr transforms input actions with either payload req or cls and
output actions with payload ans on any port name, into the respective actions
on port j. For instance, we have that:

mr[sb]
j?req−−−−→ mr[s

′
b]

j!ans−−−−→ mr[sb]
j?cls−−−→ mr[nil].

Consider now the two suppression transducers ms and mt for actions on ports
other than j:

ms
def

= recx.
(
⁅d?req, true, d?req⁆.x+ ⁅(d)!ans, d ̸= j, •⁆.x

)
mt

def

= ⁅(d)?req, true, d?req⁆.recx.
(
⁅d!ans, true, d!ans⁆.

rec y.
(
⁅d!ans, true, •⁆.y + ⁅d?req, true, d?req⁆.x

))
.
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Monitor ms suppresses every answer on ports other than j, and continues to
do so after every request on such ports. When instrumented with sb from
Example 2, we can observe the following behaviour:

ms[sb]
i?req−−−→ ms[s

′
b]

τ−→ ms[sb]
i?req−−−→ ms[s

′
b]

τ−→ ms[sb] . . .

Note that ms does not specify a transformation behaviour for when the moni-
tored system produces inputs with payload other than req. The instrumentation
handles this underspecification by defaulting to the identity transducer; in the

case of sb we get ms[sb]
i?cls−−−→ id[nil].

Transducer mt performs slightly more elaborate transformations. For inter-
actions on ports other than j, it suppresses consecutive answers that are output
by the system following any serviced request (i.e., a req input on i followed by
an ans output on i) sequence. For sb we can observe the following:

mt[sb]
i?req·i!ans
=======⇒ rec y.

(
⁅i!ans, true, •⁆.y + ⁅i?req, true, i?req⁆.m′

t

)
[i!ans.sb]

τ−→ rec y.
(
⁅i!ans, true, •⁆.y + ⁅i?req, true, i?req⁆.m′

t

)
[sb]

where

m′
t

def

= recx.
(
⁅i!ans, true, i!ans⁆.rec y.

(
⁅i!ans, true, •⁆.y + ⁅i?req, true, i?req⁆.x

))
In the sequel, we find it convenient to refer to p as the transformation

pattern p where all its binding occurrences are converted to free occurrences,
e.g., (d)!(e) denotes d!e. As shorthand notation, we elide the second pattern p′

in a transducer ⁅p, c, p′⁆.m whenever p′=p and simply write ⁅p, c⁆.m; note that
if bv(p) = ∅, then p=p. Similarly, we elide c whenever c=true. This allows us to

express mt from Example 3 as ⁅(d)?req, d ̸= j⁆.recx.
(
⁅d!ans⁆.rec y.

(
⁅d!ans, •⁆.y+

⁅d?req⁆.x
))
.

4 Enforcement and Enforceability

We investigate what it means for the monitors and instrumentation defined
in Figure 2 to enforce a branching-time property. We follow the template of
previous work such as Ligatti et al. [4] and define enforcement in terms of two
criteria:

(Enforcement) Soundness which requires that enforced behaviour should in-
deed satisfy the property being enforced; and

(Enforcement) Transparency which regulates the extent of intervention of the
enforcing monitor whenever the system, or exhibited behaviour, already
satisfies the property being enforced.

There are, however, important differences that are specific to our setting of
Figures 1 and 2 that prevent us from directly using existing definitions for
these two criteria. For one, branching-time properties are defined over the
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computation graph of the SuS which might have several executions apart from
the one that is currently being observed; by contrast, linear-time properties
in prior RE investigations describe how the current execution is expected to
be. For two, our monitor operational model is different from those assumed by
other formal studies of enforcement. Concretely, it can handle first-order events
where the data can be learnt at runtime whereas monitors used by other formal
studies of enforcement cannot. In addition, we purposefully use an operational
model that can potentially express non-deterministic monitor behaviour; As
shown in prior work [25, 61–68], non-deterministic monitor behaviour is prone
to arise in contexts such as first-order properties and automated monitor
synthesis. Since we later consider automated monitor synthesis, we wanted to
assume a framework that incorporates such behaviour in order to force our
enforcement definitions to take it into consideration.

In the case of enforcement soundness, we should expect that whenever the
monitor m enforces the property φ, then for any system s, the resulting com-
posite system obtained from instrumenting m with it following the operational
semantics of Figure 2, m[s], should satisfy the property of interest, φ. Note that
a monitor m could, in principle, still satisfy soundness for the property φ even
if it behaves non-deterministically, as long as all the possible non-deterministic
enforcement operations employed all fall within the behaviour specified by φ.
There is, of course, a caveat: the property being enforced must be satisfiable,
i.e., JφK ̸= ∅, for otherwise it would be impossible for the enforcing monitor to
produce any satisfying behaviour.

Definition 2 (Sound Enforcement) Monitor m soundly enforces a formula
φ, denoted as senf(m,φ), iff for every LTS ⟨Sys,Act ∪ {τ} ,→⟩ and system
states s∈Sys, JφK ̸= ∅ implies m[s]∈ JφK.

Example 4 In general, showing that a monitor soundly enforces a formula
requires showing this for every possible system. However, in this example we
give an intuition based on systems sg and sb. So recall φ1, sg and sb from
Example 2 where sg ∈ Jφ1K (hence φ1 is satisfiable) and sb ̸∈ Jφ1K. For the
monitors mi, mr, ms and mt presented in Example 3, we have that:

– mi[sb]/∈Jφ1K, since mi[sb]
i?req−−−→ (⁅•, i!ans⁆.id)[s′b]

i!ans−−−→ id[s′b]
i!ans−−−→ id[sb].

This counter-example implies that ¬senf(mi, φ1).
– mr[sg]∈Jφ1K and mr[sb]∈Jφ1K. Intuitively, this is because the ensuing in-

strumented systems only generate (replaced) actions that are not of concern
to φ1. Since this behaviour applies to any system mr is composed with, we
can conclude that senf(mr, φ1).

– ms[sg]∈Jφ1K and ms[sb]∈Jφ1K because the resulting instrumented systems
never produce outputs with ans on a port number other than j. We can
thus conclude that senf(ms, φ1).

– mt[sg]∈Jφ1K and mt[sb]∈Jφ1K. Since the resulting instrumentation sup-
presses consecutive answers (if any) after any number of serviced requests
on any port other than j, we can conclude that senf(mt, φ1).

12



By itself, sound enforcement is a relatively weak requirement for adequate
enforcement as it does not regulate the extent of the induced enforcement.
More concretely, consider the case of monitor ms from Example 3. Although
ms manages to suppress the violating executions of system sb, thereby bringing
it in line with property φ1, it needlessly modifies the behaviour of sg (namely
it prohibits it from producing any outputs with ans on port numbers different
from j), even though it satisfies φ1. Thus, in addition to sound enforcement it
is customary to also require a transparency condition for adequate enforcement.
Since our properties of interest (i.e., first-order branching-time properties)
describe execution graphs, one possible interpretation of such requirement
dictates that, whenever a system s already satisfies the property φ, the assigned
monitor m should not alter the behaviour of s. Put differently, the behaviour
of the enforced system should be equivalent to that of the original system.
Again, there are various possible candidates for what constitutes to be an
adequate notion of behavioural equivalence, such as trace equivalence, mutual
simulation, (strong) bisimulation and weak bisimulation[56, 69]. We here opt
for the strongest possible definition from those mentioned, namely (strong)
bisimulation (Definition 1), which also implies all of the other equivalences
mentioned here (i.e., if two systems are strongly bisimilar, they are also weakly
bisimilar, mutually similar and trace equivalent).

Definition 3 (Transparent Enforcement) A monitor m is transparent
when enforcing a formula φ, denoted as tenf(m,φ), iff for all LTSs ⟨Sys,Act∪
{τ} ,→⟩ and system states s ∈ Sys, whenever s ∈ JφK then m[s] ∼ s.

Example 5 We have already argued—via the counter-example sg—whyms does
not transparently enforce φ1. We can also argue easily why ¬tenf(mr, φ1) also
holds: the simple system i?req.i!ans.nil trivially satisfies φ1 but, clearly, we have

the inequality mr[i?req.i!ans.nil] ̸∼ i?req.i!ans.nil since mr[i?req.i!ans.nil]
j?req−−−→

mr[nil] and i?req.i!ans.nil ̸j?req−−−−→.
It turns out, however, that tenf(mt, φ1) holds. Although this property is

not as easy to show—due to the universal quantification over all systems—we
can get a fairly good intuition for why this is the case via the example sg, since
this system satisfies φ1 and one can easily establish that mt[sg] ∼ sg holds.

This brings us to our first formal definition of what “(monitor) m enforces
(property) φ” can be interpreted to mean in a branching-time setting.

Definition 4 (Enforcement) A monitor m enforces property φ whenever
it does so (i) soundly, as specified in Definition 2, and (ii) transparently, as
specified in Definition 3.

We note a few important aspects from Definition 4. First, the definition
requires that, for a specific property, a monitor enforces any system both
soundly and transparently. Put differently, we could have consolidated the
respective universal quantifications in both Definitions 2 and 3 into a single
outer quantification without changing the semantics of Definition 4. However,
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this format allows for better modularity since soundness and transparency
can be understood in isolation. Second, our choice of process equivalence in
Definition 3 restricts the non-deterministic behaviour of an enforced system
since strong bisimulation is one of the finest equivalences; coarser choices for
process equivalence would allow more non-deterministic behaviour on the part
of the monitor. Third, the transparency requirement of Definition 4, by way of
Definition 3, only restricts monitors from modifying the behaviour of satisfying
systems, i.e., when s∈JφK, but fails to specify any enforcement behaviour for
the cases when the SuS violates the property.

Example 6 Recall φ1 and sb from Example 2, and also mt from Example 4.
Even though sb ̸∈ Jφ1K, not all of its exhibited behaviours constitute violating

traces: for instance, sb
i?req·i!ans·i?cls
==========⇒ nil is not a violating trace, meaning that a

system that only executes this trace satisfies φ1, e.g., i?req.i!ans.i?cls.nil ∈ Jφ1K.
Correspondingly, we also have mt[sb]

i?req·i!ans·i?cls
==========⇒ id[nil].

We thus consider an alternative transparency requirement for a property φ
that incorporates the expected enforcement behaviour for both satisfying and
violating systems. More concretely, transparency can be redefined by quantifying
over the behaviours exhibited by the system, i.e., their traces, rather than on
the systems themselves. This trace-based version of transparency – hereinafter
referred to as trace transparency – resembles the classical definitions that are
prevalent in the runtime enforcement literature [4, 28, 70]. Monitors adhering
to trace transparency must ensure that if a system trace is correct, regardless
of whether it originates from a valid or invalid system, the monitor should
refrain from modifying it. We define trace transparency, Definition 6, in terms
of trace-systems, sys(t), as defined in Definition 5.

Definition 5 (Trace System) A system sys(t) is a trace system for a trace
t if it can only execute t and all of its prefixes. Multiple trace systems for t are
therefore bisimilar.

Definition 6 (Trace Transparent Enforcement) A monitor m adheres
to trace transparency when enforcing a formula φ, denoted as ttenf(m,φ) if for

every trace t, when sys(t) ∈ JφK andm[sys(t)]
t′
==⇒ m′[sys(t′′)] then t = t′t′′.

Going back to Example 6, a trace-transparent monitor mtt ensures that
although sb /∈ Jφ1K, its valid traces, such as i?req.i!ans.i?cls.ε, would not be mod-
ified at runtime, that is, since sys(i?req.i!ans.i?cls.ε) ∈ Jφ1K, every instrumented

trace u where mtt[sys(i?req.i!ans.i?cls.ε)]
u
==⇒, is a prefix of i?req.i!ans.i?cls.ε.

Proving that a monitor adheres to trace-transparency is, however, not an
easy task as a result of the universal quantification over all possible traces.

Example 7 Consider a monitor m1 = ⁅a, true⁆.recx.⁅b, true, •⁆.x and formula
φ2 = ⟨a⟩[b]ff. To prove that ttenf(m1, φ2) holds we must show that for every

trace t, if sys(t)∈ Jφ2K and m1[sys(t)]
t′
==⇒ m′

1[sys(t
′′)] then t = t′t′′. We thus

inspect the following cases for t.
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(a) t= ab.u (for some suffix u): This case holds vacuously since sys(ab.u) /∈ Jφ2K.
(b) t ̸= ab.u: This case also holds since monitorm1 is unable to modify any trace

that is not prefixed by ab, which means that for all t′ when m1[sys(t)]
t′
==⇒

m′
1[sys(t

′′)] then t = t′t′′ as required.

Hence, from (a) and (b) we can conclude that ttenf(m1, φ2) holds.

Although Definition 3 (Transparency) and Definition 6 provide two dif-
ferent ways of defining transparency, our first main result shows that trace
transparency is in fact a weaker instance of Definition 3.

Theorem 2 (ttenf vs. tenf) For every monitor m and µHML formula φ,

(i) tenf(m,φ) implies ttenf(m,φ); and that
(ii) ttenf(m,φ) does not imply tenf(m,φ).

Proof. The proof for (i) follows immediately from Definitions 3 and 6 since
trace systems are a subset of the possible system states of LTSs.

To prove (ii) it suffices to find a single monitor and formula that adhere to
Definition 6 but not to Definition 3. Recall the result proven in Example 7 which
states that ttenf(m1, φ2). Using this as a counter example entails showing that
tenf(m1, φ2) is false. Hence, if we consider system s1 = a.b.nil+ a.c.nil, despite

s1 ∈ Jφ2K, we also know that m1[s1 ]̸∼s1 since s1
a−→ · b−→ nil while m1[s1] ̸ab==⇒.

This proves that tenf(m1, φ2) does not hold as required, and we are done.

With this result we can thus give a weaker definition for “m enforces φ”
then the one in Definition 4 by requiring sound enforcement, Definition 3, and
trace transparency, Definition 6 (instead of the transparent enforcement of
Definition 3). We formally detail this in Definition 7. Theorem 2 also suggests
an important observation, namely that the enforcement of branching-time
properties occasionally necessitates criteria that are more stringent than those
for enforcement in linear-time settings, such as those in [4, 28, 70].

Definition 7 (Weak Enforcement) A monitor m enforces formula φ when-
ever it adheres to (i) soundness, Definition 2, and (ii) trace transparency,
Definition 6.

Enforceability: Definitions 4 and 7 establish a relationship between the
semantic behaviour specified by a behavioural correctness property on the
one hand, and the ability of the operational mechanism (e.g., the transducers
and instrumentation of Section 3) to enforce the specified behaviour on the
other. Said definitions can form the foundation for establishing enforceability,
a characteristic describing whether a correctness property can be enforced.
This characteristic can be extended to a logic (or a logical fragment) that is
providing a syntactic description of such properties. It could then be utilised
by automation tools as a filtering principle when attempting to synthesise
monitors from these syntactic descriptions of properties, as argued already
in [32] for the case of runtime verification.

15



Definition 8 (Enforceability) A formula φ is enforceable iff there exists a
transducer m such that m enforces φ. A logic L is enforceable iff every formula
φ ∈ L is enforceable.

We note a few aspects of Definition 8. First, a formula is enforceable only
if (at least) one monitor can be identified to carry out all the necessary
enforcement irrespective of which SuS it is composed with. Put differently,
Definition 8 does not allow us to use prior knowledge about SuS to select the
most appropriate monitor to carry out the enforcement; this exemplifies a
black-box treatment of the SuS. Second, Definition 8 is parametric and depends
on what is considered to be an adequate definition for “m enforces φ”. Thus,
both Definitions 4 and 7 can be plugged into Definition 8 to yield different
definitions for what it means for a logic/property to be enforceable.

It is worth noting that the question of whether a logic is enforceable or
not is challenging. More concretely, for reasonably expressive logics (such as
µHML), it is usually the case that not every formula can be enforced, as the
following example illustrates. This can be problematic from the point of view
of a tool construction that aims to automatically synthesise monitors from
specifications expressed as formulas of a logic of choice [32].

Example 8 Consider the µHML property φor (an instantiation of the formula
discussed in the introduction), with the two systems s4 and s2:

φor
def

= [i!v]ff ∨ [j!w]ff s2
def

= i!v.nil s3
def

= j!w.nil s4
def

= s2 + s3

A system satisfies φor if either it cannot produce action i!v or it cannot produce
action j!w. Clearly, s4 violates this property as it can produce both. This
system can only be enforced by suppressing or replacing either one of the
actions, because insertions would immediately break transparency. Without
loss of generality, assume that our monitors suppress actions (the same applies
for action replacement). The monitor m2

def

= rec y.
(
⁅i!v, •⁆.y + ⁅j!w, •⁆.y

)
would

be able to suppress the offending actions produced by s4, thus obtaining
m2[s4] ∈ JφorK. However, it also suppresses the sole actions i!v and j!w produced
by s2 and s3 resp. even though they both satisfy φor. This would, in turn,
infringe the transparency criterion of Definition 3 since it needlessly suppresses
the actions of s2 and s3, i.e., although s2, s3 ∈ JφorK we have m2[s2] ̸∼ s2
and similarly for s3. Note that a weaker version of m2, such as rec y.⁅i!v, •⁆.y
(resp. rec y.⁅j!w, •⁆.y) still breaches transparency as it modifies s2 (resp. s3)
unnecessarily. Similarly, m2 also violates the weaker requirement of trace-
transparency, Definition 6. Although every trace executable by s2, s3 and s4,

i.e., t ∈ {(i!v)ε, (j!w)ε}, is valid, sys(t) ∈ JφorK, we can deduce thatm2[sys(t)] ̸ t−→.
The intuitive reason for this is that a monitor cannot, in principle, look into
the computation graph of a system, but is limited to the current trace.

5 Synthesising Suppression Monitors

Despite their merits, Definitions 4, 7 and 8 are not easy to work with. The
universal quantifications over all systems (in all LTSs) in Definitions 2 and 3, and
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φ,ψ ∈ sHML ::= tt | ff |
∧

i∈I φi | [⁅p, c⁆]φ | X | maxX.φ

Fig. 3 The syntax for the safety µHML fragment, sHML.

over all traces in Definition 6, make it hard to establish that a monitor correctly
enforces a property. Moreover, according to Definition 8, in order to determine
whether a particular property is enforceable or not, one would need to show
the existence of a monitor that correctly enforces it; put differently, showing
that a property is not enforceable entails another universal quantification,
this time showing that no monitor can possibly enforce the property (recall
that Example 8 has show that this is not necessarily the case). Lifting the
question of enforceability to the level of a (sub)logic entails a further universal
quantification, this time on all the formulas of the logic.

We address these problems in two ways. First, we identify a non-trivial
syntactic subset of µHML that is guaranteed to be enforceable; in a multi-
pronged approach to system verification, this result could act as a guide
for whether the property should be considered at a pre-deployment or post-
deployment phase. Second, for every formula φ in this enforceable subset,
we provide an automated procedure to synthesise a monitor m from it that
correctly enforces φ when instrumented over arbitrary systems, according to
Definition 4. This procedure can then be used as a basis for constructing tools
that automate property enforcement, similar to what has been argued for the
case runtime verification [32].

In the sequel, we sharpen our enforceability study to the use of suppression
monitors, i.e., transducers that are only allowed to intervene by dropping
system actions. Despite being more constrained, suppression monitors side-
step problems associated with what data to use in a payload-carrying action
generated by the monitor, as in the case of insertion and replacement monitors:
the notion of a default value for certain data domains is not always immediate.
This makes suppression monitors substantially easier to implement in practice.
In our case, the resulting monitor model of Section 3 restricted to suppression
yields one that is very similar to the models proposed for runtime verification
in [1, 11, 13, 62], which have been implemented as part of the detectEr tool
suite1 and shown to induce feasible overheads [51, 71, 72]. By extension, we
conjecture that our suppression monitors also induce minimal overheads when
implemented in programming language environments similar to that targetted
by detectEr. This also means that the first-order logic we consider in this
section can be enforced in a feasible manner in practice.

