
A Study of Failure in a Distributed Pi-calculus

Adrian Francalanza

Submitted for the degree of D. Phil.

University of Sussex

May 2005

Declaration

I hereby declare that this thesis has not been submitted, either in the same or different
form, to this or any other university for a degree.

Signature:

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisor, Matthew
Hennessy, for inspiring me through out these four years with his advice, criticism and
encouragement, and for making it an enjoyable learning experience. I am also indebted
to Julian Rathke, for guiding me during the initial stages of my studies.

A special thanks goes to my wife, Juniper, and my children, Gaetano and (then unborn)
Liliana, for helping me to keep things in perspective.

Another special thanks goes also to my mother and my younger sister, Helena, for
their constant support throughout the four years. One final special thanks goes to my
father, for forgoing his own doctorial studies so as not to uproot his two children, the
eldest of whom had just started school. This D.Phil is yours as much as it is mine.

Abstract

In this thesis, we study the behaviour of programs distributed across a network, where the
components making up the network, that is nodes and links, may fail. The foundational
framework used throughout this study is that of Dπ, a language in which located processes
may migrate between dynamically created locations to interact with other processes
residing at the same location.

In the first part of the thesis, a behavioural theory for systems in the presence of both
node and link failures is developed. The work is carried out at the level of configurations,
which represent the distributed network over which system execute and allow individual
nodes and links to fail. In addition, the language is extended by a new construct for
detecting and reacting to these failures. A bisimulation equivalence between systems
running over the same network is then defined, based on labelled actions; these labels
record, in addition to the effect actions have on the systems, the effect on the actual
state of the underlying network together with the view of this state known to observers.
Subsequently, it is shown that the equivalence is fully abstract, that is two systems will
be differentiated if and only if there is a computational context, consisting of a network
and an observer, which can see the difference.

In the second part of the thesis, a definition of system fault tolerance is formalised.
The definition relies on the notion of controlled fault injection on confined locations and
any observed difference in behaviour at public locations as a result of the fault. The
separation between public and confined locations is enforced through a type system for
which a subject reduction property is proved. Sound tractable bisimulation techniques
to determine when systems are fault tolerant are also developed.

In the third and final part of the thesis, the definition of fault tolerance and the
corresponding bisimulation techniques are applied to formally prove properties about
distributed algorithms. More specifically, a standard algorithm for solving consensus
with perfect failure detectors is encoded into our framework; the three properties defin-
ing consensus, that is agreement, validity and termination, are also encoded into this
framework. The encoded algorithm is first shown to satisfy our definition of fault toler-
ance and from this result, the necessary consensus properties of agreement, validity and
termination are extracted.

Contents

1 Introduction 2
1.1 Distribution of Code . 2
1.2 Faults, Failure and Partial Failure . 2

1.2.1 Faults . 3
1.2.2 Failures . 3
1.2.3 Failure Detection . 4

1.3 Dependability . 5
1.3.1 Fault tolerance . 5
1.3.2 Replication . 5

1.4 Distributed Process Calculi and Failure . 6
1.5 Outline . 10

1.5.1 Chapter Dependencies . 11
1.5.2 Contributions of the Thesis . 11
1.5.3 Preliminaries . 11

2 Dπ with Fail-Stop Location Failure 13
2.1 DπLoc syntax . 13
2.2 The reduction semantics of DπLoc . 15

2.2.1 Reduction barbed congruence . 18
2.3 A bisimulation equivalence for DπLoc . 23
2.4 Summary . 28

3 Dπ with Location and Link Failure 30
3.1 DπF syntax . 30
3.2 Reduction Semantics of DπF . 31

3.2.1 Reduction barbed congruence . 35
3.3 A labelled transition system for DπF . 36
3.4 A bisimulation equivalence for DπF . 45
3.5 Full-Abstraction . 48

3.5.1 Reduction barbed congruence for DπF 48
3.5.2 Soundness . 52
3.5.3 Completness . 59

3.6 Summary . 67

4 Fault Tolerance 69
4.1 Motivation . 69
4.2 Typed DπLoc . 73

Contents 2

4.2.1 Reduction Semantics . 75
4.2.2 Equivalences in typed DπLoc . 81
4.2.3 Bisimulation up-to proof techniques 90

4.3 Defining Fault Tolerance . 95
4.4 Bisimulation techniques for Fault Tolerance 103
4.5 Summary . 109

5 Case Study: Consensus 111
5.1 Consensus Overview . 111
5.2 Defining Consensus in typed DπLoc . 113
5.3 Implementing the Consensus-solving Algorithm in typed DπLoc 115
5.4 A Correctness proof for the Consensus Algorithm using Intensional Tests 118
5.5 Analysis of the Consensus-solving Algorithm and Tests 124
5.6 Intentional Test Termination for the Consensus-Solving Algorithm 129
5.7 Summary . 137

6 Conclusion and Outlook 139
6.1 Results obtained . 139
6.2 Future Work . 140

A Notation 142
A.1 DπLoc Notation . 142
A.2 DπF Notation . 143
A.3 Typed DπLoc Notation . 145
A.4 Auxilliary Proofs . 146

List of Tables

Table 1. Syntax of typed DπLoc . 14
Table 2. Local Reduction Rules for DπLoc . 16
Table 3. Network Reduction Rules for DπLoc . 17
Table 4. Contextual Reduction Rules for DπLoc 17
Table 5. Structural Rules for DπLoc . 18
Table 6. Operational Rules(1) for DπLoc . 23
Table 7. Operational Rules(2) for DπLoc . 24
Table 8. Operational Rules(3) for DπLoc . 25

Table 9. Syntax of DπF . 31
Table 10. New Network Reduction Rules for DπF 32
Table 11. New Structural Rules for DπF . 33
Table 12. Network Operational Rules(2) for DπF 42
Table 13. Contextual Operational Rules(3) for DπF 43
Table 14. The derived lts for DπF . 46

Table 15. Syntax of typed DπLoc . 73
Table 16. Typing rules for typed DπLoc . 76
Table 17. Runtime Error . 77
Table 18. Local Operational Rules for Typed DπLoc 84
Table 19. Network Operational Ruled for typed DπLoc 84
Table 20. Context Operational Rules for typed DπLoc 85
Table 21. The derived lts for typed DπLoc . 86
Table 22. β-Transition Rules for Typed DπLoc . 90
Table 23. β-Equivalence Rules for Typed DπLoc 91
Table 24. Network Operational Ruled for typed DπLoc 103

Table 25. Consensus Algorithm in typed DπLoc 116
Table 26. Reduction and Operational Rules for monitor in typed DπLoc 117
Table 27. Requirement Contexts in typed DπLoc 119

Chapter 1

Introduction

This thesis presents a study of system behavior in the presence of partial failure caused by
location and link faults. The study focuses on:

• defining reasonable equivalences for systems running over the same network and
developing theories that facilitate proofs of system equivalence.

• establishing formal definitions of system dependability in response to partial failure
and developing theories that facilitate proofs of system dependability.

• applying these formal definitions and theories to existing work in the field of dis-
tributed computing.

1.1 Distribution of Code

Location transparency is hard to attain over Wide Area Networks (WANs) [CG00], that is
infrastructures that may span the globe such as the Internet, because:

• administrative and security concerns preclude unfettered computation across domains
and as a result, virtual locations are induced to facilitate the control of computation.

• physical constraints such as high communication latencies and unpredictable random
failures make it hard to conceal the underlying structure of code distribution.

As a result, a number of programming languages and calculi have arisen which
describe the location were computation is executing, giving the programmer more control.
In this thesis, we focus on a calculus that describes physical locations rather than virtual
locations and study the behaviour of distributed code, that is systems, in the presence of
changes in the state of locations and location structure.

1.2 Faults, Failure and Partial Failure

The literature often makes a distinction between faults and failures. In [Chr91], failure is
defined as deviations in program behaviour, or erratic behaviour, caused by faults, defined

Chapter 1. Introduction 3

as defects at the lowest level of abstractions. Our study is based on two-tiered terms called
configurations which have the following form:

Network . System

The first tier, Network, is a representation of the state of the network whereas the second
tier, System, represents distributed code. In configurations, the behaviour of the code
in System is always defined with respect to Network, capturing the intuition that the
code System is executing over the network defined in Network. In this setting, faults
are represented at the first tier, Network, as constraints that effect the execution of the
code in the second tier, System, where we represent failure. Since the code in System is
distributed, faults only affect part of its behaviour, a phenomenon often termed as partial
failure.

1.2.1 Faults

In general, faults may be either of two kinds:

Permanent Faults Once a fault occurs, there is no way to recover the previous state of
the network.

Transient Faults If a network incurs a transient fault, it can restore back to its original
state through fault repair.

In our study, we limit ourselves to permanent faults. In particular we consider permanent
node faults and permanent link faults which may occur dynamically during the compu-
tation; the state of Network changes by executing fault injecting commands at the System

level. We stress that these fault injecting commands are not intended as programming
constructs but rather as a mechanised methods how to change the state of Network at
runtime.

1.2.2 Failures

As already stated, faults in a distributed setting lead to partial failure, where the nodes
themselves act as units of failure. There are various failure classifications in the literature.
Coulouris et al. [CDT01] identify three failure categories in a distributed setting:

Omission Failures These failures refer to migrating messages from one location and the
other which may be delivered incorrectly, lost or corrupted.

Link Failures These failures refer to code that gets disconnected from other code and may
potentially become unreachable.

Node Failure These failures refer to code limited to a particular location that typically
stops executing or behaves abnormally.

Another classification of failure, due to [LSP82, SS83] is based on two categories:

Fail-stop All entities affected by the fault, stop executing and any volatile storage is lost.

Chapter 1. Introduction 4

Byzantine Entities affected by the fault may lose part of the volatile storage, but continue
executing, exhibiting abnormal unconstrained behaviour.

We here study node and link failure referring to erratic behaviour caused by node faults
and link faults respectively. The node failure we consider is strictly fail-stop: as soon as
a fault happens in a node,all code residing at that node stops executing. The link failure
we describe (occasionally referred to as permanent connectivity failure) can be envisaged
as fail-stop since, as soon as a fault occurs in a link connecting two nodes, the link
stops functioning and no code can migrate directly between the two disconnected nodes.
Alternatively, this link failure can also be envisaged as byzantine, since the code affected
by the link fault, typically the code at the two nodes connected by the link, does not stop
executing, but rather behaves abnormally in the form of complete loss of code during
migration. Such behaviour is however not purely byzantine because is not arbitrary: a
faulty link never allows any code to migrate through it. Because of this reason too, we do
not describe any form of omission failure in our study.

1.2.3 Failure Detection

Faults may be observed in two ways from the System tier: either through failure, as we
have already discussed, or through failure detection. The latter is often performed by
observing faults at the lower level and subsequently inferring potential failure caused by
the fault. In asynchronous networks such as WANs, it is generally accepted that faults, and
thus failures, are hard to detect [FLP85]: high latencies preclude tight synchronisations
between nodes and the non-uniformity of WAN links and nodes makes it hard to set
communication bounds and estimate CPU response times. Thus, it is hard to distinguish
between an unreachable node and a reachable node with either slow CPU response time
or slow connection.

In practice however, unreliable failure detection is often employed, using mechanisms
such as acknowledgments and time-outs to establish an approximation to whether a node
is reachable or not [MAB+98]. Toueg and Chandra [CT96], give a classification of failure
detectors, defined as local separate modules that output a list of suspected failed entities.
The classification is based on two criteria:

Completeness If a failure detector is complete, it suspects all the failed entities.

Accuracy If a failure detector is accurate, it never suspects an entity that has not failed.

In our study, failure detection is performed through a branching ping construct that
tests for the accessibility of a remote location from the location where it is executing. Even
though this construct does not adhere strictly to the definition of a failure detector - it is not
a separate module in itself and does not output a list of suspected failed entities - we argue
that it is accurate in the sense that it never suspects that a location is unreachable unless
it is unreachable. Using this construct, we also implement failure detection mechanisms
(called monitors) that are complete in the sense that when a location becomes unreachable,
the mechanism will eventually detect the failure. We consciously overload the definitions

Chapter 1. Introduction 5

of [CT96] and refer to this single monitor mechanism as a failure detector, even though it
only tests for a single location; a proper failure detector can be constructed from an array
of such mechanisms. This allows us to postulate that our language uses a specific class of
failure detectors called perfect failure detectors, denoted in [CT96] as P. Even though this
level of failure detection may be considered unrealistic for a WAN setting, it still proves
to be an adequate level of abstraction for studying the interplay between node and link
faults and the respective observation at the distributed program level.

1.3 Dependability

One reason for the study of programs in the presence of failure is to be able to construct
more dependable systems, that is, systems exhibiting a high probability of behaving ac-
cording to their specification. System dependability is often expressed through attributes
like maintainability, availability, safety and reliability, the latter of which is defined as a
measure of the continuous delivery of correct behaviour, [VR01]. In our setting, there are
a number of approaches for achieving system dependability in the presence of faults,
ranging from fault removal, fault prevention and fault tolerance.

1.3.1 Fault tolerance

The fault tolerant approach to system dependability consist of various techniques that
employ redundancy to prevent faults from generating failure: two forms of redundancy
are space redundancy, that is using several copies of the same system components and
time redundancy, that is performing the same chunck of computation more than once.
Redundancy can also be managed in various ways: certain fault tolerant techniques are
based on fault detection which subsequently trigger fault recovery. If enough redundancy is
used, fault recovery can lead to fault masking, where the specified behaviour is preserved
despite the fault. Other techniques however do not use fault detection and still attain fault
masking. However, these techniques tend to be more expensive in terms of redundancy
usage; they often use a brute force approach where both time and space redundancy are
used at the same time.

1.3.2 Replication

In distributed programs, redundancy often takes the form of replication, that is space
redundancy spread across multiple locations. In general, the higher the replication, the
higher the redundancy and thus the greater the potential for fault tolerance. Nevertheless,
fault tolerance also depends on how redundancy is managed. There are various ways to
manage replication and one such classification, due to [VR01], is:

Active Relication: It uses both space and time redundancy, where all the replicas are
invoked by a coordinator, they all compute the same computation which is then
aggregated by the coordinator. If the replicas carry a notion of state, the coordinator
needs to ensure that all the replica states are in synchrony through techniques such
as sequencing of multiple invocations.

Chapter 1. Introduction 6

Passive Replication: It uses one primary replica and a number of secondary replicas. Pas-
sive replication is still based on space redundancy but tries to minimise time redun-
dancy by invoking only the primary replica; the secondary (passive) replicas are
invoked only when the primary replica fails. If the replicas carry a notion of state,
the secondary replicas have to periodically checkpoint and synchronise their state
with that of the primary replica.

Lazy Replication: It lies half way between active and passive replication. The main
concept is a separation between operations that invoke the replicas. If an operation
changes the state of the replica, often referred to as a write operation, it is sent to
all replicas in active replication fashion. If however the operation does not alter the
state, that is a read operation, only the primary replica is invoked. In essence, lazy
replication tries to obtain the best of both worlds and circumvent checkpoints of
replication state.

In our studywe limit ourselves to examples with replicas that do not encode a notion of
state, thus referred to as stateless replicas in this test. As a result, the third type of replication
discussed about, that is lazy replication, collapses into either of the first two types (active
and passive), since there is no distinction between write and read operations. Despite
of this simplification, we argue that the examples considered still capture the essence of
fault tolerant computation through replication. One can further postulate that the theory
developed is general enough to be applied to examples with replicas that encode notions
of state.

1.4 Distributed Process Calculi and Failure

Our study is specifically concerned with developing bisimulation techniques for dis-
tributed calculi which describe notions of partial failure. These bisimulations are justified
using contextual equivalences such as those defined by Honda and Yoshida [HY95] and
Milner and Sangiorgi [MS92, San92, SW01]. We follow the work of Hennessy, Rathke
and Merro [HR04, HMR04] who adapted reduction barbed congruence to the typed π-
calculus and to a distributed π-calculus called Dπ [HR02], and gave bisimulations that
coincide with these congruences; throughout this thesis, we will extend these results to
an adaptation of Dπ that describes various notions of failure.

The first use of process calculi to study failure, redundancy and fault tolerance is
due to K. V. S. Prasad in [Pra87]. The calculus used for this study is a variant of CCS,
[Mil89], that is neither distributed nor expresses failure directly; instead failure is encoded
using a specially labelled action f and guarded choice. The encoding also leads to a very
thigh synchronisation between failure and failure detection, which is encoded as the co-
action of f . Most of the work in [Pra87] targets two aims: the formulation of operators
which allow an easy encoding of failing and restarting processes (called displace, audit
and checkpoint operators), and more importantly, the development of proof techniques
that deal with the large number of states generated as a result of the interleaving of
failure. The main result of the work is the Synchronised Displacement Theorem, which
allows an algebraic manipulation of terms and can be used to prove that systems are, in
some sense, fault tolerant with respect to a specification. A difference between our work

Chapter 1. Introduction 7

and Prasad’s is that we address the problem of the increased number of states through
the interleaving of failure differently, using up-to techniques to abstract over confluent
interleaving. Despite of these differences, this work is related to ours because, to the best of
our knowledge, it is the first time concepts such as “failure-free behaviour”, redundancy
(called ”duplication”), “synchronisation” between replicas (called duplicates) and more
generally fault tolerance are identified within the field of process calculi; our study
happends to address all of these concepts.

More specific to our study, failure in a distributed setting has already been studied from
the point of view of process calculi. The various efforts vary with respect to

• the structure of locations assumed

• the type of failure associated with this structure

• restrictions for distributed code

• methods for failure detection.

We here give a general, but not necessarily exhaustive, overview of this body of work, to
help the reader relate our study to other work in the field.

The distributed CCS The work carried out by Hennessy and Riely, [RH01], was the starting
point of the first calculus presented in this thesis called DπLoc. In [RH01], processes are
distributed across a fixed number of named locations, organised in a flat structure where
locations are killed in fail-stop fashion, without affecting, or depending on, the state of other
locations. The distribution of processes in this calculus does not restrict computation:
two processes can interact freely, irrespective of the location where they reside. Thus,
locations merely act as units of failure. This failure dependency between processes can
be altered during computation through migration from one location to another. Failure
detection is performed through a perfectly accurate conditional construct, similar to the
ping construct used in our study, which branches according to the status of the tested
location. Inspite of the similarities, there are important differences between [RH01] and
our closest work, DπLoc. In our calculus, locations also denote restrictions in computation
since we prohibit distributed communication: More specifically communication between
distributed processes has to be decomposed into two atomic steps, that is migration
and local communication. Most importantly, our calculus is value passing, whereas the
processes [RH01] are not1; we also allow the creation of fresh locations. Because of these
enhancements, the theory for our calculus has to deal with scope extrusion of location
names.

The πl-calculus Our work was also influenced by the seminal work on process calculi
and failures, the πl-calculus [AP94, Ama97], by Amadio and Prasad. Similar to our first
calculus, DπLoc, in the πl-calculus processes are distributed across named locations, or-
ganised in a flat structure, which may die in fail-stop fashion, just like in DπLoc. Direct

1They are essentially CCS processes.

