
A Fault Tolerance Bisimulation Proof For Consensus
(Extended Abstract)

Adrian Francalanza1 and Matthew Hennessy2

1 Imperial College, London SW7 2BZ, England, adrianf@doc.ic.ac.uk
2 University of Sussex, Brighton BN1 9RH, England, matthewh@sussex.ac.uk

Abstract. The possibility of partial failure occuring at any stage of computa-
tion complicates rigorous formal treatment of distributed algorithms. We propose
a methodology for formalising and proving the correctness of distributed algo-
rithms which alleviates this complexity. The methodology uses fault-tolerance
bisimulation proof techniques to split the analysis into two phases, that is a failure-
free phase and a failure phase, permitting separation of concerns. We design a
minimal partial-failure calculus, develop a corresponding bisimulation theory for
it and express a consensus algorithm in the calculus. We then use the consensus
example and the calculus theory to demonstrate the benefits of our methodology.

1 Introduction

The areas of Distributed Systems and Process Calculi are two (major) areas in Com-
puter Science addressing the same problems but ”speak(ing) different languages” [14].
In particular, seminal work in Distributed Systems, such as [2, 11] present algorithms
in semi-formal pseudo-code and correctness proofs of an informal algorithmic nature.
The understandable reluctance to apply the rigorous theory of process calculi to formal
proofs for standard distributed algorithms stems from the complexity and sheer size of
the resulting formal descriptions and proofs. This problem is accentuated when failures
are considered, which typically occur at any point during computation and can poten-
tially affect execution. More specifically, in a process calculus with formal semantics
based on labelled transition systems (lts), and a related bisimulation equivalence ≈, cor-
rectness proofs compare the behaviour of the distributed algorithm, described in the
base calculus, to a correctness specification, also defined in the base calculus, using ≈;
see Table 1(a). The required witness bisimulation relations resulting from this general
approach turn out to be substantial, even for the simplest of algorithms and specifica-
tions. Even worse, partial failure tends to obfuscate the simplicity of the correctness
specification while enlarging the state space of the bisimulations.

To tame such complexity, attempts at formalising distributed algorithm proofs have
made use of mechanised theorem provers [8] or translations into tailor-made abstract
interpretations [14]. In spite of their effectiveness, such tools and techniques tend to
obscure the natural structure of the proofs of correctness, because they either still pro-
duce monolithic proofs, which are hard to digest, or else depart from the source formal
language in which the algorithm is expressed.

We propose a prescriptive methodology to formally prove correctness of distributed
algorithms which fine tunes well-studied bisimulation techniques to a partial failure

Table 1. Correctness proofs using fault-tolerant bisimulation techniques

~~

specification
simple

system wrapper

~~

specification
complex

observables

system

observables

(b)(a)

simple

~~ ~~

system wrapper system wrapper

system wrapper

(c)

specification

(d)

reliable faulty

setting. The methodology is based on a common assumption that some processes are
assumed to be reliable, thus immortal. Failure can affect behaviour in two ways: either
directly, when the process itself fails, or indirectly, when a process depends on inter-
nal interaction with a secondary process which in turn fails. The methodology limits
observations to reliable processes only, which are only indirectly affected by failure.
Using wrapper code around the algorithm being analysed, we reformulate the equiva-
lence described earlier into a comparison between the re-packaged algorithm and a sim-
pler specification that does not include unreliable processes (Table 1(b)). The wrappers
can be dedicated, testing for separate correctness criteria. We can therefore decompose
generic catch-all specifications into separate simpler specifications, which are easier to
formulate, understand and verify against the expected behaviour.

This reformulation carries more advantages than merely decomposing the speci-
fication and shifting the complexity of the equivalence from the specification side to
the algorithm side in the form of wrappers. A specification that does not include un-
reliable processes permits separation of concerns through fault-tolerance bisimulation
techniques [7]. These techniques allow us to decompose our reformulated equivalence
statement into two sub-statements. In the first we temporarily ignore failures and test
for basic correctness: we use ”standard” bisimulations to compare the specification
with the behaviour of the repackaged algorithm in a failure-free setting (Table 1(c)).
In the second sub-statement we test for fault-tolerance and correctness preservation:
we compare the behaviour of the repackaged algorithm in the failure-free setting with
the repackaged algorithm itself in the failure setting (Table 1(d)). We argue that the
fault-tolerance reformulation is a natural way to tackle such a proof, dividing it into
two sub-proofs, which can be checked independently. The reformulation however car-
ries further advantages. For a start, the first equivalence is considerably easier to prove,
and can be treated as a vetting test before attempting the more involving second proof.
Moreover, when proving the second equivalence statement, which compares the same
code but under different conditions, we can exploit the common structure on both sides
of the equivalence to construct the required witness bisimulation.

2

Our proposed methodology goes one step further and uses (permanent) failure to re-
duce the size of witness bisimulations in two ways. First, we note that while permanent
failure may induce abnormal behaviour in the live code, it also eliminates transitions
from dead code. Thus, by developing appropriate abstractions to represent dead code,
we can greatly reduce the size of witness bisimulations. Second, we note that distributed
algorithms tolerate failure (and preserve the expected behaviour) through the use of re-
dundancy which is usually introduced in the form of symmetrical replicated code. As
a result, correctness bisimulations for such algorithms are characterised by a consider-
able number of transitions that are similar in structure. This, in turn, gives us scope for
identifying a subset of these transitions which are confluent and developing up-to tech-
niques that abstract over these confluent moves. The number of replication patterns are
arguably bounded and are reused throughout a substantial number of fault-tolerant al-
gorithms, which means that we expect these up-to techniques to be applicable, at least
in part, to a range of fault-tolerant distributed algorithm. More importantly however,
they identify the (non-confluent) transitions that really matter, making the bisimulation
proofs easier to describe and understand.

The remaining text is structured as follows. In Section 2 we introduce our language,
a partial-failure calculus. In Section 3 we express a consensus algorithm in our calculus,
realising the long considered view of consensus as a fault-tolerance problem [4]; we also
show how to express the correctness of the algorithm in terms of basic correctness and
correctness preservation equivalences. In Section 4 we develop up-to techniques for our
algorithm and in Section 5 we give its proof of correctness.