Intuitively, a suppression monitor would suppress the necessary actions as
soon as it becomes apparent that a violation is about to be committed by the
SuS. Such an intervention intrinsically relies on the detection of a violation.
To this effect, we use a prior result from [11], which identified a maximally-
expressive logical fragment of µHML that can be handled by violation-detecting
(recogniser) monitors. We therefore limit our enforceability study to a variant

1 https://duncanatt.github.io/detecter/
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of this maximal safety fragment, called sHML, since a transparent suppression
monitor cannot judiciously suppress actions without first detecting a (potential)
violation. In Figure 3 we recall the syntax for sHML, which restricts the logic to
truth and falsehood (tt and ff), conjunctions (

∧
i∈I φ, for some finite, non-empty,

index set I) and only allows for recursion to be expressed through greatest
fixpoints (maxX.φ). The semantics for these constructs follows from that of
Figure 1.

A standard way how to achieve our aims would be to (i) define a (total)
synthesis function L− M : sHML 7→ Trn from sHML formulas to suppression
monitors and (ii) then show that for any φ ∈ sHML, the synthesised monitor
Lφ M enforces φ according to Definition 4 and Definition 7. Moreover, we would
also require the synthesis function to be compositional, whereby the definition
of the monitor for a composite formula is defined in terms of the monitors
obtained for the constituent subformulas. There are a number of reasons for this
requirement. For one, it would simplify our analysis of the produced monitors
and allow us to use standard inductive proof techniques to prove properties
about the synthesis function, such as the aforementioned criterion (ii). However,
a naive approach to such a scheme is bound to fail, as discussed in the next
example.

Example 9 Consider an equivalent reformulation of φ1 from Example 2.

φ4
def

= [⁅(d)?req, d̸=j⁆]maxX.

(
[⁅d!ans, true⁆][⁅d!ans, true⁆]ff ∧
[⁅d!ans, true⁆][⁅d?req, true⁆]X

)
At an intuitive level, the monitor that one expects to obtain for subfor-
mula φ′

2
def

= [⁅d!ans, true⁆][⁅d!ans, true⁆]ff is ⁅d!ans⁆.rec y.⁅d!ans, •⁆.y (i.e., a mon-
itor that repeatedly drops every output ans that follows a serviced request
on the same port), whereas the monitor obtained for the subformula φ′′

2
def

=
[⁅d!ans, true⁆][⁅d?req, true⁆]X is ⁅d!ans⁆.⁅d?req⁆.x (assuming some variable map-
ping from X to x). These monitors would then be combined in the synthesis
for [⁅(d)?req, d̸=j⁆]maxX.φ′

2∧φ′′
2 as

mb
def

= ⁅(d)?req, d̸=j⁆.recx.
(
rec y.⁅d!ans⁆.⁅d!ans, •⁆.y + ⁅d!ans⁆.⁅d?req⁆.x

)
.

One can easily see that mb does not soundly enforce φ4. For instance, for the
violating system i?req.i!ans.i!ans.nil ̸∈ Jφ4K(= Jφ1K) we can observe the transi-

tion sequence mb[i?req.i!ans.i!ans.nil]
i?req·i!ans
=======⇒ (⁅i?req, true⁆.mb)[i!ans.nil]

i!ans−−−→ id[nil].

Instead of complicating our synthesis function to cater for anomalies such as
those presented in Example 9—also making it less compositional in the process—
we opted for a two stage synthesis procedure. First, we consider a normalised
subset for sHML formulas, which is amenable to a (straightforward) synthesis
function definition that is compositional. This also facilitates the proofs for the
conditions required by Definition 4 for any synthesised monitor. As a secondary
result, we show that every sHML formula without data dependencies across
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necessities is logically equivalent to some formula in this normalised form. We
are then able to show that our two-stage approach is expressive enough to show
the enforceability for this fragment of sHML.

5.1 The Synthesis Function.

The following grammar combines necessity operators with conjunctions into
one construct

∧
i∈I [⁅pi, ci⁆]φi which is written as [⁅p0, c0⁆]φ0∧ . . .∧[⁅pn, cn⁆]φn

for I =
{
0, . . . , n

}
. We simply write [⁅p, c⁆]φ when | I | = 1.

Definition 9 (sHML normal form) The set of normalised sHML formulas
is defined as follows (where φi ∈ sHMLnf as well):

φ,ψ ∈ sHMLnf ::= tt | ff |
∧

i∈I [⁅pi, ci⁆]φi | X | maxX.φ .

In addition, normalised sHML formulas are required to satisfy the following
conditions:

1. Every symbolic action in
∧

i∈I [⁅pi, ci⁆]φi, must satisfy |I| ≥ 1 and must be

disjoint, i.e.,#i∈I ⁅pi, ci⁆ which entails that for every i, j ∈ I, i ̸= j implies
J⁅pi, ci⁆K∩ J⁅pj , cj⁆K = ∅.

2. For every maxX.φ we have X ∈ fv(φ).
3. Every logical variable is guarded by a modal necessity.

In a (closed) normalised sHML formula, the basic terms tt and ff can
never appear unguarded unless they are at the top level (e.g., we can never
have φ∧ff or maxX0. . . .maxXn.ff). Similarly, fixpoint variables, X, must
also be guarded by a modal necessity (e.g., maxX.([α]ff∧X) is invalid, unlike
maxX.([β]ff∧[α]X) in whichX is guarded by [α]). Moreover, in any conjunction
of necessity subformulas,

∧
i∈I [⁅pi, ci⁆]φi, the necessity guards are disjoint

and at most one necessity guard can be matched by any particular action.
This substantially facilitates the compositional implementation of a monitor
enforcing the formula since the necessary enforcement required by a specific
system execution can be determined by only considering one subformula in a
conjunction of possibilities.

We proceed to define our synthesis function over normalised sHML formulas.

Definition 10 The synthesis function L− M : sHMLnf 7→Trn is defined induc-
tively as:

LX M def

= x L tt M def

= Lff M def

= id LmaxX.φ M def

= recx.Lφ M

L
∧
i∈ I

[⁅pi, ci⁆]φi M
def

= rec y.
∑
i∈I

{
⁅pi, ci, •⁆.y if φi=ff
⁅pi, ci, pi⁆.Lφi M otherwise

The synthesis function is compositional. It assumes a bijective mapping
between formula variables and monitor recursion variables and converts logical
variables X accordingly, whereas maximal fixpoints, maxX.φ, are converted
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into the corresponding recursive monitor. The synthesis also converts truth
and falsehood formulas, tt and ff, into the identity monitor id. Normalized
conjunctions,

∧
i∈ I [⁅pi, ci⁆]φi, are synthesised into a recursive summation of

monitors, i.e., rec y.
∑

i∈I mi, where y is fresh, and every branch mi can be
either of the following:

(i) when mi is derived from a branch of the form [⁅pi, ci⁆]φi where φi ̸=ff,
the synthesis produces a monitor with the identity transformation prefix,
⁅pi, ci, pi⁆, followed by the monitor synthesised from the continuation φi,
i.e., [⁅pi, ci⁆]φi is synthesised as ⁅pi, ci, pi⁆.Lφi M;

(ii) when mi is derived from a branch of the form [⁅pi, ci⁆]ff, the synthesis
produces a suppression transformation, ⁅pi, ci, •⁆, that drops every action
matching ⁅pi, ci⁆, followed by the recursive variable of the branch y, i.e.,
a branch of the form [⁅pi, ci⁆]ff is translated into ⁅pi, ci, •⁆.y.

Example 10 Recall formula φ1 from Example 2:

φ1
def

= [⁅(d)?req, d̸=j⁆]maxX.[⁅d!ans, true⁆]([⁅d!ans, true⁆]ff∧[⁅d?req, true⁆]X).

Using the synthesis function defined in Definition 10, we generate monitor

Lφ1 M = recx′.⁅(d)?req, d ̸= j⁆.recx.rec z.
(
⁅d!ans⁆.rec y.⁅d!ans, •⁆.y + ⁅d?req⁆.x

)
which can be optimized by removing redundant recursive constructs (e.g.,
rec z. ), obtaining:

⁅(d)?req, d ̸= j⁆.recx.
(
⁅d!ans⁆.rec y.⁅d!ans, •⁆.y + ⁅d?req⁆.x

)
= mt.

It is clear that the synthesis function of Definition 10 is total for sHMLnf

formulas and yields exclusively suppression monitors.

Lemma 1 For any φ ∈ sHMLnf, Lφ M is defined and is a suppression monitor.

Proof. By induction on the structure of φ.

We now present the second main set of results to the paper. Theorem 3
follows as a corollary of Lemma 1 and a strengthening of the stated requirement
that narrows down monitors to suppression monitors, Proposition 1.

Theorem 3 (Enforcement) The (sub)logic sHMLnf is enforceable with
respect to Definition 4.

Proposition 1 (Enforcement via Suppression) The (sub)logic sHMLnf

is enforceable with respect to Definition 4 using only suppression monitors.

Proof. By Definition 8, the result follows if we show that for all φ∈ sHMLnf,
Lφ M enforces φ in the sense of Definition 4. Hence, by Definition 4, this is a
corollary of Propositions 2 and 3 stated below.

Proposition 2 (Enforcement Soundness) For every LTSs ⟨Sys,Act ∪
{τ} ,→⟩, system s∈Sys and φ∈ sHMLnf then JφK ̸= ∅ implies Lφ M[s]∈ JφK.
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(s, tt) ∈ R implies true

(s,ff) ∈ R implies false

(s,
∧

i∈I φi) ∈ R implies (s, φi) ∈ R for all i∈ I
(s, [⁅p, c⁆]φ) ∈ R implies (∀α, r · s α

==⇒ r and ⁅p, c⁆(α) = σ) implies (r, φσ) ∈ R
(s,maxX.φ) ∈ R implies (s, φ{maxX.φ/X}) ∈ R

where ⁅p, c⁆(α) = σ is short for mtch(p, α) = σ and cσ ⇓ true.

Fig. 4 A satisfaction relation for sHML formulas

Proposition 3 (Enforcement Transparency) For every LTSs ⟨Sys,Act∪
{τ} ,→⟩, system s∈Sys and φ∈ sHMLnf then s∈ JφK implies Lφ M[s] ∼ s.

As our first result, Theorem 2, states that trace transparency (Definition 6)
is inherently a weaker version of transparency (Definition 3), we can also prove
that sHMLnf is enforceable in the sense of Definition 7.

Theorem 4 (Weak Enforcement) The (sub)logic sHMLnf is enforceable
with respect to Definition 7.

Proof. By Definition 8, this follows by showing that for every sHMLnf formula
φ, Lφ M enforces φ as defined by Definition 7. Hence, in the light of Theorem 2,
this result becomes a corollary of Theorem 3.

To facilitate the proofs for Propositions 2 and 3 we use the satisfaction
semantics for sHML from [73] which are defined in terms of the satisfaction
relation, ⊨. When restricted to sHML, ⊨ is the largest relation R satisfying the
implications defined in Figure 4. As these semantics are well known to agree
with the sHML semantics of Figure 1, we use s ⊨ φ in lieu of s ∈ JφK. These
proofs may safely be skipped upon first reading.

Proof for Proposition 2. We prove a stronger result stating that for every sys-
tem r that can be simulated by Lφ M[s], i.e., r ⊏∼ Lφ M[s], if JφK ̸= ∅ then r ⊨ φ. We

prove this result by showing that relationR def

= {(r, φ) JφK ̸= ∅ and r ⊏∼ Lφ M[s] }
is a satisfaction relation (⊨) as defined by the rules in Figure 4. We proceed by
case analysis on the structure of φ.

Cases φ∈{X,ff}. These cases do not apply as when φ∈{X,ff} then JφK= ∅.

Case φ = tt. This case holds trivially as for every process r ⊏∼ L tt M[s] the pair
(r, tt) is in R since we know that JttK ̸= ∅.

Case φ = maxX.φ and X∈fv(φ). Lets assume that (r,maxX.φ) ∈ R and so
we have that

JmaxX.φK ̸= ∅ (1)

r ⊏∼ LmaxX.φ M[s]. (2)

To prove that R is a satisfaction relation we show that (r, φ{maxX.φ/X}) ∈ R
as well. Hence, since Lφ{maxX.φ/X} M produces a monitor that is the unfolded
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equivalent of LmaxX.φ M we can conclude that LmaxX.φ M ∼ Lφ{maxX.φ/X} M
and so from (2) we have that

r ⊏∼ Lφ{maxX.φ/X} M[s]. (3)

Finally, since from (1) and JmaxX.φK = Jφ{maxX.φ/X}K we know that
Jφ{maxX.φ/X}K ̸= ∅, by (3) and the definition of R we can conclude that
(r, φ{maxX.φ/X}) ∈ R as required.

Case φ =
∧

i∈I [⁅pi, ci⁆]φi and #h∈I ⁅ph, ch⁆. Now, lets start by assuming
that (r,

∧
i∈I [⁅pi, ci⁆]φi) ∈ R and so we have that

J
∧

i∈I [⁅pi, ci⁆]φiK ̸= ∅ (4)

r ⊏∼ L
∧

i∈I [⁅pi, ci⁆]φi M[s]. (5)

By the definition of L− M we further know that

L
∧

i∈I [⁅pi, ci⁆]φi M = rec y.
(∑

i∈I

{
⁅pi, ci, •⁆.y if φi=ff
⁅pi, ci⁆.Lφi M otherwise

)
= m

which can be further unfolded as

L
∧

i∈I [⁅pi, ci⁆]φi M =
(∑

i∈I

{
⁅pi, ci, •⁆.m if φi=ff
⁅pi, ci⁆.Lφi M otherwise

)
. (6)

In order to prove that R is a satisfaction relation, for this case we must show
that for every j ∈ I, (r, [⁅pj , cj⁆]φj)∈R as well. In order to show this we inspect
the different types of branches that are definable in sHMLnf and hence we
consider the following cases:

(i) A violating branch, [⁅pj , cj⁆]ff:

To prove that (r, [⁅pj , cj⁆]ff)∈R we must show that (a) J[⁅pj , cj⁆]ffK ̸= ∅, (b)
r ⊏∼ L [⁅pj , cj⁆]ff M[s], and (c) that for every action α, when ⁅pj , cj⁆(α) = σ,

then there does not exist a system r′ such that r
α
==⇒ r′. From (4) and

the definition of J−K we can immediately infer that (a) holds, and so we
have that

J[⁅pj , cj⁆]ffK ̸= ∅. (7)

We now note that since from (6) we know that branch [⁅pj , cj⁆]ff is
synthesised into a suppression monitor ⁅pj , cj , •⁆.m, we infer that this
branch can only suppress actions matching ⁅pj , cj⁆, while monitor m =
L
∧

i∈I [⁅pi, ci⁆]φi M can possibly suppress other actions as well. Hence, the
composite system m[s] (for any s) can at most perform the same actions
as L [⁅pj , cj⁆]ff M[s] and so from (5) we can deduce that (b) holds since

r ⊏∼ L
∧

i∈I [⁅pi, ci⁆]φi M[s] ⊏∼ L [⁅pj , cj⁆]ff M[s] (8)
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as required. Finally, from (6) we know that monitor m was synthesised

from a normalized conjunction which is disjoint (#h∈I ⁅ph, ch⁆) from
which we conclude that whenever the system performs action α such
that ⁅pj , cj⁆(α) = σ, only the suppression branch ⁅pj , cj , •⁆.m (which is
a single branch of m in (6)) can be selected via rule eSel. Once this
branch is selected, the action is suppressed via rules eTrn and iSup
which cause the composite system m[s] to transition over a silent τ action

to its recursive derivative m. This means that m[s] ̸α==⇒ and so from (5)

we can deduce that (c) also holds since

∄r′ · r α
==⇒ r′ (9)

which means that any modal necessity that precedes ff can never be
satisfied by r as required. This case thus holds by (7), (8) and (9).

(ii) A non-violating branch, [⁅pj , cj⁆]φj (where φj ̸= ff):

To prove that this branch is in R, (r, [⁅pj , cj⁆]φj) ∈ R, we must show
that (a) J[⁅pj , cj⁆]φjK ̸= ∅, (b) r ⊏∼ L [⁅pj , cj⁆]φj M[s] and then that (c) for

every action α and derivative r′, when ⁅pj , cj⁆(α) = σ and r
α
==⇒ r′ then

(r′, φjσ) ∈ R. From (4) and by the definition of J−K we can immediately
determine that (a) holds, and so that

J[⁅pj , cj⁆]φjK ̸= ∅ (10)

and since L [⁅pj , cj⁆]φj M = rec y.⁅pj , cj⁆.Lφ M, from (6) we deduce that both
monitors m= L

∧
i∈I [⁅pi, ci⁆]φi M and L [⁅pj , cj⁆]φj M refrain from modifying

actions matching ⁅pj , cj⁆ but m may suppress more actions. We can thus
infer that for all s, m[s]⊏∼ L [⁅pj , cj⁆]φj M[s] and so from (5) we can deduce
that (b) holds since

r ⊏∼m[s]⊏∼ L [⁅pj , cj⁆]φj M[s] (11)

as required. We now prove that (c) holds by assuming that

⁅pj , cj⁆(α) = σ (12)

r
α
==⇒ r′ (13)

and so from (5) and (13) we can deduce that

m[s]
α
==⇒ q (where r′ ⊏∼ q). (14)

Hence, by the definition of
α
==⇒ we know that the weak transition in (14)

is composed from zero or more τ -transitions followed by the α-transition,
i.e., that

m[s]
τ−→*q′

α−−→ q. (15)
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By the rules in our model we know that the τ -reductions in (15) could
have been the result of either one of these instrumentation rules, namely
iSup or iAsy. From (6) we however know that whenever an action is
suppressed (via iSup) the synthesised monitor m always recurses back to
its original form m and in this case only s changes its state to some s′;
the same effect occurs if rule iAsy is applied instead. Hence we know that
q′ = m[s′] (for some derivative s′ of s), and so from (15) we have that

m[s′]
α−−→ q. (16)

From (12) we also know that the reduction in (16) can only be the result

of rule iTrn, and so we can infer that s′
α−−→ s′′ and that

q = m′[s′′] (17)

m
α▶α−−−−→ m′. (18)

Since we know that [⁅pj , cj⁆]φj and φj ̸=ff, from (6) we know that m
defines an identity branch of the form ⁅pj , cj⁆.Lφj M which is completely
disjoint from the rest of the monitors. This is true since m is derived

from a normalized conjunction in which #i∈I ⁅pi, ci⁆. Hence, from (6),
(12) and (18) we can deduce that

m′ = Lφjσ M. (19)

Since from (10) and by the definition of J−K we know that JφjσK ̸= ∅ and
from (14), (17) and (19) we have that r′ ⊏∼ Lφjσ M[s′′], by the definition of
R we have that (r′, φjσ) ∈ R. From this we can conclude that (c) holds
as well, which means that

∀α, r′ · if ⁅pj , cj⁆(α) = σ and r
α
==⇒ r′ then (r′, φjσ) ∈ R. (20)

This case is therefore done by (10), (11) and (20).

Proof for Proposition 3. To prove this proposition we show that relation R def

=
{(s, Lφ M[s]) s⊨φ} is a strong bisimulation relation by showing that it satisfies
the following transfer properties for each (s, Lφ M[s])∈R:

(a) if s
µ−−→ s′ then Lφ M[s] µ−−→ S′ and (s′, S′) ∈ R

(b) if Lφ M[s] µ−−→ S′ then s
µ−−→ s′ and (s′, S′) ∈ R.

We prove (a) and (b) separately by assuming that s⊨φ in both cases as defined
by relation R. We also make reference to the τ -closure property of sHML,
Proposition 4, proved in [73].

Proposition 4 if s
τ−→ s′ and s ⊨ φ then s′ ⊨ φ.

We now proceed to prove (a) by case analysis on φ.
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Cases φ ∈
{
ff, X

}
. Both cases do not apply since ∄s · s ⊨ ff and similarly

since X is an open-formula and so ∄s · s ⊨ X.

Case φ = tt. We now assume that s ⊨ tt and that

s
µ−−→ s′ (21)

and since µ ∈ {τ, α}, we must consider both cases.

– µ = τ : Since µ = τ , we can apply rule iAsy on (21) and get that

L tt M[s] τ−→ L tt M[s′] (22)

as required. Also, since we know that every system state satisfies tt, we
know that s′ ⊨ tt, which by the definition of R we conclude that

(s′, L tt M[s′]) ∈ R (23)

as required, which means that this case is done by (22) and (23).
– µ = α: Since id encodes the ‘catch-all’ monitor, rec y.⁅(d)!(e), true, d!e⁆.y +

⁅(d)?(e), true, d?e⁆.y, we can deduce that id
α▶α−−−−→ id from rules eRec and

eTrn and then rule iTrn, which we can further refine as

L tt M[s] α−−→ L tt M[s′] (24)

as required. Once again since s′ ⊨ tt, by the definition of R we have that

(s′, L tt M[s′]) ∈ R (25)

as required, and so this case is done by (24) and (25).