Chapter 1. Introduction 8

distributed computation is also prohibited; processes are allowed to spawn remote pro-
cesses and create new locations. The πl-calculus also assumes unicity of receptors, meaning
that inputs on a particular channel can only be performed at a unique location: this per-
mits asynchronous messages to be implicitly forwarded to the destination location in
the calculus, where a local communication can occur. Viewed otherwise, locations in
πl-calculus not only represent units of failure for processes, but also boundaries on where
communications on certain channels can occur. The πl-calculus processes can also per-
form failure detection through pinging, a perfectly accurate conditional construct similar to
the one used in DπLoc. Despite of the comonalities between the πl-calculus and DπLoc,
the theory developed for these two calculi is quite different: in [AP94, Ama97] they give
an encoding of the πl-calculus into a location-less π-calculus and then propose to use
the reasoning tools developed for the location-less calculus for the encoded terms; we
develop sound an complete bisimulation techniques in the source language directly.

The Timed distributedπ-calculus Another distributed value-passing process calculus study-
ing failure was developed by Berger and Honda, [HB00, Ber04], with the ultimate aim
of encoding and formally proving atomicity for the two-phase commit protocol. The
π-calculus processes in this calculus are distributed across a fixed set of unnamed locations
where every location is associated to a set of access points instead of a location name; a
flat structure is imposed on these locations once again. The access points denote channel
names where the respective inputs may occur. Once again, unicity of receptors for all
locations is assumed here, permitting a location to be uniquely identified through its access
points. The calculus does not allow processes to migrate, but instead, allows distributed
computation across locations. Two kinds of failure are modelled in this calculus: the first
is message loss for distributed computation; the second is transient location failure, whereby
locations may fail and re-start. Transient failure in this calculus amounts to more than a
mere pause and restart, since all the processes at a failed location are lost upon re-start.
Apart from units of failure, locations also represent units of persistent storage: while a
location is alive, processes may checkpoint processes that are launched as soon as a loca-
tion is revived from failure. In [HB00], locations also denote a local clock, synchronising
all the processes at that location: intuitively, every reduction step carried out by processes
at a location denotes a unit of time passed at that location. Failure detection is carried
out using timeouts, constructs that launch processes after a certain amounts of local time
units (reductions) have passed. The failure detectors that can be built with the timeout
primitive are not accurate, reflecting impossibility results of [FLP85], in a setting of asyn-
chronous failing clocks. This added expressivity however, complicates the formulation
of the subsequent theory of the calculus.

The Consensus Distributed Process Calculus Another tailor-made calculus, specifically de-
veloped for a formal understanding of a particular distributed problem is that of Nest-
mann, Fuzzati and Merro, [NFM03], targeting distributed consensus. In this calculus,
processes are distributed across enumerated locations, organised in a flat structure. Based
on the definition of distributed consensus, the failure modelled in this calculus is fail-stop

Chapter 1. Introduction 9

location failure. Due to its specific purpose, locations in this calculus simply denote units of
process failure - stated otherwise, distributed communication across location is permitted.
one main emphasis of this calculus is that of failure detection, which is faithful to the
classification of [CT96], discussed earlier in § 1.2.3. More specifically, locations start in a
live, suspectable state and can transit to either a dead state or an immortal, unsuspectable state.
Failure detection is not carried out through any specialised construct; instead it is encoded
within the language as asynchronous messages of the form ”suspect j”, triggered only if
location j is in a live, suspectable state or dead state. This model of failure detection maps
directly to the eventually weak accurate, strongly complete class of failure detectors, �S
, defined in [CT96]. Even though they give a semantics of this language, the study and
correctness proofs of the consensus algorithm encoded in this language is carried out in
terms of an abstract interpretation called a global view-matrix. They provide an encoding
and inverse encoding of a subset of the calculus in terms of this matrix. This differs from
the correctness proofs we present in our study for the consensus algorithms, carried out
in the source language itself, using bisimulation techniques.

The distributed join-calculus There is also work that studies failure in a setting where the
structure imposed on locations is not flat: the Distributed Join-calculus, [FGLD96], by
Fournet, Gonthier, Levy, Maranget and Remy, studies failure of uniquely named locations
organised as forests, that is a collection of hierarchical locations. This structure is also
dynamic, in the sense that whole subtrees can move from one parent location to any other
location; thus locations act as units of migration in addition to units of failure. The novel
aspect of this calculus from our point of interest, is that they express fail-stop location
failure with hierarchical failure dependencies: this means that when a location fails, all of
its children locations in the hierarchy fail as well. Processes distributed across locations
communicate by the implicit forwarding of asynchronous messages: once again, for this
implicit forwarding to work properly, unicity of receptors is assumed. Location failure
detection is also permitted in this language through a high level construct very close to a
failure detector, which monitors a location and releases an asynchronous message as soon
as the location being monitored fails. In [FGLD96], they give a reduction semantics for
their language, but they do not develop a theory that allows reasoning about Distributed
Join-calculus terms.

The tKlaim-calculus Another calculus were locations are not organised in a flat structure
is the tKlaim calculus, or topological Klaim, by De Nicola, Gorla and Pugliese, [DNGP04].
As the name implies, locations are organised in a dynamic graph structure, where localised
linda-like processes can freely reconfigure this graph structure by executing connection
and disconnection commands at will. Despite the fact that the location graph structure is
similar to that of DπF, our second calculus describing link failure, the details are different
from ours: tKlaim does not model failure, firstly because computation does not behave
erratically when two nodes are disconnected, but merely blocks until the connection is
re-established, and secondly, because the state of the graph location structure before and
after a disconnection is re-established are identical. In contrast, disconnections in DπF

Chapter 1. Introduction 10

are permanent and migrating code is lost when it asynchronously attempts to migrate to
an accessible node. Correspondingly, no failure detection mechanism is provided in the
tKlaim calculus. They do however, develop a theory for this distributed calculus with
dynamic disconnections.

1.5 Outline

In this thesis we study system behaviour in the presence of both node and link failure and
develop sound and complete bisimulation techniques to reason about systems executing
in this setting. We also develop a theory of fault tolerance, that can be used to ensure
that a system still satisfies its intended behaviour despite of present or future faults. We
finally show how the theory can be applied to reason about distributed algorithms. We
expect that our study will shed more light on the foundations of distributed computing
in the presence of failure.

The body of the thesis is split into four main chapters. Chapter 2 introduces a dis-
tributed π-calculus called DπLoc, based on Dπ, [HR02, HMR04], where fail-stop loca-
tion failure is expressed. The language features and reduction semantics are similar to
[AP94, Ama97]: communication across locations is prohibited, processes are explicitly
routed during migration, new locations can be created and killed at runtime, and failure
may be observed through a perfectly accurate ping construct. The theory developed and
result obtained are however different from Amadio and Prasad’s work: we develop an
lts and a weak bisimulation in the source language and prove that this bisimulation is
sound and complete with respect to a reduction barbed congruence defined for systems
running over the same network. This chapter lays the foundations for the following two
Chapters.

Chapter 3 studies the behaviour of distributed code in the presence of both permanent
node and link failure. We extend the calculus introduced in Chapter 2 so that network
representations describe the connections between the nodes, new locations specify the
locations they are connected to and a new construct for injecting link failures at runtime
is introduced; the new calculus is called DπF. A novel aspect of DπF is that the perfectly
accurate ping construct used for failure detection (carried over from the previous chapter),
now yields accessibility information rather than liveness information about locations.
Link failures complicate the notion of scope extrusion of location names and we discuss
at length why the theory for this new language is not a trivial extension of the theory
developed in the preceding chapter. At this point, we also justify the need for an extended
formulation of a network representation that encodes the partial view of the observer.
Based on this extended network representation, we define a derived lts, suppressing
information from the labels based on the observer’s partial view and show that the
weak bisimulation, defined over the derived lts, coincides with the reduction barbed
congruence defined for systems running over networks with link failure.

Chapter 4 addresses dependability, a fundamental aspect of behaviour in the presence
of failure. Since failure are generally hard to prevent or repair, we focus on fault tolerance
techniques for guaranteeing dependability of distributed software. We revert back to the

Chapter 1. Introduction 11

first calculus, DπLoc, and formalise a definition of fault tolerance based on the notion
of a partially observable term and a controlled injection of faults in the non-observable
part of the term. We develop a typed version of the language DπLoc, with a type system
that guarantees that these two views, the observable and hidden views, are preserved
during computation. After formulating a fault tolerance definition for well-typed DπLoc
terms, we apply bisimulation techniques and develop up-to techniques to facilitate proofs
showing that certain terms satisfy our fault tolerance definitions.

Chapter 5 is a case study where the theory developed in the preceding chapter is used
to prove the correctness of a consensus algorithm. We specify consensus by encoding
its conditions as a series of wrapper DπLoc contexts; we then encode the algorithm in
DπLoc as well. Instead of proving the correctness of the algorithm directly with respect to
the consensus requirements, we formulate the algorithm’s behaviour as a fault tolerance
problem, prove it using the theory of Chapter 4, and then extract the necessary results
from the fault-tolerance properties proved.

1.5.1 Chapter Dependencies

Chapters 3, 4 and 5 contain the key proofs of our study. The material in the latter two
chapters is independent of Chapter 3 and can be fully understood without reading the
material of Chapter 3. Similarly Chapter 3 can be read independently of Chapters 4 and
5.Chapter 5 should be read in conjunction with Chapter 4, since the former relies heavily
on the theory developed in the latter. Most of the concepts underpinning the theory of
Chapter 3 and Chapter 3 are first introduced in a simpler setting in Chapter 2 and the
reader should benefit by reading Chapter 2 before embarking on the more demanding
Chapters.

1.5.2 Contributions of the Thesis

The main contributions of the thesis are found in Chapters 3 and 4. To the best of our
knowledge, this is the first time permanent link failure has been studied from a point of
view of a distributed process calculus. As far as we know, this is also the first time a
definition of fault tolerance is formalised for a process calculus; apart from the work by
K.V.S. Prasad, [Pra87], our work is the first one using distributed process calculi to study
fault tolerance in a distributed setting. Even though process calculi have been previously
used to prove correctness of distributed algorithms, we also believe that this is the first
time bisimulation techniques are used to show the correctness of a consensus-solving
algorithm.

1.5.3 Preliminaries

The reader is assumed to be knowledgeable of process calculi, in particular of the π-
calculus: familiarity is assumed with a reduction semantics presentation of a calculus,
comprising of reduction and structural rules. The reader is also assumed to be conversant
with inductive and co-inductive proofs: the notion of weak bisimulations, defined over
a labelled transition system with an internal action is used extensively in this work. The

Chapter 1. Introduction 12

interested reader is referred to [SW01] for the background knowledge required about
bisimulation and up-to bisimulation techniques for the π-calculus; these ideas are ex-
tended and adapted to a distributed setting with failure in this work.

Chapter 2

Dπ with Fail-Stop Location Failure

In this section we generalise the work of [RH01] and present an extension from distributed
CCS to Dπ called DπLoc, where fail-stop location failure can be expressed. We acquaint the
reader with the syntax of the calculus, define a reduction semantics and adapt a reduction
barbed congruence for Dπ that allows us to compare DπLoc terms. We also define an lts
and a bisimulation for this calculus and state the main result of the chapter, that is that
the bisimulation characterises the reduction barbed congruence.

2.1 DπLoc syntax

The syntax of DπLoc is given in Table 1 and assumes a set of variables, V, ranged over
by x, y, z, . . ., and a separate set of names, N, ranged over by n,m, This latter set
is divided into locations, L, ranged over by l, k, . . . and channels, C, ranged over
by a, b, c, We use u, v, . . . to range over the set of identifiers, consisting of variables and
names. When new names are created, they have associated with them a type, indicating
whether they are to be used as a channel, ch, or as a location, loc[S] with state S, which
can either be alive,a, or dead, d. A priori, there is not much sense in declaring a dead
location, but the presence of this construct will facilitate the definition of the reduction
semantics.

There are three syntactic categories in DπLoc. The first, local processes ranged over by
P,Q, includes the standard π-calculus constructs for communication, a!〈V〉.P and a?(X).P,
replicated input, ∗a?(X).P, name restriction (νn : T)P, where T types n as a channel or a
location name, comparison if v= u.PdQe, inaction, 0, and parallel composition, P|Q. The
values transmitted as part of a communication, ranged over by V, consist of tuples of
identifiers. When input on a channel, names are deconstructed using patterns, ranged
over by X; patterns are simply tuples of variables, each having a unique occurrence.

An important extension to Dπ is a programming construct which allows processes
to react to perceived faults in the underlying communication network. In addition to the
migration construct go l.P, [HR02], we add a testing construct, ping l.PdQe, inspired from
[AP94, Ama97, RH01]. This constructs acts as a conditional, based on the perceived state

Chapter 2. Dπ with Fail-Stop Location Failure 14

Table 1. Syntax of typed DπLoc

Types
T, U ::= loc[S] | ch S, R ::= a | d

Processes
P,Q ::= u!〈V〉.P | u?(X).P | ∗ u?(X).P | if v=u.PdQe | P|Q

| (νn :T)P | go u.P | kill | ping u.PdQe | 0

Systems
M,N,O ::= l[[P]] | N|M | (νn :T)N

of the location l; thus if l is reachable, process P is launched, otherwise Q is launched.
We also forgo the full power of the type system in Dπ and use a simple notion type

T ranging over channels, ch and locations, loc[S]. Location types are extended with a
parameter S that denotes the status of the location, that is whether it is alive, a, or else
dead, d.

As explained in the introduction, we also wish to consider the behaviour of systems
under dynamic network faults. To simulate these instances, we also add to the language
a construct for inducing faults, kill; even though this should not be considered part of
the core language, its inclusion means that contextual equivalences will compare system
behaviour in the presence of fail-stop [SS83] location failure that can occur dynamically, at
any stage of the computation.

The second syntactic category, ranged over by N,M, systems, is similar to that category
in Dπ. They consist of located processes, terms of the form l[[P]], which can be composed
together with the parallel operator N |M and scoped to share private names as (νn :T)N.
Note that, as with local processes, scoped names always have associated types; in the case
of locations, these type carry the state of the scoped location (dead or alive).

In contrast to Dπ, DπLoc uses also an additional third level of configurations. At this
level, we have a representation of the network on which the system is running. A typical
configuration takes the form

Π .N

where Π represents the network state. This network representation is made up of two
components 〈N ,A〉:

• N is a set of all the free names used in the system N of the configuration. It contains
both channel and location names and thus satisfies the conditionN ⊆ N.

• A is referred to as a liveset, representing locations that are active and allow location
computation to happen. Since in DπLoc we only consider location failure, A is a
set of live location names,A ⊆ loc(N), where loc(N) denotes the location names in
N .

Chapter 2. Dπ with Fail-Stop Location Failure 15

For an arbitraryΠwe useΠN andΠA to refer to its individual components. Through-
out the chapter, we refer to a number of judgements based on the state of the network.
We here give the definition for two of these judgements; the reader is referred to the
Appendix for a complete listing.

Π ` l : alive def
= l ∈ ΠA (l is alive in Π)

Π ` k← l def
= l, k ∈ ΠA (k accessible from l in Π)

A location l is dead inΠ if it is declared (l ∈ ΠN) but not in the liveset (l < ΠA). Similarly,
k is inccessible from l in Π if k is dead. We also use a number of operations on Π; we
here define the most important one, location killing, which translates to adding a location
names to the dead-set, and leave the rest to the Appendix.

Π − l def
=

 〈ΠN ,ΠA/{l}〉 if l ∈ ΠN
Π otherwise

(killing l in Π)

Notation 2.1.1. The input constructs are binders for variables, while the scoping constructs
(νn : T)N and (νn : T)P are binders for names. We assume the usual concepts of free and
bound occurrences, and the associated notation, such asα-conversion and capture avoiding
substitution of names for variables. Terms with no occurrences of free variables are called
closed, and in the sequel, we will assume that all system level terms and configurations
are closed.

Throughout the report a number of abbreviations are used to improve the readability
of code. We often omit occurrences of 0 in synchronous constructs like input, output
and conditional constructs. Thus, a?(X), a!〈V〉, if n = m.P and ping l.dQe are shorthand
for a?(X).0, a!〈V〉.0, if n=m.Pd0e and ping l.0dQe respectively. Similarly, the abbreviation
ifn,m.P is stands for ifn=m.0dPe. Also a?().P denotes an input where the binding variable
does not occur in P and a!〈〉.P denotes an output where no value is sent. We also write
go l1, . . . , ln.P as an abbreviation to the nested moves go l1.(. . . (go ln.P)). Finally we will
also omit occurrences of types from terms, unless they are relevant to the discussion at
hand. �

2.2 The reduction semantics of DπLoc

The reduction semantics of DπLoc is defined as a binary relation between well-formed
configurations.

Definition 2.2.1 (Well-Formed Configurations). A configuration Π . N is said to be well
formed if every free name occurring in N is in ΠN . �

The judgements of the reduction semantics are therefore of the form

Π .M −→ Π′ .M′

whereΠ.M, Π′.M′ are well-formed configurations. The relation is defined to be the least
one which satisfies the set of of rewriting rules in Table 2, Table 4 and Table 3. In the first

Chapter 2. Dπ with Fail-Stop Location Failure 16

Table 2. Local Reduction Rules for DπLoc

Assuming Π ` l :alive

(r-comm)

Π . l[[a!〈V〉.P]] | l[[a?(X).Q]] −→ Π . l[[P]] | l[[Q{V/X}]]

(r-rep)

Π . l[[∗a?(X).P]] −→ Π . l[[a?(X).(P| ∗ a?(X).P)]]

(r-fork)

Π . l[[P|Q]] −→ Π . l[[P]] | l[[Q]]

(r-eq)

Π . l[[if u=u.PdQe]] −→ Π . l[[P]]

(r-neq)

Π . l[[if u=v.PdQe]] −→ Π . l[[Q]]
u , v

batch of reduction rules (Table 2) we adapt the standard axioms for reduction in Dπ from
[HR98]. The main modification is that all reductions, such as communication in the rule
(r-comm) and testing for equality between identifiers, (r-eq) and (r-neq), require the location
of the activity be alive in the network; there is the global requirement thatΠ ` l :alive. As
stated earlier, we use various notation for checking the status of a network, or updating it;
this will be explained informally as it is introduced, with the formal definitions relegated
to the Appendix.

The rules for the novel constructs are in Table 3. Code migration is still asynchronous,
but is now subject to the current state of the network: (r-go) says that if the destination
location k is accessible from the source location l, denoted as Π ` k← l, then the migration
will be successful; otherwise, if k is inaccessible from l, Π 0 k← l, then (r-ngo) states that
the migration fails and the migrating code is lost. Similarly, the ping construct, continues
as P at l if k is accessible from the current location but branches to Q at l if k is inaccessible.
We note that in DπLoc, the only way for k to be inaccessible from l, is when the former
is dead; in the next chapter, accessibility will also depend on the links between locations.
Dynamic network faults are engendered in the obvious manner by (r-kill), and finally
(r-new), allows us to export locally generated new names to the system level, as in Dπ.