2 Language

Our partial-failure calculus is inspired by [15] and consists of processes from a subset
of CCS[12], distributed across a number of failing locations. We assume a set A of
communicating actions equipped with a bijective function ·̄; for every name a ∈ A we
have a complement ā ∈ A; α ranges over strong actions, defined as A∪{τ}, including
the distinguished silent action τ. We also assume a distinct set L of locations l, k
which includes the immortal location ?.

Processes, defined in Table 2, can be guarded by an action, composed using choice,
composed in parallel or scoped. As in [15], only actions can be scoped (not locations).
By contrast to [15], we here simplify the calculus and disallow process constants and
replication (thus no recursion and infinite computation) and migration of processes (thus
no change in failure dependencies). Another important departure from [15] is that in-
stead of ping we use a guarding construct susp l.P, already introduced in [5], which
tests for the status of l and releases P once it (correctly) suspects that l is dead; the con-
struct captures the intuition that failure detection is separate from the actual failure, and
can be delayed. Systems, also defined in Table 2, are located processes composed in
parallel with channel scoping. We view our calculus as a partial-failure calculus rather
than a distributed calculus as it permits action synchronisations across locations. This
implies a tighter synchronisation assumption between locations, which in our calculus
merely embody units of failure. Nevertheless, distributed choices are still disallowed
because their implementation is problematic in a dynamic partial-failure setting.

3

Table 2. Syntax

Processes
P, Q ::= α.P (guard) | 0 (inert) | P + Q (choice) | (νa)P (scoping)

| P|Q (fork) | susp k.P (failure detector)
Systems

M, N ::= l[[P]] (located) | N|M (parallel) | (ν a)N (scoping)

Table 3. Reduction Rules

Assuming l ∈ L, n ≥ 0

(Act)

〈L, n〉 . l[[α.P]]
α
−→ l[[P]]

(Susp)

〈L, n〉 . l[[susp k.P]]
τ
−→ l[[P]]

k < L
(Halt)

〈L, n+1〉 . M
τ
−→ 〈L−l, n〉 . M

(Fork)

〈L, n〉 . l[[P|Q]]
τ
−→ l[[P]]|l[[Q]]

(New)

〈L, n〉 . l[[(νa)P]]
τ
−→ (νa)l[[P]]

(Sum)
〈L, n〉 . l[[Pi]]

α
−→ l[[P]]

〈L, n〉 . l[[
∑

i∈I Pi]]
α
−→ l[[P]]

(Rest)
〈L, n〉 . M

α
−→ 〈L′, n′〉 . M′

〈L, n〉 . (νa)M
α
−→ 〈L′, n′〉 . (νa)M′

α < {a, ā}

(Par)
〈L, n〉 . M

α
−→ 〈L′, n′〉 . M′

〈L, n〉 . M|N
α
−→ 〈L′, n′〉 . M′|N

〈L, n〉 . N |M
α
−→ 〈L′, n′〉 . N |M′

(Com)

〈L, n〉 . M
α
−→ M′ 〈L, n〉 . N

ᾱ
−→ N′

〈L, n〉 . M|N
τ
−→ M′|N′

〈L, n〉 . N|M
τ
−→ N′|M′

Notation: We denote a series of parallel processes P1| . . . |Pn as
∏

i∈I Pi and a series of
choices P1 + . . .+Pn as

∑
i∈I Pi for I = {1, . . . , n}. We omit the final 0 term in processes,

writing a.0 as a. We also denote the located inactive process l[[0]] as simply 0 and omit
location information for processes located at the immortal location. Thus, at system
level, we write M | P | 0 to denote M | ? [[P]] | l[[0]].

Operational Semantics: We define a liveset,L, as a set of locations, {l1, . . . , ln} denoting
the locations that are alive; we usually omit mention of the special location ?, which is
assumed to be in every L. A system M subject to a liveset, L, and a bounded number of
dynamic failures, n, is called a configuration, and is denoted as 〈L, n〉 .M. Intuitively it
denotes a system M that is running on the network (state) L where at most n locations
from L may fail. Transitions are defined between tuples of configurations as

〈L, n〉 . M
α
−→ 〈L′, n′〉 . M′ (1)

by the rules in Table 3. To improve readability, we abbreviate (1) to 〈L, n〉.M
α
−→ M′

whenever the state of the network 〈L, n〉 does not change in the residual configuration.
The rules in Table 3 are standard located CCS rules, with the exception of (Susp) de-
scribing perfect failure detection [2], and (Halt) describing dynamic failure [7]. All rules
assume l ∈ L and n ≥ 0.

4

Example 1. In (2) below, the system ?[[a.P + susp l.P]] is in some sense fault tolerant
up to 1 failure occuring in L. Although a.P depends on the liveness of l to proceed as
P, the summand susp l.P also produces the same continuation P whenever l is dead.
In order to verify this we have three cases to consider: (a) if l < L then susp l.P will
trigger and produce ?[[P]]; (b) if l ∈ L and n = 0, then l can never die and a.P will
always synchronise with l[[ā]] and continue as ?[[P]]; (c) if l ∈ L and n , 0 then if l dies
before the synchronisation on a occurs, we have case (a), otherwise we have case (b).

〈L, n〉 . (νa) l[[ā]] | ? [[a.P + susp l.P]] (2)

The equivalence relation chosen for our partial-failure calculus is (weak) bisimu-

lation equivalence, based on weak matching moves
α̂
=⇒ denoting

τ
−→

∗ α
−→

τ
−→

∗

if α ∈
{a, ā} and

τ
−→

∗

if α = τ.