Case φ =
∧

i∈I [⁅pi, ci⁆]φi. Now assume that

s ⊨
∧

i∈I [⁅pi, ci⁆]φi (26)

s
µ−−→ s′ (27)

and so by the definition of ⊨ and (26) we have that for every index i ∈ I and
action β ∈ Act,

s
β
==⇒ s′ and ⁅pi, ci⁆(β) = σ implies s ⊨

∧
i∈I [⁅pi, ci⁆]φi. (28)

Since µ ∈ {τ, α}, we must consider both possibilities for (27).

– µ = τ : Since µ = τ , we can apply rule iAsy on (27) and obtain

L
∧

i∈I [⁅pi, ci⁆]φi M[s]
τ−→ L

∧
i∈I [⁅pi, ci⁆]φi M[s′] (29)

as required. Since µ =τ , and since we know that sHML is τ -closed, from
(26), (27) and Proposition 4, we can deduce that s′ ⊨

∧
i∈I [⁅pi, ci⁆]φi, so
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that by the definition of R we conclude

(s′, L
∧

i∈I [⁅pi, ci⁆]φi M[s′]) ∈ R (30)

as required. This subcase is therefore done by (29) and (30).
– µ = α: Since µ = α, from (27) we know that

s
α−−→ s′ (31)

and by the definition of L− M we can immediately deduce that

L
∧

i∈I [⁅pi, ci⁆]φi M = rec y.
(∑

i∈I

{
⁅pi, ci, •⁆.y if φi = ff
⁅pi, ci⁆.Lφi M otherwise

)
. (32)

Since the branches in the conjunction are all disjoint, #i∈I ⁅pi, ci⁆, we know
that at most one of the branches can match the same action α. Hence, we
consider two cases, namely:
– No matching branches (i.e., ∀i ∈ I · ⁅pi, ci⁆(α) = undef): Since none of

the symbolic transformations in (32) can match action α and since we
do not synthesise insertion monitors, we know that the monitor can
only default to id (via rule iDef) and so from (31) we have that

L
∧

i∈I [⁅pi, ci⁆]φi M[s]
α−−→ L tt M[s′] (since id =L tt M) (33)

as required. Also, since every system state satisfies tt, we know that
s′ ⊨ tt, and so by the definition of R we conclude that

(s′, L tt M[s′]) ∈ R (34)

as required. This case is therefore done by (33) and (34).
– One matching branch (i.e., ∃j ∈ I · ⁅pj , cj⁆(α)=σ): From (32) we infer

that the synthesised monitor can only suppress actions that are defined
by violating necessities. However, from (28) we also deduce that s is
incapable of executing such an action as otherwise would contradict
assumption (26). Hence, since we now assume that ∃j ∈ I ·⁅pj , cj⁆(α) = σ,
from (32) we deduce that this action can only be transformed by an
identity transformation and so by rule eTrn we have that

⁅pj , cj⁆.Lφj M α▶α−−−−→ Lφjσ M. (35)

By applying rules eSel, eRec on (35) and by (31), (32) and iTrn we
get that

L
∧

i∈I [⁅pi, ci⁆]φi M[s]
α−−→ Lφjσ M[s′] (36)

as required. By (28), (31) and since we assume that ∃j ∈ I · ⁅pj , cj⁆(α) =
σ we have that s′ ⊨ φjσ, and so by the definition of R we conclude that

(s′, Lφjσ M[s′]) ∈ R (37)
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as required. Hence, this subcase is done by (36) and (37).

Case φ = maxX.φ and X ∈ fv(φ). Now, lets assume that

s
µ−−→ s′ (38)

and that s ⊨ maxX.φ from which by the definition of ⊨ we have that

s ⊨ φ{maxX.φ/X}. (39)

Since φ{maxX.φ/X}∈ sHMLnf, by the restrictions imposed by sHMLnf we
know that: φ cannot be X because (bound) logical variables are required to be
guarded, and it also cannot be tt or ff since X is required to be defined in φ,
i.e., X ∈ fv(φ). Hence, we know that φ can only have the following form, that
is

φ = maxY0. . . .maxYn.
∧
i∈I

[⁅pi, ci⁆]φi (40)

and so by (39), (40) and the definition of ⊨ we have that

s ⊨ (
∧

i∈I [⁅pi, ci⁆]φi){··} where (41)

{··} = {maxX.φ/X, (maxY0. . . .maxYn.
∧
i∈I

[⁅pi, ci⁆]φi)/Y0, . . . , (maxYn.
∧
i∈I

[⁅pi, ci⁆]φi)/Yn}.

Since we know (38) and (41), from this point onwards the proof proceeds as
per the previous case. We thus omit this part of the proof and immediately
deduce that

∃m′ · L (
∧

i∈I [⁅pi, ci⁆]φi){··} M[s] µ−−→ Lm′ M[s′] (42)

(s′, Lm′ M[s′]) ∈ R (43)

and so since L (
∧

i∈I [⁅pi, ci⁆]φi){··} M synthesises the unfolded equivalent as per
Lφ{maxX.φ/X} M, from (42) we can conclude that

∃m′ · Lφ{maxX.φ/X} M[s] µ−−→ Lm′ M[s′] (44)

as required, and so this case holds by (43) and (44).

These cases thus allow us to conclude that (a) holds. We now proceed to prove
(b) using the same case analysis approach.

Cases φ ∈
{
ff, X

}
. Both cases do not apply since ∄s · s ⊨ ff and similarly

since X is an open-formula and ∄s · s ⊨ X.

Case φ = tt. Assume that s ⊨ tt and that

L tt M[s] µ−−→ r′. (45)

Since µ ∈ {τ, α}, we must consider each case.
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– µ = τ : Since µ = τ , the transition in (45) can be performed either via iSup,
or iAsy. We must therefore consider these cases.
– iAsy: From rule iAsy and (45) we thus know that r′ = L tt M[s′] and

that s
τ−→ s′ as required. Also, since every system state satisfies tt, we

know that s′ ⊨ tt as well, and so we are done since by the definition of
R we know that (s′, L tt M[s′]) ∈ R.

– iSup: This case does not apply since from rule iSup and (45) we know

that: r′ = m′[s′], s
α−−→ s′ and that L tt M α▶•−−−→ m′ which is a false

assumption as L tt M = id.
– µ = α: Since µ = α, the transition in (45) can be performed either via

iDef, iIns or iTrn. We consider each case.
– iDef: This case does not apply since L tt M = id which cannot ever reach

a state n where n ̸α−−→ and n ̸•−→.
– iIns: This case does not apply since from (45) and by the definition

of L− M we know that the synthesised monitor does not include action
insertions.

– iTrn: By applying rule iTrn on (45) we know that r′ =m′[s′] such that

s
β−−→ s′ (46)

L tt M α▶β−−−→ m′. (47)

Since L tt M = id = rec y.⁅(d)!(e), true, d!e⁆.y + ⁅(d)?(e), true, d?e⁆.y, by
applying rules eRec, eSel and eTrn to (47) we know that α = β,
m′ = id = L tt M, meaning that r′ = L tt M[s′]. Hence, since every system
state satisfies tt we know that s′ ⊨ tt, so that by the definition of R we
conclude that

(s′, L tt M[s′]) ∈ R. (48)

Hence, we are done by (46) and (48) since we know that α = β.

Case φ =
∧

i∈I [⁅pi, ci⁆]φi. We now assume that

s ⊨
∧

i∈I [⁅pi, ci⁆]φi (49)

L
∧

i∈I [⁅pi, ci⁆]φi M[s]
µ−−→ r′. (50)

From (49) and by the definition of ⊨ we can deduce that

∀i ∈ I, β ∈ Act · s β
==⇒ s′ and ⁅pi, ci⁆(α) = σ implies s′ ⊨ φiσ (51)

and from (50) and by the definition of L− M we have that(
rec y.

∑
i∈I

{
⁅pi, ci, •⁆.y if φi = ff
⁅pi, ci⁆.Lφi M otherwise

)
[s′]

µ−−→ r′. (52)
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From (52) we know that the synthesised monitor can only suppress an action
β when this satisfies a violating necessity. However, we can also infer that s is
incapable of performing β as otherwise it would contradict with assumption (51)
since s′ ⊨ ff doe not hold. Hence, we can safely conclude that the synthesised
monitor in (52) does not suppress any actions of s, and so we conclude that

∀α ∈ Act, s′ ∈ Sys · s α−−→ s′ implies L
∧

i∈I [⁅pi, ci⁆]φi M ̸α▶•−−−→ . (53)

Since µ ∈ {τ, α}, we must consider each case.

– µ = τ : Since µ = τ , from (50) we know that

L
∧

i∈I [⁅pi, ci⁆]φi M[s]
τ−→ r′ (54)

The τ -transition in (54) can be the result of rules iAsy or iSup; we thus
consider each eventuality.
– iAsy: As we assume that the reduction in (54) is the result of rule iAsy,

we know that r′ = L
∧

i∈I [⁅pi, ci⁆]φi M[s′] and that

s
τ−→ s′ (55)

as required. Also, since sHML is τ -closed, by (49), (55) and Proposition 4
we deduce that s′ ⊨

∧
i∈I [⁅pi, ci⁆]φi as well, so that by the definition of

R we conclude that

(s′, L
∧

i∈I [⁅pi, ci⁆]φi M[s′]) ∈ R (56)

and so we are done by (55) and (56).
– iSup: As we now assume that the reduction in (54) results from iSup,

we have that r′ = m′[s′] and that

s
α−−→ s′ (57)

L
∧

i∈I [⁅pi, ci⁆]φi M
α▶•−−−→ m′. (58)

This case does not apply since by (53) and (57) we can deduce that

L
∧

i∈I [⁅pi, ci⁆]φi M ̸α▶•−−−→ which contradicts with (58).

– µ = α: When µ = α, the transition in (52) can be performed via rules iDef,
iIns or iTrn, we consider both possibilities.
– iDef: If (52) results from iDef, we have that

r′ = L tt M[s′] (since L tt M = id) (59)

s
α−−→ s′. (60)

Consequently, as every system state satisfies tt, we know that s′ ⊨ tt
and so by the definition of R we have that (s′, L tt M[s′]) ∈ R, so that
from (59) we can conclude that

(s′, r′) ∈ R (61)
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as required. Hence this case is done by (60) and (61).
– iIns: This case does not apply since from (52) and by the definition

of L− M we know that the synthesised monitor does not include action
insertions.

– iTrn: By assuming that (52) is obtained from rule iTrn we know that

(rec y.
∑
i∈I

{
⁅pi, ci, •⁆.y if φi = ff
⁅pi, ci⁆.Lφi M otherwise )

β▶α−−−→ m′ (62)

s
β−−→ s′ (63)

r′ = m′[s′]. (64)

Since from (53) we know that the synthesised monitor in (62) does not
suppress any action performable by s, and since from the definition
of L− M we know that the synthesis cannot produce action replacing
monitors, we can deduce that

α = β. (65)

With the knowledge of (65), from (63) we can thus deduce that

s
α−−→ s′ (66)

as required. Knowing (65) we can also deduce that in (62) the monitor
can only transform action β via an identity transformation synthesised
from one of the disjoint conjunction branches, i.e., from a branch
⁅pj , cj⁆.Lφj M for some j ∈ I. Hence, when we apply rules eRec, eSel
and eTrn on (62) we deduce that

∃j ∈ I · ⁅pj , cj⁆(α) = σ (67)

m′ = Lφjσ M. (68)

and so from (66), (67) and (51) we infer that s′ ⊨ φjσ from which by
the definition of R we have that (s′, Lφjσ M[s′]) ∈ R, and so from (64)
and (68) we can conclude that

(s′, r′) ∈ R (69)

as required, and so this case is done by (66) and (69).

Case φ = maxX.φ and X ∈ fv(φ). Now, lets assume that

LmaxX.φ M[s] µ−−→ r′ (70)

and that s ⊨ maxX.φ from which by the definition of ⊨ we have that

s ⊨ φ{maxX.φ/X}. (71)
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Since φ{maxX.φ/X}∈ sHMLnf, by the restrictions imposed by sHMLnf we
know that: φ cannot be X because (bound) logical variables are required to be
guarded, and it also cannot be tt or ff since X is required to be defined in φ,
i.e., X ∈ fv(φ). Hence, we know that φ can only have the following form, that
is

φ = maxY0. . . .maxYn.
∧
i∈I

[⁅pi, ci⁆]φi (72)

and so by (71), (72) and the definition of ⊨ we have that

s ⊨ (
∧

i∈I [⁅pi, ci⁆]φi){··} where (73)

{··} = {maxX.φ/X, (maxY0. . . .maxYn.
∧
i∈I

[⁅pi, ci⁆]φi)/Y0, . . . , (maxYn.
∧
i∈I

[⁅pi, ci⁆]φi)/Yn}.

Since L (
∧

i∈I [⁅pi, ci⁆]φi){··} M synthesises the unfolded equivalent of LmaxX.φ M,
from (70) we know that

L (
∧

i∈I [⁅pi, ci⁆]φi){··} M[s] µ−−→ r′. (74)

Hence, since we know (73) and (74), from this point onwards the proof pro-
ceeds as per the previous case. We thus omit showing the remainder of this proof.

From the above cases we can therefore conclude that (b) holds as well.

In light of Theorems 3 and 4, in order to show that sHML is an enforceable
logic, we only need to prove that for every φ ∈ sHML there exists a correspond-
ing ψ ∈ sHMLnf with the same semantic meaning, i.e., JφK = JψK. In fact,
we go a step further and provide a constructive proof using a transformation
⟨⟨−⟩⟩ : sHML 7→ sHMLnf that constructs a semantically equivalent sHMLnf

formula from an sHML one. As a result, from an arbitrary sHML formula φ
we can then automatically synthesise a correct monitor using L ⟨⟨φ⟩⟩ M, which is
useful for tool construction.

5.2 The Normalisation Algorithm

Our transformation relies on a number of steps, during which we assume
sHML formulas that only use symbolic actions with normalised patterns p,
i.e., patterns that do not use any data or free data variables (but they may
use bound data variables) and necessity binding does not extend to other
necessities, i.e., whenever φ = [⁅p, c⁆]φ′ then bv(p) ⊆ fv(c) and fv(φ′) = ∅.
Note that any symbolic action ⁅p, c⁆ can be easily converted into an equivalent
one using normalised patterns as shown in the next example.

Example 11 Consider the symbolic action ⁅d!ans, d ̸= j⁆ where d is free in the
SA and ans is a data value. Such SAs can be converted to a corresponding
normalised SA by replacing every occurrence of a data value and free data

31



variable in the pattern by a fresh binding variable, and then add an equality
constraint between the fresh variable and the data value or free variable it has
replaced in the pattern, to the SAs condition. In our case, we would obtain
⁅(e)!(f), d̸=j ∧ e=d ∧ f=ans⁆ where e and f are fresh, and although d is free
in the SAs condition, it no longer forms part of the pattern.

Our algorithm for converting closed sHML formulas (with normalised
patterns) to sHMLnf formulas, ⟨⟨−⟩⟩, is based on Aceto et al.’s work [67] for
determinising (possibly open) sHML formulas defining concrete actions, and
on Rabinovich’s work [74] for determinising systems of equations, both of which
rely on the standard powerset construction for converting NFAs into DFAs.
With this algorithm we can prove the second main result of this paper.

Theorem 5 (Normalisation Equivalence) For every closed sHML for-
mula φ there exists a formula ψ ∈ sHMLnf such that JφK=JψK.

5.3 Reconstructing sHML into sHMLnf wrt. Singleton Symbolic Actions

We first define the normalization algorithm for sHML formulas that only
define singleton symbolic actions. Since singleton SAs do not bind user data,
these can be easily distinguished statically based on their syntactic form, e.g.,
⁅i!ans⁆ ̸= ⁅i?req⁆ implies J⁅i!ans⁆K ∩ J⁅i?req⁆K = ∅, unlike non-singleton ones, e.g.,
although ⁅(d)?ans⁆ ̸= ⁅i?(e)⁆ we have that J⁅(d)?ans⁆K ̸= J⁅i?(e)⁆K = {i!ans}.

We define the algorithm in terms of the five constructions given below; each
construction is accompanied by a proof guaranteeing semantic preservation, i.e.,
that the result of each translation is equivalent to its input. The construction
sequence is as follows:

§1. Unguarded fixpoint variable removal: the formula is modified to
ensure that the fixpoint variables in the formula are all guarded (Sec-
tion 5.3.1).

§2. Equation construction: the formula is reformulated into a system of
equations to enable easier manipulation in later stages (Section 5.3.2).

§3. Powerset construction: the resultant system of equations is restructured
into an equivalent system that defines syntactically disjoint conjunctions
(Section 5.3.3).

§4. Formula reconstruction: the system of equations is converted back into
an sHML formula with disjoint conjunctions which may define redundant
fixpoints (Section 5.3.4).

§5. Redundant fixpoint removal: finally, fixpoint variable declarations,
maxX.φ, are removed whenever variableX is not used in φ (i.e.,X /∈ fv(φ))
− this produces the required sHMLnf formula (Section 5.3.5).

For conciseness, we use notation η to refer to an arbitrary symbolic action ⁅p, c⁆,
p[d] for an arbitrary pattern that binds variable d, and c[d] for a condition
whose evaluation depends on the value of variable d.
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φ ∈ sHML1 ::= tt | ff | maxX.φ |
∧

i∈I φi | [η]ψ (where ψ ::= X | φ)

Fig. 5 The sHML1 syntax.

⟨⟨φ⟩⟩1
def
=



maxX.(ψ∧
∧
f(φ′)\{X}) if φ = maxX.φ′ and ⟨⟨φ′⟩⟩1 = ψ∧

∧
f(φ′)

ψ1∧ψ2∧
∧
f(ψ1)∧

∧
f(ψ2) if φ = ψ1∧ψ2 and ⟨⟨ψ1⟩⟩1 = ψ1∧

∧
f(ψ1)

and ⟨⟨ψ2⟩⟩1 = ψ2∧
∧
f(ψ2)

[η]⟨⟨φ′⟩⟩1 if φ = [η]φ′

X∧tt if φ = X

φ otherwise

where f(φ)
def
=

∧
Xi∈S Xi and S = {X if X is free and unguarded in φ} .

Fig. 6 The unguarded fixpoint removal algorithm.

5.3.1 Unguarded fixpoint variable removal

We start the normalization procedure by converting the sHML formula into a
semantically equivalent sHML1 formula, i.e., an sHML formula in which every
fixed point variable is guarded by a modal necessity as specified in Figure 5.

Example 12 Formula maxX.([α]X∧X) can be rewritten as maxX.([α]X), and
maxX.(maxY.([α]Y ∧X)) into maxX.(maxY.([α]Y )).

Function ⟨⟨−⟩⟩1 : sHML → sHML1 in Figure 6 compositionally analyses
a formula and removes every unguarded fixpoint variable. Specifically, when
analysing a fixpoint, maxX.φ′, it is recursively applied to the fixpoint body φ′

such that ⟨⟨φ′⟩⟩1 returns ψ∧
∧
f(φ′) where f(φ′) contains all free and unguarded

fixpoint variables defined in φ′. If X ∈ f(φ′) it means that X is unguarded in φ′

and is thus removed from the resulting formula, i.e., maxX.(ψ∧
∧
f(φ′)\{X}).

Conjunct formulas, ψ1∧ψ2, are analysed separately and the free and unguarded
variables of each branch are grouped at the top level. The remaining cases are
unremarkable.

Example 13 Consider φ5
def

=maxX0.([i?req]([i!ans][i!ans]ff)∧([i!ans]X0)∧X0), a
reformulated version of φ0 from Example 2. By applying ⟨⟨−⟩⟩1 to φ5 we obtain

ψ3
def

=maxX0.[i?req]([i!ans][i!ans]ff)∧([i!ans]X0) where ψ3 ∈ sHML1 as it does
not define any unguarded fixpoint variables.

Lemma 2 For every sHML formula φ we have that J⟨⟨φ⟩⟩1K = JφK.