The rules in Table 4 are adaptations of standard rules for the π-calculus. For instance,
the first rule, (r-str), states that the reduction semantics is defined up to a structural
equivalence, defined in the usual manner, as the least equivalence relation on systems
which satisfies the set of rules and axioms in Table 5. The remaining reduction rules
in Table 4 state that reduction is preserved by parallel composition and name scoping
operations on configurations. But note that the rule for scoping, (r-ctxt-rest), uses an
obvious notationΠ+ n :T for extending network representations with new names, which
is formally defined in the Appendix. Note also that this rule needs to allow for the type
of the scoped name to change; this is because types for locations actually carry dynamic
state information, namely whether they are alive or dead, as explained in the following

Chapter 2. Dπ with Fail-Stop Location Failure 17

Table 3. Network Reduction Rules for DπLoc

Assuming Π ` l : alive

(r-go)

Π . l[[go k.P]] −→ Π . k[[P]]
Π ` k← l

(r-ngo)

Π . l[[go k.P]] −→ Π . k[[0]]
Π 0 k← l

(r-ping)

Π . l[[ping k.PdQe]] −→ Π . l[[P]]
Π ` k← l

(r-nping)

Π . l[[ping k.PdQe]] −→ Π . l[[Q]]
Π 0 k← l

(r-new)

Π . l[[(νn :T)P]] −→ Π . (νn :T) l[[P]]

(r-kill)

Π . l[[kill]] −→ (Π − l) . l[[0]]

Table 4. Contextual Reduction Rules for DπLoc

(r-str)

Π .N′ ≡ Π .N Π .N −→ Π′ .M Π′ .M ≡ Π′ .M′

Π .N′ −→ Π′ .M′

(r-ctxt-rest)

Π+ n : T .N −→ Π′ + n : U .M
Π . (νn : T)N −→ Π′ . (νn : U)M

(r-ctxt-par)

Π .N −→ Π′ .N′

Π .N|M −→ Π′ .N′|M
Π .M|N −→ Π′ .M|N′

Π `M

example.

Example 2.2.2. Consider the following system

Π . k[[go l.a?(x).P]] | l[[(ν k0 :loc[a])(a!〈k0〉.Q | go k0.kill)]] (2.1)

where Π is the network representation 〈{l, k, a}, ∅〉, consisting of the two live locations
l, k. The addition of the construct go k0. kill indicates that we wish to consider the newly
created location k0, as defective, and thus it may become faulty some time in the future.

As in Dπ, an application of (r-go), based on the fact that both k and l are alive, and
(r-par-ctxt) on (2.1), yields

Π . l[[a?(x).P]] | l[[(ν k0 :loc[a])a!〈k0〉.Q | go k0.kill]]

which can be followed by an application of (r-fork), (r-new) (and (r-par-ctxt)) to launch a
new location k0 and get

Π . l[[a?(x).P]] | (ν k0 :loc[a])(l[[a!〈k0〉.Q]] | l[[go k0.kill]]) (2.2)

Chapter 2. Dπ with Fail-Stop Location Failure 18

Table 5. Structural Rules for DπLoc

(s-comm) N|M ≡ M|N
(s-assoc) (N|M)|M′ ≡ N|(M|M′)
(s-unit) N|l[[0]] ≡ N
(s-extr) (νn :T)(N|M) ≡ N|(νn :T)M n < fn(N)
(s-flip) (νn :T)(νm :U)N ≡ (νm :U)(νn :T)N
(s-inact) (νn :T)N ≡ N n < fn(N)

Subsequently, we can perform a communication on channel a using (r-par-comm), thereby
enlarging the scope of (ν k0 :loc[a]) through the structural rule (s-extr) and obtain

Π . (ν k0 :loc[a])(l[[P{k0/x}]] | l[[Q]] | l[[go k0.kill]]) (2.3)

At this point we can analyse the novel reductions in DπLoc. In (2.3) the fault inducing
process go k0.kill can move to k0 since k0 is described as alive by the type loc[a], thereby
obtaining

Π . (ν k0 :loc[a])(l[[P{k0/x}]] | l[[Q]] | k0[[kill]]) (2.4)

Finally, (r-kill), followed by (r-ctxt-par), can be used to kill k0 and derive

(Π+ k0 :loc[a]) . l[[P{k0/x}]] | l[[Q]] | k0[[kill]] −→

(Π+ k0 :loc[d]) . l[[P{k0/x}]] | l[[Q]] | k0[[0]]

where the type of k0 changes from loc[a] to loc[d], and thus, an application of (r-ctxt-rest)

reduces (2.4) to
Π . (ν k0 :loc[d])(l[[P{k0/x}]] | l[[Q]] | k0[[0]]) (2.5)

�

This example also serves to illustrate another important point that we shall refer to
repeatedly in this report. In general, in a configuration

Π .N

Π denotes the network representation on which the system N is running. But there may
be subsystems of N which are running on extended (internal) networks. For example in
(2.2) above, the subsystem l[[a?(x).P]] is running with respect to the network Π, while the
subsystem l[[a!〈k0〉.Q]] | l[[go k0.kill]] is running with respect to (Π+ k0 :loc[a]).

2.2.1 Reduction barbed congruence

In view of the reduction semantics, we can now adapt the standard approach [HR04,
HMR04] to obtain a contextual equivalence for DπLoc. There are various candidates for
such a contextual equivalence, namely testing equivalence [NH84], but we use a variation of

Chapter 2. Dπ with Fail-Stop Location Failure 19

reduction barbed conguence, first proposed in [HY95]. We wish to compare the behaviour of
systems running on the same network and thus use the following framework, borrowed
from [HMR04]:

Definition 2.2.3 (Typed Relation). A typed relation over systems is a family of binary
relations between systems,R, indexed by network representations. We writeΠ |=M R N
to mean that systems M and N are related byR at indexΠ, that is M RΠ N, and moreover
Π .M and Π .N are valid configurations. �

The definition of our equivalence hinges on what it means for a typed relation to be
contextual, which must take into account the presence of the network. Our definition has
two requirements:

• systems running on the network Πmust be considered equivalent by all observers
also running on Π

• systems must remain equivalent when the network is extended by new locations.

First let us define what kinds of observing systems are allowed to run on a given network.

Definition 2.2.4 (Observers). The intuition of valid observer system O in a distributed
settingΠ, denoted asΠ `obs O, is that O originates from some live fresh location k0, migrates
to any location in loc(ΠN) to interact with (observe) processes there and then returns back
to the originating fresh location k0 to compare its observations with other observers. For
convenience, we do not mention fresh locations k0 and place observing code immediately
at locations in loc(ΠN). We note that, according to the definition of the reduction rule
(r-ngo), observing code can never reach dead locations and we therefore have to encode
this in our definition of Π `obs O. For convenience, we also disallow observer to be
located at scoped dead loactions, that is observers of the form (ν l :loc[d,)]N; to denote all
other forms of allowed types for scoped observer names we use the notation Π `obs T,
which is defined in the Appendix. Thus, Π `obs O is recursively defined as:-

• Π `obs l[[P]] if fn(P) ⊆ ΠN and Π ` l : alive

• Π `obs (νn :T)N if Π `obs T and (Π+ n :T) `obs N

• Π `obs M |N if Π `obs M and Π `obs N �

Definition 2.2.4, defining allowed observer systems, determines the definition of our
sepcific definition of contextuality given below.

Definition 2.2.5 (Contextual typed relations). A typed relation R over configurations is
contextual if:

(Parallel Systems)

•
Π |=M R N

and Π`obs O
implies

− Π |=M|O R N|O
− Π |= O|M R O|N

(Network Extensions)

•
Π |=M R N

and Π`obsT, n fresh
implies Π+n :T |=M R N

Chapter 2. Dπ with Fail-Stop Location Failure 20

�

Definition 2.2.6 (Reduction barbed congruence). First we define the adaptation of the
other standard relations required to define reduction barbed congruence.

• Π.N ⇓a@l denotes an observable barb exhibited by the configurationΠ.N, on channel
a at location l. Formally, it means that Π . N −→∗ Π′ . N′ for some Π′ . N′ such
that N′ ≡ M|l[[a!〈V〉.Q]] and Π ` l : alive. Then, we say a typed relation R over
configurations is barb preserving whenever Π |= N R M and Π . N ⇓a@l implies
Π .M ⇓a@l.

• A typed relationR over configurations is reduction closed wheneverΠ |= N R M and
Π.N −→ Π′.N′ impliesΠ.M −→∗ Π′.M′ for someΠ′.M′ such thatΠ′ |= N′ R M′.

Then �, called reduction barbed congruence, is the largest symmetric typed relation over
configurations which is:

• barb preserving

• reduction closed

• contextual �

We leave the reader to check that pointwise � is an equivalence relation.

Example 2.2.7. Consider the systems onePkt and twoPkt defined as:

onePkt ⇐ l[[go k.(a!〈〉|b!〈〉)]]

twoPkt ⇐ l[[go k.a!〈〉]] | l[[go k.b!〈〉]]

They represent two different strategies for sending the messages a!〈〉|b!〈〉 from l to k. The
first system, onePkt, transfers the two messages as one unit (one packet), whereas the
second system, twoPkt, uses a distinct packet for every message. In a calculus with no
network failure, it would be hard to distinguish between these two systems.

The two configurations are however not reduction barbed congruent in our calculus
when run over the network Πlk = 〈{l, k, a, b}; ∅〉, in which l, k are alive. This is formally
stated as

Πlk |= onePkt 6� twoPkt

and the reason why they are not is because they can exhibit different behaviour when
l is subject to failure during the transfer of the packets. Formally, we can examine the
behaviour of systems under this situation by considering their behaviour in the context

C[−] = [−] | l[[kill]]

By Definition 2.2.6, if we assume that Πlk |= onePkt � twoPkt , then contextuality of �
would imply

Πlk . onePkt | l[[kill]] � Πlk . twoPkt | l[[kill]]

Chapter 2. Dπ with Fail-Stop Location Failure 21

But we can show directly that the latter cannot be true, thereby contradicting our as-
sumption. For example, using the reduction rules of Tables 2, 4 and 3 we can derive the
following sequence of reductions for Πlk . twoPkt | l[[kill]]:

Πlk . l[[go k.a!〈〉]] | l[[go k.b!〈〉]] | l[[kill]] −→ Πlk . k[[a!〈〉]] | l[[go k.b!〈〉]] | l[[kill]]

−→ Πk . k[[a!〈〉]] | l[[go k.b!〈〉]]

−→ Πk . k[[a!〈〉]]

where Πk is the network representation in which l is dead, that is 〈{l, k, a, b}; {l}〉 We also
note that

Πk . k[[a!〈〉]] ⇓a@k

Πk . k[[a!〈〉]] 6⇓b@k

However the left hand side, Πlk . onePkt | l[[kill]] can never reduce to a configuration with
such barbs. Formally, there is no configuration Π .N such that

Πlk . l[[go k.(a!〈〉|b!〈〉)]] | l[[kill]] −→∗ Π .N

where Π .N ⇓a@k and Π .N 6⇓b@k. �

Example 2.2.8. Consider the two systems:

nonDet1 ⇐ (ν k :loc[a]) k[[kill]] | k[[go l.a!〈〉]]

nonDet2 ⇐ (ν b :ch) l[[b!〈〉]] | l[[b?()]] | l[[b?().a!〈〉]]

Both systems exhibit a barb a@l depending on different forms of non-deterministic internal
choices; the internal choice used by nonDet1 is based on a scoped location k that may fail
while the internal choice used by nonDet2 is based on two inputs competing for a single
scoped output on channel b.

It turns out that these two systems are observationally equivalent when run over the
simple network Πl = 〈{l, a}, ∅〉, formally stated as

Πl |= nonDet1 � nonDet2

Nevertheless, Definition 2.2.6 exhibits a major limitation at this point, because it makes it
quite hard to prove such an equivalence. Such a complication arises from the fact that the
definitions of reduction barbed congruence requires us to reason about the behaviour of
the two configurations under all possible contexts, which are infinitely many. �

Example 2.2.9. Here we consider three implementations of a simple (abstract) server,
executing on a network Π = 〈{l, k1, k2, serv, ret}; ∅〉 where three locations l, k1 and k2 are
alive. The first is the most straightforward:

server ⇐ (ν data :ch)(l[[req?(x, y).data!〈x, y〉]] | l[[data?(x, y).y!〈 f (x)〉]])

It simply takes in a request at the port req consisting of an argument, x, and a return channel
on which to return the answer of the request, y. The server proceeds by forwarding the

Chapter 2. Dπ with Fail-Stop Location Failure 22

two parameters, x and y to an internal database, denoted by the scoped channel data;
intuitively, the database looks up the mapping of the value x using some unspecified
function f () and returns the answer, f (x), back onport y. The key aspect of this server is
that all the processing is performed locally at location l. A typical client for such a server
would have the following form, sending the name l as the value to be processed and ret
as the return channel:

client ⇐ l[[req!〈l, ret〉]]

By contrast, the next two server implementations introduce a degree of distribution,
by processing the request across a number of locations:

srvDis ⇐ (ν data :ch)

 l[[req?(x, y).go k1.data!〈x, y〉]]
| k1[[data?(x, y).go l.y!〈 f (x)〉]]

srv2Rt ⇐ (ν data :ch)

l

req?(x, y).(ν sync :ch)

go k1.data!〈x, sync〉
|go k2, k1. data!〈x, sync〉
| synch?(x).y!〈x〉

| k1

data?(x, y).

 go l. y!〈 f (x)〉
go k2, l. y!〈 f (x)〉

Both servers, srvDis and srv2Rt, distributed the internal database remotely at location k1.
Server srvDis thus receives a client request at l, migrates directly to k1 and queries the
database; the database then returns to l and reports back the processed value, f (x), on
the requested return channel y. The other server, srv2Rt, accepts a client request at l, but
attempts to access the unique remote database located at k1 through two different routes,
one directly from l to k1 and the other indirectly from l through the intermediate node k2

and then finally to k1 where the database resides; similarly, the internal database of srv2Rt

returns the answer f (x) on y along these two routes. In a scenario where no fault occurs
to k1 and k2, srv2Rt will receive two answers back at l. To solve this, the original requests
are sent with a scoped return channel sync; a process waiting for answers on this channel
at location l chooses non-deterministically between any two answers received and relays
the answer on the original channel y.

We leave the reader to check that the local server, server and remote implementations,
srvDis and srv2Rt, are different, that is:

Π |= server 6� srvDis and Π |= server 6� srv2Rt

because of their behaviour in the context

C2[−] = [−] | k1[[kill]]

However, it turns out that the two remote server implementations are reduction barbed
congruent in DπLoc:

Π |= srvDis � srv2Rt

Again, Definition 2.2.6 makes it hard to prove this statement because it uses quantification
over all possible contexts. �

Chapter 2. Dπ with Fail-Stop Location Failure 23

Table 6. Operational Rules(1) for DπLoc

Assuming Π ` l :alive

(l-out)

Π . l[[a!〈V〉.P]]
l:a!〈V〉
−−−−→ Π . l[[P]]

(l-in)

Π . l[[a?(X).P]]
l:a?(V)
−−−−→ Π . l[[P{V/X}]]

V ⊆ ΠN

(l-in-rep)

Π . l[[∗a?(X).P]] τ
−→ Π . l[[a?(X).(P | ∗a?(Y).P{Y/X})]]

(l-fork)

Π . l[[P |Q]] τ
−→ Π . l[[P]] | l[[Q]]

(l-eq)

Π . l[[if u=u.PdQe]] τ
−→ Π . l[[P]]

(l-neq)

Π . l[[if u=v.PdQe]] τ
−→ Π . l[[Q]]

u , v

Due to the problems associated with Definition 2.2.6, we need an inductive definition
of behavioural equivalence that is easier to prove but still consistent with reduction barbed
congruence. In the remainder of this section we define a bisimulation equivalence which
allows us to relate DπLoc configurations in a tractable manner. It will turn out that this
bisimulation equivalence coincides with reduction barbed congruence.

2.3 A bisimulation equivalence for DπLoc

We start by defining the labelled transition system on which we base our definitions of
bisimulation equivalence.

Definition 2.3.1 (A labelled transition system for DπLoc). This consists of a collection
of actions Π .N

µ
−→ Π′ .N′, where µ takes one of the forms:

• τ, representing internal action

• (ñ : T̃)l : a?(V), representing the input of the value V along the channel a, located
at l. Here ñ : T̃ denotes the fresh names ñ and their respective state information T̃,
introduced by an observer (context) as part of this action.

• (ñ : T̃)l : a!〈V〉, the output of the value V along the channel a, located at l. Here ñ : T̃
represented the names ñ which are exported to an observer (context) as part of this
action, together with their associated new state information T̃.

• kill : l, representing the killing of location l by an observer (context). �

The transitions in the lts for DπLoc are defined as the least relations satisfying the
axioms and rules in Tables 6, 8 and 7. Table 6 contains standard operational rules inherited
from distributed π-calculi such as Dπ; note, however, that actions can only occur at live
locations. The rules in Table 7 are also adaptations of the standard rules for actions-in-
context from [HR04] together with the rule (l-par-comm), for local communication. Here,

Chapter 2. Dπ with Fail-Stop Location Failure 24

Table 7. Operational Rules(2) for DπLoc

(l-open)

Π+ n :T .N
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Π′ .N′

Π . (νn :T)N
(n:T,ñ:T̃)l:a!〈V〉
−−−−−−−−−−→ Π′ .N′

l, a , n ∈ V

(l-weak)

Π+ n :T .N
(ñ:T̃)l:a?(V)
−−−−−−−−→ Π′ .N′

Π .N
(n:T,ñ:T̃)l:a?(V)
−−−−−−−−−−→ Π′ .N′

l, a , n ∈ V

(l-rest)

Π+ n :T .N
µ
−→ Π′ + n :U .N′

Π . (νn :T)N
µ
−→ Π′ . (νn :U)N′

n < fn(µ)

(l-par-ctxt)

Π .N
µ
−→ Π′ .N′

Π .N|M
µ
−→ Π′ .N′|M

Π .M|N
µ
−→ Π′ .M|N′

Π `M

(l-par-comm)

Π .N
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Π′ .N′ Π .M

(ñ:T̃)l:a?(V)
−−−−−−−−→ Π′′ .M′

Π .N|M τ
−→ Π . (ν ñ : T̃)(N′|M′)

Π .M|N τ
−→ Π . (ν ñ : T̃)(M′|N′)

we highlight the rule (l-weak), dealing with the learning of the existence of new location
names and their state as a result of an input from the context; this rule was adopted from
a variant used already in [HR04, HMR04]. Note also the general form of (l-rest), where the
type of n may change from T to U; this phenomena is inherited directly from (r-ctxt-rest) of
Table 4 in the reduction semantics and explained in Example 2.2.9.

The rules dealing with the new constructs of DπLoc, are contained in Table 8, most of
which are inherited from the reduction semantics. The only new one is (l-halt), where the
action kill : l represents a failure induced by an observer. This is in contrast with the rule
(l-kill), where l is killed by the system itself and the associated action is τ1.