Definition 1 (Weak bisimulation equivalence). Denoted as ≈, is the largest relation
over configurations such that if 〈L1, n1〉 . M1 ≈ 〈L2, n2〉 . M2 then

– 〈L1, n1〉 . M1
α
−→ 〈L′1, n

′
1〉 . M′1 implies 〈L2, n2〉 . M2

α̂
=⇒ 〈L′2, n

′
2〉 . M′2 such that

〈L′1, n
′
1〉 . M′1 ≈ 〈L

′
2, n
′
2〉 . M′2

– 〈L2, n2〉 . M2
α
−→ 〈L′2, n

′
2〉 . M′2 implies 〈L1, n1〉 . M1

α̂
=⇒ 〈L′1, n

′
1〉 . M′1 such that

〈L′1, n
′
1〉 . M′1 ≈ 〈L

′
2, n
′
2〉 . N′2

Assuming that loc(M) is a function returning the set of all location names used in M
(together with ?), then system M is said to be executing in a failure-free setting if it is
subject to the network 〈loc(M), 0〉. Based on this intuition and our notion of equivalence,
we can give a formal definition for fault-tolerant systems.

Definition 2 (Fault Tolerance). A system M is fault tolerant up to n faults whenever

〈loc(M), 0〉 . M ≈ 〈loc(M), n〉 . M

Our chosen definitions are not arbitrary. Definition 1 is sound with respect to a
standard contextual equivalence called reduction barbed congruence [10]. Definition 2
is sound with respect to dynamic fault-tolerance up-to n faults defined in [7], using fault
inducing contexts. The adaptation of these definitions to our calculus and the proof of
the corresponding soundness statements will appear in the full version of the paper.

Example 2. Using Definitions 1 and 2, we can now show that (2) above is fault tolerant
up to 1 fault by giving a witness bisimulation relation satisfying

〈{l}, 0〉 . (νa) l[[ā]] | ? [[a.P + susp l.P]] ≈ 〈{l}, 1〉 . (νa) l[[ā]] | ? [[a.P + susp l.P]]

3 Consensus

Despite its limitations (no infinite computation), our calculus is expressive enough to
describe a number of (non-recursive) standard distributed algorithms in the presence

5

Table 4. The Rotating Co-ordinator Algorithm for Participant i

1 xi := input;

2 for r := 1 to n do { if r = i then broadcast xi;

3 if alive(pr) then xi := input from broadcast };

4 output xi;

of dynamic failure. As an example we describe the rotating co-ordinator algorithm
[16], solving a specific instance of consensus using strong failure detectors (S [2]); the
pseudo-code description is reproduced in Table 4. The algorithm consists of n parallel,
independently failing participants, ordered and named 1 to n, each inputting a value v
from a set of values V and then deciding by outputting a value v′ ∈ V . Each participant
executes the code in Table 4, going through n rounds (the loop on lines 2 and 3) and
changing the broadcasting co-ordinator to participant i for round r = i. The correctness
criteria for consensus is defined by the following three conditions [11, pg. 101]:

Termination: All non-failing participants must eventually decide.
Agreement: No two participants decide on different values.
Validity: If all participants are given the same value v ∈ V as input, then v is the only

possible decision value3.

To attain consensus with n−1 dynamic failures, the algorithm needs to be fault-tolerant
with respect to two error conditions, namely Decision Blocking (when a participant
may be waiting forever for a value to be broadcast from a crashed co-ordinator) and
Corrupted Broadcast (when co-ordinator may broadcast its values to a subset of the
participants before crashing). The code in Table 4 overcomes decision blocking by using
a failure detector to determine the state of the co-ordinator (alive(pr)) and overcomes
the possibility of (n − 1) corrupted broadcasts by repeating the broadcast for n rounds.

We give a precise description of the rotating co-ordinator algorithm as the system
C, given in Table 5. Without loss of generality, we assume that the decision set is sim-
ply V = {true, f alse} and have n participants located at independently failing locations
l1 . . . ln. The process Px

i,r, for x ∈ {true, f alse}, denotes the ith participant, at round r,
with current estimate x. It is defined in terms of two parallel processes, Bx

i,r for broad-
casting the current value at round r, and Rx

i,r for receiving the new value at round r. As
in Table 4, broadcast is only allowed if i = r and otherwise it acts as the inert process.
On the other hand, the receiver at round r awaits synchronisation on truei,r or falsei,r and
updates the estimate for round (r+1) accordingly. At the same time, the receiver guards
this distributed synchronisation with susp lr.Px

i,r+1 to prevent decision blocking in case
lr, the location of the participant currently broadcasting, fails. Estimates for round r can
only come from the participant at lr and thus all actions truei,r and falsei,r are scoped in
C. Every participant can be arbitrarily initialised as Ptrue

i,1 or Pfalse
i,1 through the free ac-

tions proptrue
i and propfalse

i respectively. Finally every participant decides at round (n+1)
to either report true, executing dectrue

i , or report false, executing decfalse
i .

We can also give a precise description of the consensus correctness requirements
in our calculus. As stated in the Introduction, we repackage our algorithm as a fault-

3 When |V | = 2 this implies a stronger notion of validity: any decision value for any participant
is the initial value of some process.

6

Table 5. Rotating Co-ordinator Algorithm in our Partial-Failure Calculus

(Consensus)

C def
=

(
νn

i,r=1truei,r, falsei,r

) n∏
i=1

li[[proptrue
i .P

true
i,1 + propfalse

i .Pfalse
i,1]]

(Participant) (Broadcast)

Px
i,r

def
= Rx

i,r | B
x
i,r x ∈ {true, false}, r ≤ n Bx

i,r
def
=

n∏
j=1

x j,r x ∈ {true, false}, r = i

Px
i,n+1

def
= decx

i x ∈ {true, false} Bx
i,r

def
= 0 x ∈ {true, false}, r , i

(Recieve)
Rx

i,r
def
= truei,r.Ptrue

i,r+1 + falsei,r.Pfalse
i,r+1 + susp lr.Px

i,r+1

tolerant system where any interactions with observers occur through wrapper code re-
siding at the immortal location ?; this allows us to decompose our proof into the basic
correctness and correctness preservation phases, as in Table 1(c) and (d).

Table 6 defines the wrapper code which, when put in parallel with C of Table 5, pro-
vides separate testing scenarios for the algorithm. We have two forms of initialization
code: Igen arbitrarily initialises every participant to either true or false after the action
start whereas Itrue and Ifalse initialise all participants to just true, or just false respectively.
We also have two processes for evaluating the values decided upon: Agen

1 checks that all
the participants 1 to n agreed on a value (either true or false) or else crashed, producing
the action ok if the test is successful; Atrue

1 and Afalse
1 check that all participants have

agreed on the specific value true, and false respectively, or crashed.