Proof. The proof follows from Lemma 8 in [67]. Although Lemma 8 is proven
wrt. a version of sHML that only allows for defining concrete actions, the
proof of this lemma still applies to our setting, since ⟨⟨−⟩⟩1 pays no regard to
the type of actions described in the modal necessities. Adapting the proof for
our setting thus only requires minor syntactic changes.
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φ ∈ sHMLeq ::= tt | ff |
∧

i∈I [η]Xi

Fig. 7 A syntactic restriction for equated formulas.

⟨⟨φ⟩⟩2
def
=



({
Xj = tt

}
, Xj , ∅

)
if φ = tt( {

Xj = ff
}
, Xj , ∅

)
if φ = ff( {

Xj = Y
}
, Xj ,

{
Y
})

if φ = Y( ⋃
i∈I

Eqi ∪
{
Xj =

∧
i∈I

Eqi(Xi)
}
, Xj ,

⋃
i∈I

Yi

)
if φ =

∧
i∈I φi and

∀i∈ I · ⟨⟨φi⟩⟩2 = (Eqi , Xi, Yi)(
Eq ∪

{
Xj = [η]Xk

}
, Xj , Y

) if φ = [η]ψ and
⟨⟨ψ⟩⟩2 = (Eq , Xk, Y)({

Y=Eq(Xi)
}
∪
{
Xj=Eq(Xi) if Xj=Y ∈Eq
Xk=φk if Xk=φk∈Eq

}
, Y, Y\

{
Y
}) if φ = maxY.φ′ and

⟨⟨φ′⟩⟩2 = (Eq , Xi, Y)

where variable Xj is fresh in all cases.

Fig. 8 The conversion algorithm from a sHML1 formula to a SoE.

5.3.2 Equation Construction

This construction produces a system of equations from a given sHML formula.
Systems of equations (SoEs) provide an alternative way for defining recursive
sHML formulas without resorting to maximal fixpoints.

Definition 11 (System of Equations) A system of equations is defined as
a triple (Eq , X, Y), where X represents the principal logical variable which
identifies the starting equation, Y is a finite set of free logical variables, and Eq
is an n-tuple of equations, i.e.,

{
X1 = ψ1, X2 = ψ2, . . . , Xn = φn

}
, where for

1 ≤ i < j ≤ n, Xi is different from Xj , and each φi is a sHMLeq expression
as defined in Figure 7.

Two systems of equations are equivalent (written as ≡) when their largest
solution assigns the same meaning to their principal variable. We abuse notation
and use Eq as a map where Eq(Xi) = φi when Xi = φi ∈ Eq. A maximal
fixpoint maxX.φ is represented in a SoE by the X-component of the greatest
solution of the SoE over (2Sys)n (where n refers to the number of equations in
the equation tuple). A SoE is closed when Y is empty.

Example 14 A recursive formula such as maxX0.[i?3]([i!4]X0∧[i!5]ff) can be
represented as a system of four equations (Eq , X0, Y) where X0 is the principal
variable, Eq

def

=
{
X0=[i?3]X1, X1=[i!4]X2∧[i!5]X3, X2=[i?3]X1, X3=ff

}
, where

X1=X0 and Y=∅ as all the logical variables defined in the system are bound,
i.e., equated to some sHMLeq formula. Notice how recursion is represented by
referring to X1 in the penultimate equation.

Function ⟨⟨−⟩⟩2 : sHML1 → Eq × Var × P(Var), in Figure 8, composi-
tionally inspects a given closed sHML1 formula φ and translates it into an
equivalent SoE. Truth, tt, and falsehood, ff, are respectively translated into
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equations Xj = tt and Xj =ff, with j being a fresh index and Xj being the
principal variable of the resultant SoE. Logical variables Y are initially trans-
lated into a SoE defining: equation Xj = Y , Xj as the principal variable,
and Y =

{
Y
}
, signifying that Y is free. Although equation Xj = Y does not

comply to sHMLeq (and is thus invalid), since we assume closed formulas, this
equation gets fixed when ⟨⟨−⟩⟩2 recurses back to the binding fixpoint.

Fixpoints, maxY.φ, are converted into equation Y =Eq(Xi), where Xi is
the principal variable of the SoE obtained from the recursive application on
the continuation φ′ i.e., ⟨⟨φ′⟩⟩2 = (Eq , Xi, Y). This is added to the equation
set Eq. Variable Y is then removed from Y, denoting that although Y is free
in φ′, this is no longer the case in φ=maxY.φ′. Equations of the sort Xj = Y
in Eq are reformulated into valid equations as Xj = Eq(Xi) where Xi points
to the same equation as Y ; this ensures that every logical variable is guarded
by a modal necessity.

Modal necessities, [η]φ, are reformed as a SoE defining equation set {Xj =
[η]Xk} ∪ Eq, where Xk and Eq are the principal variable and equation set
obtained from ⟨⟨φ⟩⟩2 respectively. Conjunctions,

∧
i∈I φi, are converted into a

SoE containing the equations obtained from analysing every conjunct formula
φi, i.e., Eqi for every i∈I, along with equation Xj =

∧
i∈I Eqi(Xi), where Xi

is the principal variable of every SoE obtained from ⟨⟨φi⟩⟩2 (for every i ∈ I).
Note that since the introduced variables are chosen to be fresh, the equation
sets Eqi are defined over pairwise disjoint sets of bound variables.

Example 15 Recall ψ3
def

=maxX0.[i?req]([i!ans][i!ans]ff)∧([i!ans]X0) from Exam-
ple 13. From ⟨⟨ψ3⟩⟩2 we obtain (Eq , X0, ∅) where

Eq =


X0 =Eq(X1)= [i?req]X2, X1 = [i?req]X2 , X3 = [i!ans]X5 ,

X2 =Eq(X3)∧Eq(X4)= [i!ans]X5∧[i!ans]X6, X4 = [i!ans]X6 ,

X5 = [i!ans]X7, X6 =X0 =Eq(X1)= [i?req]X2, X7 =ff

 .

The greyed formulas are not reachable from the principal equation and are
thus redundant. We ignore them in forthcoming examples.

Lemma 3 For every closed sHML1 formula φ, the SoE obtained from ⟨⟨φ⟩⟩2
has the same meaning as φ.

Proof. The proof follows from Lemma 10 given in [67]. Although this lemma
is proven in relation to formulas that define concrete actions, it still applies for
formulas defining symbolic actions, since the construction is independent of
the type of action described in the modal necessities.

5.3.3 Powerset construction

In this step we convert a SoE into an equivalent SoE in which every equated
formula meets the restrictions of sHML#

eq in Figure 9. Conjunctions in the
equated formulas are now required to be guarded by disjoint modal necessities.
Figure 10 presents ⟨⟨−⟩⟩3 : (Eq×Var×P(Var)) → (Eq#×Var×P(Var))
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φ ∈ sHML#
eq ::= tt | ff |

∧
i∈I [η]Xi and #i∈I ηi

Fig. 9 A disjointness requirement, #i∈I ηi, for equated formulas entailing that for every
i, j ∈ I, JηiK∩JηjK = ∅.

⟨⟨(Eq , Xi, Y)⟩⟩3
def
=

(
Eq# , X{i}, Y

)
Eq#

def
= { XI = ff if I ⊆ I(Eq) and ∃j∈I · Eq(Xj) = ff }
∪
{
XI =

∧
η∈G(I,Eq) [η]XCI(I,Eq,η) if I ⊆ I(Eq) and ∄j∈I · Eq(Xj) = ff

}
where I(Eq)

def
=

{
i
∣∣∣ (Xi = φi) ∈ Eq

}
G(I,Eq)

def
=

⋃
i∈I

{
ηj

∣∣∣ if Eq(Xi)
∧

j∈I′ [ηj ]Xj (for some I′)
}

CI(I,Eq, η)
def
=

⋃
i∈I

{
j
∣∣∣ if Eq(Xi) = [η]Xj∧φ (for some φ)

}
Fig. 10 The powerset construction for systems of equations.

where for every logical variable X, Eq#(X)∈ sHML#
eq. This function generates

a new SoE containing the powerset combinations of the equations from the
original SoE. Intuitively, it takes two or more equations and combines the
equated formulas with a conjunction. This technique mimics the classic powerset
construction for determinising automata in automata theory [74].

Specifically, ⟨⟨−⟩⟩3 creates a new equation set in which the index of each
equation is I ⊆ I(Eq), i.e., an element of the powerset of all indices defined
by the equation set Eq of the given SoE. The formula φI of a new equation
XI = φI is constructed by analysing every equation Xi = φi where i ∈ I. If
there exists at least one index j ∈ I so that Xj = ff, then XI is immediately
set to ff. This is done since if ff is used to reconstruct a conjunction along with
the other formulas φi (where i ̸= j), the resultant conjunction would still be
semantically equivalent to ff. Otherwise, XI is reconstructed as the merged
conjunction

∧
η∈G(I,Eq) [η]XCI(I,Eq,η) which is created using functions G and

CI in Figure 9.
The former function is used to retrieve the set of all the syntactically

unique SAs, η, defined by the equated formulas φi for each i∈I. The latter
returns the set of indices containing the index j of every variable Xj that is
guarded by a modal necessity defining SA η in φi. Hence, every branch in the
resultant conjunction

∧
η∈G(I,Eq) [η]XCI(I,Eq,η) is guarded by a syntactically

disjoint modal necessity.

Remark 1 Function ⟨⟨−⟩⟩3 makes a crucial assumption that actions that vary
syntactically are also semantically disjoint, and so if η1 ̸= η2 then no action can
match both SAs . For now, this assumption holds since we are only considering
singleton SAs. In Section 5.4 we will see how additional transformations are
required to ensure this for non-singleton SAs.

Example 16 Recall the SoE obtained in Example 15, i.e., (Eq , X0, ∅) where

Eq =

{
X0 = [i?req]X2, X2 = [i!ans]X5∧[i!ans]X6,
X5 = [i!ans]X7, X6 = [i?req]X2, X7 =ff

}
.
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φ ∈ sHML2 ::= tt | ff | maxX.φ |
∧
i∈I

[ηi]ψi (where #
i∈I

ηi and ψ ::= X |φ)

Fig. 11 The sHML2 syntax.

⟨⟨(Eq , Xi, Y)⟩⟩4
def
= σshml(Xi,Eq)

σshml(φ,Eq)
def
=

φ if fv(φ)=∅
σshml(φσ,Eq) if fv(φ)=S then σ=

{
(maxX.φ)/X

(X=φ)∈Eq

and X∈S

}
Fig. 12 Converting a SoE in conj. normal form into an sHML2 formula.

When ⟨⟨−⟩⟩3 is applied, it generates every possible combination and merges the
modal necessities where necessary. From ⟨⟨(Eq , X0, ∅)⟩⟩3 we therefore obtain
(Eq# , X{0}, ∅) where Eq# =

{
X{0} = [i?req]X{2}, X{2} = [i!ans]X{5,6}

}
∪ Eq′#.

Notice how continuationsX5 andX6 inX2 = [i!ans]X5∧[i!ans]X6 were combined
into a single continuation in X{2} = [i!ans]X{5,6}. The algorithm constructs all
the formula combinations including those for X{5,6} as per Eq′#:

Eq′# = {X{5,6} = [i!ans]X{7}∧[i?req]X{2}, X{7} = ff, . . .} .

We omit the redundant combinations that are not reachable from the new
principal variable X{0}, from the resultant equation set.

Lemma 4 For every SoE (Eq , X0, Y) , if ⟨⟨(Eq , X0, Y)⟩⟩3 =
(
Eq′ , X{0}, Y

)
then (Eq , X0, Y) ≡

(
Eq′ , X{0}, Y

)
and for every (Xi = φi)∈Eq′, φi∈sHML#

eq.

Proof. In [67] the authors present a version of ⟨⟨−⟩⟩3 which processes equa-
tions that equate formulas which only specify concrete actions. By definition
syntactically different concrete actions are also disjoint, which is not always
the case with SAs. As for now we are assuming that our formulas can only
include singleton SAs, semantic preservation is ensured by Lemma 11 in [67].
In Section 5.4 we will present the necessary steps for ensuring that this criterion
holds for every kind of SA.

5.3.4 Formula Reconstruction

With this step we convert the SoE back to a formula that adheres to the
restrictions imposed by sHML2 in Figure 11. sHML2 requires conjunctions
to be guarded by disjoint modal necessities, but allows for defining redundant
fixpoint declarations.

Figure 12 presents ⟨⟨−⟩⟩4: (Eq# , Var, P(Var))→sHML2, which internally
employs σshml:(sHML2×Eq)→sHML2 to construct the corresponding sHML2

formula. Initially, σshml takes as input the principal variable Xi along with the
equation set Eq. Since Xi is an open term, fv(Xi) = {Xi}, the function searches
for equation Xi=φi in Eq and converts it into a substitution environment which
substitutes variable Xi with maxXi.φi, i.e., {maxXi.φi/Xi}. This substitution
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⟨⟨φ⟩⟩5
def
=



φ if φ∈{ff, tt}

⟨⟨φ′⟩⟩5 if φ=maxX.φ′ and X/∈fv(φ′)

maxX.⟨⟨φ′⟩⟩5 if φ=maxX.φ′ and X ∈ fv(φ′)∧
i∈I

[ηi]⟨⟨φi⟩⟩5 if φ=
∧
i∈I

[ηi]φi

Fig. 13 Converting sHML2 formulas into sHMLnf.

is then applied to Xi and the function recurses with the substituted value,
σshml(maxXi.φi,Eq); recursion stops when the resultant formula φ becomes
closed, fv(φ) = ∅, in which case it is returned.

Example 17 Recall the SoE (Eq# , X{0}, ∅) obtained in Example 16, where

Eq# =

{
X{0} = [i?req]X{2}, X{2} = [i!ans]X{5,6},
X{5,6} = [i!ans]X{7}∧[i?req]X{2}, X{7} = ff

}
.

and so by applying ⟨⟨−⟩⟩4 we obtain ψ4 ∈ sHML2 where

ψ4 = σshml(X{0},Eq#)

=maxX{0}.
(
[i?req]maxX{2}. ([i!ans]maxX{5,6}.(ψ

′
4∧ψ′′

4 ) )
)

where ψ′
4 = [i!ans]maxX{7}.ff and ψ′′

4 = [i?req]X{2}.

Lemma 5 For every SoE (Eq , X{0}, Y), if ⟨⟨(Eq , X{0}, Y)⟩⟩3 = φ then φ
conveys the same meaning as (Eq , X{0}, Y) and that φ∈ sHML2.

Proof. Since construction ⟨⟨−⟩⟩4 is independent of the type of actions defined in
the modal necessities of the given SoE, we refer to Lemma 12 from [67] as proof
that ⟨⟨−⟩⟩4 always produces a semantically equivalent formula φ∈sHML2.

5.3.5 Removing Redundant Fixpoints

The final construction produces a sHMLnf formula in which every logical
variable X defined by a fixpoint maxX.φ, is free in the continuation formula φ
(i.e., X ∈ fv(φ)), meaning that X is used at least once in φ. We formalize this
construction as function ⟨⟨−⟩⟩5 : sHML2 → sHMLnf in Figure 13. This function
compositionally inspects a given formula φ and removes maximal fixpoint
declarations whenever their variable is not free (and so never used) in φ.

Example 18 The redundant fixpoints in ψ4 from Example 17, can be removed
via function ⟨⟨−⟩⟩5, thus obtaining the following sHMLnf formula:

ψ5
def

= [i?req]maxX{2}.[i!ans]([i!ans]ff∧[i?req]X{2}).

Notice that the obtained formula ψ5 is identical to φ0 (modulo α-renaming)
from Example 2, and are both definable via the sHMLnf syntax, and thus in
normal form.
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Lemma 6 For every formula φ∈ sHML2, J⟨⟨φ⟩⟩5K = JφK.

Proof. We prove that for every system s,

(a) s ∈ J⟨⟨φ⟩⟩5K implies s ∈ JφK; and
(b) s ∈ JφK implies s ∈ J⟨⟨φ⟩⟩5K.
The proofs for both of these cases are provided in Appendix A.1.

We have presented a sequence of constructions that transform sHML
formulas defining singleton SAs into their normalized equivalent in sHMLnf.
We thus conclude that when we only consider singleton SAs , Theorem 5 holds
as a result of Lemmas 2 to 6.

5.4 Reconstructing sHML into sHMLnf wrt. any Symbolic Action

Up until now we have only considered normalizing sHML formulas defining
singleton SAs as these events are easy to statically differentiate from each other
which is a crucial requirement for merging branches in §3. However, modal
necessities in general can also describe non-singleton SAs for which syntactic
difference does not necessarily reflect disjointness. For instance, although
⁅(d)!(e), e = 5⁆ and ⁅(d)!(e), d = i⁆ differ syntactically, they define intersecting
sets of actions, J⁅(d)!(e), e = 5⁆K∩ J⁅(d)!(e), d = i⁆K= {i!5}, meaning that both
can match the same system action i!5.

As shown in Example 19, normalizing a non-singleton symbolic formula
using the algorithm in Section 5.3, may sometimes fail to produce a normalized
equivalent formula.

Example 19 Consider φ6 a variant of φ4 from Example 9.

φ6
def

= maxX0.

(
[⁅(d1)?req, true⁆]

(
[⁅(d2)!ans, d2 ̸=h=d1⁆][⁅(d4)!ans, d4=d2⁆]ff ∧
[⁅(d3)!ans, d3 ̸=j=d1⁆]X0

))
.

By applying §1 and §2 we construct (Eq4 , X0, ∅) where

Eq4 =

{
X0 = [⁅(d1)?req, true⁆]X1,

X1 = [⁅(d2)!ans, d2 ̸=h=d1⁆]X2 ∧ [⁅(d3)!ans, d3 ̸=j=d1⁆]X3, . . .

}
.

However, when we apply §3 the algorithm fails to combine symbolic actions
⁅(d2)!ans, d2 ̸=h=d1⁆ and ⁅(d3)!ans, d3 ̸=j=d1⁆ as despite not being disjoint, they
still differ syntactically, and so the equations defining these actions remain
unmerged. We thus end up with

(
Eq4# , X{0}, ∅

)
where

Eq4# =

 X{0} = [⁅(d1)?req, true⁆]X{1},

X{1} = [⁅(d2)!ans, d2 ̸=h=d1⁆]X{2} ∧ [⁅(d3)!ans, d3 ̸=j=d1⁆]X{3}, . . .

 .

This error propagates through to steps §4 and §5 which produce a formula
that despite being semantically equivalent to the original formula φ5, it is still
not in normal form due to its non-disjoint conjunctions. The current algorithm
thus fails in the general case.
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When dealing with non-singleton SAs, we must introduce additional con-
structions to ensure that §3 correctly merges the conjunctions within a formula.

Example 20 To give some intuition of the necessary steps, consider again ac-
tions ⁅(d1)?(e1), e1 = 5⁆ and ⁅(d2)?(e2), d2 = i⁆. Despite being syntactically
different, these SAs are not disjoint as both can match i?5. The information
they convey can however be encoded into 4 SAs (amounting to 3 disjoint ones)
as follows:

− ⁅(d1)?(e1), e1=5⁆ becomes ⁅(d)?(e), e=5∧ d=i⁆ and ⁅(d)?(e), e=5∧ d ̸=i⁆, while
− ⁅(d2)?(e2), d2=i⁆ becomes ⁅(d)?(e), e=5∧ d=i⁆ and ⁅(d)?(e), e̸=5∧ d=i⁆

where d and e are fresh variables. Since these newly encoded SAs differ syntac-
tically and are also disjoint, they can be distinguished via a simple syntactic
check. For instance, ⁅(d)?(e), e=5∧ d=i⁆ and ⁅(d)?(e), e̸=5∧ d=i⁆ are not only
syntactically different, but their contradicting conditions, e=5 and e̸=5, also
guarantee their disjointness.

5.4.1 Additional Steps for Normalizing Necessities defining Symbolic Actions

We formally define two additional constructions that must be applied between
steps §2 and §3. They convert conjunctions that are guarded by necessities
defining non-disjoint SAs , into equivalent conjunctions guarded by syntactically
disjoint necessities, i.e., necessities describing SAs that are syntactically (hence
semantically) disjoint. The additional steps include:

§i. Conversion to uniform SAs: we inspect modal necessities defined
at the same modal depth within a conjunction and substitute their data
variables with the same fresh variable whenever they define pattern
equivalent SAs (Section 5.4.2).

§ii. Condition reformulation of conjunct SAs: once uniformed, the
conjunctions are recomposed to define branches that are prefixed by
modal necessities specifying syntactically disjoint SAs (Section 5.4.3).