Using the lts of actions we can now define, in the standard manner, weak bisimulation
equivalence over configurations. Our definition uses the standard notation for weak

actions, namely
µ
=⇒ denotes =⇒

µ
−→=⇒, and

µ̂
=⇒ denotes

•
τ
−→

∗ if µ = τ

•
µ
=⇒ otherwise.

Definition 2.3.2 (Weak bisimulation equivalence). This is denoted as ≈, and is defined
to be the largest typed relation over configurations such that if Π |=M ≈ N then

• Π .M
µ
−→ Π′ .M′ implies Π .N

µ̂
=⇒ Π′ .N′ such that Π′ |=M′ ≈ N′

• Π .N
µ
−→ Π′ .N′ implies Π .M

µ̂
=⇒ Π′ .M′ such that Π′ |=M′ ≈ N′ �

1The details here regarding labels dealing with failure injection differ slightly than those in [RH01]

Chapter 2. Dπ with Fail-Stop Location Failure 25

Table 8. Operational Rules(3) for DπLoc

Assuming Π ` l : alive

(l-kill)

Π . l[[kill]] τ
−→ (Π − l) . l[[0]]

(l-halt)

Π .N kill:l
−−−→ (Π − l) .N

(l-new)

Π . l[[(νn :T)P]] τ
−→ Π . (νn :T)l[[P]]

(r-go)

Π . l[[go k.P]] τ
−→ Π . k[[P]]

Π ` k← l

(r-ngo)

Π . l[[go k.P]] τ
−→ Π . k[[0]]

Π 0 k← l

(r-ping)

Π . l[[ping k.PdQe]] τ
−→ Π . l[[P]]

Π ` k← l

(r-nping)

Π . l[[ping k.PdQe]] τ
−→ Π . l[[Q]]

Π 0 k← l

Equipped with our bisimulation definitions, we revisit some equivalence examples
introduced in § 2.2.1 and show that they can be tractably proved to be equivalent. But
before, we prove a useful result that allows us to give bisimulations up-to structural
equivalence.

Proposition 2.3.3 (Structural equivalence and bisimulation). Let us define structural
equivalence over configurations in the obvious way, overloading the symbol ≡, that is:

Π .M ≡ Π .N iff M ≡ N and Π `M,N

Similar to any typed relation so far, we abbreviate Π .M ≡ Π . N to Π |= M ≡ N. We
now can state that structural equivalence over configurations is a bisimulation relation.
Stated otherwise, ≡ ⊆ ≈

Proof. We proceed by defining the R as:

R = {Π |=M R N | Π |=M ≡ N}

It is clear that R is a typed relation; we only have to show that R it is a bisimulation. The
proof proceeds by induction on the structure of Π .M and Π .N. �

Example 2.3.4. We recall that in Example 2.2.8, we claimed thatΠl .nonDet1 was equiva-
lent toΠl .nonDet2. We here show that they are bisimilar, by giving the relationR defined
as:

R =

 〈Πl .M , Πl .N〉
〈Πl − l .M , Πl − l .N〉

〈M,N〉 ∈ Rsys

Chapter 2. Dπ with Fail-Stop Location Failure 26

where:

Rsys =

〈nonDet1 , nonDet2〉

〈(ν k :loc[a]) k[[kill]] | l[[a!〈〉]] , (ν b :ch) l[[b?()]] | l[[a!〈〉]]〉
〈(ν k :loc[d]) l[[a!〈〉]] , (ν b :ch) l[[b?()]] | l[[a!〈〉]]〉
〈(ν k :loc[d]) k[[go l.a!〈〉]] , (ν b :ch) l[[b?().a!〈〉]]〉
〈(ν k :loc[a]) k[[kill]] , (ν b :ch) l[[b?()]]〉
〈(ν k :loc[d]) k[[0]] , (ν b :ch) l[[b?()]]〉

Relation R is closed over all possible actions. There are two key actions in this

bisimulation, that particular to our calculus with failures.

• The first action is the τ-action caused by the process k[[kill]] when it kills the scoped
location k in nonDet1. This can non-deterministically happen at any point and
affects the ability of nonDet1 producing an output on a at l.

– If the output process a!〈〉 is still at k when it is killed, then killing k prohibits
nonDet1 from producing an output on a at l. nonDet2 matches this action in
R by a strong τ-action where l[[b!〈〉.]] reacts with l[[b?()]]; since b is scoped, the
other located process l[[b?().a!〈〉]] is blocked forever and can never produce an
output on a at l.

– If the output process a!〈〉 is at l, then the τ-action killing k is matched by the
empty move.

• If k[[go l.a!〈〉]] silently transitions to l[[a!〈〉]] in nonDet1, then the production an output
action on a at l by nonDet1 is independent of the state of k. This τ-action is matched
by the internal communication of l[[b!〈〉.]] with l[[b?().a!〈〉]], which releases a!〈〉 in
nonDet2. �

Of course we need to justify the use of bisimulations to relate systems. This is provided
by the following result:

Theorem 2.3.5 (Soundness and Completeness for DπLoc). In DπLoc, Π |=N≈M if and
only if Π |= N �M. �

We omit the full proof here but outline the main propositions and lemmas required to
prove Theorem 2.3.5. The full proof can be derived from the full proof given for the more
complex characterisation result of Theorem 3.5.10, given in Chapter 3.

The proof of Theorem 2.3.5 is split in two phases: soundness and completeness. Sound-
ness means that bisimilarity implies reduction barbed congruence, that is

Π |=M ≈ N implies Π |=M � N

For this proof we need to show that ≈ satisfies the defining conditions of reduction
barbed congruence, namely barb preservation, reduction closure and contextuality. The
latter property, contextuality, turns out to be the hardest to prove. We thus prove two
lemmas, Composition and Decomposition, describing how a transition can be composed
and decomposed.

Chapter 2. Dπ with Fail-Stop Location Failure 27

Lemma 2.3.6 (Composition).

• SupposeΠ.M
µ
−→ Π′.M′. IfΠ ` N for arbitrary system N, thenΠ.M|N

µ
−→ Π′.M′|N

and Π .N|M
µ
−→ Π .N|M.

• Suppose Π .M
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Π′ .M′ and Π .N

(ñ:T̃)l:a?(V)
−−−−−−−−→ Π′′ .N′. Then

– Π .M|N τ
−→ Π . (ν ñ : T̃)M′|N′

– Π .N|M τ
−→ Π . (ν ñ : T̃)N′|M′

Proof. (Outline) The proof proceeds by extracting the necessary structure of the systems
M, N and the network Π to be able to re-compose them using rules such as (l-par-ctxt),
(l-par-comm) and (l-rest). �

Lemma 2.3.7 (Decomposition). SupposeΠ .M|N
µ
−→ Π′ .M′. Then, one of the following

conditions hold:

1. M′ is M′′|N, where Π .M
µ
−→ Π′ .M′′.

2. M′ is M|N′ and Π .N
µ
−→ Π′ .N′.

3. M′ is (ν ñ : T̃)M′′|N′, µ is τ, Π′ = Π and either

• Π .M
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Π′′ .M′′ and Π .N

(ñ:T̃)l:a?(V)
−−−−−−−−→ Π′′′ .N′

• Π .M
(ñ:T̃)l:a?(V)
−−−−−−−−→ Π′′ .M′′ and Π .N

(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Π′′′ .N′

Proof. (Outline) The proof proceeds by induction on the derivation of Π .M|N
µ
−→ Π′ .

M′. �

Proposition 2.3.8 (Contextuality of Behavioural Equivalence). If two configurations are
bisimilar, they are also bisimilar under any context. Stated otherwise, Π |=N≈M implies
that for Π `obs O, T and n fresh in Πwe have:

• Π |=N|O≈M|O and Π |=O|N≈O|M

• Π+n :T |=N≈M

Proof. (Outline) The proof progresses by the inductive definition a relationR as the largest
typed relation over configurations satisfying:

R =

〈Π .M1, Π .M2〉 | Π .M1≈Π .M2

〈Π .M1|O, Π .M2|O〉
〈Π .O|M1, Π .O|M2〉

∣∣∣∣∣∣∣ Π .M1RΠ .M2

〈Π+n :T .M1, Π+n :T .M2〉

∣∣∣∣∣∣∣ Π1 .M1 RΠ2 .M2,

Π ` T and n is fresh

〈Π . (νn :T)M1, Π . (νn :T)M2〉 | Π+n :T.M1 RΠ+n :T.M2

Chapter 2. Dπ with Fail-Stop Location Failure 28

and showing that R ⊆≈. The last clause is required to guarantee the closure of R with
respect to all possible tranitions, including scope extrusion of names. Contextuality of ≈
would then be a special case of the above relation, without the final clause, since ≈ is the
biggest possible relation. �

The second part of the proof of Theorem 2.3.5 is completeness, represented as

Π |=M � N implies Π |=M ≈ N

meaning that for every pair that are reduction barbed congruent we can give a bisimula-
tion that justifies this. This proof relies on the notion of definability, that is for every action
there is an observer which can completely characterise the effect of that action.

Proposition 2.3.9 (Definability). Assume that for an arbitrary network representationΠ,
the network Π+ denotes:

Π+ = Π + k0 :loc[a], :ch, :ch

where k0, and are fresh to ΠN . Thus, for every external action µ and network
representation Π, every non-empty finite set of names Nm where ΠN ⊆ Nm, every fresh
pair of channel names , < Nm, and every fresh location name k0 < Nm, there
exists a system Tµ(Nm, , , k0) with the property thatΠ+ `obs Tµ(Nm, , , k0),
such that:

1. Π .N
µ
−→ Π′+bn(µ) .N′ implies

Π+ .N |Tµ(Nm, , , k0) =⇒ Π′+ . (νbn(µ)) N′ | k0[[!〈bn(µ)〉]]

2. Π+ . N |Tµ(Nm, , , k0) =⇒ Π′+ . N′, where Π′+ . N′ ⇓@k0 , Π
′
+ . N′ 6⇓@k0

implies that

N′ ≡ (νbn(µ))N′′|k0[[!〈bn(µ)〉]] for some N′′ such thatΠ .N
µ
=⇒ Π′+bn(µ) .N′′.

Proof. (Outline) In our case, we only need to prove definability for input/output actions,
which has already been done for a more complex setting in [HMR04], and for the kill
action kill : l which turns out to be definable using the context

l[[kill]] | k0[[!〈〉]] | k0[[ping l.ping l.d?().!〈〉e]]

�

2.4 Summary

In this Chapter we presented a distributed π-calculus that described location failure: we
defined its reduction semantics, a reduction barbed congruence for systems running over
the same network representation and a bisimulation that coincides with this congruence.
While the calculus is very similar to [AP94, Ama97], the results obtained are an extension
to those obtained in [RH01]. We conjuncture that the our choice of barbs, used in our
definition of reduction barbed congruence, can be simplified to a more concise form such
asΠ .M ⇓l denoting an output on some channel at live location l (in the spirit of [DGP05])

Chapter 2. Dπ with Fail-Stop Location Failure 29

and still retain the same reduction barbed conguence. The intuition for this is that our
contexts may extended the network to fresh locations and we can thus generate a barb on
some channel at a fresh location “al” for every former barbΠ.M ⇓a@l. We also conjuncture
that the lts given is also appropriate (bar some minor standard adjustments) for defining
a ”may testing” semantics for our language that is typically contextual, barb preserving
but not necessarily reduction closed [BNP99, BNP02]. The reason for believing this is
that our lts already exhibits notions of co-action such as bound inputs and outputs. Most
importantly however, in this Chapter we lay the foundations for the framework used in
the following two chapters.

Chapter 3

Dπ with Location and Link Failure

In this section we extend the network representation to describe the state of physical links
between sites. As explained in the Introduction, in such a setting we can then represent
link failures, resulting from faults in links between locations. Moreover, the liveness of
such links affects in turn the semantics of ping, the construct used to detect faults.

The core language remains the same, although we need to add a new construct to
induce link faults. With this extended notion of a network we redo the previous section,
obtaining similar results; however the development is considerably more complicated.

3.1 DπF syntax

The syntax of DπF is a minor extension to that of DπLoc; Table 9 highlights the novelties.
The main one is that new types are required for locations. Now when a new location is
declared, in addition to its live/dead status, we have to also describe the live connections
to other locations. Thus, in DπF, a location type is denoted as loc[S, C], where the first
element S is inherited from Chapter 2, and the second element C is a set of locations
{l1, . . . , ln}. If a new k location is declared at this type, then it is intended to be linked in the
underlying network with each of the locations li, although there will be complications;
see Example 3.2.1. Another modificiation to the syntax is the addition of the process
construct break l, which breaks a live connection between the location hosting the process
and location l. This construct is symetric in the sense that a link between l and k can
be broken from either location; stated otherwise, l[[break k]] induces the same fault as
k[[break l]]. Contextual equivalences then take into account the effect of link faults on
system behaviour, in the same manner as the presence of kill takes node faults into
account.

We also change the network representation for DπF. In a setting where not every
node is interconnected, the network representation needs also to represent which nodes
are connected apart from their current alive/dead status.

Definition 3.1.1 (Network representation). First let us introduce some notation to rep-
resent the links in a network. A binary relation L over locations is called a link set if it

Chapter 3. Dπ with Location and Link Failure 31

Table 9. Syntax of DπF

Types

T, U, W ::= ch | loc[S, C]
S, R ::= a | d

C, D ::= {u1, . . . ,un}

Processes
P,Q ::= . . . | break l

Systems
N,M ::= . . .

is:

• symmetric, that is, 〈l, k〉 ∈ L implies 〈k, l〉 is also in L

• reflexive, that is, 〈l, k〉 ∈ L implies 〈l, l〉 and 〈k, k〉 are also in L.

The latter property allows the smooth handling of the degenerate case of a process moving
from a site l to l itself. Also for any linksetLwe let dom(L) denote its domain; that is the
collection of locations l, such that 〈l, l〉 ∈ L.

Then a network representation ∆ is any triple 〈N ,A,L〉where

• N is a set of names, as before; we now use loc(N) to represent the subset ofN which
are locations

• A ⊆ loc(N) represents the set of dead locations, as before.

• L ⊆ loc(N) × loc(N) represents the set of connections between locations �

As with DπLoc network representations, we use the notation ∆N , ∆A and ∆L to refer
to the individual components of ∆. We will also have various notation for checking
properties of DπF network representations, and updating them; these will be explained
informally, with the formal definitions relegated to the Appendix.

3.2 Reduction Semantics of DπF

The definition of well-formed configurations, Definition 2.2.1 generalises in a straightfor-
ward manner: we say ∆ .M is a well-formed configuration if every free name occuring
in M is also in ∆N . Then the judgements of the reduction semantics take the form

∆ .M −→ ∆′ .M′

where ∆ . M and ∆′ . M′ are well-formed configurations. This is defined as the least
relation which satisfies the rules in Table 2 and Table 4 (substituting∆ forΠ) , all inherited

Chapter 3. Dπ with Location and Link Failure 32

Table 10. New Network Reduction Rules for DπF

Assuming ∆ ` l : alive

(r-go)

∆ . l[[go k.P]] −→ ∆ . k[[P]]
∆ ` k← l

(r-ngo)

∆ . l[[go k.P]] −→ ∆ . k[[0]]
∆ 0 k← l

(r-ping)

∆ . l[[ping k.PdQe]] −→ ∆ . l[[P]]
∆ ` k← l

(r-nping)

∆ . l[[ping k.PdQe]] −→ ∆ . l[[Q]]
∆ 0 k← l

(r-newc)

∆ . l[[(ν c :ch) P]] −→ ∆ . (ν c :ch) l[[P]]

(r-newl)

∆ . l[[(ν k :loc[S, C]) P]] −→ ∆ . (ν k :loc[S, D]) l[[P]]
loc[S, D] = inst(loc[S, C], l,∆)

(r-kill)

∆ . l[[kill]] −→ (∆ − l) . l[[0]]

(r-brk)

∆ . l[[break k]] −→ (∆ − l↔k) . l[[0]]
∆ ` l↔k

from the reduction rules for DπLoc, together with the new reduction rules of Table 10,
which we now explain. We note that, as usual, all of these rules require that the location
where the activity is to occur is alive, ∆ ` l : alive.

The most subtle but important changes to the network reductions rules are those
concerning the constructs go and ping. Even though the general intuition remains the
same to that of § 2.2, the former notion of k being accessible from l, used by rules such
as (r-go) and (r-nping), and still denoted as ∆ ` k← l, changes; for k to be accessible from
l, two conditions must hold, namely that k is alive and that the link between l and k
is alive as well. If any of these two conditions do not hold, then k is deemed to be
inaccessible from the point of view of l, denoted as before as ∆ 0 k← l. The more complex
network representation has also an impact on the information that can be gathered by the
construct ping; in DπLoc, if ping reduced using (r-nping), it meant that the location being
tested for was dead; in DπF however, such a reduction merely means that the destination
is inaccessible, which could be caused by a dead destination location, a broken link to the
destination location or both.

At this point we note that, in DπF, since not every node is interconnected, it makes
more sense to talk about reachability rather accessibility between nodes. A node k is reachable
from l in ∆, denoted as ∆ ` kf l, if it is accessible using one or more migrations; the

Chapter 3. Dπ with Location and Link Failure 33

Table 11. New Structural Rules for DπF

. . .

(s-flip-1) (νn :T)(νm :U)N ≡ (νm :U)(νn :T)N n < fn(U)
(s-flip-2) (νn :T)(νm :U)N ≡ (νm : U−n)(νn : T+m)N n ∈ fn(U), m < fn(T)
. . .

formal definition is relegated to the Appendix.
The other main change in Table 10 is the rule for creating new locations, (r-newl); here,

the links to the new location k need to be calculated and the network ∆ updated. This is
achieved by the function inst(T, l,∆), the formal definition of which is:

inst(T, l,∆) def
=

 loc[{k | k ∈ C and∆`kf l} ∪ {l}] if T = loc[a, C]
T otherwise

Intuitively inst(loc[S, C], l,∆), for the case where S = a, returns the location type loc[S, D],
where the set of locations D, is the subset of locations in C ∪ {l} which are reachable from
l; this construction is further explained in Example 3.2.1 below. The final new rule in
Table 10 is (r-brk), simulating the breaking of a link; the intuition behind the network
updating function ∆ − l↔k should be obvious.

To complete the reduction semantics of DπF we need to revise the rules in Table 5,
defining the structural equivalence. The revision is detailed in Table 11; the rule (s-flip) is
replaced by the two rules (s-flip-1) and (s-flip-2). This enables us to flip two successively
scoped locations even if the first is used in the type of the second, that is there is a link
between the two scoped locations.