Definition 3 (Consensus). Let Ln denote {l1, . . . , ln, ?}, and (m̃) stand for the actions
proptrue

i , propfalse
i , dectrue

i , decfalse
i for 1 ≤ i ≤ n. Then C satisfies consensus whenever

Strong Basic Agreement: 〈Ln, 0〉 . (νm̃)(C | Igen |Agen
1) ≈ 〈∅, 0〉 . start.ok

Basic Validity: 〈Ln, 0〉 . (νm̃)(C | Itrue |Atrue
1) ≈ 〈∅, 0〉 . start.ok

〈Ln, 0〉 . (νm̃)(C | Ifalse |Afalse
1) ≈ 〈∅, 0〉 . start.ok

and moreover

Strong ft-Agreement: 〈Ln, 0〉. (νm̃)(C | Igen |Agen
1) ≈ 〈Ln, n−1〉. (νm̃)(C | Igen |Agen

1)

ft-Validity: 〈Ln, 0〉 . (νm̃)(C | Itrue |Atrue
1) ≈ 〈Ln, n − 1〉 . (νm̃)(C | Itrue |Atrue

1)
〈Ln, 0〉 . (νm̃)(C | Ifalse |Afalse

1) ≈ 〈Ln, n − 1〉 . (νm̃)(C | Ifalse |Afalse
1)

In Definition 3 strong agreement subsumes the agreement and termination con-
ditions: it composes C with Igen and Agen

1 . Validity uses more specific wrappers, and
composes C first with Itrue |Atrue

1 and then with Ifalse |Afalse
1 . Scoping the actions proptrue

i ,
propfalse

i , dectrue
i and decfalse

i in each test case limits external interaction to the non-failing
actions start and ok at ?, the immortal location. This allows Definition 3 to divide con-
sensus conditions into basic correctness and correctness preservation conditions. For
example

Strong Agreement: 〈Ln, (n − 1〉) . (νm̃)(C | Igen |Agen
1) ≈ 〈∅, 0〉 . start.ok

follows from Strong Basic Agreement, Strong ft-Agreement and transitivity of ≈.

7

Table 6. Consensus Wrappers

(Initialisation)
Ix def
= start.

∏n
i=1 propx

i Igen def
= start.

∏n
i=1(proptrue

i + propfalse
i) x ∈ {true, false}

(Agreement)
Ax

i
def
= decx

i .A
x
i+1 + susp li.Ax

i+1 Ax
n+1

def
= ok x ∈ {true, false}, i ≤ n

Agen
i

def
= dectrue

i .A
true
i+1 + decfalse

i .Afalse
i+1 + susp li.A

gen
i+1 i ≤ n

4 Up-to Techniques in the Presence of Failure

Definition 3 expresses consensus in terms of six bisimulations. The main complication
in proving these bisimulations lies in the large amount of internal actions that need to be
considered. A large number of these internal actions are regular in structure (processes
executing symmetric transitions at different locations and at different rounds) and most
of these transitions are confluent; they do not affect the set of transitions that can be
taken, either now or in the future. In the fault-tolerance bisimulations, we also have an
extensive amount of dead code, that is code at dead locations or code that is forever
blocked because it can only be released by actions at dead locations. Here we develop
up-to bisimulation techniques that abstract over confluent moves and dead code.

We define a structural equivalence relation over configurations as the least relation
satisfying the rules in Table 7. Even though this equivalence is normally defined over
systems, we exploit the state of the network 〈L, n〉 to define a stronger relation. Apart
from the first six rules and the last two (contextual) rules, all of which are fairly stan-
dard, we also have new rules such as (s-Dead), adopted from [7], equating any code at
dead locations, irrespective of its form. The network information is also used to define
the new structural rule (gc-Susp), identifying suspicions that can never trigger because
the location tested for can never fail; it is alive and no more failures can be induced. Also
new is (gc-Act) which identifies action branches that can never trigger because there is
no corresponding co-action within the action scope.4 Our structural equivalence is a
strong bisimulation.

Lemma 1 (≡ is a strong bisimulation).

〈L, n〉 . N

α

��

≡ 〈L, n〉 . M

〈L′,m′〉 . N′

implies 〈L, n〉 . N

α

��

≡ 〈L, n〉 . M

α

��
〈L′,m′〉 . N′ ≡ 〈L′,m′〉 . M′

We now identify a number of τ-actions, referred to as β-actions or β-moves, and
show that they are confluent. These silent β-actions are denoted as

〈L, n〉 . N
τ
7−→β 〈L, n〉 . M

4 We purposefully use the naming convention (gc-) for certain structural rules that are generally
applied in one direction rather than the other to ”garbage collect” redundant dead code.

8

Table 7. Structural Equivalence Rules

(s-Scomm) 〈L, n〉 . l[[P + Q]] ≡ 〈L, n〉 . l[[Q + P]]
(s-Sassoc) 〈L, n〉 . l[[(P + Q) + R]] ≡ 〈L, n〉 . l[[P + (Q + R)]]
(s-inert) 〈L, n〉 . l[[P + 0]] ≡ 〈L, n〉 . l[[P]]
(s-Pcomm) 〈L, n〉 . N |M ≡ 〈L, n〉 . M |N
(s-Passoc) 〈L, n〉 . (N |M) |M′ ≡ 〈L, n〉 . N | (M |M′)
(gc-Inert) 〈L, n〉 . M | l[[0]] ≡ 〈L, n〉 . M
(s-Extr) 〈L, n〉 . (νa)(M |N) ≡ 〈L, n〉 . M | (νa)N a < fn(M)
(gc-Scope) 〈L, n〉 . (νa)M ≡ 〈L, n〉 . M a < fn(M)
(gc-Act) 〈L, n〉 . (νa)l[[α.P +