Example 21 Recall ⁅(d1)?(e1), e1 = 5⁆ and ⁅(d2)?(e2), d2 = i⁆ from Example 20.
Construction §i uniforms the SAs by assigning the same fresh variables to
both SAs, and so they become ⁅(d)?(e), e = 5⁆ and ⁅(d)?(e), d = i⁆. Con-
struction §ii then reformulates the conditions of the resulting SAs to obtain
⁅(d)?(e), e=5∧ d=i⁆, ⁅(d)?(e), e̸=5∧ d=i⁆ and ⁅(d)?(e), e=5∧ d ̸=i⁆ which are dis-
joint.

Internally, constructions §i and §ii both use the traverse function defined in
Figure 14 to process the given set of equations in a tree-like manner. traverse :
(Eq×P(Index)×Fun×Acc) → Acc is a higher order function which takes
as input: a set of equations Eq, a set of indices I, an arbitrary projection
function λ, and an accumulator argument δ.

It conducts a breadth first traversal on an equation set, starting from the
equation of the principal variable as the root of the tree traversal. For instance,
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Traversal Functions.

traverse(Eq, I, λ, δ)
def
=


traverse(Eq′, I′, λ, δ′) if Eq ̸=∅ and I ̸=∅ then δ′=λ(Eq, I, δ)

and Eq′=Eq\Eq//I
and I′=

⋃
j∈I

child(Eq, j)

δ otherwise

child(Eq, i)
def
=

{
j
∣∣∣ Eq(Xi)=

∧
j∈I

[ηj ]Xj∧φ and j ̸=i and Xj∈dom(Eq)
}

Eq//I
def
= { Xi=φi (Xi=φi)∈Eq and i∈I}

Fig. 14 The breadth first traversal algorithm.

traverse(Eq, { 0 }, λ, δ)

traverse(Eq′, {1, 2, 3}, λ, δ′)

traverse(Eq′′, {5}, λ, δ′′)

λ({X0=[η1]X1 ∧ [η2]X2 ∧ [η3]X3} ∪ Eq′, {0}, δ) = δ′

child(Eq, 0) ={1,2,3}

λ

({
X1=[η4]X0, X2=[η5]X5 , X3=[η6]X3

}
∪ Eq′′, {1, 2, 3}, δ′

)
=δ′′

child(Eq′, 1)=∅ child(Eq′, 2)={5} child(Eq′, 3)=∅

λ({ X5=ff }, {5}, δ′′) = δ′′′

Fig. 15 A pictorial view of an example equation set traversal.

in Figure 15 equation X0=[η1]X1 ∧ [η2]X2 ∧ [η3]X3 is the root of the traversal
since X0 is the principal variable of (Eq , X0, Y).

The children of the root are calculated via the child:(Eq×Index)→P(Index)
function. It takes as input an equation set Eq along with the index i of the
parent equation, e.g., index 0 for equation X0=[η1]X1 ∧ [η2]X2 ∧ [η3]X3. It then
scans the equated formula and returns the set containing the indices of every
branch, defined in the equated formula, which is prefixed by a modal necessity.
For example in Figure 15, the children of X0=[η1]X1 ∧ [η2]X2 ∧ [η3]X3 are{
1, 2, 3

}
, and so branches [η1]X1, [η2]X2 and [η3]X3 are siblings as they are

defined at the same modal depth of the conjunction.
Cycles in the traversal are avoided since the child function is always executed

wrt. a restricted set of equations, i.e., one which does not include the parent
equation. Cycles to the (immediate) parent are also avoided by removing the
parent’s index from the returned set of child indices.

Example 22 While analysing equation X1=[η4]X0 in Figure 15, traverse is
evaluated wrt. Eq′ which does not include the parent equation, i.e., since
Eq′=Eq\Eq//{0} where Eq//{0} = {X0=[η1]X1 ∧ [η2]X2 ∧ [η3]X3}. In this way,

when computing the children of X1 (via child(Eq′, 1)) index 0 is not added to
the resultant set of child indices, since X0 /∈ dom(Eq′); this avoids cycling
back to some (grand) parent equation. Moreover, when evaluating child(Eq′, 3)
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to retrieve the child indices of equation X3=[η6]X3, index 3 is removed thus
avoiding the creation of a loop in the traversal.

While traversing the equation set, the traverse function can apply an arbi-
trary projection function λ. As mentioned above, despite being an arbitrary func-
tion, λmust adhere to a specific type, namely, λ : (Eq×P(Index)×Acc)→Acc.
It must take three inputs including: the current equation set Eq, a set of indices
I and an accumulator value δ, and must return an updated accumulator δ′.

Upon termination, the traversal returns the latest version of the accumulator.
The traversal terminates when either all the equations in Eq have been processed
such that the traverse function is applied wrt. Eq=∅, or whenever no further
children can be visited i.e., for every branch i, child(Eq, i)=∅. The latter is an
optimization which omits the redundant processing of equations that are not
reachable from the principal equation.

With this mechanism in place, we can now define steps §i and §ii in
Sections 5.4.2 and 5.4.3.

5.4.2 Uniformity of Symbolic Actions.

Intuitively, this part of the normalization algorithm renames the data variables
of pattern equivalent sibling modal necessities, to the same variable names.
This produces a uniform system of equations.

Definition 12 (Uniform System of Equations) An equation is uniform
when every pattern equivalent SA defined by sibling necessities within a con-
junction, defines the exact same data variable names. A system of equations is
uniform when all of its equations are uniform.

Example 23 The SAs inX0 = [⁅(d1)?(d2), c1[d1, d2]⁆]X1∧[⁅(e1)?(e2), c2[e1, e2]⁆]X2

are both pattern equivalent, yet not uniform as they do not define the
same variable names. Uniformity can be attained by renaming d1 and e1

to the same f1 and similarly d2 and e2 to a fresh variable f2, so to obtain
X0 = [⁅(f1)?(f2), c1[f1, f2]⁆]X1∧[⁅(f1)?(f2), c2[f1, f2]⁆]X2.

Figure 16 presents ⟨⟨−⟩⟩(i) : (Eq , Var, P(Var))→ (Equni , Var, P(Var)).
This internally uses the uni function to create the required uniform set of
equations Equni from a given equation set. Specifically, uni reconstructs the
equation set by performing a linear scan during which it converts equations of
the form Xi=

∧
j∈I [ηj ]Xj∧φ to Xi=

∧
j∈I [ηjζ(j)]Xj∧φ where ζ : Index→σ

is a map that provides a substitution environment σ for a given index j. For
the reconstruction to be correct, the ζ must be well-formed.

Definition 13 (A well-formed ζ Map) We say that ζ is a well-formed map
for an equation set Eq, whenever it provides a set of mappings which allow for

(i) uniformly renaming the data variables of pattern equivalent sibling neces-
sities, defined in Eq, by setting them to the same set of fresh variables,
and for
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⟨⟨(Eq , X0, Y)⟩⟩(i)
def
= ( uni(Eq, ζ) , X0, Y)

where ζ=traverse(Eq, {0}, partition, ∅)

uni(Eq, ζ)
def
=

{
Xi=

∧
j∈I

[ηjζ(j)]Xj∧φ
∣∣∣ Xi=

∧
j∈I

[ηj ]Xj∧φ ∈ Eq
}

partition(Eq, I, ζ)
def
=


j 7→ ζ(i) ∪̇ {fn/dn}

k 7→ ζ(l) ∪̇ {fn/en}

∀i, l ∈ I · if Eq(i)=
∧

j∈I [⁅pj [dn], cj⁆]Xj∧φ′

and Eq(l)=
∧

k∈I′′ [⁅pk[en], ck⁆]Xk∧φ′′ and

i ̸= l and J⁅pj [dn], true⁆K = J⁅pk[en], true⁆K
(pattern equiv.) then we assign the same

fresh variables f1, f2.


∪ ζ

where σ ∪̇ {f/e}=σ ∪{f/e} iff e /∈dom(σ).

Fig. 16 The uniformity algorithm for symbolic actions.

X0=[⁅(e1)?(e2), e1 ̸=i⁆]X1∧[⁅(e1)?(e2), e2 ̸=3⁆]X2

uni

X1=[⁅(e3)!(e4), true⁆]X3

uni

X2=[⁅(e3)!(e4), e3=e1⁆]X4

uni

X0=[⁅(d1)?(d2), d1 ̸=i⁆ζ(1)]X1∧[⁅(d3)?(d4), d4 ̸=3⁆ζ(2)]X2

X1=[⁅(d5)!(d6), true⁆ζ(3)]X3 X2=[⁅(d7)!(d8), d7=d3⁆ζ(4)]X4

X3=ff X4=ff

Fig. 17 A Tree representation of the uni traversal performed on Eq.

(ii) renaming any data variable reference that is bound to a renamed parent
modal necessity defined in Eq.

We assume that by default ζ(i) = ∅ when i is the index of the root equation.

Example 24 Consider the following system of equations (Eq , X0, ∅) where

Eq =

{
X0=[⁅(d1)?(d2), d1 ̸=i⁆]X1∧[⁅(d3)?(d4), d4 ̸=3⁆]X2, X3=ff,

X1=[⁅(d5)!(d6), true⁆]X3, X2=[⁅(d7)!(d8), d7=d3⁆]X4, X4=ff

}
.

For convenience, we also represent these equations as a tree starting from the
principal equation X0=[⁅(d1)?(d2), d1 ̸=i⁆]X1∧[⁅(d3)?(d4), d4 ̸=3⁆]X2 as the root
of the tree. We also assume the knowledge of a well-formed ζ map:

ζ =

{
0 7→ {∅}, 1 7→ ζ(0) ∪̇ {d1/e1, d2/e2}, 2 7→ ζ(0) ∪̇ {d3/e1, d4/e2},

3 7→ ζ(1) ∪̇ {d5/e3, d6/e4}, 4 7→ ζ(2) ∪̇ {d7/e3, d8/e4}

}
.
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partition({X0=[⁅(d1)?(d2), d1 ̸=i⁆]X1∧[⁅(d3)?(d4), d4 ̸=3⁆]X2} ∪ Eq′, {0}, ∅) = ζ

child(Eq, 0) ={1,2}

partition

({
X1=[⁅(d5)!(d6), true⁆]X3, X2=[⁅(d7)!(d8), d7=d3⁆]X4

}
∪ Eq′′, {1, 2}, ζ

)
= ζ′

child(Eq′, 1)={3} child(Eq′, 2)={4}

partition({X3=ff X4=ff}, {5}, ζ′) = ζ′

Fig. 18 A breadth first traversal using partition to obtain ζ.

As shown by the tree representation in Figure 17, actions ⁅(d1)?(d2), d1 ̸=i⁆
and ⁅(d3)?(d4), d4 ̸=3⁆ are pattern equivalent and defined by sibling necessities
in the conjunction of equation X0. For these to be uniformed, the substi-
tution map ζ projects indices 1 and 2 onto substitutions {d1/e1,d2/e2} and
{d3/e1,d4/e2} resp. Once the substitution is applied to both SAs we obtain
⁅(e1)?(e2), e1 ̸=i⁆ and ⁅(e1)?(e2), e2 ̸=3⁆. Notice how the patterns in both of the
necessities are now syntactically equal, meaning that the resulting equation
X0=[⁅(e1)?(e2), e1 ̸=i⁆]X1∧[⁅(e1)?(e2), e2 ̸=3⁆]X2 is now uniform.

Since ⁅(d5)!(d6), true⁆ and ⁅(d7)!(d8), d7=d3⁆ are pattern equivalent siblings
in X0, to achieve uniformity ζ provides mappings 3 7→ ζ(1) ∪̇ {d5/e3, d6/e4}
and 4 7→ ζ(2) ∪̇ {d7/e3, d8/e4} that rename these SAs to ⁅(e3)!(e4), true⁆ and
⁅(e3)!(e4), e3=e1⁆. Notice how condition d7=d3 in ⁅(d7)!(d8), d7=d3⁆ was also
renamed to e3=e1 as variable d3 was substituted by e1 when its binding SA
⁅(d3)?(d4), d4 ̸=3⁆ was uniformed into ⁅(e1)?(e2), e2 ̸=3⁆. This substitution was
possible since mapping ζ(4) includes the substitutions returned by the parent’s
index, i.e., ζ(2) that allows for applying the substitutions performed upon the
parent, to its children, thus keeping the SoE closed.

So far we have assumed the existence of a well-formed ζ map that provides
all the necessary information, without having any knowledge as to how it is
created. The ζ map is created as a result of conducting a breadth first traversal,
via the traverse function, on the given equation set, using the partition function
(defined in Figure 16) as the λ projection function for traverse. The function
partition:(Eq× P(Index)×Acc)→Acc follows the format dictated by λ, i.e.,
it takes as input a set of equations Eq, a set of indices I and an accumulator
− in this case ζ − and returns an updated version of ζ as a result. To update
ζ, partition inspects the sibling equations denoted by the indices in I and as a
result creates a substitution environment which renames the variable names of
each pattern equivalent sibling necessity, to the same fresh set of variables.

Example 25 Recall (Eq , X0, ∅) from Example 24 where

Eq =

{
X0=[⁅(d1)?(d2), d1 ̸=i⁆]X1∧[⁅(d3)?(d4), d4 ̸=3⁆]X2, X3=ff,

X1=[⁅(d5)!(d6), true⁆]X3, X2=[⁅(d7)!(d8), d7=d3⁆]X4, X4=ff

}
.
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Figure 18 depicts the breadth first traversal performed by the traverse function
in which the projection function partition was applied on each set of siblings.
Notice that when partition is applied on the root equation, the initially empty ζ
map gets extended by two entries, namely ζ=∅∪

{
1 7→ ∅∪̇{e1/d1, e2/d2}, 2 7→ ∅∪̇

{e1/d3, e2/d4}
}
. As shown in Example 24, this allows for the sibling neces-

sities defined in X0 to be uniformed. The ζ map is further extended into
ζ ′=ζ∪

{
3 7→ ζ(1) ∪̇ {e3/d5, e4/d6}, 4 7→ ζ(2) ∪̇ {e3/d7, e4/d8}

}
, since the parti-

tion function recognises that sibling SAs ⁅(d5)!(d6), true⁆ and ⁅(d7)!(d8), d7=d3⁆
are also pattern equivalent. It therefore maps variables d5, d7 to the same fresh
variable e3, and d6, d8 to e4.

Lemma 7 For every SoE (Eq , X0, Y) if ⟨⟨(Eq , X0, Y)⟩⟩(i) = (Eq′ , X ′
0, Y ′)

then (Eq , X0, Y) ≡ (Eq′ , X ′
0, Y ′) and (Eq′ , X ′

0, Y ′) is uniform.

Proof. To prove this statement we assume knowledge of Lemmas 8 and 9 both
of which are proved in Appendix A.

Lemma 8 For every equation set Eq if traverse(Eq, {0}, partition, ∅)=ζ then ζ
is a well-formed map for Eq.

Lemma 9 For every ζ map, and equation set Eq, if ζ is a well-formed map for
Eq then uni(Eq, ζ)≡Eq and every equation (Xk=ψk)∈ uni(Eq, ζ) is Uniform.

Now assume that ⟨⟨(Eq , X0, Y)⟩⟩(i) = (Eq′ , X ′
0, Y ′) and so by the definition

of ⟨⟨−⟩⟩(i) we have that X ′
0 = X0, Y ′ = Y and Eq′ = uni(Eq, ζ) where ζ =

traverse(Eq, {0}, partition, ∅) from which by Lemma 8 we can deduce that ζ is
a well-formed map for Eq. This means that from Lemma 9 we can infer that

uni(Eq, ζ)≡Eq (75)

every equation (Xk=ψk) ∈ uni(Eq, ζ) is uniform (76)

and so since from (75) we know that the uniformed equation set is equivalent
to Eq and from (76) we have that every equation is uniform, we conclude that

(Eq , X0, Y) ≡ (Eq′ , X ′
0, Y ′) and that (Eq′ , X ′

0, Y ′) is uniform (77)

as required, and so we are done.

5.4.3 Condition reformulation of sibling symbolic actions.

By reformulating the conditions of sibling symbolic actions in a uniform SoE
we aim to obtain its equi-disjoint equivalent.

Definition 14 (System of Equi-Disjoint equations) An equation is equi-
disjoint when it is uniform, and its sibling necessities cannot be satisfied by
the same concrete action α, unless they are syntactically equal. A SoE is
equi-disjoint when all of its equations are equi-disjoint.
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⟨⟨(Eq , X0, Y)⟩⟩(ii)
def
= ( traverse(Eq, {0}, cond comb, ∅) , X, Y)

cond comb(Eq, I, ω)
def
=

Xi=
∧
ck∈C(j,I′)

[⁅p, ck⁆]Xj∧φ
(Xi=

∧
j∈I′′

[⁅p, cj⁆]Xj∧φ)∈Eq//I

and I′=
⋃
l∈I

child(Eq, l)

such that I′′ ⊆ I′


+++

∪ ω

C(j, I)
def
=


cj∧ci . . . ∧cn,
cj∧¬ci . . . ∧cn,
cj∧¬ci . . . ∧¬cn

∀i . . . n ∈ I where j ̸= i ̸= . . . ̸= n

such that pj = pi = . . . = pn


Fig. 19 The Conjunction Reformulation Algorithm.

Example 26 As per Definition 14, we can thus infer that equation

X0 = [⁅(d)?(e), e>5⁆]X1∧[⁅(d)?(e), e>5⁆]X2∧[⁅(d)?(e), e≤5⁆]X3

is equi-disjoint since there does not exist a system action that can satisfy
both ⁅(d)?(e), e>5⁆ and ⁅(d)?(e), e≤5⁆. The only two branches that are sat-
isfied by common actions are [⁅(d)?(e), e>5⁆]X1 and ⁅(d)?(e), e>5⁆X2 but
they are both prefixed by syntactically equal necessities. However, for equa-
tion X1 = [⁅(d1)?(e1), true⁆]X4 ∧ [⁅(d1)?(e1), e1 ̸=5⁆]X5 we can immediately con-
clude that it is not equi-disjoint.

Figure 19 presents function ⟨⟨−⟩⟩(ii): (Equni , Var, P(Var)) → Eqed for re-
composing uniform SoEs into equi-disjoint ones. Internally, this function uses
the traverse function to perform a breadth first traversal on the given uni-
form equation set, Equni, starting from the principal equation, i.e., with I={0}.
While conducting the traversal, it applies the cond comb function to reconstruct
the uniform conjunctions, defined in (Xi=φi) ∈ Equni, into equi-disjoint ones,
thereby producing an equi-disjoint equation set Eqed at the end of the traversal.

The function cond comb:(Equni × P(Index)×Acc)→Acc is a projection
function that takes as input a uniform equation set Equni, a set of indices I,
and an accumulator ω. The accumulator ω contains a partial equi-disjoint
set of equations which is first initialized to ∅ and is constantly extended by
recursive cond comb applications until the traversal is complete, in which case
ω is returned as the resultant equi-disjoint equation set. In order to update ω,
the cond comb function inspects the sibling equations denoted by the indices in
I, i.e., (Xi=φi) ∈ Eq//I , and computes the truth combinations of the conditions
defined by sibling symbolic necessities defining syntactically equal patterns.

To compute these truth combinations, the cond comb function starts by
computing the child indices of the current sibling equations, denoted by I,
by using the child function, i.e., I ′=

⋃
l∈I child(Eq, l). It then inspects the

conjunctions defined in the selected equations, i.e.,
∧

j∈I′′ [⁅pj , cj⁆]Xj ∧φ, and
reconstructs them into

∧
ck∈C(j,I′) [⁅pj , ck⁆]Xj ∧φ. Notice that ck is a truth

combination of all the filtering conditions that are defined by modal necessities
that specify syntactically equal patterns and which are defined by the branches
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identified by the indices in I ′. For instance, if I ′={1, 2, 3}, then one possible
truth combination ck is c1∧¬c2∧c3.

The truth combinations, such as ck, are generated through the combi-
natorial function C:(Index × P(Index)). It takes as input the index j of
the branch that is being analysed, along with the indices of all the sib-
ling branches specified in I ′. As a result, C(j, I ′) returns the truth combi-
nations in which the filtering condition, cj , of the branch that is currently
being reconstructed is true. For instance, C(1, {1, 2, 3}) provides combinations{
(c1∧c2∧c3), (c1∧c2∧¬c3), (c1∧¬c2∧c3), (c1∧¬c2∧¬c3)

}
where c1 is always

true. These truth combinations are then used to reconstruct the existing
branch into a collection of equi-disjoint branches.