Example 3.2.1. Consider the system:

launchNewLoc ⇐ l3[[a!〈l1〉]] | l3[[a?(x).(νk : loc[a, {x, l2, l4, l5}])P]]

running on a network ∆ consisting of five locations l1..l5, all of which are alive except
l4, with l2 connected to l1 and l3, and l3 connected to l4. Diagrammatically this is easily
represented as:

d d t

d d

- -� �

A
A
AU

A
A
AK

l1

l2 l3 l4

l5

where, open nodes (◦) represent live locations and closed ones (•) dead locations; we
systematically omit reflexive links in these network diagrams. Formally describing ∆ is
more tedious:

Chapter 3. Dπ with Location and Link Failure 34

• ∆N is {a, l1, l2, l3, l4, l5}

• ∆A is {l1, l2, l3, l5}

• the link set ∆L is given by{
〈l1, l1〉, 〈l2, l2〉, 〈l3, l3〉, 〈l4, l4〉, 〈l5, l5〉,
〈l1, l2〉, 〈l2, l3〉, 〈l3, l4〉, 〈l2, l1〉, 〈l3, l2〉, 〈l4, l3〉

}
Clearly there is considerable redundancy in this representation of link sets; ∆L can be
more reasonably represented as:

∆L = {l1↔ l2, l2↔ l3, l3↔ l4, l5↔ l5}

where l↔k denotes the pair of pairs 〈l, k〉, 〈k, l〉 together with the reflexive pairs 〈l, l〉, 〈k, k〉;
in such cases, a reflexive bi-direcitional link l↔ l would be used for completely discon-
nected nodes such as l5. When we apply the reduction semantics to the configuration
∆ . launchNewLoc, the rule (r-comm) is used first to allow the communication of the value
l1 along a, and then (r-newl) can be used to launch the declaration of k to the system
level. However, the evaluation of inst(l3, loc[a, {l1, l2, l4, l5}],∆) at launching turns out to
be loc[a, {l1, l2, l3}] because:

• the location from where k is launched, that is l3, is automatically connected to k.

• l1 and l2 are reachable from the location where the new location k is launched, that
is ∆ ` l1f l3, l2f l3; l2 is directly accessible from l3 while l1 is reachable indirectly
through l2

• l4 and l5 are not reachable from l3; l4 is dead and thus it is not accessible from any
other node; l5 on the other hand, is completely disconnected.

So the resulting configuration is:

∆ . (ν k : loc[a, {l1, l2, l3}]) l3[[P{l1/x}]]

The network ∆ of course does not change, but if we focus on the system l3[[P{l1/x}]], we see
that it is running on the internal network represented by:

d d t

d dd

- -� �

A
A
AU

A
A
AK

�
�
��

�
�
��

-�

Q
Q

Q
Qs

Q
Q

Q
Qk

l1

l2 l3 l4

l5k

�

This distinction between the internal networks used by different subsystems has al-
ready occurred in the semantics of DπLoc; see the discussion of Example 2.2.2. Never-
theless, we warn to the reader that there will be more serious consequences for DπF, due
to the complex nature of reachability that comes into play.

Chapter 3. Dπ with Location and Link Failure 35

3.2.1 Reduction barbed congruence

The definition of Reduction barbed congruence, Definition 2.2.6, originally developed for
DπLoc configurations, can be adapted to apply also to DπF. The formal definition is
delayed to Section 3.5, but let us use the the same notation,

∆ |=M � N (3.1)

to indicate that the systems M and N are equivalent relative to the network∆; the following
discussion relies on an intuitive understanding of this concept.

Let us now reconsider the three implementations of a client server discussed in Exam-
ple 2.2.9, but this time running on a network with explicit links. For convenience, in this
and later examples, we systematically omit channel names from network representations.
Moreover, we abbreviate the location type loc[a, C] to loc[C] when the status of location
is understood to be alive.

Example 3.2.2. Let ∆ represent the following network:

d
d

d-�

�����1

�����)

PPPPPi

PPPPPq

l

k2

k1

Formally∆ is determined by letting∆N be {l, k1, k2},∆A be ∅ and∆L be {l↔k1, l↔k2, k1↔

k2}.
The distributed server implementations, srvDis and srv2Rt, presented earlier in Exam-

ple 2.2.9, are no longer reduction barbed congruent relative to ∆, because in this extended
setting, the behaviour of systems is also examined in the context of faulty links. It is
sufficient to consider the possible barbs in the context of a client such as l[[req!〈l, ret〉]] and
a fault inducing context:

C3 = [−] | l[[break k1]]

which breaks the link l↔k1. Stated otherwise, if the link l↔k1 breaks, srv2Rt will still be
able to operate normally and barb on ret@l; srvDis, on the other hand, may reach a state
where it blocks since migrating directly back and forth from l to k1 becomes prohibited
and as a result, it would not be able to barb ret@l. However consider the alternative
remote client srvMtr, defined as:

srvMtr ⇐ (ν data)

l

req?(x, y).(νsync)

go k1. data!〈x, sync〉
|monitor k1dgo k2, k1.data!〈x, sync〉e
| sync?(x).y!〈x〉

| k1

data?(x, y).

 go l. y!〈 f (x)〉
|monitor ldgo k2, l.y!〈 f (x)〉e

where the macro monitor kdPe, is a process that repeatedly tests the accessibility of a
location k from the hosting location, and launches P when k becomes inaccessible. It is

Chapter 3. Dπ with Location and Link Failure 36

formally defined as:

monitor kdPe ⇐ (ν test :ch)(test!〈〉 | ∗ test?().ping k. test!〈〉dPe)

It turns out that∆ |= srv2Rt � srvMntr but once again, it is difficult to establish because
of a typical formulation of reduction barbed congruence would quantify over all possible
contexts. �

In the next example we examine the interplay between dead nodes and dead links.

Example 3.2.3. Consider the following three networks,

∆1 = ∆l + k :loc[d, {l}] = d t� -
l k

∆2 = ∆l + k :loc[d, ∅] = d tl k

∆3 = ∆l + k :loc[a, ∅] = d dl k

These are the effective networks for the system l[[a!〈k〉]] in the three configurations ∆l .Ni,
where Ni are defined by

N1 ⇐ (ν k : loc[d, {l}]) l[[a!〈k〉]]

N2 ⇐ (ν k : loc[d, ∅]) l[[a!〈k〉]]

N3 ⇐ (ν k : loc[a, ∅]) l[[a!〈k〉]]

and ∆l is the simple network with one live location l:

∆l = 〈{l, a}, ∅, {l↔ l}〉

Intuitively, no observer can distinguish between these three configurations; even
though some observer might obtain the scoped name k via the channel a at l, it cannot
determine the difference in the state of the network. From rule (l-nmove) we conclude that
any attempt to move from l, where the observer would be located, to k will fail. However,
such a failure does not yield the observer enough information to determine the exact
nature of the fault causing the failure: the observer holding k does not know whether the
inaccessibility failure to k was caused by a node fault at k, a link fault between l and k or
both. As we shall see later, we will be able to demonstrate ∆l |= N1 � N2 � N3. �

3.3 A labelled transition system for DπF

It would be tempting to mimic the development of Section 2.3 and define a bisimulation
equivalence based on actions of the form

∆ .M
µ
−→ ∆′ .M′

Here we argue that this would not be adequate, at least if the target is to characterise
reduction barbed congruence.

Chapter 3. Dπ with Location and Link Failure 37

Example 3.3.1. Let ∆l be the network in which there is only one node l which is alive,
defined earlier in Example 3.2.3, and consider the system:

M1 ⇐ (ν k1 : {l}) (ν k2 : {k1}) (ν k3 : {k1, k2}) l[[a!〈k2, k3〉.P]]

Note that when M1 is running on ∆l, due to the new locations declared, the code
l[[a!〈k2, k3〉.P]] is effectively running on the following internal network (part of which is
scoped):

d d
d

d
-�

���*
����

HHHj
HHHY

6

?

l k1

k3

k2

(3.2)

Let us now see to what knowledge of this internal network can be gained by an observer
O at site l, such as l[[a?(x, y).O(x, y)]]. Note, that prior to any interaction, O is running on
the network ∆l, and thus, is only aware of the unique location l. By inputting along a, it
can gain knowledge of the two names k2 and k3, thereby evolving to l[[O(k2, k3)]]. Yet, even
though it is in possession of these two names, it cannot move there and interact with code
at k2 and k3. It can niether discover the link between k2 and k3, due to the fact that it is not
aware of the (scoped) name k1. The scoping of k1 prohibits the observer from discovering
the full extent of the internal network (3.2) above since, with its current knowledge of
location names, it cannot construct a path to reach either k2 or k3.

This means that, there is now a difference between the actual network being used
by the system, (3.2), and the observer’s view of that network. Even worse, the current
formalism does not allow us to represent this (external) observer view of the network. �

An lts semantics will have to record the differences between the network and the
observers view of networks. This requires extra information being recorded in network
representations.

Definition 3.3.2 (Effective network representations). An effective network representation Σ
is a triple 〈N ,O,H〉, where:

• N is a set of names, as before, divided into loc(N) and chan(N),

• O is a linkset, denoting the live locations and links that are observable by the context.

• H is another linkset, denoting the live locations and links that are hidden (or un-
reachable) to the context.

The only consistency requirements are that:

1. dom(O)⊆ loc(N) (the observable live state concerns locations inN)

2. dom(H)⊆ loc(N) (the hidden live state concerns locations inN)

Chapter 3. Dπ with Location and Link Failure 38

3. dom(O)∩dom(H)=∅ (live state cannot be both observable and hidden) �

The intuition is that an observer running on a network representation Σ, knows about
all the names in ΣN and has access to all the locations in dom(O); as a result, it knows
the state of every location in dom(O) and the live links between these locations. The
observer, however, does not have access to the live locations in dom(H); as a result, it
cannot determine the live links between them nor can it distinguish them from dead
nodes. Dead nodes are encoded in Σ as loc(N)/dom(O ∪ H), that is, all the location
names in N that are not mentioned in either O or H ; these are conveniently denoted
as the deadset ΣD . We also note that the effective network representation Σ does not
represent live links where either end point is a dead node, since these can never be used
nor observed. Summarising, Σ hold all the necessary information from the observer’s
point of view, that is, the names known, N , the state known, O, and the state that can
potentially become known in future, as a result of scope extrusion,H .

As usual we use notation such asΣN , ΣO andΣH to access the fields ofΣ and note that
any network representation ∆ can be translated into an extended network representation
Σ(∆) in the obvious manner:

• the set of names remains unchanged, Σ(∆)N = ∆N

• the accessible state and connections, Σ(∆)O, is simply ∆L less the dead nodes and
links to these dead nodes, thus denotes as ∆L/∆D.

• the hidden state, Σ(∆)H , is simply the empty set, since ∆ does not encode any
inaccessible live locations to the observer.

There is also an obvious operation for reducing an extended network representation
Σ into a standard one, yielding: ∆(Σ):

• ∆(Σ)N is inherited directly from Σ.

• ∆(Σ)A is dom(ΣO∪ΣH) as stated earlier.

• ∆(Σ)L is simply ΣO ∪ ΣH

We note two properties about the operation ∆(Σ); firstly, it does not represent any links
to and between dead nodes in ∆(Σ)L; secondly, it merges the accessible and inaccessible
state into one single accessible state. Whenever we wish to forget about the distinction
between the live accessible nodes and links in Σ and those unknown to the observer, we
can transform Σ into the Σ(∆(Σ)); this we denote by ↑ (Σ).

For a discussion on how extended network representations allow us to accommodate
the observers view in the example just discussed in Example 3.3.1, see Example 3.3.7
below.

Our lts for DπF will be defined in terms of judgements which take the form

Σ .M
µ
−→ Σ′ .M′ (3.3)

Chapter 3. Dπ with Location and Link Failure 39

where the actions µ are the same as those used in the previous section, and both Σ .M
(and Σ′ . M′) is an effective configuration, that is all the free names in M occur in ΣN .
As stated earlier, in the configuration Σ .M, where Σ is the effective network 〈N ,O,H〉,
only the information in N and O is available to an external observer, while the extra
liveness information in H is only available internally to the system M. This division
makes more complicated the various operations for extracting information from, and
extending networks. As usual, all the formal definitions are relegated to the Appendix,
but it is necessary to go into some detail as to how effective networks are augmented with
a new location. This will have to take into account the type of the new location, and in
particular the existing locations to which it will be linked. For instance, the declaration of
the new location k : loc[a, C], requires adding to the network a new live location k, linked
to every live location in C.

To simplify the task of defining effective network augmentations, we first define a
special form of linkset called components together with its related notation, and then
express network augmentations in terms of this definition.

Definition 3.3.3 (Component Linksets). We start by adapting the notion of reachability
in a network, ∆ ` kf l, to linksets, now denoted as L ` kf l. Thus for any linkset L:

• L ` k← l def
= 〈l, k〉 ∈ L

• L ` kf l def
= L ` k← l or ∃ k′ such that L ` k′← l andL ` kfk′

Based on this intuition, a component linkset (or component), denoted byK , is a linkset that
is completely connected, that is:

∀ l, k ∈ dom(L) we have L ` kf l

We note that any linksetL can be treated as the union of one or more components, that is:

L =

n⋃
i=1

Ki

According to such treatment, a location l ∈ dom(L) can be used to identify a particular
component K in the linkset L. We use Lf l to denote the component in L identified by
a location l and this formally is defined as:

Lf l def
= {〈k, k′〉 | 〈k, k′〉∈L and L ` kf l}

Similarly, a set of locations {l1, . . . , ln} can identify a number of components inL, denoted
and defined as:

Lf {l1, . . . , ln}
def
=

n⋃
i=1

Lf li

Finally, if C = {k1, . . . , kn} is a set of locations representing connections, and l is a
location such that l < C, then l↔C denotes the component defined as:

l↔C def
= {〈k, l〉, 〈l, k〉, 〈k, k〉 | k ∈ C} ∪ {〈l, l〉}

Chapter 3. Dπ with Location and Link Failure 40

where locations in C are symmetrically related to l, while l is also related to itself. In the
resultant component l↔C, all the locations in C in the component l↔C are connected as
a star formation to l and as a result, all locations are reachable from one another in at most
two accesses by going through the central node l. Using previous shorthand notation, we
could have alternatively defined l↔C as:

l↔C def
= {l↔k, | k ∈ C}

�

Lemma 3.3.4 (Subtracting a Component from a Linkset). For any linkset L and compo-
nentK such thatK ⊆ L, the set L/K is also a linkset.

Proof. Immediate from the fact thatL can be expressed as
⋃n

i=1Ki whereK must be equal
to one Ki. Thus, if K = K j, the set

⋃n
j,i=1Ki, which translates to L/K , would still be a

linkset. �

We now revert our discussion back to effective network representation, and show how
the definition of components facilitates the procedure for extending networks.

Definition 3.3.5 (Augmenting effective networks). Let n be fresh to the network Σ and
C be a set of locations such that C ⊆ dom(ΣO). Then we define the operation Σ + n :T as:

• Σ + n : ch def
= 〈ΣN ∪ {n}, ΣO, ΣH 〉

• Σ + n : loc[d, C] def
= 〈ΣN ∪ {n}, ΣO, ΣH 〉

• Σ + n : loc[a, C] def
=

Case C ∩ dom(ΣO) = ∅ then 〈ΣN ∪ {n}, ΣO, H ′〉
where: H ′ = ΣH ∪ (l↔C)

C ∩ dom(ΣO) , ∅ then 〈ΣN ∪ {n}, O′, H ′〉
where: O′ = ΣO ∪ (l↔C) ∪ (ΣHfC)

and H ′ = ΣH/(ΣHfC) �

In the above definition, extending a network with a fresh channel is trivial; adding a
fresh dead node is similarly simple, due to the fact that Σ does not represent dead nodes
or links to dead nodes explicitly. The only subcase that deserves some explanation is that
of adding fresh live nodes. A fresh live location is added to either ΣO or ΣH depending on
its links. If it is not linked to any observable location, C∩dom(ΣO) = ∅, then the new fresh
location is not reachable from the context and is therefore added to ΣH . If, on the other
hand, it is linked to an observable location, C ∩ dom(ΣO) , ∅, then it becomes observable
as well. There is also the case where the fresh location is linked to both observable and
hidden locations, still represented above by the case where C ∩ dom(ΣO) , ∅; in such a
case, the fresh location, together with any components in the hidden state linked to it,
that is ΣHf C, become observable and thus transfered from ΣH to ΣO. The following
example elucidates this operation for extending effective networks.

Chapter 3. Dπ with Location and Link Failure 41

Example 3.3.6. Consider the effective network Σ, representing six locations l, k1, . . . , k5:

Σ = 〈{l, k1, k2, k3, k4, k5}, {l↔ l}, {k1↔k2, k2↔k3, k4↔k4}〉

According to Definition 3.3.2, l is the only observable location by the context; locations k1..4

are alive but not reachable from any observable location while the remaining location, k5,
is dead since it is not in dom(ΣO∪H). Moreover, the linkset representing the hidden state,
ΣH , can be partitioned into two components, K1 = {k1↔ k2, k2↔ k3} and K2 = {k4↔ k4}

whereas the linkset representing the observable state, ΣO, can only be partitioned into
one component, itself.

The operation Σ + k0 : loc[a, {l}] would make the fresh location, k0, observable in
the resultant effective network since it is linked to, thus reachable from, the observable
location l. On the other hand, the operation Σ + k0 :loc[a, ∅] would make k0 hidden since
it is a completely disconnected node, just like k4. The operation Σ + k0 :loc[a, {k1}] would
still make k0 hidden in the resultant effective network, since it is only link to the hidden
node k1. Finally, the operation Σ + k0 :loc[a, {l, k1}] intersects with both ΣO and ΣH . This
means that k0 itself becomes observable, but as a side effect, the components reachable
through it, that is ΣH f {l, k1} = K1, becomes observable as well. Thus, according to
Definition 3.3.5, the updated network translates to:

Σ + k0 :loc[a, {l, k1}] =
〈 ΣN ∪ {k0}, ΣO ∪ (k0↔{l, k1}) ∪ (ΣHf {l, k1}), ΣH/(ΣHf {l, k1}) 〉
〈 ΣN ∪ {k0}, ΣO ∪ {k0↔ l, k0↔k1} ∪ K1, ΣH/K1 〉

〈 ΣN ∪ {k0}, {l↔k0, k0↔k1, k1↔k2, k2↔k3}, {k4↔k4} 〉

�

Let us now return to the defintion of our lts for DπF. The transitions between effective
configurations (3.3) are determined by the rules and axioms already given in Table 6 from
Section 2.3, together with the new rules in Table 12 and Table 13. Most of the rules in
Table 12 are inherited directly from their counterpart reduction rules in Table 10. The new
rule is (l-disc) which introduces the new label l=k and models the breaking of a link from
the observing context, in the same fashion as (l-fail) in Table 8 models external location
killing. Both of these rules are subject to the condition that the location or link where
the fault is injected is observable by the context, that is Σ `obs l : alive and Σ `obs l↔ k
respectively. We also note that rule (l-newl) is similar to its corresponding reduction rule
(r-newl), but now we overload the function inst(loc[S, C], l,Σ), previously defined over ∆,
to the new network representation Σ.