∑
i Pi]] ≡ 〈L, n〉 . (νa)l[[

∑
i Pi]] α ∈ {a, ā}

(gc-Susp) 〈L, 0〉 . l[[susp k.P +
∑

i Pi]] ≡ 〈L, 0〉 . l[[
∑

i Pi]] k ∈ L
(s-Dead) 〈L, n〉 . l[[P]] ≡ 〈L, n〉 . l[[Q]] l < L

(s-Rest)
〈L, n〉 . M ≡ 〈L, n〉 . N

〈L, n〉 . (νa)M ≡ 〈L, n〉 . (νa)N

(Par)
〈L, n〉 . M ≡ 〈L, n〉 . M′

〈L, n〉 . M|N ≡ 〈L, n〉 . M′|N
〈L, n〉 . N|M ≡ 〈L, n〉 . N|M′

and defined in Table 8. We then develop up-to bisimulation techniques that abstract
from matching configurations related by β-moves. The details differ considerably from
[7] because we use different constructs like choice and failure detection, and allow
distributed synchronisation across locations. Apart from the standard local rules (BNew)
and (BFork), and the context rules (BRest) and (BPar), Table 8 has three new rules dealing
with synchronisations. (BLin) states that distribution does not interfere with a scoped lin-
ear synchronisation, as long as we cannot induce more dynamic failures, that is n = 0.
(BLoc) states that a local scoped linear synchronisation is always a β-move. Finally,
(BFTol) states that a distributed scoped linear synchronisation is a β-move if it is asyn-
chronous from one end and the co-synchronisation at the other end is guarded by a
susp with the same continuation; these conditions make τ-move in (BFTol), in a sense,
fault-tolerant as we have already seen in (2). We prove a special form of confluence for
our β-moves.

Lemma 2 (Confluence of β-moves).
τ
7−→β observes the diamond property:

〈L, n〉 . N

α

��

� τ

β
// 〈L, n〉 . M

〈L′, n′〉 . N′

implies 〈L, n〉 . N

α

��

� τ

β
// 〈L, n〉 . M

α

��
〈L′, n′〉 . N′ R 〈L′, n′〉 . M′

where R is
τ
7−→β or ≡, or else α=τ and 〈L, n〉.M = 〈L′, n′〉.N′

Note the use of the non-standard R to close the diamond instead of
τ
7−→β in this Lemma.

It allows for the special case when the code causing the β-move crashes. In this case,
we only require that resulting pair are structurally equivalent, using (s-Dead).

We defined a modified bisimulation relation from Definition 1 where the conditions
for the matching residuals are relaxed; instead of demanding that they are again related

in ≈ we allow approximate matching through ≡ and
τ

7−→∗β.

9

Table 8. Transition Rules for β-moves

Assuming l ∈ L, n ≥ 0

(BLin)

〈L, 0〉 . (νa)(l[[ā.P]] | k[[a.Q]])
τ
7−→β 〈L, 0〉 . (νa)(l[[P]] | k[[Q]])

l, k ∈ L

(BLoc)

〈L, n〉 . (νa)(l[[ā.P]] | l[[a.Q]])
τ
7−→β 〈L, n〉 . (νa)(l[[P]] | l[[Q]])

(BFTol)

〈L, n〉 . (νa)(l[[ā]] | k[[a.P + susp l.P]])
τ
7−→β 〈L, n〉 . (νa)k[[P]]

l, k ∈ L

(BNew)

〈L, n〉 . l[[(νa)P]]
τ
7−→β 〈L, n〉 . (νa)l[[P]]

l ∈ L

(BRest)
〈L, n〉 . M

τ
7−→β 〈L, n〉 . M′

〈L, n〉 . (νa)M
τ
7−→β 〈L, n〉 . (νa)M′

(BFork)

〈L, n〉 . l[[P|Q]]
τ
7−→β 〈L, n〉 . l[[P]]|l[[Q]]

l ∈ L

(BPar)
〈L, n〉 . M

τ
7−→β 〈L, n〉 . M′

〈L, n〉 . M|N
τ
7−→β 〈L, n〉 . M′|N

〈L, n〉 . N|M
τ
7−→β 〈L, n〉 . N|M′

Definition 4 (β-transfer property). A relation R over configurations satisfies the β-
transfer property if

〈L, n〉 . N

α

��

R 〈L, n〉 . M

〈L′, n′〉 . N′

implies 〈L, n〉 . N

α

��

R 〈L, n〉 . M

α

��
〈L′, n′〉 . N′ Al◦R◦Ar〈L′, n′〉 . M′

where Al is ≡ ◦
τ

7−→∗β and Ar is ≈

Definition 5 (Bisimulation up-to-β). A relation R over configurations is a bisimula-
tion up-to-β if it and its inverse R−1 satisfy the β-transfer property.

Before we can use bisimulations up-to-β, we need to show they are sound with
respect to Definition 1. This soundness proof uses the results of Lemma 3.

Lemma 3 (
τ

7−→∗β implies ≈). 〈L, n〉 .N
τ

7−→∗β 〈L, n〉 .M implies 〈L, n〉 .N ≈ 〈L, n〉 .M.

Theorem 1 (Soundness of bisimulations up-to-β). If 〈L, n〉 . N R 〈L′,m〉 . M, where R
is a bisimulation up-to-β, then 〈L, n〉 . N ≈ 〈L′,m〉 . M.

Example 3. Suppose l, k ∈ L. Then we can show that

〈L, n〉 . (νa, b) l[[ā]] | k[[a.P + b.Q + susp l.P]] ≈ 〈L, n〉 . (νa, b)k[[P]] (3)

10

To see this first note that using (s-Extr), (s-Scomm), (s-Sassoc), (gc-Act) and (s-Extr) again
we can tighten the scope of νb, garbage collect the branch guarded by b and then scope
extrude νb again to obtain

〈L, n〉 . (νa, b) l[[ā]] | k[[a.P + b.Q + susp l.P]] ≡ 〈L, n〉 . (νa, b) l[[ā]] | k[[a.P + susp l.P]]

An application of (BFTol) gives

〈L, n〉 . (νa, b) l[[ā]] | k[[a.P + susp l.P]]
τ
7−→β 〈L, n〉 . (νa, b) k[[P]]

and now (3) follows from Lemma 1 and Lemma 3.