The resultant equations are thus equi-disjoint as the truth combination
conditions ensure that a concrete system event α can never satisfy multiple
symbolic necessities in the reconstructed branches, unless these are syntactically
equal. Note that the truth combinations generated by function C(j, I ′) do not
include the cases where cj is false. This is essential to ensure that none of the
reconstructed branches can be satisfied when the original condition cj is false,
thereby preserving the semantics of the original branch.

Once the traversal completes, the construction outputs the final accumulator
value ω containing the required equi-disjoint equation set.

Example 27 Consider equation X0 = [⁅p, c1⁆]X1∧[⁅p, c2⁆]X2∧[⁅p, c3⁆]X3, using
the truth combinations provided by C(1, {1, 2, 3}) we can reconstruct branch
[⁅p, c1⁆]X1 into:

[⁅p, c1∧c2∧c3⁆]X1∧[⁅p, c1∧c2∧¬c3⁆]X1∧[⁅p, c1∧¬c2∧c3⁆]X1∧[⁅p, c1∧¬c2∧¬c3⁆]X1.

Similarly, with C(2, {1, 2, 3}) and C(3, {1, 2, 3}), we can reconstruct branches
[⁅p, c2⁆]X2 and [⁅p, c3⁆]X3 in the same way such that the resultant equation is:

X0=



[⁅p, c1∧c2∧c3⁆]X1 ∧[⁅p, c1∧c2∧¬c3⁆]X1 ∧
[⁅p, c1∧¬c2∧c3⁆]X1 ∧[⁅p, c1∧¬c2∧¬c3⁆]X1 ∧

[⁅p, c1∧c2∧c3⁆]X2 ∧[⁅p, c1∧c2∧¬c3⁆]X2 ∧
[⁅p,¬c1∧c2∧c3⁆]X2 ∧[⁅p,¬c1∧c2∧¬c3⁆]X2 ∧

[⁅p, c1∧c2∧c3⁆]X3 ∧[⁅p,¬c1∧c2∧c3⁆]X3 ∧
[⁅p, c1∧¬c2∧c3⁆]X3 ∧[⁅p,¬c1∧¬c2∧c3⁆]X3


Notice that logical variables X1, X2 and X3 can only be evaluated when their
prefixing modal necessities are satisfied by some system action, meaning that
continuation X1 is only reachable when c1 is true, and resp. X2 and X3 when
c2 and c3 are true. Hence, in the reconstructed equation, these (underlined)
conditions are never negated when prefixing the resp. logical variable.

Lemma 10 For every system of equations, (Eq , X0, Y), if (Eq , X0, Y) is
uniform then ⟨⟨(Eq , X0, Y)⟩⟩(ii) ≡ (Eq , X0, Y) and ⟨⟨(Eq , X0, Y)⟩⟩(ii) is equi-
disjoint.
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afterφ(φ, α)
def
=


φ if φ∈

{
tt,ff

}
afterφ(φ{maxX.φ/X}, α) if φ=maxX.φ∧

i∈I afterφ(φi, α) if φ=
∧

i∈I φi

ψσ if φ= [⁅p, c⁆]ψ and mtch(p, α)=σ and c ⇓ true
tt if φ= [⁅p, c⁆]ψ and otherwise

Fig. 20 Defining the afterφ function.

Proof. For this proof we assume the knowledge of Lemma 11 which is proved
in Appendix A.

Lemma 11 For every equation (Xj=φj) ∈ Eq, if Xj=φj is uniform then we
have that Eq≡ traverse(Eq, {0}, cond comb, ∅) and that every eqn. (Xk=ψk) ∈
traverse(Eq, {0}, cond comb, ∅) is equi-disjoint.

Now, lets assume that (Eq , X0, Y) is uniform which means that every
equation (Xj=φj) ∈ Eq is uniform, and so by Lemma 11 we deduce that

Eq≡ traverse(Eq, {0}, cond comb, ∅) (78)

∀(Xk=ψk)∈ traverse(Eq, {0}, cond comb, ∅) · eqn (Xk=ψk) is equi-disjoint .
(79)

Now since ⟨⟨(Eq , X0, Y)⟩⟩(ii) = ( traverse(Eq, {0}, cond comb, ∅) , X0, Y) by

(78) and (79) we can thus conclude that

⟨⟨(Eq , X0, Y)⟩⟩(ii) ≡ (Eq , X0, Y) and ⟨⟨(Eq , X0, Y)⟩⟩(ii) is equi-disjoint

as required, and so we are done.

In Example 19 we had shown that the algorithm presented in Section 5.3
fails when dealing with non-singleton SAs . This can now be resolved by applying
steps §i and §ii prior to applying §3 − we leave this as an exercise to the
reader.

With the extended normalization algorithm we can finally conclude that
Theorem 5 also holds for any sHML formula (defining any kind of SAs) as a
result of Lemmas 2 and 3 followed by Lemmas 7 and 10, and then by Lemmas 5
and 6.

6 Restricting Weak Enforcement to sHML

Although in Section 4 we prove that Definition 7 is inherently weaker than
Definition 4 (i.e., Theorem 2), both definitions become equally powerful when
restricted to sHML. As both are defined in terms of Definition 2 (Soundness)
and only vary with respect to the transparency definition, to ensure this result
it suffices to prove Theorem 6, i.e., that the Definitions 3 (Transparency) and 6
(Trace Transparency) coincide with respect to sHML formulas.
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Theorem 6 For every monitor m and formula φ ∈ sHML, tenf(m,φ) iff
ttenf(m,φ).

Since the if-case has already been proven to hold for the full µHML (in
Theorem 2) this result implicitly applies for sHML, so no additional proofs
are required. For the only-if case we, however, require an additional proof that
uses the following lemmas whose proofs are provided in Appendix B.

Lemma 12 For every system s, sHML formula φ and trace t ∈ traces(s)

when s ∈ JφK then sys(t) ∈ JφK (where traces(s)
def

=
{
t s

t
==⇒

}
).

Lemma 13 For every system transition s
α
==⇒ s′ and sHML formula φ, if

s ∈ JφK then s′ ∈ Jafterφ(φ, α)K (where afterφ(φ, α) is defined in Figure 20).

Lemma 14 For every action α, sHML formula φ and trace t, if sys(t) ∈
Jafterφ(φ, α)K then sys(αt) ∈ JφK.

Proof. We prove Theorem 6 coinductively by showing that relation R def

=
{(m[s], s) s ∈ JφK and ttenf(m,φ)} is a strong bisimulation relation and thus
satisfies the following transfer properties, i.e., for each (m[s], s)∈R:

(a) if m[s]
µ−−→ r′ then s

µ−−→ s′ and (r′, s′) ∈ R
(b) if s

µ−−→ s′ then m[s]
µ−−→ r′ and (r′, s′) ∈ R.

To prove (a), assume that

m[s]
µ−−→ r′ (80)

s ∈ JφK (81)

and that ttenf(m,φ) from which by Definition 6 we have that

if sys(t) ∈ JφK and m[sys(t)]
t′
==⇒ m′[sys(t′′)] then t = t′t′′ (82)

and so by Lemma 12 from (81) and we infer that

∀t ∈ traces(s) · sys(t) ∈ JφK. (83)

From (82) and (83) we can thus conclude that monitor m does not modify any
of the behaviours (traces) of s and so we know that

∀t ∈ traces(s) ·m[sys(t)]
t
=⇒ . (84)

We now explore all the possible instrumentation rules by which the reduction
in (80) can occur.
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– iAsy: From (80) and rule iAsy we have that µ = τ and that

s
τ−→ s′ (85)

r′ = m[s′]. (86)

Since by Proposition 4 we know that sHML is agnostic of τ -actions, from
(81) and (85) we also know that s′ ∈ JφK and so since from (86) we know
that m remains unmodified by the transition, from (82) and the definition
of R we conclude that

(m′[s′], s′) ∈ R (87)

as required. Hence this case holds by (85) and (87).
– iDef: From (80) and rule iDef we have that µ = α and that

s
α−−→ s′ (88)

r′ = id[s′]. (89)

Since id can only apply identity transformations we can simply infer that
for any formula ψ, ttenf(id, ψ), and so we conclude that

ttenf(id, afterφ(φ, α)). (90)

Finally, by (81), (88) and Lemma 13 we deduce that s′ ∈ Jafterφ(φ, α)K,
and so knowing (90) and by the definition of R we conclude that

(id[s′], s′) ∈ R (91)

as required. Hence, this case holds by (88) and (91).
– iTrn (identity): From (80) and rule iTrn we have that

s
α−−→ s′ (92)

m
α▶α−−−−→ m′′ (93)

r′ = m′′[s′] (94)

and so by (81), (92) and Lemma 13 we can immediately deduce that

s′ ∈ Jafterφ(φ, α)K. (95)

Now, assume that for every trace u, we have that

sys(u) ∈ Jafterφ(φ, α)K (96)

m′′[sys(u)]
u′

==⇒ m′[sys(u′′)]. (97)

Knowing (96), by Lemma 14 we have that

sys(αu) ∈ JφK (98)
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and so from (82) and (98) we can infer that

if m[sys(αu)]
αu′

===⇒ m′[sys(u′′)] then αu = αu′u′′ (99)

and thus from (93), (97) and (99) we can conclude that

u = u′u′′. (100)

Hence, from assumptions (96), (97) and deduction (100) we can introduce
an implication so that by Definition 6 we conclude that

ttenf(m′′, afterφ(φ, α)) (101)

and so by (95), (101) and the definition of R we have that

(m′′[s′], s′) ∈ R (102)

as required, and so we are done by (92) and (102).
– iSup, iIns, iTrn (replacement): These cases do not apply since these rules

modify the trace actions executed by s, and so if (80) is the result of any
these rules, it would contradict with (84).

These cases thus allow us to conclude that (a) holds.

We now proceed to prove (b). Assume that

s
µ−−→ s′ (103)

s ∈ JφK (104)

ttenf(m,φ) (105)

and so since µ ∈ {τ, α} we consider each case separately.

– µ = τ : Since s
τ−→ s′, by (104) and since sHML is agnostic of τ -actions

(Proposition 4), we know that

s′ ∈ JφK (106)

and by rule iAsy we can also deduce that

m[s]
τ−→ m[s′]. (107)

Hence by (105), (106) and the definition of R we can conclude that

(m[s′], s′) ∈ R (108)

as required, and so this case holds by (107) and (108).
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– µ = α: Since s
α−−→ s′ from (104) and Lemma 13 we have that

s′ ∈ Jafterφ(φ, α)K (109)

as required. From (105) and by Definition 6 we know that for every trace t

if sys(t) ∈ JφK and m[sys(t)]
t′
==⇒ m′[sys(t′′)] then t = t′t′′ (110)

and by Lemma 12 from (104) we infer that for every trace u that can be

executed by s, i.e., u ∈ traces(s), sys(u) ∈ JφK and so since s
α−−→ s′ we

know that sys(αu′) ∈ JφK where u′ ∈ traces(s′). Hence, from (110) we can
infer that

if m[sys(αu′)]
αu′′

====⇒ m′[sys(u′′′)] then αu′ = αu′′u′′′ (111)

which means that m is unable to modify any of the α-prefixed behaviours
of s, and so since s

α−−→ s′ we have that

∃m′′ ·m[s]
α−−→ m′′[s′] (112)

as required. Finally, lets assume that for every trace v,

sys(v) ∈ Jafterφ(φ, α)K (113)

m′′[sys(v)]
v′

==⇒ m′[sys(v′′)]. (114)

Since by (113) and Lemma 14 we have that sys(αv) ∈ JφK, from (110) we
can infer that

if m[sys(αv)]
αv′

===⇒ m′[sys(v′′)] then αv = αv′v′′ (115)

and thus from (114) and (115) we can conclude that

v = v′v′′. (116)

Hence, from assumptions (113), (114) and deduction (116) we can introduce
an implication so that by Definition 6 we conclude that

ttenf(m′′, afterφ(φ, α)) (117)

and so by (109), (117) and the definition of R we have that

(m′′[s′], s′) ∈ R (118)

as required. Hence, this case holds by (112) and (118).

Remark 2 Although we have carried out our investigation for a branching time
setting, it is natural to ask what the relation between enforceable branching-
time properties and linear-time properties is. Intuitively, one might expect that
a process satisfies a property φ in sHML if, and only if, each of its traces does
so in the linear-time interpretation of φ. This intuition is formalised in [23,
Proposition 5.11] for a setting without data. A version of that result should
also hold true also for the version of sHML studied in this paper.
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7 Conclusion

This paper presents a preliminary investigation of the enforceability of first-
order branching-time properties expressed in a process logic with data bindings
and constraints. We have focussed on a highly expressive and standard logic,
µHML, and studied the ability to enforce µHML properties via a specific kind
of monitor that performs suppression-based enforcement. We concluded that the
safety fragment of µHML, i.e., sHML, is enforceable via these kind of monitors.
To show this, we first defined enforceability for logics and system descriptions
interpreted over labelled transition systems. Although enforceability builds
upon soundness and transparency requirements that have been considered in
other work, our branching-time framework required us to consider a broader
design spaced for these requirements, resulting in new definitions for soundness
and transparency . We also contend that the definitions that we develop for the
enforcement framework are fairly modular: e.g., the instrumentation relation
is independent of the specific language constructs defining our transducer
monitors and it functions as expected as long as the transition semantics
of the transducer and the system are in agreement. Based on this notion of
enforcement, we devise a two-phase procedure to synthesise correct enforcement
monitors. We first identify a syntactic subset of our target logic sHML that
affords certain structural properties and permits a compositional definition of
the synthesis function. We then show that, by augmenting existing rewriting
techniques to our setting, we can convert any sHML formula into this syntactic
subset. This yields one of the first syntactic studies of logic enforceability.
Although our logic is declarative in nature (describing what) we are able to
demonstrate how its syntactic constructs can still be used to define a synthesis
procedure that generates operational descriptions detailing how a property is
enforced. The flip-side of this approach is that we are then able to precisely
describe the properties that we are able to enforce in terms of the grammar of
the logic fragment considered. This modus operandi is essential for ensuring
correct tool construction [32, 51]. Unfortunately this method is rarely used in
the literature either because the properties to be enforced are never defined
syntactically or because they are defined in terms of automata, which already
have a strong operational flavour.

Related Work. In his seminal work [2], Schneider regards a property (in a
linear-time setting) to be enforceable if its violation can be detected by a
truncation automaton, and prevents its occurrence via system termination; by
preventing misbehaviour, these monitors can only enforce safety properties.
In [4], Ligatti et al. extended this work via edit automata—an enforcement
mechanism capable of suppressing and inserting system actions. A property is
thus enforceable if it can be expressed as an edit automaton that transforms
invalid executions into valid ones via suppressions and insertions. Edit automata
are capable of enforcing instances of safety and liveness properties, along with
other properties such as infinite renewal properties [4, 75]. As a means to
assess the correctness of these automata, the authors introduced soundness and
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transparency along the lines of our trace transparency, Definition 6. All this
work is pitched at a linear-time setting where properties are defined in terms
of traces. They are never characterised syntactically, and they never discuss
edit-automata synthesis. Moreover, first order properties are not considered,
limiting traces to a finite set of actions.

Könighofer et al. in [10] present a synthesis algorithm that produces ac-
tion replacement transducers called shields from safety properties encoded
as automata-based specifications. Shields analyse the inputs and outputs of
a reactive system and enforce properties by modifying the least amount of
output actions whenever the system deviates from the specified behaviour.
By definition, shields should adhere to two desired properties, namely cor-
rectness and minimum deviation. Although these two criteria can be viewed
as analogous to soundness and transparency respectively, they are different
from the ones we consider in our work, Definition 2 and Definition 3, since
we operate within a branching-time setting. Moreover, Könighofer et al. do
not study the enforceability of the logic. Falcone et al. in [6, 28], also propose
synthesis procedures to translate properties − expressed as Streett automata
− into the resp. monitors. The authors show that most of the property classes
defined within the safety-progress hierarchy [76] are enforceable, as they can
be encoded as Streett automata and subsequently converted into enforcement
automata. Although this is one of the first bodies of work to coin the term
enforceability, their investigation of property enforceability is very different
from ours in two respects: they do not consider a declarative logic and consider
linear-time properties defined over traces. Neither Könighofer et al. nor Falcone
et al. consider first-order enforcement.

In [77], Pinisetty et al. consider first-order enforcement of timed properties.
Apart from the timing aspect, which is not considered by our work, Pinisetty
et al. study linear-time properties. This work does not define any automated
synthesis procedures nor does it present any correctness proofs for the monitors
considered. Instead the authors focus on providing an empirical assessment of
the performance of their monitors. In other work [78, 79], Pinisetty et al. study
the enforcement of input-output properties. Although they provide correctness
guarantees for the enforcement monitors they define in terms of criteria such as
soundness and transparency, they do not attempt to syntactically characterise
any enforceable subset of properties. Crucially, the authors do not consider
first-order properties and work in a linear-time setting.

Lanotte et al. [80] employ a process-based approach for the runtime en-
forcement of security properties that is very similar to our model of process
monitors and instrumentation. Although their implementations handle the
enforcement of data-based properties, their formalism does not. Their work
does study the problem of logic enforceability.

Bielova et al. [70, 75] remark that soundness and transparency do not specify
to what extent a transducer should modify an invalid execution. They thus
introduce a predictability criterion to prevent transducers from transforming
invalid executions arbitrarily. More concretely, a transducer is predictable if
one can predict the number of transformations that it will apply in order to
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transform an invalid execution into a valid one, thereby preventing monitors
from applying unnecessary transformations over an invalid execution. Using
this notion, Bielova et al. thus devise a more stringent notion of enforceability.
Although we do not explore this avenue, Definition 6 may be viewed as an
attempt to constrain transformations of violating systems in a branching-time
setup, and should be complementary to these predictability requirements.
Importantly, the work by Bielova et al. is limited to the regular properties and
does not study the enforcement of first-order computation.

To the best of our knowledge, the only other work that tackles enforceability
for the modal µ-calculus [29] (a reformulation of µHML) is that of Martinelli
et al. in [81, 82]. Their approach is, however, different from ours. In addition to
the µ-calculus formula to enforce, their synthesis function also takes a “witness”
system satisfying the formula as a parameter. This witness system is then used
as the behaviour that is mimicked by the instrumentation via suppression,
insertion or replacement mechanisms. Although the authors do not explore
automated correctness criteria such as the ones we study in this work, it would
be interesting to explore the applicability of our methods to their setting.

Bocchi et al. [19] adopt multi-party session types to project the global proto-
col specifications of distributed networks to local types defining a local protocol
for every process in the network that are then either verified statically via
typechecking or enforced dynamically via suppression monitors. To implement
this enforcement strategy, the authors define a dynamic monitoring semantics
for the local types that suppress process interactions so as to conform to the
assigned local specification. They prove local soundness and transparency for
monitored processes that, in turn, imply global soundness and transparency by
construction. Their local enforcement is closely related to the suppression en-
forcement studied in our work with the following key differences: (i) well-formed
branches in a session type are, by construction, explicitly disjoint via the use of
distinct choice labels (i.e., similar to our normalised subset sHMLnf), whereas
we can synthesise monitors for every sHML formula using a normalisation
procedure; (ii) they give an LTS semantics to their local specifications (which
are session types) which allows them to state that a process satisfies a specifi-
cation when its behaviour is bisimilar to the operational semantics of the local
specification—we do not change the semantics of our formulas, which is left in
its original denotational form; (iii) our monitor descriptions sit at a lower level
of abstraction than theirs using a dedicated language, whereas theirs have a
session-type syntax with an LTS semantics (e.g., repeated suppressions have to
be encoded in our case using the recursion construct while this is handled by
their high-level instrumentation semantics). Although they consider first-order
enforcement, they do not investigate the enforceability of session types along
the lines of Burlo et al. [16].

In [83], Castellani et al. adopt session types to define reading and writing
privileges amongst processes in a network as global types for information
flow purposes. These global types are projected into local monitors capable of
preventing read and write violations by adapting certain aspects of the network.
They operate in a first-order setting and their monitors occasionally adapt
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the network by suppressing messages or by replacing messages with messages
carrying a default nonce value, but their work targets adaptation [3, 84], rather
than enforcement.