The more challenging rules are found in Table 13. Most of these are slightly more subtle
versions of the corresponding rules for DπLoc in Table 8; the subtleties are required to deal
with the interaction between scoped location names and their occurrence in location types.
For instance, the rule (l-open) filters the type of scope extruded locations by removing links
to locations that are already dead and that will not affect the effective network Σ; this is
done through the operation T/ΣD defined in the Appendix. A side condition is added to

Chapter 3. Dπ with Location and Link Failure 42

Table 12. Network Operational Rules(2) for DπF

Assuming Σ ` l : alive

(l-kill)

Σ . l[[kill]] τ
−→ (Σ − l) . l[[0]]

(l-brk)

Σ . l[[break k]] τ
−→ Σ − (l↔k) . l[[0]]

Σ ` l↔k

(l-halt)

Σ .N kill:l
−−−→ (Σ − l) .N

Σ `obs l : alive

(l-disc)

Σ .N l=k
−→ Σ − (l↔k) .N

Σ `obs l↔k

(l-go)

Σ . l[[go k.P]] τ
−→ Σ . k[[P]]

Σ ` k← l

(l-ngo)

Σ . l[[go k.P]] τ
−→ Σ . k[[0]]

Σ 0 k← l

(l-ping)

Σ . l[[ping k.PdQe]] τ
−→ Σ . l[[P]]

Σ ` k← l

(l-nping)

Σ . l[[ping k.PdQe]] τ
−→ Σ . l[[Q]]

Σ 0 k← l

(l-newc)

Σ . l[[(ν c :ch) P]] τ
−→ Σ . (ν c :ch) l[[P]]

(l-newl)

Σ . l[[(ν k :loc[S, C]) P]] τ
−→ Σ . (ν k :loc[S, D]) l[[P]]

loc[S, D] = inst(loc[S, C], l,Σ)

(l-weak), (Σ + ñ : T̃) `obs T, limiting the types of imported fresh locations to only contain
locations which are externally accessible, since intuitively, the context can only introduce
fresh locations linked to locations it can access. The internal communication rule (l-par-

comm) also changes slightly from the one given earlier for DπLoc; communication is
defined in terms of the system view (↑ (Σ)) rather than the observer view dictated by
Σ. The intuition for this alteration is that internal communication can still occur, even at
locations that the observer cannot access, thus we denote the ability to output and input
of systems with respect to the maximal observer view ↑ (Σ). Finally, a completely new
rule is (l-rest-typ), which restricts the links exported in location types if one endpoint of the
link is still scoped. The utility of this rule is illustrated further in the following example.
The rules (l-rest) and (l-par-ctxt) remain unchanged for DπLoc.

Example 3.3.7. Let us revisit Example 3.3.1 to see how the effect of the observer O on M1,
running on the effective networkΣl having only one location l which is alive, that isΣ(∆l).
This effectively means calculating the result of M1 performing an output on a at l.

It is easy to see that an application of (l-out), followed by two applications of (l-open)

gives

Σl + k1 : {l} .M′1
α
−→ Σl + k1 : {l} + k2 : {k1} + k3 : {k1, k2} . l[[P]] (3.4)

Chapter 3. Dπ with Location and Link Failure 43

Table 13. Contextual Operational Rules(3) for DπF

(l-open)

Σ+n :T .N
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Σ′ .N′

Σ . (νn :T)N
(n:U,ñ:T̃)l:a!〈V〉
−−−−−−−−−−→ Σ′ .N′

l, a , n ∈ V, U = T/ΣA

(l-weak)

Σ+n :T .N
(ñ:T̃)l:a?(V)
−−−−−−−−→ Σ′ .N′

Σ .N
(n:T,ñ:T̃)l:a?(V)
−−−−−−−−−−→ Σ′ .N′

l, a , n ∈ V, (Σ + ñ : T̃) `obs T

(l-rest-typ)

Σ+k :T .N
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ (Σ+ñ : Ũ) +k :U .N′

Σ . (ν k :T)N
(ñ:Ũ)l:a!〈V〉
−−−−−−−−→ Σ+ñ : Ũ . (ν k :U)N′

l, a , k ∈ fn(T̃)

(l-rest)

Σ+n :T .N
µ
−→ Σ′+n :U .N′

Σ . (νn :T)N
µ
−→ Σ′ . (νn :U)N′

n < fn(µ)

(l-par-ctxt)

Σ .N
µ
−→ Σ′ .N′

Σ .N|M
µ
−→ Σ′ .N′|M

Σ .M|N
µ
−→ Σ′ .M|N′

Σ `M

(l-par-comm)

↑ (Σ) .N
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Σ′ .N′ ↑ (Σ) .M

(ñ:T̃)l:a?(V)
−−−−−−−−→ Σ′′ .M′

Σ .N|M τ
−→ Σ . (ν ñ : T̃)(N′|M′)

Σ .M|N τ
−→ Σ . (ν ñ : T̃)(M′|N′)

where M′1 is (ν k2 : {k1})(ν k3 : {k1, k2})l[[a!〈k2, k3〉.P]] and α is the action (k2 : {k1}, k3 : {k1, k2})l :
a!〈k2, k3〉.Note that (l-rest) can not be applied to this judgement, since k1 occurs free in the
action α. However (3.4) can be re-arranged to read

Σl + k1 : {l} .M′1
α
−→ Σl + k2 :∅ + k3 : {k2} + k1 : {l, k1, k2} . l[[P]]

moving the addition of location k1 in the reduct to the outmost position. At this point,
(l-rest-typ) can be applied, to give

Σl .M1
β
−→ Σl + k2 :∅ + k3 : {k2} . (ν k1 : {l, k1, k2})l[[P]]

where β is the action (k2 :∅, k3 : {k2})l : a!〈k2, k3〉, that is α filtered from any occurrence of k1

in its bounded types. Note that the residual network representation, Σl + k2 : ∅ + k3 : {k2}

has a non-trivial internal network, not available to the observer. It evaluates to

〈{l, k2, k3}, {l↔ l}, {k2↔k3}〉

Chapter 3. Dπ with Location and Link Failure 44

and may be represented diagramatically by:

d
d

d
6

?

l

k3

k2

where the links of hidden components are denoted with dashed lines. �

With these actions we can now define in the standard manner a bisimulation equiv-
alence between configurations, which can be used as the basis for contextual reasoning.
Let us write

Σ |=M ≈wrong N

to mean that there is a (weak) bisimulation between the configurations Σ .M and Σ . N
using the current actions. This new framework can be used to establish positive results.
For example, for Σl,k = 〈{a, l, k}, {l↔k}, ∅〉, one can prove

Σl,k |= l[[ping k. a!〈〉d0e]] ≈wrong k[[go l.a!〈〉]]

by giving the relation R defined as:

R =

〈Σl,k .M , Σl,k .N〉 | 〈M,N〉 ∈ Rsys

〈Σl,k−l .M , Σl,k−l .N〉 | 〈M,N〉 ∈ Rsys

〈Σl,k−k .M , Σl,k−k .N〉 | 〈M,N〉 ∈ Rsys

〈Σl,k−l↔k .M , Σl,k−l↔k .N〉 | 〈M,N〉 ∈ Rsys

〈Σl,k−l, l↔k .M , Σl,k−l, l↔k .N〉 | 〈M,N〉 ∈ Rsys

〈Σl,k−k, l↔k .M , Σl,k−k, l↔k .N〉 | 〈M,N〉 ∈ Rsys

〈Σl,k−l, k .M , Σl,k−l, k .N〉 | 〈M,N〉 ∈ Rsys

〈Σl,k−l, k, l↔k .M , Σl,k−l, k, l↔k .N〉 | 〈M,N〉 ∈ Rsys

where

Rsys =

〈l[[ping k. a!〈〉d0e]] , k[[go l.a!〈〉]]〉
〈l[[a!〈〉]] , l[[a!〈〉]]〉
〈l[[0]] , l[[0]]〉

However we can argue, at least informally, that this notion of equivalence is too

discriminating and the labels too intentional, because it distinguishes between systems
running on a network, where the differences in behaviour are difficult to observe. Prob-
lems arise when there is an interplay between hidden nodes, links and dead nodes.

Example 3.3.8. Let us consider a slight variation on the system M1 used in Example 3.3.1
and Example 3.3.7:

M2 ⇐ (ν k1 : {l})(ν k2 : {k1})(ν k3 : {k1})l[[a!〈k2, k3〉.P]]

again running on the simple (extended) network Σl. Note that here the code l[[a!〈k2, k3〉.P]]
is effectively running on the following internal network,

Chapter 3. Dπ with Location and Link Failure 45

d d
d

d
-�

�
��*

����

HHHj
H

HHY

l k1

k3

k2

a slight variation on that for M1. It turns out that

Σl |=M1 6≈wrong M2

because the configurations give rise to different output actions, on a at l. The difference
lies in the types at which the locations k2 and k3 are exported; in Σl .M1 the output label
is µ1 = (k2 :∅, k3 : {k2}) l : a!〈k2, k3〉 while with Σ .M2 it is µ2 = (k2 :∅, k3 :∅)l : a!〈k2, k3〉 - there
is a difference in the type associated to the scope extruded location k3.

However if k1 does not occur in P, (for example if P is the trivial process 0) then k1 can
never be scope extruded to the observer and thus k2 and k3 will remain inaccessible in
both systems. This means that the presence (or absence) of the link k2↔ k3 can never be
checked and thus there should be no observable difference between M1 and M2 running
on Σ. �

Problems also arise when dealing with the presence of dead nodes.

Example 3.3.9. Let us reconsider the three configurations Σl . Ni for i = 1..3 from Ex-
ample 3.2.3. We have already argued that these three configurations should not be
distinguished. However, our lts specifies that all three configurations perform the output
with different scope extrusion labels, namely:

Σl .N1
(k:loc[d,{l}])l:a!〈k〉
−−−−−−−−−−−−→ 〈{l, k}, {l↔ l}, ∅〉 . l[[0]]

Σl .N2
(k:loc[d,∅])l:a!〈k〉
−−−−−−−−−−−−→ 〈{l, k}, {l↔ l}, ∅〉 . l[[0]]

Σl .N3
(k:loc[a,∅])l:a!〈k〉
−−−−−−−−−−−−→ 〈{l, k}, {l↔ l}, {k↔k}〉 . l[[0]]

Therefore they will be distinguished by the bisimulation equivalence which uses these
actions. �

In order to obtain a bisimulation equivalence which coincides with a typical reduction
barbed congruence which qunatifies over any observer, it is necessary to abstract away
from some of the information contained in the types of newly exported location names.

3.4 A bisimulation equivalence for DπF

We first outline the revision to our labelled actions. Currently these are of the form T = ch
or loc[A, {k1, . . . kn}], where the latter indicates the liveness of a location and the nodes ki

to which it is linked. We change these to new types of the form L, K = {l1↔k1, . . . , li↔ki}

whereL, K are components. Intuitively, these represent the new live nodes and links, which

Chapter 3. Dπ with Location and Link Failure 46

Table 14. The derived lts for DπF

(l-deriv-1)

Σ .N
µ
−→ Σ′ .N′

Σ .N
µ
7−→ Σ′ .N′

µ ∈ {τ, kill : l, l=k}

(l-deriv-2)

Σ .N
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Σ′ .N′

Σ .N `
(ñ:L̃)l:a!〈V〉
−−−−−−−−→ Σ′ .N′

L̃ = lnk(ñ : T̃,Σ)

(l-deriv-3)

Σ .N
(ñ:T̃)l:a?(V)
−−−−−−−−→ Σ′ .N′

Σ .N `
(ñ:L̃)l:a?(V)
−−−−−−−−→ Σ′ .N′

L̃ = lnk(ñ : T̃,Σ)

are made accessible to observers by the extrusion of the new location. Alternatively, this
is the information which is added to the observable part of the network representation,
ΣO, as a result of the action. We have already developed the necessary technology to
define these new types, in Definition 3.3.5.

Definition 3.4.1 (A (derived) labelled transition system for DπF). This consists of a
collection of actions Σ .N

µ
7−→ Σ′ .N′, where µ takes one of the forms:

• (internal action) - τ

• (bounded input) - (ñ : L̃)l : a?(V)

• (bounded output) - (ñ : L̃)l : a!〈V〉

• (external location kill) - kill : l

• (external link break) - l=k �

The transitions in the derived lts for DπF are defined as the least relations satisfying
the axioms and rules in Table 6 of Section 2.3, Tables 12 and 13 given earlier in this section
and Table 14. The rules (l-deriv-2) and (l-deriv-3) transform the types of bound names using
the function lnk(ñ : T̃,Σ) defined below in Definition 3.4.2.

Definition 3.4.2 (Link Types). Let us first define the function lnk() for single typed names
n : T and then extend it to sequences of typed names ñ : T̃. Recalling Definition 3.3.5 for
augmenting networks, the only case where Σ+ n :T adds anything to the observable state
of the effective network, ΣO, is when T = loc[a, C] where C ∩ dom(ΣO) , ∅. In such a
case, we add the new location n with all its live connections denoted as l↔ C, and any
components that were previously unreachable but have become reachable from ΣO as a
result of n, denoted as ΣHfC.

When C∩dom(ΣO) = ∅, then the node added is unreachable for the observing contexts
and we add n and its live links to ΣH but nothing to ΣO; if T = loc[d, C] then we do not
add anything to either ΣO or ΣH as is the case for T = ch. Based on this definition of
Σ+n :T, we give the following definition for lnk(n :T,Σ):

Chapter 3. Dπ with Location and Link Failure 47

lnk(n :T,Σ) def
=

 (n↔C) ∪ (ΣHfC) if T=loc[a, C] and C∩loc(ΣO),∅
∅ otherwise

This function is extended to sequences of typed names in the obvious manner:

lnk(n, ñ :T, T̃,Σ) = lnk(n :T,Σ), lnk(ñ : T̃,Σ′)

where Σ′ denotes Σ + n : T. �

These revised actions give rise to a new (weak) bisimulation equivalence over config-
urations, ≈, defined in the usual way, but based on derived actions. We use

Σ |=M ≈ N

to mean that the configurations Σ .M and Σ .N are bisimilar.

Example 3.4.3. Here we re-examine the systems in Example 3.3.8 and Example 3.3.9. We
recall that in Example 3.3.8 we had the following actions with respect to the original lts: -

Σl .M1
µ1
−→ Σ + k2 :∅ + k3 : {k2} . (ν k1 : {l, k2, k3}) l[[P]]

Σl .M2
µ2
−→ Σ + k2 :∅ + k3 :∅ . (ν k1 : {l, k2, k3}) l[[P]]

But Σl contains only one accessible node l; extending it with the new node k2, linked to
nothing does not increase the set of accessible nodes. Furthermore, increasing it with
a new node k3, linked to the inaccessible k2 (in the case of Σ . M1) also leads to no
increase in the accessible nodes. Correspondingly, the calculations of lnk(k2 : ∅,Σ) and
lnk(k3 : {k2}, (Σ + k2 :∅)) both lead to the empty link set.

Formally, we get the derived action

Σ .M1
α
7−→ Σ + k2 :∅ + k3 : {k2} . (ν k1 : {l, k2, k3}) l[[P]]

where α is (k2 : ∅, k3 : ∅)l : a!〈k2, k3〉. Similar calculations gives exactly the same derived
action from M2:

Σ .M2
α
7−→ Σ + k2 :∅ + k3 :∅ . (ν k1 : {l, k2, k3}) l[[P]]

Furthermore, if P contains no occurrence of k1, we can go on to show

Σ+k2 :∅+k3 : {k2} . (ν k1 : {l, k2, k3})l[[P]] ≈ Σ+k2 :∅+k3 :∅ . (ν k1 : {l, k2, k3})l[[P]]

On the other hand, if P is a!〈k1〉, the subsequent transitions are different:

((Σ + k2 : ∅) + k3 : {k2}) . (ν k1 : {l, k2, k3})l[[P]]
β1
7−→ . . .

((Σ + k2 : ∅) + k3 : ∅) . (ν k1 : {l, k2, k3})l[[P]]
β2
7−→ . . .

where

β1 is (k1 : {k1↔k2, k1↔k3, k2↔k3})l :a!〈k1〉

β2 is (k1 : {k1↔k2, k1↔k3})l :a!〈k1〉

Chapter 3. Dπ with Location and Link Failure 48

We note that the link type associated with β1 includes the additional component {k2↔k3},
that was previously hidden, but is now made accessible as a result of scope extruding
k1; β2 on the other hand, does not have this information in its link type. Based on this
discrepancy between β1 and β2 we have

Σl |=M1 6≈M2

Revisiting Example 3.3.9, the three different actions of Σl.N1, Σl.N2 and Σl.N3 now
abstract to the same action Σl.Ni

α
7−→ l[[0]] for i = 1..3 where α is the label (k : ∅)l : a!〈k〉.

Thus we have

Σl |= Ni ≈ N j where i, j = 1..3

as required. �

3.5 Full-Abstraction

The purpose of this section is to show that our revised bisimulation equivalence is the
correct one, in the sense that it coincides with some contextual equivalence appropriate
to DπF; we need a generalisation of Theorem 2.3.5. This means developing a notion of
reduction barbed congruence for DπF, similar to that in Definition 2.2.6 for DπLoc.

3.5.1 Reduction barbed congruence for DπF

The key to the definition is the isolation of the externally observable information in an
extended environment. We use I to range over knowledge representations, pairs 〈N ,O〉
where

• N is a set of names, as usual divided into loc(N) and chan(N),

• O is a linkset overN .

These can be obtained from effective networks in the obvious manner:

I(Σ) def
= 〈ΣN ,ΣO〉

The key property of this subset of the information in a network representation is that it is
preserved by derived actions:

Definition 3.5.1 (Action residuals). The partial function after ranges over knowledge
representations I and external derived actions µ and returns knowledge representation,
defined as:

• I after (ñ : L̃)l : a!〈V〉 is defined as I + ñ : L̃

• I after (ñ : L̃)l : a?(V) is defined as I + ñ : L̃

• I after kill : l is defined as I − l

Chapter 3. Dπ with Location and Link Failure 49

• I after l=k is defined as I − l↔k �

Proposition 3.5.2. If Σ . N
µ
7−→ Σ′ . N′ where µ is a derived external action, then I(Σ′)

coincides with I(Σ) after µ

Proof. A straightforward induction on the inference of Σ .N
µ
7−→ Σ′ .N′. �

We find appropriate to use I as a means to define the right circumstances, necessary to
allow an action µ to happen. Thus, we define the following predicate.

Definition 3.5.3 (Action Conditions). The predicate allows is defined over knowledge
representations and action labels as:

• I allows τ is always true

• I allows (ñ : L̃)l :a!〈V〉 is true whenever I ` l : alive

• I allows (ñ : L̃)l : a?(V) is true whenever I ` l : alive, V ⊆ IN and dom(L̃) ⊆
(dom(IO)∪ñ)

• I allows kill : l is true whenever I ` l : alive

• I allows l=k is true whenever I ` l : alive, k : alive �

The following proposition states that the definition of allows is adequate with respect
to our derived actions.

Proposition 3.5.4 (Adequacy of Allows). If Σ .N
µ
7−→ Σ′ .N′ then I(Σ) allows µ.

Proof. By induction on the derivation of Σ .N
µ
7−→ Σ′ .N′. �

We next establish that external actions of a configuration Π . N are a function of the
system N and the knowledge representation I(Σ). Before we prove this, we prove a
lemma relating actions with the structure of the systems.