5 Consensus Satisfaction Proof

Using Theorem 1, we just need to give witness bisimulations up-to β-moves satisfying
the bisimulations set out in Definition 3. In the following witness bisimulations, we use
the letters t, f, p and d for the action names true, false, prop and dec, respectively. Our
presentation makes use of sets of integers Ii partitioning the set {1 . . . n}; the partition
predicate is:

partn1(I1, . . . , Ik) def
= I1 ∪ . . . ∪ Ik = {1 . . . n} and ∀i, j ∈ {1 . . . k} Ii ∩ I j = ∅

We also denote the smallest number in a partition Ii as Iimin and the largest number in a
partition Ii that is smaller that any element in any other partition I j as Ii

+
min.

We first prove the basic (failure-free) equivalences. We here only give the witness
bisimulation for Strong Basic Agreement; the two witness bisimulations required for
Basic Validity are similar but simpler. We assume m̃ =

∏n
i,r=1 ti,r, fi,r, pt

i, p
f
i , d

t
i, d

f
i and use

A, I, Ln and ∅ as shorthand for Agen
1 , Igen, 〈{1 . . . n}, 0〉 and 〈∅, 0〉 respectively. We also

partition {1 . . . n} into three sets: I denotes the set of uninitialised participants, whereas
J and H denote initialised participants with current estimates t and f respectively; when
we do not use partition H, participants in J all have either estimate t or f. We also use
the process definition Ni

def
= li[[pt

i.P
t
i,1 + pf

i .P
f
i,1]] | pt

i + pf
i for non-initialised participant i.

1)
〈
Ln . (νm̃)

(
C | Igen |Agen

1

)
, ∅ . start.ok

〉
2)

〈
Ln . (νm̃)

A |∏
i∈I

Ni |
∏
j∈J

l j[[Rt
j,1]] |

∏
h∈H

lh[[Rf
h,1]]

 , ∅ . ok
〉 ∣∣∣∣∣∣∣∣ partn1(I, J,H)

and Imin = 1

3)
〈
Ln . (νm̃)

A |∏
i∈I

Ni |

Imin−1∏
r=1

lr[[xi,r]]

 |∏
j∈J

l j[[Rx
j,Imin

]]

 , ∅ . ok
〉∣∣∣∣∣∣∣∣

partn1(I, J)
and Imin , 1
and x ∈ {t, f}

4)
〈
Ln . ok, ∅ . ok

〉

In the above up-to β witness bisimulation case (2) represents the states where par-

ticipants have different estimates at round r = 1 because the broadcaster at round 1 has

11

not been initialised yet. Case (3) represents participants in agreement for rounds r ≥ 2,
but blocked because the co-ordinator participant for round r has not been initialised.
We note that in case (3), uninitialised participants i ∈ I include the broadcasted values
from previous rounds that are yet to be consumed by them once they are initialised.

We highlight the salient aspect of the above bisimulation relation: apart from the
initialisation τ-moves, all the remaining τ-transitions turn out to be β-moves; they are
instances of (BLin) (modulo ≡). We illustrate this through a walk-through of the main
transitions:

– If we are in (2) and the jth participant in the left configuration is initialised (through
a τ action) with x ∈ {t, f} then
• if j , 1 the participant proceeds to round 1 with estimate x and joins set J or H

accordingly. We match this action by the empty move and remain in case (2).
• if j = 1 the participant proceeds to round 1 and acts as the co-ordinator, broad-

casting x. For all participants j ∈ J or h ∈ H, broadcast synchronisation turns
out to be a β-move using (BLin), and (gc-Act) and (gc-Susp), among other rules,
to garbage collect inactive branches as in Example 3. At this point all initialised
participants agree on the broadcasted value x at round 2, and proceed through
the next rounds using β-moves, still agreeing on x, until they block again on
the next Imin. We match this action with the empty action and progress to case
(3).

– If we are in (3) and the ith participant is initialised then
• if i , Imin then the right configuration performs an empty move and we remain

in case (3), abstracting away from the β-moves of participant i consuming all
the broadcasts to reach round Imin with estimate x.
• if i = Imin then the matching move is similar but with two further sub-cases
∗ If I = {i} then all participant would have agreed on x, the first broadcasted

value and we progress to case (4) through a series of β-moves.
∗ If |I| ≥ 2 then all participants j ∈ J progress to the round of the next

minimum uninitialised participant (I/{i})min, and remain in case (3).

The witness bisimulation for Strong ft-Agreement up to (n − 1) faults is given be-
low; we leave similar but simpler witness bisimulations for ft-Validity to the interested
reader. We carry over all the shorthand notation used for the failure-free witness bisim-
ulation together with some more: the operation ẍ denotes value inverse for x ∈ {t, f},
and is defined as ẗ = f and f̈ = t; for K ⊂ {1 . . . n}, LK

n denotes the network state
〈Ln/{lk | k ∈ K}, n − |K|〉; B(i, x) j+n

j denotes the sequence of broadcasts of x for partici-

pant i from rounds j up to j + n, that is
∏ j+n

r= j lr[[x̄i,r]].
The salient aspect of our correctness preservation witness bisimulations is that they

automatically bring to the fore the mechanisms that enable the algorithm to overcome
decision blocking and corrupted broadcast. Through the use of the β-moves (BLoc), in
the case of participant initialisation in ft-Validity, and (BFTol), in the case of broadcast
communications where a participant receives the same estimate it currently holds, our
witness bisimulations abstract over superfluous transitions. This means that the only
non-confluent τ-moves remaining are those for participant initialisation, in the case
of Strong ft-Agreement, those that crash participants and those where the broadcasted

12

value and the current participant estimate differ. The latter two kinds are the core transi-
tions that embody corrupted broadcast, when the broadcaster crashes, and lead towards
the eventual agreement, when not interfered with by failure. The up-to-β level of ab-
straction also makes the overall structure of the bisimulation proof reflect move closely
the reasoning needed in a careful, informal proof of correctness.