Future Work. We plan to extend this work along two different avenues. On the
one hand, we will attempt to extend the enforceable fragment of µHML. For
a start, we intend to investigate maximality results for suppression monitors,
along the lines of [11, 12], and find out whether sHML is the largest µHML
subset that is enforceable via action suppressions. We also plan to consider
more expressive enforcement mechanisms such as insertion and replacement
actions. Finally, we also want to identify and investigate different classes of
system actions that might require more elaborate instrumentation setups to
enforce. For instance, the mechanism required for suppressing an input action
might differ from that of an output action. Such setups may include the ones
explored in [13], that can reveal refusals in addition to the actions performed
by the system.

On the other hand, we also plan to study the implementability and feasibility
of our framework. We will consider target languages for our monitor descriptions
that are closer to an actual implementation (e.g., an actor-based language
along the lines of [85]). We could then employ refinement analysis techniques
and use our existing monitor descriptions as the abstract specifications that
are refined by the concrete monitor descriptions. The more concrete synthesis
can then be used for the construction of tools that are more amenable towards
showing correctness guarantees.
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marking for concurrent runtime verification. In E Guerra and M Stoelinga,
editors, Fundamental Approaches to Software Engineering - 24th Inter-
national Conference, FASE 2021, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2021, Luxem-
bourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, volume
12649 of Lecture Notes in Computer Science, pages 3–23. Springer, 2021.
doi: 10.1007/978-3-030-71500-7\ 1. URL https://doi.org/10.1007/

978-3-030-71500-7_1.
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A Missing proofs from Section 5.2

We provide the proofs for Lemmas 6, 8, 9 and 11 which were omitted from the main text.

A.1 Proving Lemma 6

To prove that for every φ ∈ sHML2, J⟨⟨φ⟩⟩5K = JφK we must prove that

(a) ∀s∈Sys · s ⊨ ⟨⟨φ⟩⟩5 implies s ⊨ φ; and
(b) ∀s∈Sys · s ⊨ φ implies s ⊨ ⟨⟨φ⟩⟩5.

In order to prove (a) and (b) we rely on the following lemmas:

Lemma 15 For every φ∈ sHML2 if X ∈ fv(φ) then X ∈ fv(⟨⟨φ⟩⟩5).

Lemma 16 For every φ∈ sHML2 if X ∈ fv(φ) and X ∈ fv(⟨⟨ψ⟩⟩5) then ⟨⟨φ{maxX.ψ/X}⟩⟩5 =
⟨⟨φ⟩⟩5{maxX.⟨⟨ψ⟩⟩5/X}

We provide the proofs for these lemmas after the proofs for (a) and (b).

Proof for (a). Let R def
= { (s, φ) s ⊨ ⟨⟨φ⟩⟩5 }, we must prove that R is a satisfaction relation

by showing that it obeys the rules of Figure 4. We conduct this proof by case analysis on φ.

Cases φ ∈
{
ff, X

}
. These cases do not apply since ⟨⟨φ⟩⟩5 = φ and so the assumption that

s ⊨ ⟨⟨φ⟩⟩5 does not hold when φ ∈
{
ff, X

}
.

Case φ = tt. This case is satisfied trivially since any process satisfies tt which confirms
that (s, tt)∈R.

Case φ =
∧

i∈I [ηi]φi. In order to prove this case we must confirm that (s,
∧

i∈I [ηi]φi)∈R
by showing that for every α and i∈ I, if s

α
==⇒ s′ s.t. ηi(α) = σ then (s′, ⟨⟨φiσ⟩⟩5)∈R.

Hence we assume that s ⊨ ⟨⟨
∧

i∈I [ηi]φi⟩⟩5 and since by the definition of ⟨⟨−⟩⟩5 we know that

s ⊨
∧
i∈ I

[ηi]⟨⟨φi⟩⟩5 then by the definition of ⊨ we have that

∀i∈ I, α∈Act · if s
α

==⇒ s′ s.t. ηi(α) = σ then s′ ⊨ ⟨⟨φiσ⟩⟩5. (119)

Hence by (119) and the definition of R we can finally conclude that

∀i∈ I, α∈Act · if s
α

==⇒ s′ s.t. ηi(α) = σ then (s′, φiσ)∈R

as required.

Case φ = maxX.φ. In order to prove this case we must confirm that (s,maxX.φ)∈R by
showing that (s, φ{maxX.φ/X})∈R as well. Hence we assume that

s ⊨ ⟨⟨maxX.φ⟩⟩5 (120)

and consider the following two subcases for ⟨⟨maxX.φ⟩⟩5.

– when X ∈ fv(φ): Since X ∈ fv(φ), from (120) and the definition of ⟨⟨−⟩⟩5 we have that
s ⊨ maxX.⟨⟨φ⟩⟩5 and so by the definition of ⊨ we can deduce that

s ⊨ ⟨⟨φ⟩⟩5{maxX.⟨⟨φ⟩⟩5/X}. (121)

Since X ∈ fv(φ) and by Lemma 15 we have that X ∈ fv(⟨⟨φ⟩⟩5), and so by Lemma 16,
from (121) we deduce that

s ⊨ ⟨⟨φ{maxX.φ/X}⟩⟩5. (122)
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Hence, by (122) and the definition of R we deduce that

(s, φ{maxX.φ/X})∈R

as required.
– X /∈ fv(φ): Since X /∈ fv(φ), from (120) and the definition of ⟨⟨−⟩⟩5 we have that

s ⊨ ⟨⟨φ⟩⟩5. (123)

and so since X /∈ fv(φ) from (123) we infer that ⟨⟨φ⟩⟩5 is equivalent to ⟨⟨φ{maxX.φ/X}⟩⟩5
since X is unused in φ which means that from (123) we can deduce that

s ⊨ ⟨⟨φ{maxX.φ/X}⟩⟩5. (124)

Hence from (124) and the definition of R we conclude that

(s, φ{maxX.φ/X})∈R

as required, and so we are done.

Proof for (b). Let R def
= { (s, ⟨⟨φ⟩⟩5) s ⊨ φ }, once again we must prove that R is a satis-

faction relation and conduct this proof by case analysis on φ.

Cases φ ∈
{
ff, X

}
. These cases do not apply since the assumption that s ⊨ φ does not hold

when φ ∈
{
ff, X

}
.

Case φ = tt. This cases holds trivially since ⟨⟨tt⟩⟩5=tt and since any process satisfies tt
which allows us to affirm that (s, ⟨⟨tt⟩⟩5)∈R.

Case φ =
∧

i∈I [ηi]φi. In order to prove this case we must confirm that (s, ⟨⟨
∧

i∈I [ηi]φi⟩⟩5)∈R.

Since ⟨⟨
∧

i∈I [ηi]φi⟩⟩5 =
∧

i∈ I [ηi]⟨⟨φi⟩⟩5, we instead confirm that (s,
∧
i∈ I

[ηi]⟨⟨φi⟩⟩5)∈R by

showing that for every α and i∈ I, if s
α

==⇒ s′ s.t. ηi(α) = σ then (s′, ⟨⟨φiσ⟩⟩5)∈R. Hence

we start by assuming that s ⊨
∧

i∈I [ηi]φi and so by the definition of ⊨ we have that

∀i∈ I, α∈Act · if s
α

==⇒ s′ s.t. ηi(α) = σ then s′ ⊨ φiσ (125)

and so by (125) and the definition of R we conclude that

∀i∈ I, α∈Act · if s
α

==⇒ s′ s.t. ηi(α) = σ then (s′, ⟨⟨φiσ⟩⟩5)∈R

as required.

Case φ = maxX.φ. To prove this case we must confirm that (s, ⟨⟨maxX.φ⟩⟩5)∈R and so
we start by assuming that s ⊨ maxX.φ from which by the definitions of ⊨ and R we deduce
that

(s, ⟨⟨φ{maxX.φ/X}⟩⟩5)∈R. (126)

We now consider two subcases for ⟨⟨maxX.φ⟩⟩5.

– ⟨⟨maxX.φ⟩⟩5 = maxX.⟨⟨φ⟩⟩5 when X ∈ fv(φ): To confirm that (s, ⟨⟨maxX.φ⟩⟩5)∈R, in this
case we must affirm that (s,maxX.⟨⟨φ⟩⟩5)∈R by showing that (s, ⟨⟨φ⟩⟩5{maxX.⟨⟨φ⟩⟩5/X})∈R
as well. Hence, since we assume thatX ∈ fv(φ), by Lemma 15 we deduce thatX ∈ fv(⟨⟨φ⟩⟩5)
and so by Lemma 16 and from (126) we can conclude that

(s, ⟨⟨φ⟩⟩5{maxX.⟨⟨φ⟩⟩5/X})∈R

as required.
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– ⟨⟨maxX.φ⟩⟩5 = ⟨⟨φ⟩⟩5 when X /∈ fv(φ): Hence, to confirm that (s, ⟨⟨maxX.φ⟩⟩5)∈R, we
must now affirm that (s, ⟨⟨φ⟩⟩5)∈R. Since we now assume that X /∈ fv(φ), we know that
φ{maxX.φ/X} ≡ φ and so from (126) we confirm that (s, ⟨⟨φ⟩⟩5)∈R as required.

Proof for Lemma 15. We conduct this proof by structural induction on φ.

Cases φ∈
{
ff, tt

}
. These cases do not apply since X /∈ fv(φ) when φ∈

{
ff, tt

}
.

Case φ =
∧

i∈I [ηi]φi. We first assume that X ∈ fv(
∧

i∈I [ηi]φi) and so by the definition of
fv(−) we know that for every i∈ I, X ∈ fv(φi) and so by applying the inductive hypothesis
for every i∈ I we infer that X ∈ fv(⟨⟨φi⟩⟩5). With this result and by the definitions of fv(−)
and ⟨⟨−⟩⟩5, we thus conclude that X ∈ fv(⟨⟨

∧
i∈I [ηi]φi⟩⟩5) as required, and so we are done.

Case φ = Y . We start by assuming that X ∈ fv(φ) and consider the following cases:

– when Y = X: This case holds trivially since ⟨⟨Y ⟩⟩5 = Y = X and so since X ∈ fv(X) we
can infer that X ∈ fv(⟨⟨Y ⟩⟩5) as required.

– when Y ̸= X: This case does not apply since X /∈ fv(Y ) when Y ̸= X.

Case φ = maxY.φ. We assume that

X ∈ fv(maxY.φ) (127)

and consider the following cases:

– when Y = X: This case does not apply since X /∈ fv(maxY.φ) when Y = X.
– when Y ̸= X: From (127) and by the definition of fv(−) we can deduce that

X ∈ fv(φ) (128)

and so by the inductive hypothesis we have that X ∈ fv(⟨⟨φ⟩⟩5) from which we can deduce
that

X ∈ fv(maxY.⟨⟨φ⟩⟩5). (129)

Finally, since Y ∈ fv(⟨⟨φ⟩⟩5) from (129) and the definition of ⟨⟨−⟩⟩5 we can conclude that

X ∈ fv(⟨⟨maxY.φ⟩⟩5) (130)

as required, and so we are done.

Proof for Lemma 16. We conduct this proof by structural induction on φ.

Cases φ∈
{
ff, tt

}
. These cases do not apply since X /∈ fv(φ) when φ∈

{
ff, tt

}
.

Case φ =
∧

i∈I [ηi]φi. We first assume that

X ∈ fv(
∧

i∈I [ηi]φi) (131)

X ∈ fv(⟨⟨ψ⟩⟩5) (132)

so that by (131) and the definition of fv(−) we know that

∀i∈ I ·X ∈ fv(φi). (133)

Hence by (132) we can apply the inductive hypothesis for every i∈ I and infer that

∀i∈ I · ⟨⟨φi{maxX.ψ/X}⟩⟩5 = ⟨⟨φi⟩⟩5{maxX.⟨⟨ψ⟩⟩5/X} (134)
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and by (134) and the definition of ⟨⟨−⟩⟩5 we thus conclude that

⟨⟨
∧

i∈I [ηi]φiφi{maxX.ψ/X}⟩⟩5 = ⟨⟨
∧

i∈I [ηi]φi⟩⟩5{maxX.⟨⟨ψ⟩⟩5/X}

as required.

Case φ = Y . We start by assuming that

X ∈ fv(Y ) (135)

X ∈ fv(⟨⟨ψ⟩⟩5) (136)

and consider the following cases:

– when Y ̸= X: This case does not apply since (135) does not hold when Y ̸= X.
– when Y = X: Since Y = X we can thus unfold Y {maxX.ψ/X} into maxX.ψ such that

we have that

⟨⟨Y {maxX.ψ/X}⟩⟩5 = ⟨⟨X{maxX.ψ/X}⟩⟩5 = ⟨⟨maxX.ψ⟩⟩5. (137)

Since ⟨⟨Y ⟩⟩5 = Y and Y = X we can deduce that

⟨⟨Y ⟩⟩5{maxX.⟨⟨ψ⟩⟩5/X} = X{maxX.⟨⟨ψ⟩⟩5/X} = maxX.⟨⟨ψ⟩⟩5. (138)

Since by (136) and the definition of ⟨⟨−⟩⟩5 we know that ⟨⟨maxX.ψ⟩⟩5 = maxX.⟨⟨ψ⟩⟩5 and
so from (137) and (138) we can conclude that

⟨⟨Y {maxX.ψ/X}⟩⟩5 = ⟨⟨Y ⟩⟩5{maxX.⟨⟨ψ⟩⟩5/X}.

as required.

Case φ = maxY.φ. We assume that

X ∈ fv(maxY.φ) (139)

X ∈ fv(⟨⟨ψ⟩⟩5) (140)

and consider the following cases:

– when Y = X: This case does not apply since X /∈ fv(maxY.φ) when Y = X.
– when Y ̸= X: From (139) and by the definition of fv(−) we can deduce that X ∈ fv(φ)

and so by (140) and the inductive hypothesis we have that

⟨⟨φ⟩⟩5{maxX.⟨⟨ψ⟩⟩5/X} = ⟨⟨φ{maxX.ψ/X}⟩⟩5. (141)

Hence, by applying the definition of ⟨⟨−⟩⟩5 on both sides of equation (141) we get that

⟨⟨maxY.φ{maxX.ψ/X}⟩⟩5 = ⟨⟨maxY.φ⟩⟩5{maxX.⟨⟨ψ⟩⟩5/X}. (142)

as required, and so we are done.

A.2 Proving Lemma 8.

if traverse(Eq, {0}, partition, ∅)=ζ then ζ is a well-formed map for Eq.

To prove Lemma 8, we rely on Lemma 17.

Lemma 17 For every set of indices I, ζ map, and equation sets Eq and Eq′, if Eq′ ⊆ Eq
and traverse(Eq′, I, partition, ζ)=ζ′ and ζ is a well-formed map for Eq//dom(ζ) then ζ′ is a
well-formed map for Eq.
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We provide the proof for this lemma at the end of this section.

Proof for Lemma 8. Assume that

traverse(Eq, {0}, partition, ∅)=ζ (143)

and since by the definition of Eq//I we know that Eq//dom(∅) = ∅ by the definition of a
well-formed map we infer that

∅ is a Well-formed map for Eq//dom(∅) (144)

and hence by (143), (144) and Lemma 17 we can conclude that

ζ is a well-formed map for Eq

as required.

Proof for Lemma 17. We proceed by induction on the structure of Eq′.

Case Eq′ = ∅. Initially we assume that ∅ ⊆ Eq and that

traverse(∅, I, partition, ζ)=ζ′ (145)

ζ is a well-formed map for Eq//dom(ζ). (146)

Since Eq′=∅, by (145) and the definition of traverse we have that ζ = ζ′ and so from (146)
we can deduce that

ζ′ is a well-formed map for Eq//dom(ζ′). (147)

From (145) and the definition of traverse, we know that the traversal starts from the full
equation set, i.e., Eq′ =Eq, using an empty ζ map. With every recursive application of
traverse, the equation set Eq′ becomes smaller since when traverse recurses it does so wrt.
Eq′′, i.e., a smaller version of the current Eq′ which is computed via Eq′′=Eq′ \ Eq′//I . By

contrast, with every recursive application of traverse, the ζ accumulator becomes larger as
it is updated with new mappings for each index specified by the set of indices I i.e., with
the indices of the equations that are removed from Eq′ when creating Eq′′. Hence, when the
traverse function is recursively applied wrt. some Eq′′′=∅, it means that all the equations
specified in Eq have been analysed by the traversal and their indices were thus added as
maps in the resultant ζ′. Hence, we can deduce that Eq//dom(ζ′) = Eq so that from (147)
we can conclude that

ζ′ is a well-formed map for Eq

as required.

Case Eq′ ̸= ∅. Now, assume that

traverse(Eq′, I, partition, ζ)=ζ′ (148)

ζ is a well-formed map for Eq//dom(ζ) (149)

Eq′ ⊆ Eq (150)

and consider the following two subcases for the set of indices I.

––– I = ∅ :I = ∅ :I = ∅ : Since I=∅, by (148) and the definition of traverse we know that ζ = ζ′ and so
from (149) we can deduce that

ζ′ is a well-formed map for Eq//dom(ζ′). (151)

Since I=∅, this means that the traversal has reached a point where no more children
can be computed, which means that all the relevant equations (i.e., those reachable from
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the principle variable) have been analysed. This means that any other equation in Eq
(that is not in Eq//dom(ζ′), if any) is redundant and irrelevant. Hence, since from (151)

we know that ζ′ is a well-formed map for the relevant subset of equations in Eq, i.e.,
Eq//dom(ζ′), then it is also well-formed for the full blown subset of equations Eq (i.e.,

including any unreachable, redundant equations). Therefore, we can conclude that

ζ′ is a well-formed map for Eq

as required.

––– I ̸=∅ :I ̸=∅ :I ̸=∅ : By the definition of traverse and from (148) we can infer that

ζ′′ = partition(Eq′, I, ζ) (152)

Eq′′ = Eq′ \ Eq′//I (153)

I′ =
⋃
j∈I

child(Eq′, j) (154)

traverse(Eq′′, I′, partition, ζ′′)=ζ′ (155)

By (149) and the definition of a well-formed map we know that ζ provides a set of
mappings which allow for:

• renaming the data variables of each pattern equivalent sibling necessity,
defined in Eq//dom(ζ), to the same set of fresh variables.

(156)

• renaming any reference to a data variable that is bound by a renamed
parent necessity defined in Eq//dom(ζ)

(157)

and by the definition of partition from (152) we have that

ζ′′ = ζ
+++

∪


j 7→ ζ(i)

+++

∪ {f1/d1, f2/d2}

k 7→ ζ(l)
+++

∪ {f1/e1, f2/e2}

∀i, l ∈ I · Eq(i)=
∧
j∈I′

[⁅(d1)$(d2), cj⁆]Xj∧φ′

and Eq(l)=
∧
k∈I′′

[⁅(e1)$(e2), ck⁆]Xk∧φ′′ s.t.

if ⁅(d1)$(d2), cj⁆ is pattern equivalent to

⁅(e1)$(e2), ck⁆, then we assign the same

fresh variables f1 and f2.


(158)

From (158) we know that ζ′′ includes a mapping for each sibling branch that defines a
pattern equivalent SA. The added mappings map the child indices of the conjunction
branches (i.e., j, k∈I′ since from (154) we know that I′′ and I′′′ are subsets of I′) that
are defined by the equations identified by the parent indices (i.e., i∈I) specified in I, to
a substitution environment. This mapped substitution renames the resp. variable names
of these conjunct pattern equivalent sibling necessities, to the same fresh set of variable
names, thereby making the equivalent sibling patterns, syntactically equal. Hence, from
(156) we can deduce that ζ′′ provides a set of mappings which allow for

• renaming the data variables of each pattern equivalent sibling necessity,
defined in Eq//dom(ζ)∪I′ , to the same set of fresh variables.

(159)

Similarly, from (158) we also know that the mappings in ζ′′ include the substitutions
performed upon the parent necessities. This means that in each mapping j 7→σj , the
mapped substitution environment σj also includes ζ(i) where i ∈ I is the parent index of
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j ∈ I′. Hence, from (157) we can deduce that the mappings provided by ζ′′ also allow for

• renaming any reference to a data variable that is bound by a renamed
parent necessity defined in Eq//dom(ζ)∪I′ .