Lemma 3.5.5 (Derived Actions and Systems).

• if Σ .N `
(ñ:L̃)l:a!〈V〉
−−−−−−−−→ Σ+ñ : T̃ .N′ where L̃ = lnk(ñ : T̃,Σ) then

– N ≡ (ν ñ : T̃)(ν m̃ : Ũ)M|l[[a!〈V〉.P]]

– N′ ≡ (ν m̃ : Ũ)M|l[[P]]

• if Σ .N `
(ñ:L̃)l:a?(V)
−−−−−−−−→ Σ+ñ : T̃ .N′ where L̃ = lnk(ñ : T̃,Σ) then

– N ≡ (ν m̃ : Ũ)M|l[[a?(X).P]]

– N′ ≡ (ν m̃ : Ũ)M|l[[P{V/X}]]

• if Σ .N τ
7−→ Σ′ .N′ where Σ ` l : alive and Σ′ 0 l : alive then

– N ≡ N′|l[[kill]]

• if Σ .N τ
7−→ Σ′ .N′ where Σ ` l↔k and Σ′ 0 l↔k then

Chapter 3. Dπ with Location and Link Failure 50

– N ≡ N′|l[[break k]] or N ≡ N′|k[[break l]]

Proof. A straightforward induction on the inference of Σ . N
(ñ:L̃)l:a!〈V〉
−−−−−−−−→ Σ′ . N′, Σ .

N
(ñ:L̃)l:a?(V)
−−−−−−−−→ Σ′ .N′ and Σ .N τ

−→ Σ′ .N′. �

Proposition 3.5.6. If Σ . N
µ
7−→ Σ′ . N′ where µ is an external action, and I(Σ′′) allows µ

for some Σ′′, then Σ′′ .N
µ
7−→ Σ′′′ .N′ for some Σ′′′

Proof. By induction on the inference of Σ .N
µ
7−→ Σ′ .N′, using Lemma 3.5.5 to infer the

structure of N from µ. �

These lemmas indicate that these knowledge representations are the appropriate level
of abstractions at which to generalise Definitions 2.2.3, 2.2.5 and 2.2.6 to DπF.

Definition 3.5.7 (Typed Relations for DπF). A typed relation over extended configurations
is a binary relation between such configurations with the property that

Σ.M R Σ′.N implies I(Σ) = I(Σ′)

We can mimic the notation in Definition 2.2.3 by writing

I |= Σ.M R Σ′.N

to mean that systems Σ .M and Σ′ . N are related by R and that both I(Σ) and I(Σ′)
coincide with I. �

The definition of contextuality depends on what a given I allows to be observable;
for this we adapt Definition 2.2.4.

Definition 3.5.8 (Observables). For any I let:

• I ` l :alive, if l is in dom(IO); this implies that l is not only alive, but in the accessible
part of any Σ such that I(Σ) coincides with I.

• I ` l↔ k, if l↔ k ∈ IO; this implies that the link l↔ k is not only alive, but in the
accessible part of any Σ such that I(Σ) coincides with I.

• I ` T if T is either ch or loc[a, C] such that C ⊆ dom(IO); this means that such
location types are linked only to observable locations.

We can now define the relation I ` O as:

• I ` l[[P]] if fn(P) ⊆ IN and I ` l : alive

• I ` (νn :T)N if I ` T and (I + n :T) `obs N

• I `M |N if I `M and I ` N

We can now adapt the notation of Definition 2.2.4 as:

∆ `obs l :alive, l↔k, T, O def
= I(Σ(∆)) ` l :alive, l↔k, T, O

Σ `obs l :alive, l↔k, T, O def
= I(Σ) ` l :alive, l↔k, T, O

Chapter 3. Dπ with Location and Link Failure 51

The intuition of ∆ `obs O and Σ `obs O are still the same as that of Definition 2.2.4: an
observer O is restricted to the observable network. However, the updated definition
reflects the fact that the observable network is now not only defined in terms of live nodes
but live, reachable nodes. �

As a result of this adaptation, we can carry forward to this section the definition of
contextual typed relations, defined earlier in 2.2.5. However, before we go on and define
reduction barbed congruence for DπF terms, we need also to update the notion of a barb;
a barb is observable by the context in DπF, if the location at which the barb occurs is alive
and observable.

Definition 3.5.9. Σ.N ⇓a@l denotes an observable barb exhibited by the configurationΣ.N,
on channel a at location l. Formally, it means that ∆(Σ) .N −→∗ ∆(Σ′) .N′ for some Σ′ .N′

such that N′ ≡M|l[[a!〈V〉.Q]] and I(Σ) `obs l : alive. �

With these modifications, Definition 2.2.6 can be applied to obtain a definition of
reduction barbed congruence for DπF, which we denote by

I |= Σ1.M1 � Σ2.M2 whenever I(Σ1) = I(Σ2)

Note that this enables us to compare aribtrary configurations, Σ1.M1 and Σ2.M2, but it
can be specialised to simply comparing systems running on the same network. Let us
write

Σ |=M � N

to mean that I(Σ) |= Σ.M � Σ.N. Then, for example, the informal notation (3.1) used in
Section 3.2.1 can be taken to mean

Σ(∆) `M � N

The first main result of the chapter can now be stated:

Theorem 3.5.10. Suppose I(Σ1) = I(Σ2) = I, for any effective configurations Σ1.M1, Σ2.

M2 in DπF. Then:

I |= Σ1.M1 � Σ2.M2 if and only if Σ1.M1 ≈ Σ2.M2

This general result can also be specialised to the notation for comparing systems relative
to a given network:

Corollary 3.5.11. In DπF, Σ |= N �M if and only if Σ |= N ≈ M. �

The proof of the general theorem , which is quite complex, is detailed in the following
two sections. The first section outlines the proof for soundness, that is, the adequacy of
the derived action bisimulation as a means show that two configurations are reduction
barbed congruent:

Σ1.M1 ≈ Σ2.M2 implies I |= Σ1.M1 � Σ1.M1

Chapter 3. Dπ with Location and Link Failure 52

The second section outlines the proof for completness, that is, for any two configurations
that are reduction barbed congruent, we can give a derived action bisimulation to show
this:

I |= Σ1.M1 � Σ1.M1 implies Σ1.M1 ≈ Σ2.M2

3.5.2 Soundness

The main task in proving that derived action bisimulation is sound is showing that ≈ is
contextual. In addition to this, we also need to prove some preliminary results relating
our lts with the reduction semantics of DπF.

We start by proving that the derived lts is closed over well formed effective configu-
rations. We prove this with the aid of the following lemma, stating that there is also a
special relationship between silent actions and residual networks.

Lemma 3.5.12. Internal transitions do not change the state of the network, unless a kill or a
break l process in the configuration itself is consumed. Stated otherwise, ifΣ.N τ

7−→ Σ′.N′

then Σ′ is either:-

1. Σ

2. Σ − l

3. Σ − l↔k

Proof. A straightforward induction on the inference of Σ .N τ
7−→ Σ′ .N′. �

Proposition 3.5.13 (Closure). The derived lts given in Definition 3.4.1 forms a binary
relation between well-defined effective configurations. Stated otherwise, if Σ ` N and
Σ .N

µ
7−→ Σ′ .N′ then Σ′ ` N′.

Proof. By case analysis on the form of µ. We use Proposition 3.5.2 when µ is an external
action and Lemma A.4.1 in sub-cases where we need to show that Σ + n :T is still a valid
effective network. When µ is an internal action, µ = τ, we use Lemma 3.5.12. �

The next important sanity check for our lts is that our formulation of internal activity,
namely τ

7−→, is in agreement, in some sense, with the reduction semantics.

Proposition 3.5.14 (Reductions correspond to τ-actions).

• Σ .N −→ Σ′ .N′ implies Σ .N τ
7−→ Σ′ .N′′ for some N′′ ≡ N′

• Σ .N τ
7−→ Σ′ .N′ implies Σ .N −→ Σ′ .N′

Proof. The proof for the first clause is by induction on why Σ . N −→ Σ′ . N′. The proof
for the second clause is also by induction. Since the internal transition rule (l-par-comm)

is defined in terms of input and output actions, we make use of Lemma 3.5.5 in our
induction. �

Chapter 3. Dπ with Location and Link Failure 53

We now embark on the main task of this section, that of showing that our bisimula-
tion, ≈, is contextual. This proof relies heavily on the Composition and Decomposition
Lemmas stated below, explaining how actions can be composed of, or decomposed into,
other actions. Both Composition and Decomposition Lemmas make use of the following
(specific) lemma, which is a slight variation on Proposition 3.5.6; we note that we could
not have used Proposition 3.5.6 in this case because the type of the bound input action
changes as shown below.

Lemma 3.5.15 (Input actions and the maximal observer view).

• If Σ .N `
(ñ:K̃)l:a?(V)
−−−−−−−−→ Σ′ .N′ then ↑ (Σ) .N `

(ñ:L̃)l:a?(V)
−−−−−−−−→ Σ′′ .N′ where K̃ = L̃/dom(ΣH).

• If ↑ (Σ) .N `
(ñ:L̃)l:a?(V)
−−−−−−−−→ Σ′ .N′ and I(Σ) ` l :alive then Σ .N `

(ñ:K̃)l:a?(V)
−−−−−−−−→ Σ′′ .N′ where

K̃ = L̃/dom(ΣH).

Proof. The proof uses Lemma 3.5.5 to infer the structure of N and the progresses by
induction on the structure of N, similar to the proof for Proposition 3.5.6. �

Lemma 3.5.16 (Composition).

• SupposeΣ.M
µ
7−→ Σ′.M′. IfΣ ` N for arbitrary system N, thenΣ.M|N

µ
7−→ Σ′.M′|N

and Σ .N|M
µ
7−→ Σ .N|M.

• SupposeΣ.M `
(ñ:L̃)l:a!〈V〉
−−−−−−−−→ Σ′ .M′ andΣ.N `

(ñ:K̃)l:a?(V)
−−−−−−−−→ Σ′′ .N′ where K̃ = L̃/dom(ΣH).

Then

– Σ .M|N τ
7−→ Σ . (ν ñ : T̃)M′|N′ where L̃ = lnk(ñ : T̃,Σ)

– Σ .N|M τ
7−→ Σ . (ν ñ : T̃)N′|M′ where L̃ = lnk(ñ : T̃,Σ)

Proof. The proof for the first clause is trivial, by using (l-par-ctxt). We here outline the
proof for the second clause. From the hypothesis

Σ .M `
(ñ:L̃)l:a!〈V〉
−−−−−−−−→ Σ+ñ : T̃ .M′ (3.5)

and Proposition 3.5.4 we know I(Σ) allows (ñ : L̃)l : a!〈V〉 and thus I(Σ) ` l : alive. It is
obvious that I(↑ (Σ)) ` l :alive as well and hence

I(↑ (Σ)) allows (ñ : L̃)l : a!〈V〉 (3.6)

From (3.5), (3.6) and Proposition 3.5.6 we derive

↑ (Σ) .M `
(ñ:L̃)l:a!〈V〉
−−−−−−−−→↑ (Σ)+ñ : T̃ .M′

and from (l-deriv-2) we conclude

↑ (Σ) .M
(ñ:T̃)l:a!〈V〉
−−−−−−−−→↑ (Σ)+ñ : T̃ .M′ (3.7)

From the hypotheses Σ .N `
(ñ:K̃)l:a?(V)
−−−−−−−−→ Σ′′ .N′ and K̃ = L̃/dom(ΣH) and Lemma 3.5.15 we

immediately derive

↑ (Σ) .N `
(ñ:L̃)l:a?(V)
−−−−−−−−→↑ (Σ)+ñ : T̃ .N′

Chapter 3. Dπ with Location and Link Failure 54

and by (l-deriv-3) we derive

↑ (Σ) .N
(ñ:T̃)l:a?(V)
−−−−−−−−→↑ (Σ)+ñ : T̃ .N′ (3.8)

Hence, by (3.7), (3.8), (l-par-comm) and (l-deriv-1) we conclude

Σ .M|N τ
7−→ Σ . (ν ñ : T̃)M′|N′

Σ .N|M τ
7−→ Σ . (ν ñ : T̃)N′|M′

as required. �

Lemma 3.5.17 (Decomposition). If Σ .M|N
µ
7−→ Σ′ .M′ where Σ `obs M or Σ `obs N then

one of the following conditions hold:

1. M′ is M′′|N, where Σ .M
µ
7−→ Σ′ .M′′.

2. M′ is M|N′ and Σ .N
µ
7−→ Σ′ .N′.

3. M′ is (ν ñ : T̃)M′′|N′, µ is τ, Σ′ = Σ and either

• Σ .M `
(ñ:L̃)l:a!〈V〉
−−−−−−−−→ Σ′′ .M′′ and Σ .N `

(ñ:K̃)l:a?(V)
−−−−−−−−→ Σ′′′ .N′

• Σ .M `
(ñ:K̃)l:a?(V)
−−−−−−−−→ Σ′′ .M′′ and Σ .N `

(ñ:L̃)l:a!〈V〉
−−−−−−−−→ Σ′′′ .N′

where K̃ = L̃/dom(ΣH)

Proof. The proof progressed by induction on the derivation of Σ .M|N
µ
7−→ Σ′ .M′. We

focus on the case where µ = τ, and the last two rules used in our derivation were (l-deriv-1)

and (l-par-comm). From the inductive hypothesis of (l-par-comm) we derive

Σ′ = Σ (3.9)

M′ is (ν ñ : T̃)M′|N′ (3.10)

↑ (Σ) .M
(ñ:T̃)l:a!〈V〉
−−−−−−−−→↑ (Σ)+ñ : T̃ .M′ (3.11)

↑ (Σ) .N
(ñ:T̃)l:a?(V)
−−−−−−−−→↑ (Σ)+ñ : T̃ .N′ (3.12)

or viceversa. From (3.11), (3.12), (l-deriv-2) and (l-deriv-3) we get

↑ (Σ) .M `
(ñ:L̃)l:a!〈V〉
−−−−−−−−→↑ (Σ)+ñ : T̃ .M′ (3.13)

↑ (Σ) .N `
(ñ:L̃)l:a?(V)
−−−−−−−−→↑ (Σ)+ñ : T̃ .N′ (3.14)

From the assumption that Σ `obs M or Σ `obs N we derive Σ `obs l :alive meaning

I(Σ) ` l :alive (3.15)

From (3.15) we derive
I(Σ) allows (ñ : T̃)l : a!〈V〉 (3.16)

and by (3.13), (3.16) and Proposition 3.5.6 we deduce

Σ .M `
(ñ:L̃)l:a!〈V〉
−−−−−−−−→ Σ′′ .M′

Chapter 3. Dπ with Location and Link Failure 55

Moreover, by (3.14), (3.15) and Lemma 3.5.15 we deduce

↑ (Σ) .N
(ñ:K̃)l:a?(V)
−−−−−−−−→↑ (Σ)+ñ : T̃ .N′

where K̃ = L̃/dom(ΣH) as required. �

We now turn our attention to the actual proof for the main proposition of this section,
namely that bisimulation, ≈, is contextual. We prove this by inductively defining the
largest contextual relation whose base element are bisimilar configurations and then
show its closure with respect to our derived actions. Based on such a proof, we still
require three (specific) lemmas to help us stitch up this proof and guarantee closure. The
first lemma is prompted by the first two conditions of the Decomposition Lemma 3.5.17,
namely that observing code may alter the state of the network by inducing failure. We
thus need the following lemma to guarantee closure.

Lemma 3.5.18 (Strong Failure versus Weak Failure). Suppose Σ1 .M1 ≈ Σ2 .M2. Then
there exists some M′2,M

′′

2 such that:

• Σ2 .M2
τ̂
|==⇒ Σ2 .M′2 and (Σ2 − l) .M′2

τ
|==⇒ (Σ2 − l) .M′′2

such that (Σ1 − l) .M1 ≈ (Σ2 − l) .M′′2

• Σ2 .M2
τ̂
|==⇒ Σ2 .M′2 and (Σ2−l↔k) .M′2

τ
|==⇒ (Σ2−l↔k) .M′′2

such that (Σ1−l↔k) .M1 ≈ (Σ2−l↔k) .M′′2

Proof. We here prove the first clause and leave the second similar clause for the interested
reader. If Σ1 0 l : alive then Σ1 − l is simply Σ1 and the result is trivial. Otherwise

Σ1 .M1
kill:l
7−→ Σ1 − l .M1 and hence Σ2 .M2

kill:l
|==⇒ Σ2 − l .M′′ for some Σ2 − l .M′′ such that

Σ1 − l .M1 ≈ Σ2 − l .M′′. By expanding our the derivation Σ2 .M
kill:l
|==⇒ (Σ2 − l) .M′′ we

get the required missing M′ to complete the proof. �

The next two proofs concern observing code. In the definition of contextual relations,
we validate observer code, O, with respect to the external view of a network Σ, that is
Σ `obs O. We here prove that such a relationship is preserved by actions and network
extensions that may involve revealing more hidden components to the observer.

Lemma 3.5.19 (Observers and Actions). If Σ `obs O and Σ . O
µ
7−→ Σ after µ . O′ then

(Σ after µ) `obs O′.

Proof. The proof is similar to that of Proposition3.5.13. We use Lemma 3.5.5 to infer the
structure of O, O′ from µ and Lemma 3.5.2 to infer the structure of Σ after µ and then
show that (Σ after µ) `obs O′. �

Lemma 3.5.20 (Observers and Network extensions). If Σ+n : U `obs O where Σ `obs U,
that is n is only linked to locations in the observable part of Σ and thus no hidden state is
revealed as a result of the extension, then Σ+n :T `obs O for any Twhere U = T/dom(ΣH).

Proof. The proof progresses by a simple induction on the structure of O. �

Chapter 3. Dπ with Location and Link Failure 56

We are finally in a position to prove that our bisimulation, ≈, is a contextual relation,
according to Definition 2.2.5.

Proposition 3.5.21 (Contextuality of Behavioural Equivalence). If two configurations are
bisimilar, they are also bisimilar under any context. Stated otherwise,I |= Σ1.M1 ≈ Σ2.M2

implies that for I ` O, T and n fresh in Iwe have:

• I |= Σ1.M1|O ≈ Σ2.M2|O and I |= Σ1.O|M1 ≈ Σ2.O|M2

• I+n :T |= Σ1+n :T.M1 ≈ Σ2+n :T.M2

Proof. The proof progresses by the inductive definition a relation R as the largest typed
relation over configurations satisfying:

R =

〈Σ1 .M1, Σ2 .M2〉 | Σ1 .M1≈Σ2 .M2

〈Σ1 .M1|O, Σ2 .M2|O〉
〈Σ1 .O|M1, Σ2 .O|M2〉

∣∣∣∣∣∣∣ Σ1 .M1RΣ2 .M2

〈Σ1+n :T .M1|O, Σ2+n :T .M2|O〉

∣∣∣∣∣∣∣ I |= Σ1 .M1 R Σ2 .M2,

I ` T and n is fresh

〈Σ1 . (νn :T)M1, Σ2 . (νn :U)M2〉 | Σ1+n :T.M1 R Σ2+n :U.M2

and showing that R ⊆≈; since ≈ is the biggest possible relation, this would mean that it
is contextual. We note that our definition of contextual relations, Definition 2.2.5, would
amount to a special case of the contexts defined for R because it is only defined in terms
of the second and third cases of the relation R, namely contexts involving more systems
in parallel and contexts involving a bigger network. The fourth and last context case, that
of name scoping, is required to ensure the closure of R. All this is fairly standard with the
exception that the type at which names are scoped in the fourth case, that is T and U, may
not be the same because of the potentially different hidden states in Σ1 and Σ2.