1) 〈Ln . (νm̃)A | I | C, LK
n . (νm̃)A | I | C〉 |K ⊆ {1 . . . n}

2)

〈
Ln . (νm̃)

(
A |

∏
i∈I

Ni |
∏
j∈J

l j[[Rt
j,1]] |

∏
h∈H

lh[[Rf
h,1]] |

∏
k∈K

lk[[Pk]]
)

, LK
n . (νm̃)

(
A |

∏
i∈I

Ni |
∏
j∈J

l j[[Rt
j,1]] |

∏
h∈H

lh[[Rf
h,1]]

)〉
∣∣∣∣∣∣∣∣∣∣∣
partn1(I, J,H,K)
and Imin = 1

3)

〈
Ln . (νm̃)

A |

∏
i∈I

(
Ni | B(i, x)Imin−1

1

)
|
∏
j∈J

l j[[Rx
j,Imin

]]

|
∏
h∈H

lh[[Rx
h,Imin

]] |
∏
k∈K

lk[[Pk]]

, LK

n . (νm̃)
(

A |
∏
i∈I

Ni |
∏
j∈J

l j[[R
y
j,Imin

]] |
∏
h∈H

lh[[Rÿ
h,Imin

]]
)〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

partn1(I, J,H,K)
and 1, Imin< Jmin

and Imin<Hmin

and x, y ∈ {t, f}
and {1, . . . , (Imin−1)} ⊆ K

4)

〈
Ln . (νm̃)

A |

∏
i∈I

(
Ni | B(i, x)Imin−1

1

)
|
∏
j∈J

l j[[Rx
j,Imin

]]

|
∏
h∈H

lh[[Rx
h,Imin

]] |
∏
k∈K

lk[[Pk]]

, LK

n . (νm̃)

A |

∏
i∈I

(
Ni | B(i, y)

J+min
Jmin

)
|
∏
j∈J

l j[[R
y
j,Imin

]]

|
∏
h∈H

(
lh[[Rÿ

h,Jmin
]] | B(i, y)

J+min
Jmin

)

〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

partn1(I, J,H,K)
and Jmin < Imin < Hmin

and x, y ∈ {t, f}
and |J|, |I| ≥ 1

5)

〈
Ln . (νm̃)

A |

∏
i∈I

(
Ni | B(i, x)Imin−1

1

)
|
∏
j∈J

l j[[Rx
j,Imin

]]

|
∏
h∈H

lh[[Rx
h,Imin

]] |
∏
k∈K

lk[[Pk]]

, LK

n . (νm̃)

A |

∏
i∈I

(
Ni | B(i, y)

J+min
Jmin

)
|
∏
j∈J

l j[[R
y
j,Hmin

]]

|
∏
h∈H

(
lh[[Rÿ

h,Jmin
]] | B(i, y)

J+min
Jmin

)

〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

partn1(I, J,H,K)
and Jmin < Hmin < Imin

and x, y ∈ {t, f}
and |J|, |H|, |I| ≥ 1

6)

〈
Ln . (νm̃)

(
A |

∏
j∈J

l j[[Rx
j,Imin

]] |
∏
h∈H

lh[[Rx
h,Imin

]] |
∏
k∈K

lk[[Pk]]
)

, LK
n . (νm̃)

(
A |

∏
j∈J

l j[[R
y
j,Hmin

]] |
∏
h∈H

(
lh[[Rÿ

h,Jmin
]] | B(i, y)

J+min
Jmin

))〉
∣∣∣∣∣∣∣∣∣∣∣
partn1(J,H,K)
and Jmin < Hmin

and x, y ∈ {t, f}
and |J|, |H| ≥ 1

7) Ln . ok, LK
n . ok

Characterised by the non-confluent transitions (participant initialisation, participant

crashing and broadcasts where the value broadcasted and the current participant esti-
mate differ), the witness bisimulation partitions the n participants into 4 mutually ex-

13

clusive sets: I denotes the participants that are yet uninitialised, K denotes the partic-
ipants that have crashed, J denotes the participants with estimate x, the value being
broadcasted at the current round and H denote the participants with current estimate ẍ
differing from broadcasted value x at the current round.

Based on these participant partitions, the witness bisimulation describes the fol-
lowing cases for bisimilar pairs: in (2) no broadcast has yet occured because the first
co-ordinator is still uninitialised; (3) is a similar case where the live participant with
the lowest index i is uninitialised (all the participants < i have crashed); (4) describes
the case when the live participant with the lowest index j is initialised with x, and all
initialised participants with estimate x are blocked because Imin is yet to be initialised;
(5) is similar to case (4), only that participants with estimate x that is being broadcasted
are blocked on an initialised participant from partition H with estimate ÿ which still
needs to consume a broadcast (and change its estimate); (6) is a special case of (5)
where there are no uninitialised participants. Thus, in this last case, (6), we map live
blocked participants in a dynamic failure setting to unblocked participants in a failure
free setting at the final round n.

We note that witness bisimulation shows that even though agreement is reached
in both failure-free (left) and dynamic failure (right) sides, each side may agree on
different values at round (n+1). More specifically in the failure-free setting agreement is
reached on the value to which the first participant is initialised; this is not necessarily the
case in dynamic failure setting. We also note that the witness bisimulation is uncluttered
from crashed code through the structural rule (s-Dead). Thus, in every bisimilar pair, it
maps the corresponding live code in a left (failure-free) configuration, irrespective of
its state, to the inert process 0, on the right. We overview the main transitions of the
important (enumerated) stages in this relation, that is for stages (3), (4), (5) and (6):

Stage (3): If participant i ∈ I is initialised, then we go to stage (4) or (5), depending on
the value y it is initialised to and whether (I/{i})+min < Jmin,Hmin. If participant i ∈ I
crashes, then if (I/{i})+min < Jmin,Hmin we remain in (3) else go to stage (4) or (5).

Stage (4): If participant j ∈ J crashes, then if Jmin = J+min we go to stage (3), otherwise
we remain in (4). If participant i ∈ I is initialised we have a number of cases: if it
is initialised to y or it is initialised to ÿ and (i , Imin) then

– we remain in (4) if |I| , 1.
– we go to (6) if |I| = 1.
– we go to (7) if (|H| = 0 ∧ |I| = 1).