(160)

Hence, by (159), (160) and the definition of a well-formed map we can infer that

ζ′′ is a well-formed map for Eq//dom(ζ)∪I′ . (161)

From (158) we know that ζ′′ includes a mapping for each child branch, identified by j ∈ I′′

and k ∈ I′′′ (where I′′ and I′′′ are both subsets of I′), that is defined in the equation
identified by index i ∈ I and which defines a pattern equivalent necessity. Hence, we know
that the domain of ζ′′ is an extension of the domain of ζ which additionally contains
the child indices defined in I′, such that we can deduce that dom(ζ′′) = dom(ζ) ∪ I′.
Hence, from (161) we can infer that

ζ′′ is a well-formed map for Eq//dom(ζ′′). (162)

Finally, since from (153) and (150) we have that Eq′′ ⊆ Eq, by (155), (162) and the
inductive hypothesis we can conclude that

ζ′ is a well-formed map for Eq

as required, and so we are done.

A.3 Proving Lemma 9.

For every ζ map, and equation set Eq, if ζ is a well-formed map for Eq then uni(Eq, ζ)≡Eq
and every equation (Xk=ψk)∈ uni(Eq, ζ) is Uniform.

Proof for Lemma 9. We conduct this proof by induction on the structure of Eq.

Case Eq = ∅. This case holds trivially since Eq = ∅ = uni(∅, ζ).

Case Eq =
{
Xi=

∧
j∈I

[ηj ]φj ∧φ
} +++

∪ Eq′. We start by assuming that

ζ is a well-formed map for Eq (163)

and so by (163) and the definition of a well-formed map we know that ζ provides a set of
mappings which allow for

• renaming the data variables of each pattern equivalent sibling necessity,
defined in Eq, to the same set of fresh variables.

(164)

• renaming any reference to a data variable that is bound by a renamed
parent necessity defined in Eq.

(165)

By applying the uni function on Eq and ζ we obtain

uni(
{
Xi=

∧
j∈I

[ηj ]φj ∧φ
} +++

∪ Eq′, ζ)

=
{
Xi=

∧
j∈I

[ηjζ(j)]φj ∧φ
} +++

∪ uni(Eq′, ζ)
. (166)
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Now if we assume that ηj defines an arbitrary pattern (d1)$(d2) (where d1 and d2 are newly
bound variables), along with some condition cj [d1, d2, em<i] whose evaluation depends on d1,

d2 and the values of m variables em<i that are bound by parent modal necessities. Hence,
from (164) we can deduce that mapping ζ(j) in (166) produces a substitution environment
which renames the data bindings d1 and d2 to some fresh variables f1 and f2, which are the
same for all the other conjunct sibling necessities that are pattern equivalent to ηj . From
(165) we can also deduce that any reference being made to some variable em<i will also be
renamed accordingly by ζ(j). Hence, by the definition of a uniform equation, we can deduce
that

equation Xi=
∧
j∈I

[ηj ]φj ∧φ is uniform. (167)

Moreover, from (164) and (165) we can deduce that equation Xi=
∧
j∈I

[ηj ]φj ∧φ is se-

mantically equivalent to the equation reconstructed by the uni function in (166), i.e.,
Xi=

∧
j∈I

[ηjζ(j)]φj ∧φ. This holds since when the substitution environment, returned by ζ(j),

is applied to the equated formula, it only substitutes the variable names in ηj and so if ηj
has an arbitrary form ⁅(d1)$(d2), cj [d1, d2, em<i]⁆ this will become ⁅(f1)$(f2), cj [f1, f2, fm<i]⁆.

Notice that the new pattern (f1)$(f2) is equivalent to the original one (d1)$(d2) since it
only varies by the name of the data variables it binds. The new condition cj [f1, f2, fm<i] is

also equivalent to cj [d1, d2, em<i] since by (165) we know that ζ(j) (where ζ(j) also contains

ζ(i) where i is the parent of j) renames d1 and d2 to f1 and f2 and em<i to the variable
names, fm<i, bound by the renamed parent necessities. This preserves the semantics of the
equation by keeping it closed wrt. data variables. Hence, we can deduce

Xi=
∧
j∈I

[ηj ]φj ∧φ

≡ Xi=
∧
j∈I

[⁅(d1)$(d2), cj [d1, d2, em<i]⁆]φj ∧φ

≡ Xi=
∧
j∈I

[⁅(f1)$(f2), cj [f1, f2, fm<i]⁆]φj ∧φ

≡ Xi=
∧
j∈I

[⁅(d1)$(d2), cj [d1, d2, em<i]⁆ζ(j)]φj ∧φ

≡ Xi=
∧
j∈I

[ηjζ(j)]φj ∧φ.

(168)

Now since Eq′ ⊂ Eq from (163) we can infer that ζ is also a well-formed map for Eq′ which
allows us to apply the inductive hypothesis and deduce that

every equation (Xk=ψk) ∈ uni(Eq′, ζ) is uniform, and that (169)

uni(Eq′, ζ)≡Eq′. (170)

Hence, by (166), (169) and (167) we can conclude that

every equation (Xk=ψk) ∈ uni(Eq, ζ) is uniform (171)

and by (166), (170) and (168) we can conclude{
Xi=

∧
j∈I

[ηj ]φj ∧φ
} +++

∪ Eq′ ≡
{
Xi=

∧
j∈I

[ηjζ(j)]φj ∧φ
} +++

∪ uni(Eq′, ζ) (172)

as required, and so this case is done by (171) and (172).
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A.4 Proving Lemma 11.

For every eqn. (Xj=φj) ∈ Eq, if Xj=φj is uniform then Eq≡ traverse(Eq, {0}, cond comb, ∅)
and every eqn. (Xk=ψk) ∈ traverse(Eq, {0}, cond comb, ∅) is equi-disjoint.

The proof for Lemma 11 depends on Lemma 18. This new lemma states that one can
obtain an equi-disjoint equation set, ω′, that is semantically equivalent to the original
equation set Eq, by conducting a traversal upon a uniform subset of Eq (i.e., Eq′). This
traversal is conducted wrt. an equi-disjoint accumulator equation set ω, where ω must be
semantically equivalent to a subset of Eq that is restricted to the indices associated to the

logical variables specified by the domain of ω, i.e., ω ≡ Eq//domind(ω), where domind(ω)
def
=

{ i Xi ∈ dom(ω) }.

Lemma 18 For every index set I, equi-disjoint set ω and equation sets Eq and Eq′, if
Eq′ ⊆ Eq and traverse(Eq′, I, cond comb, ω)=ω′ and Eq//domind(ω)≡ω and every equation

(Xj=φj)∈Eq′ is uniform and every equation (Xk=ψk)∈ω is equi-disjoint then every
equation (Xk=ψk)∈ω′ is equi-disjoint and Eq≡ω′.

We provide the proof for this lemma at the end of this section.

Proof for Lemma 11. Assume that

∀(Xj=φj) ∈ Eq · equation Xj=φj is uniform. (173)

By applying the traverse function on Eq starting from I={0} and ω=∅ we know that

traverse(Eq, {0}, cond comb, ω) = ω′ (174)

and so since ω=∅, by the definition of Eq//I we have that Eq//dom(∅) = ∅ = ω which means

that we can also deduce that every equation (Xk=ψk) ∈ ω is equi-disjoint. With this new
information along with (173) and (174) we can use Lemma 18 to infer that

Eq ≡ ω′ and that every equation (Xk=ψk) ∈ ω′ is equi-disjoint

as required, and so we are done.

Proof for Lemma 18. We proceed by induction on the structure of I.

Case I = ∅. Lets start by assuming that

Eq′ ⊆ Eq, (175)

traverse(Eq′, ∅, cond comb, ω)=ω′, (176)

Eq//domind(ω)≡ω, (177)

every equation (Xj=φj) ∈ Eq′ is uniform, andthat (178)

every equation (Xk=ψk) ∈ ω is equi-disjoint. (179)

By (176) and the definition of traverse we know that ω = ω′ and so from (177) and (179) we
can deduce that

every equation (Xk=ψk) ∈ ω′ is equi-disjoint (180)

Eq//domind(ω
′)≡ω′. (181)

Since I=∅, by the definition of traverse and (176) we know the traversal has reached a point
where no more children can be computed, which means that all the relevant equations (i.e.,
those reachable from the principle variable) have been analysed. This implies that any other
equation in Eq (if any) is redundant and irrelevant. Hence, since from (181) we know that the
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equations in ω′ are equivalent to the relevant subset of equations in Eq, i.e., Eq//domind(ω
′),

and hence we can conclude that

ω′ ≡ Eq (182)

as required, and so this case is done by (180) and (182).

Case I ̸= ∅. Let us now assume that

Eq′ ⊆ Eq (183)

traverse(Eq′, I, cond comb, ω)=ω′ (184)

Eq//domind(ω)≡ω (185)

every equation (Xj=φj) ∈ Eq′ is uniform (186)

every equation (Xk=ψk) ∈ ω is equi-disjoint (187)

and let’s proceed by case analysis on Eq′.

– Eq′ = ∅ : Since Eq′ = ∅, by (184) and the definition of traverse we know that ω = ω′

and so from (185) and (187) we can deduce that

Eq//domind(ω
′)≡ω′, and that (188)

every equation (Xk=ψk) ∈ ω′ is equi-disjoint . (189)

By (184) and the definition of traverse we know that the traversal starts from the full
equation set, i.e., Eq′ = Eq, using an empty accumulator, i.e., ω=∅, that would eventually
contain the resultant equi-disjoint equation set. Every recursive application of the traverse
function is then performed wrt.: a smaller version Eq, i.e., Eq′=Eq\Eq//I , and a larger

accumulator ω′ containing the reformulated, equi-disjoint equations whose indices are
defined in I (and which where removed from Eq′). Hence, when Eq′ becomes ∅ it means
that domind(ω′) = domind(Eq) and so by the definition of Eq//I we can deduce that

Eq//domind(ω) = Eq//domind(Eq)
= Eq which means that from (188) we can conclude that

Eq ≡ ω′ (190)

as required, and so this case holds by (189) and (190).
– Eq′ ̸= ∅ : By (184) and the definition of traverse we have that

cond comb(Eq′, I, ω)=ω′′ (191)

Eq′′ = Eq′ \ Eq′//I (192)

I′ =
⋃
l∈I

child(Eq, l) (193)

traverse(Eq′′, I′, cond comb, ω′′) = ω′, (194)

By applying definition of cond comb to (191) we deduce that

ω′′ = ω
+++

∪

Xi=
∧
ck∈C(j,I′)

[⁅p, ck⁆]Xj∧φ(= ψi)

(Xi=
∧
j∈I′′

[⁅p, cj⁆]Xj∧φ)∈Eq//I

and I′=
⋃
l∈I

child(Eq, l)

such that I′′ ⊆ I′

 . (195)

Now from (195) and the definition of C(j, I′), we know that the conjunctions in the
reformulated equations (i.e., in every ψi) now include an additional branch for each
condition ck ∈ C(j, I′) where ck is a compound condition e.g., c0 ∧ c1 ∧ . . . ∧ cn or
c0 ∧ ¬c1 ∧ . . . ∧ ¬cn. These compound conditions consist in a truth combination of the
filtering conditions of the sibling SAs which specify syntactically equal patterns. This is
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guaranteed since from (186) we know that the equations in Eq′ are uniform, meaning
that all sibling pattern equivalent SAs are guaranteed to be syntactically equal as well.
Hence, the reconstructed SAs in these new branches are unable to match the same
concrete event α unless they are define the same pattern and condition. This is so as
despite their pattern being syntactically equal, only one compound filtering condition
can at most be satisfied by the matching concrete event α. Therefore, from (195) and
the definition of equi-disjoint, we can deduce that

every equation (Xk=ψk) ∈

Xi=
∧
ck∈C(j,I′)

[⁅p, ck⁆]Xj∧φ(= ψi)

(Xi=
∧
j∈I′′

[⁅p, cj⁆]Xj∧φ)∈Eq//I

and I′=
⋃
l∈I

child(Eq, l)

such that I′′ ⊆ I′


is equi-disjoint

(196)

which means that from (187), (195) and (196) we can conclude that

every equation (Xk=ψk) ∈ ω′′ is equi-disjoint (197)

as required. We also argue that the reconstructed equations in (195) (i.e., Xi=ψi) are
in fact semantically equivalent to the original ones (i.e., (Xi=φi)∈Eq//I), since when-

ever a guarded branch, [⁅p, ci⁆]Xi, is reconstructed into (possibly) multiple branches,
[⁅p, ci∧cj . . .ck⁆]Xi∧[⁅p, ci∧¬cj . . .ck⁆]Xi∧ . . .∧[⁅p, ci∧¬cj . . .¬ck⁆]Xi, via the truth com-
bination function C(i, I′), the condition, ci, of the original branch is never negated. This
guarantees that continuation Xi can only be reached when the original condition ci is
true, and thus preserves the original semantics of the branch. Therefore, we conclude
that Xi=

∧
ck∈C(j,I′)

[⁅p, ck⁆]Xj∧φ(= ψi)

(Xi=
∧
j∈I′′

[⁅p, cj⁆]Xj∧φ)∈Eq//I

and I′=
⋃
l∈I

child(Eq, l)

such that I′′ ⊆ I′

 ≡ Eq//I

which means that from (185) and (195) we can infer that

Eq//domind(ω
′′) ≡ ω′′. (198)

Finally, since from (183) and (192) we know that Eq′′ ⊆ Eq, from (186) we can infer
that every equation (Xj=φj) ∈ Eq′′ is uniform. Hence, with this result along with (194),
(197) and (198) we can apply the inductive hypothesis and conclude that

Eq ≡ ω′ and that every equation (Xk=ψk) ∈ ω′ is equi-disjoint

as required, and so we are done.

B Missing proofs from Section 6

B.1 Proving Lemma 12

We need to prove that for every system s, sHML formula φ and trace t ∈ traces(s) when
s ∈ JφK then sys(t) ∈ JφK.

Proof. Since when restricted to sHML s ∈ JφK can be defined in terms of the coinductive

satisfaction rules of Figure 4, we prove that R def
=

{
(sys(t), φ)

∣∣∣ s ⊨ φ and t ∈ traces(s)
}

is

a satisfation relation that follows the rules of Figure 4. We proceed by case analysis on φ.
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Cases φ ∈
{
ff, X

}
. These cases do not apply since s ̸⊨ φ when φ ∈

{
ff, X

}
.

Case φ = tt. This case is satisfied trivially since φ = tt.

Case φ =
∧

i∈I φi. Assume that s ⊨
∧

i∈I φi from which by the definition of ⊨ we have
that for every i ∈ I, s ⊨ φi and so by applying the definition of R for every i ∈ I we get that
∀i ∈ I · (sys(t), φi) ∈ R as required.

Case φ = maxX.φ. Assume that s ⊨ maxX.φ from which by the definition of ⊨
we have that s ⊨ φ{maxX.φ/X} and so by applying the definition of R we get that
(sys(t), φ{maxX.φ/X}) ∈ R as required.

Case φ = [⁅p, c⁆]φ. Assume that

t ∈ traces(s) (199)

and that s ⊨ [⁅p, c⁆]φ from which by the definition of ⊨ we have that

s
α

==⇒ s′ (200)

mtch(p, α) = σ and cσ ⇓ true (201)

s′ ⊨ φσ. (202)

Since from (200) we know that s transitions to s’ over α, from (199) we can infer that
αt′ ∈ traces(s) where t′ ∈ traces(s′) which means that by (202) and the definition of R we
have that

(sys(t′), φσ) ∈ R. (203)

Therefore, this case holds by (201), (203) and since sys(αt′)
α

==⇒ sys(t′) and so we are done.

B.2 Proving Lemma 13

We need to prove that for every system transition s
α

==⇒ s′ and sHML formula φ, if s ∈ JφK

then s′ ∈ Jafterφ(φ, α)K. We prove the contrapositive, i.e., if s
α

==⇒ s′ and s′ /∈ Jafterφ(φ, α)K

then s /∈ JφK.

Proof. We proceed by rule induction on afterφ.

Case afterφ(ff, α). This case holds trivially since s /∈ JffK.

Case afterφ(tt, α). This case does not apply since afterφ(tt, α) = tt and so the assumption
that s′ /∈ Jafterφ(tt, α)K is invalid.

Case afterφ(
∧

i∈I φi, α). Assume that

s
α

==⇒ s′ (204)

and that s′ /∈ Jafterφ(
∧

i∈I φi, α)K from which by the definition of afterφ we have that

s′ /∈ J
∧
i∈I

afterφ(φi, α)K ≡ ∃j ∈ I · s′ /∈ Jafterφ(φj , α)K. (205)

Hence, by (204) and (205) we can apply the inductive hypothesis and deduce that there
exists a j ∈ I such that s /∈ JφjK which means that s /∈

⋂
i∈I

JφiK = J
∧

i∈I φiK as required.
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Case afterφ(maxX.φ, α). Assume that

s
α

==⇒ s′ (206)

and that s′ /∈ Jafterφ(maxX.φ, α)K from which by the definition of afterφ we have that

s′ /∈ Jafterφ(φ{maxX.φ/X}, α)K (207)

and since by (206), (207) and the inductive hypothesis we have that s /∈ Jφ{maxX.φ/X}K
and Jφ{maxX.φ/X}K = JmaxX.φK we can conclude that s /∈ JmaxX.φK as required.

Case afterφ([⁅p, c⁆]φ, α). Assume that

s
α

==⇒ s′ (208)

s′ /∈ Jafterφ([⁅p, c⁆]φ, α)K. (209)

Now consider the following two cases:

– mtch(p, α) = σ and cσ ⇓ true: By (209) and the definition of afterφ we know that

s′ /∈ JφσK (210)

and so from (208), (210) and by the definition of J−K we can infer that s /∈ J[⁅p, c⁆]φK
since there exists a transition, i.e., (208), that leads to a violation, i.e., (210).

– Otherwise: This case does not apply since afterφ([⁅p, c⁆]φ, α) = tt which contradicts
assumption (209).

B.3 Proving Lemma 14

We need to prove that for every action α, sHML formula φ and trace t, if sys(t) ∈
Jafterφ(φ, α)K then sys(αt) ∈ JφK.

Proof. We proceed by rule induction on afterφ.

Case afterφ(ff, α). This case does not apply since afterφ(ff, α) = ff and so the assumption
that sys(t) ∈ Jafterφ(ff, α)K is invalid.

Case afterφ(tt, α). This case holds trivially since sys(αt) ∈ JttK.

Case afterφ(
∧

i∈I φi, α). Assume that sys(t) ∈ Jafterφ(
∧

i∈I φi, α)K from which by the
definition of afterφ we have that

sys(t) ∈ J
∧

i∈I afterφ(φi, α)K ≡ ∀i ∈ I · sys(t) ∈ Jafterφ(φi, α)K. (211)

Hence, knowing (211) we can apply the inductive hypothesis for every i ∈ I and deduce that
sys(αt) ∈ JφiK which means that sys(αt) ∈

⋂
i∈IJφiK = J

∧
i∈I φiK as required.

Case afterφ(maxX.φ, α). Assume that sys(t) ∈ Jafterφ(maxX.φ, α)K from which by the
definition of afterφ we know that

sys(t) ∈ Jafterφ(φ{maxX.φ/X}, α)K (212)

and since by (212) and the inductive hypothesis we have that sys(αt) ∈ Jφ{maxX.φ/X}K
and Jφ{maxX.φ/X}K = JmaxX.φK we can conclude that sys(αt) ∈ JmaxX.φK as required.

Case afterφ([⁅p, c⁆]φ, α). Assume that

sys(t) ∈ Jafterφ([⁅p, c⁆]φ, α)K (213)

and consider the following two cases:
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– mtch(p, α) = σ and cσ ⇓ true: By (213) and the definition of afterφ we have that

sys(t) ∈ JφσK. (214)

Since sys(αt) is a trace process that can only perform α and transition to sys(t), i.e.,

sys(αt)
α

==⇒ sys(t), and since from (214) we know that sys(t) satisfies φσ, by the definition

of J−K we can thus conclude that sys(αt) ∈ J[⁅p, c⁆]φK as required.

– Otherwise: This case is trivially satisfied since knowing that sys(αt)
α

==⇒ sys(t) and that

mtch(p, α) = undef or c ⇓ ff, by the definition of J−K we can immediately conclude that
sys(αt) ∈ J[⁅p, c⁆]φK as required.
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