Else, if the Imin is initialised to ÿ, then
– we go to (5) if |I| , 1, swapping J for H and vice-versa.
– we go to (6) if |I| = 1, again swapping J for H and vice-versa.
– we go to (7) if (|H| = 0 ∧ |I| = 1)

Similarly, if participant Imin crashes, then depending on the next smallest participant
every j ∈ J blocks on, we can either remain in (4) or transition to stage (5) if |I| , 1,
stage (6) if |I| = 1 or stage (7) if (|H| = 0 ∧ |I| = 1). Finally, if participant h ∈ H
consumes the broadcasts or crashes, we still remain in stage (4), potentially making
|H| = 0.

Stage (5): If participant j ∈ J crashes, then if Jmin , J+min we remain in (5), otherwise
we transition to stage (4) where H is swapped for J (and vice-versa). If participant

14

h ∈ H accepts the broadcast or crashes, we remain in (5) or transition back to (4),
depending on whether Hmin = H+min. If participant i ∈ I is initialised, we still remain
in (5) whereas if i ∈ I crashes, we remain in (5) or transition to (6) if |I| = 1.

Stage (6): If participant j ∈ J crashes, then if |J| = 1 we reach agreement and go
to stage (7), otherwise we remain in (6), possibly swapping participants h ∈ H
for participants j ∈ J. If participant h ∈ H accepts the broadcast or crashes, we
transition to stage (7) if |H| = 1 or remain in (6).

All the above transitions are matched by the empty transition on the failure-free side,
except those transitions that involve initialising participants: In this case we match the
transition by initialising the corresponding participant in the failure-free setting.

6 Conclusion

We have designed a partial-failure process calculus in which distributed algorithms can
be formally described and analysed. We have also developed up-to techniques in this
calculus by identifying novel confluent moves involving the choice and perfect fail-
ure detection operator, together with a stronger structural equivalence abstracting over
dead code. Most importantly however, we have proposed a methodology for formally
proving the correctness of distributed algorithms in the presence of failure using fault-
tolerance bisimulation techniques. We have shown how this methodology can alleviate
the burned of exhibiting such formal proofs by giving, what to our knowledge is, the
first bisimulation-based proof of Consensus with perfect failure detectors. Moreover, the
decomposition of the proof into basic correctness and correctness preservation equiv-
alences permits separation of concerns and leads to a better understanding of the role
and weight of each action in the studied algorithm.

Future Work: There are various possible extension to our calculus. We can weaken our
failure detectors to �S, [2], by enhancing our network representation with two livesets,
suspectable and non-suspectable, similar to the techniques used in [14, 13]. We can
also introduce recursive computation, which would allow us to study consensus solving
algorithms with no static bounds on the number of rounds. Such a study would require
more sophisticated reasoning about termination; work such as [3, 17] should shed more
light on this complication. Independent of the calculus, we plan to validate our proposed
methodology by applying it to a range of fault-tolerant distributed algorithms expressed
in various calculi; examples of such algorithms include those in [11, 16].

Related Work: The confluence of certain τ-steps has long been known as a useful tech-
nique in the management of bisimulations, [9]. See [8] for particularly good examples
of where they have significantly decreased the size of witness bisimulations. We have
extended the concept, by considering confluence up to a particularly strong form of
structural equivalence which enables useful garbage collections to be carried out in
fault-tolerance proofs, by virtue of the presence of dead locations.

The closest to our work is [14], where the correctness of a consensus solving algo-
rithm for a more complex setting which uses �S failure detectors is formalised using

15

a process calculus. However, their proof methods differ from ours: they give a transla-
tion from the calculus encoding of the algorithm into an abstract interpretation and then
perform correctness analysis on the abstract interpretation. Results similar to ours are
also presented in [1]; there the atomicity of the 2-phase commit protocol is encoded and
proved correct using a process calculus with persistence and transient failure; bisimula-
tions are used to obtain algebraic laws which are then used to prove atomicity.

Acknowledgments: We would like to thank the referees for their incisive comments on
a preliminary version of this paper.

References

1. Martin Berger and Kohei Honda. The two-phase commitment protocol in an extended pi-
calculus. Electr. Notes Theor. Comput. Sci., 39(1), 2000.

2. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, March 1996.

3. Yuxin Deng and Davide Sangiorgi. Ensuring termination by typability. In IFIP TCS, pages
619–632, 2004.

4. Michael J. Fischer. The consensus problem in unreliable distributed systems (a brief survey).
In Proceedings of the 1983 International FCT-Conference on Fundamentals of Computation
Theory, pages 127–140. Springer-Verlag, 1983.

5. Cedric Fournet, Georges Gonthier, Jean Jaques Levy, and Remy Didier. A calculus of mobile
agents. CONCUR 96, LNCS 1119:406–421, August 1996.

6. Adrian Francalanza and Matthew Hennessy. A theory of system behaviour in the presence
of node and link failures. In CONCUR, volume 3653 of Lecture Notes in Computer Science,
pages 368–382. Springer, 2005.

7. Adrian Francalanza and Matthew Hennessy. A theory of system fault tolerance. In L. Aceto
and A. Ingolfsdottir, editors, Proc. of 9th Intern. Conf. on Foundations of Software Science
and Computation Structures (FoSSaCS’06), volume 3921 of LNCS. Springer, 2006.

8. J. F. Groote and M. P. A. Sellink. Confluence for process verification. Theor. Comput. Sci.,
170(1-2):47–81, 1996.

9. Jan Friso Groote and Jaco van de Pol. State space reduction using partial tau-confluence. In
Mathematical Foundations of Computer Science, pages 383–393, 2000.

10. K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer
Science, 152(2):437–486, 1995.

11. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
12. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
13. Uwe Nestmann and Rachele Fuzzati. Unreliable failure detectors via operational semantics.

In ASIAN, pages 54–71, 2003.
14. Uwe Nestmann, Rachele Fuzzati, and Massimo Merro. Modeling consensus in a process

calculus. In CONCUR: 14th International Conference on Concurrency Theory. LNCS,
Springer-Verlag, 2003.

15. James Riely and Matthew Hennessy. Distributed processes and location failures. Theoretical
Computer Science, 226:693–735, 2001.

16. Gerard Tel. Introduction to distributed algorithms. Cambridge University Press, New York,
NY, USA, 1994.

17. Nobuko Yoshida, Martin Berger, and Kohei Honda. Strong normalisation in the pi-calculus.
Inf. Comput., 191(2):145–202, 2004.

16