Before we delve into the actual proof we also note that Lemma 3.5.18 can be easily
extended from ≈ to R as:

Lemma 3.5.22. If Σ1.M1 R Σ2.M2, then there exist some M′2,M
′′

2 such that:

• Σ2 .M2
τ̂
=⇒ Σ2 .M′2 and Σ2 − l .M′2

τ
=⇒ Σ2 − l .M′′2 , where Σ1 − l .M1 R Σ2 − l .M′′2

• Σ2 .M2
τ̂
=⇒ Σ2 .M′2 and (Σ2 − l↔ k) .M′2

τ
=⇒ (Σ2 − l↔ k) .M′′2 , where (Σ1 − l↔

k) .M1 R (Σ2 − l↔k) .M′′2

The proof for the above is by induction on why Σ1 .M1RΣ2.M2; the base case follows
from Lemma 3.5.18 and the three inductive cases are straightforward.

To prove that R is a bisimulation, we take an arbitrary I |= Σ1 .M1 R Σ2 .M2 and
any action Σ1 .M1

µ
7−→ Σ′1 .M′1; we then have to show that Σ2 .M2 can match this move

Chapter 3. Dπ with Location and Link Failure 57

by performing a weak action Σ2 .M2

µ̂

|==⇒ Σ′2 .M′2 such that I′ |= Σ′1 .M′1 R Σ
′

2 .M′2.
The proof progress by induction on why I |= Σ1 .M1 R Σ2 .M2; The first case, that is if
I |= Σ1 .M1 ≈ Σ2 .M2 is immediate; the remaining three cases require a bit more work.
We here focus on the second case, where

Σ1 .M1|O R Σ2 .M2|O because I|= Σ1 .M1 R Σ2 .M2 and I ` O (3.17)

which is also the most involving and leave the remaining two cases for the interested
reader.

We thus assume Σ1 .M1|O
µ
7−→ Σ′1 .M′1. We decompose this action using the Decom-

position Lemma 3.5.17 and focus on the most difficult case, where

M′1 is (ν ñ : T̃)M′1|O
′, µ is τ and Σ′1 = Σ1 (3.18)

Σ1 .M1 `
(ñ:L̃)l:a!〈V〉
−−−−−−−−→ Σ1+ñ : T̃ .M′1 (3.19)

Σ1 .O `
(ñ:K̃)l:a?(V)
−−−−−−−−→ Σ1+ñ : Ũ .O′ where Ũ = T̃/dom(Σ1H) (3.20)

From (3.17) and (3.19) we derive the matching weak action

Σ2 .M2

(ñ:L̃)l:a!〈V〉
|==⇒ Σ′2+ñ : W̃ .M′2 R Σ1+ñ : T̃ .M′1 (3.21)

where we note the different types T̃ and W̃ at which the two networks Σ1 and Σ2 are
updated; there are updates to the hidden part of the networks which we abstract away in
the linktype L̃. From (3.21) and the hypothesis of (l-deriv-2) we obtain

Σ2 .M2
(ñ:W̃)l:a!〈V〉
=⇒ Σ′2+ñ : W̃ .M′2

which can be decomposed as

Σ2 .M2 =⇒ Σ′′2 .M′′2 (3.22)

Σ′′2 .M′′2
(ñ:W̃)l:a!〈V〉
−−−−−−−−→ Σ′′2 +ñ : W̃ .M′′′2 (3.23)

Σ′′2 +ñ : W̃ .M′′′2 =⇒ Σ′2+ñ : W̃ .M′2 (3.24)

From (3.22), I ` O and (l-par-ctxt) we get

Σ2 .M2|O =⇒ Σ′′2 .M′′2 |O (3.25)

From the fact that I(Σ1) = I(Σ2) and I(Σ1+ñ : T̃) = I(Σ′2+ñ : W̃) from (3.21) we know that
the visible part of Σ′′2 and Σ′2 did not change as a result of the silent transitions in (3.22)
and (3.24) and thus

I(Σ′′2) = I(Σ′2) = I(Σ2) = I(Σ1) (3.26)

and by (3.26), (3.20) and Lemma 3.5.6 we get

Σ′′2 .O
(ñ:Ũ)l:a?(V)
−−−−−−−−→ Σ′′2 +ñ : Ũ .O′ where Ũ = W̃/dom(Σ′′2 H) (3.27)

At this point we note that from (3.26) and (3.17) we derive

Σ′′2 `obs O (3.28)

Chapter 3. Dπ with Location and Link Failure 58

and from (3.27), (3.28), Lemma 3.5.19 and Lemma 3.5.20 we obtain

I(Σ′′2 +ñ : Ũ) ` O′ and I(Σ′′2 +ñ : W̃) ` O′ (3.29)

Combining the derived action of (3.23) using (l-deriv-2), the derived action of (3.27) using
(l-deriv-3), (3.28), and the Composition Lemma 3.5.16, we obtain

Σ′′2 .M′′2 |O
τ
−→ Σ′′2 . (ν ñ : W̃)M′′′2 |O

′ (3.30)

From (3.24), (3.29) and (l-par-ctxt) we obtain

Σ′′2 +ñ : W̃ .M′′′2 |O
′ =⇒ Σ′2+ñ : W̃ .M′2|O

′

and by applying (l-rest) we get

Σ′′2 . (ν ñ : W̃)M′′′2 |O
′ =⇒ Σ′2 . (ν ñ : W̃)M′2|O

′ (3.31)

and thus by combining (3.25), (3.30) and (3.31) and then applying (l-deriv-1) we obtain the
matching move

Σ2 .M2|O
τ
|==⇒ Σ′2 . (ν ñ : W̃)M′2|O

′ (3.32)

The only thing remaining is to show that the two residuals are in R, that is

Σ1 . (ν ñ : T̃)M′1|O
′
R Σ′2 . (ν ñ : W̃)M′2|O

′

From (3.21) we know
I
′
|= Σ1+ñ : T̃ .M′1 R Σ

′

2+ñ : W̃ .M′2 (3.33)

and from (3.29) and (3.33) we deduce I′ ` O′ and thus from the definition of Rwe obtain

I
′
|= Σ1+ñ : T̃ .M′1|O

′
R Σ′2+ñ : W̃ .M′2|O

′

and again from the last case of the definition of R

I |= Σ1 . (ν ñ : T̃)M′1|O
′
R Σ′2 . (ν ñ : W̃)M′2|O

′

as required. �

We now conclude this section by showing that bisimulation is sound with respect to
reduction barbed congruence.

Proposition 3.5.23 (Soundness).

I |= Σ1 .M1 ≈ Σ2 .M2 implies I |= Σ1 .M1 � Σ2 .M2

Proof. To prove the above statement, it is sufficient to check that ≈ satisfies the defining
properties of �. It is obviously reduction closed, from the relationship between τ-actions
and the reduction semantics given in Proposition 3.5.14. Barb preserving is also straight-
forward, from Proposition 3.5.5 and the direct relationship between barbs and output
actions. Finally, Proposition 3.5.21 proves that ≈ is also contextual. �

Chapter 3. Dπ with Location and Link Failure 59

3.5.3 Completness

In this section we prove that our bisimulation is also complete with respect to reduction
barbed congruence. This entails showing that reduction barbed congruence is preserved
by actions, based on the proof developed earlier in [HR04, HMR04]. At the heart of this
proof, we show that the effect of each external action can be mimicked precisely by a
specific context, a concept we refer to as definability.

We start this section by proving an obvious, though not explicit, property stating that
reduction babrbed congruence is preserved by scoping.

Proposition 3.5.24 (Scoping and reduction barbed congruence). If two configurations
are reduction barbed congruent, scoping a channel or location name on both sides would
still yield two reduction barbed congruent configurations. Stated otherwise,

(ΣM + n :T) .M � (ΣN + n :U) .N implies ΣM . (νn :T)M � ΣN . (νn :U)N

Proof. We define the relation R as:

R =
{
〈ΣM . (νn :T)M, ΣN . (νn :U)N〉 (ΣM + n :T) .M � (ΣN + n :U) .N

}
and prove thatR has the defining properties of�. It is clearly reduction closed using (r-ctxt-

res); it is also easy to show it is barb preserving since ΣM . (νn :T)M ⇓a@l implies (ΣM + n :
T) .M ⇓a@l. Finally, contextuality is also trivial. As an example, assume I(ΣM) ` O and
we have to show that

ΣM .O | (νn :T)(M) R ΣN .O | (νn :U)N.

It is clear that ΣM + n : T `obs O and ΣN + n : U `obs O and thus by contextuality of �, we
have (ΣM + n :T) .O |M � (ΣN + n :U) .O |N from which the result follows. �

Our external actions can affect both the system part of our configuration as well
as the network representation and the main differences between the definability proofs
presented here and those in [HR04, HMR04] lie in the effects an action has on the network
representation. In the following proofs, we model an action’s effect on a network using
two different kinds of new construct introduced in DπF; the first kind of constructs
induce faults as changes in the network representation and these include kill and break l;
the second kind observe the current state of the network and the only example is the
ping l.PdQe construct. The first lemma we consider, establishes a relationship between
the labels kill : l and l= k and the constructs inducing faults in the observable network
representation; this proof is complicated by the asynchronous nature of the constructs kill

and break l.

Lemma 3.5.25 (Inducing faults).

• Suppose Σ `obs l : alive. Then:

– Σ .N kill:l
7−→ Σ′ .N′ implies Σ .N|l[[kill]] −→ Σ′ .N′

Chapter 3. Dπ with Location and Link Failure 60

– Σ .N|l[[kill]] −→ Σ′ .N′, where Σ′ 6`obs l :alive implies

Σ .N kill:l
7−→ Σ′ .N′′ such that N′ ≡ N′′

• Suppose Σ `obs l↔k. Then:

– Σ .N `l=k
−−−→ Σ′ .N′ implies Σ .N|l[[break k]] −→ Σ′ .N′

– Σ .N|l[[break k]] −→ Σ′ .N′, where Σ′ 6`obs l↔k implies

Σ .N `l=k
−−−→ Σ′ .N′′ such that N′ ≡ N′′

Proof. The first clause for the action kill : l is proved by induction on the derivation

Σ . N kill:l
−→ Σ′ . N′. The second clause uses induction on the structure of Σ . N, with a

subsidiary induction on the derivation of Σ .N|l[[kill]] −→ Σ′′ .N′′. The proof for the two
clauses of the action l=k is similar. �

In the next lemma we show that for any network Σ, the context can determine the
exact state of the observable network ΣO. We define the process verStatIk (x) that runs at a
location k, which should be connected to all observable locations in a networkΣ. It returns
an output on the parameterised channel x if and only if I(Σ) = I. Its implementation is
based on the state observing construct pingl.PdQe: the sub-process, verObsIk (x), first checks
that all inaccessible locations in I, expressed as I′ + l :∅ below, are indeed inaccessible and
then checks that the accessible locations, expressed as I+ l :Lwhere L , ∅, satisfy the state
declared in I, using the sub-process verLock(x, y1, y2, z). This last subprocess, goes to the
parameterised location x and checks that all its live connections and dead connections
correspond to y1 and y2 respectively, returning a output on channel z if it is the case.
The following lemma formalises the intuition that when run at an appropriate location,
verStatIk (x) does satisfy the intended behaviour.

verStatIk (x) ⇐ (ν sync)

verObsIk (sync)
| sync?(). . . . sync?()︸ ︷︷ ︸

|loc(N)|

.x!〈〉

verObs〈∅,∅〉k (x) ⇐ 0

verObsI+n:∅
k (x) ⇐ verObsIk (x) | ping l.dy!〈〉e

verObsI+l:L
k (x), L,∅ ⇐ verObsIk (x) | verLock(l,dom(L), loc(IN)/dom(L), x)

verLock(x, y1, y2, z) ⇐ (ν sync)go x.

∏
l∈y1

go l.go x.sync!〈〉

|

∏
l∈y2

ping l.dsync!〈〉e

| sync?(). . . . sync?()︸ ︷︷ ︸
|loc(IN)|

.go k.z!〈〉

Lemma 3.5.26 (Observable Network). If for arbitrary network representation Σ:

Σ+ = Σ + k0 :loc[a,dom(ΣO)] + :ch

Chapter 3. Dπ with Location and Link Failure 61

Then,
Σ+ . k0[[verStatIk0

()]] −→∗ Σ+ . k0[[!〈〉]] iff I = I(Σ)

Proof. We prove this lemma by contradiction. We analyse all the possible cases why
I , I(Σ) and then show that for each of these cases,

Σ+ . k0[[verStatIk0
()]] 6−→∗ Σ+ . k0[[!〈〉]] �

We are now in a position to prove definability for every external action in DπF. We
use bn(µ) to denote the bound names (and their corresponding types) in the action µ;
note this is empty for all actions apart from bound input and bound output. In order to
complete the proof, we also require the following lemma.

Lemma 3.5.27. If n < fn(N) and Σ ` N then

• Σ + n : T .N −→ Σ′ + n : T .N′ implies Σ .N −→ Σ′ .N′

• Σ .N −→ Σ′ .N′ implies Σ + n : T .N −→ Σ′ + n : T .N′

Proof. The proofs are by induction on the structure of N for Σ ` N and by induction on
the derivations of Σ .N −→ Σ′ .N′ and Σ + n : T .N −→ Σ′ + n : T .N′. �

Proposition 3.5.28 (Definability). Assume that for an arbitrary network representation
Σ, the network Σ+ denotes:

Σ+ = Σ + k0 :loc[a,dom(ΣO)], :ch, :ch

where k0, and are fresh to ΣN . Thus, for every external action µ and network
representation Σ, every non-empty finite set of names Nm where ΣN ⊆ Nm, every fresh
pair of channel names , < Nm, and every fresh location name k0 < Nm connected
to all observable locations in ΣO, there exists a system Tµ(Nm, , , k0) with the
property that Σ+ `obs Tµ(Nm, , , k0), such that:

1. Σ .N
µ
−→ Σ′+bn(µ) .N′ implies

Σ+ .N |Tµ(Nm, , , k0) =⇒ Σ′+ . (νbn(µ)) N′ | k0[[!〈bn(µ)〉]]

2. Σ+ .N |Tµ(Nm, , , k0) =⇒ Σ′+ .N′,
where Σ′+ .N′ ⇓@k0 , Σ

′
+ .N′ 6⇓@k0 implies that

N′ ≡ (νbn(µ))N′′|k0[[!〈bn(µ)〉]] for some N′′

such that Σ .N
µ
=⇒ Σ′+bn(µ) .N′′.

Proof. We have to prove that the above two clauses are true for all of the four external
actions. If µ is the bound input action (ñ : L̃)l : a?(V), where L̃ = lnk(ñ : T̃,Σ) for some T̃, the
required system is

(ν ñ : T̃)(l[[a!〈V〉.go k0.?().!〈〉]] | k0[[!〈〉]])

Chapter 3. Dπ with Location and Link Failure 62

For the output case where µ is (ñ : L̃)l : a!〈V〉, the required Tµ(Nm, , , k0) is

k0[[!〈〉]] |

l

a?(X).(ν sync)

m∏
i=1

if xi<Nm.sync!〈〉 |
|X|∏

j=m+1

if x j=v j.sync!〈〉

| sync?()..sync?()︸ ︷︷ ︸
|X|

.go k0.(νc)

verNwStatIk0

(x1..xm, c)

| c?(x).

 ?().!〈x1..xm〉

|go x.kill

such that

verNwStatIk0
(x1 . . . xm, y) ⇐ (ν k′ :Tk′)go k′.(νd)

 verStatI+(x1..xm:K̃)
k′ (d)

| d?().go k0.y!〈k′〉

and Tk′ = loc[a,Nm∪{x1..xm}], K̃ = L̃{x1..xm/ñ}

For the sake of presentation, we assume that the first v1 . . . vm in V = v1 . . . v|V| in µ are
bound, and the remaining vm+1 . . . v|V| are free; a more general test can be construct for
arbitrary ordering of bound names in V using the same principles used for this test. We
also use the conditional if x < Nm.P as an abbreviation for the obvious nested negative
comparisons between x and each name in Nm.

The test works in two stages. Similar to the tests in [HR04, HMR04], the first stage
performs the appropriate test for every input variable xi, releasing sync!〈〉 if the test is
successful; if xi is expected to be a bound name in µ, then we make sure it is fresh to
Nm; otherwise xi is matched with the corresponding free name. Another process waits
for input on |V| successful tests, that is |V| inputs on the scoped channel sync and then
releases the code for the second stage.

The second stage deals with the verification of any new live connections and locations
that become reachable as a result of the fresh names inputted. To avoid complicated
routing to reach these new locations, verNwStatIk0

(x1 . . . xm, y) creates a new location k′

from the location k0, with a location type that attempts to connect to any name in Nm
together with the fresh bound names just inputted x1 . . . xm; recalling Example 3.2.1, we
note that the purpose of this procedure is to short-circuit our way to the newly reachable
locations. We afterwards run verStatI+(x1..xm:K̃)

k′ (c) from this new location k′, to verify that
the new observable network state is indeed I + ñ : L̃. If this is the case, we signal on
the continuation channel d the fresh location k′, which triggers a process that goes back
to location k0 and signals once again on another continuation channel, denoted by the
variable y, but eventually parameterised by the scoped channel c in the testing context
above. This triggers two parallel processes; the first one consumes the barb and
releases an output on with the bound names x1 . . . xm, whereas the second one goes
back to k′ and kills it for cleaning up purposes.

In addition to bound input and bound output, we have two non-standard actions
kill : l and l=k and the test required for these actions are :

l[[kill]] | k0[[!〈〉]] | k0[[ping l.ping l.d?().!〈〉e]]

Chapter 3. Dπ with Location and Link Failure 63

and

l[[break k]] | k0[[!〈〉]] | (ν sync)

l[[ping k.ping k.dgo k0.sync!〈〉e]]
| k[[ping l.ping l.dgo k0.sync!〈〉e]]
| k0[[sync?().sync?().?().!〈〉]]

respectively.

Since inducing faults is an asynchronous operation, the actual killing of a location or
breaking of a link is independent of its observation. The observation of a kill at l is carried
out from k0 by two successive pings, first observing that l is alive and subsequently
observing that l has become dead. The observation of a link break between l and k
is slightly more complicated, because it needs to be tested from one of the connected
locations l and k. The test is carried out, as in the previous case, through two successive
pings; the first ping determines that k is accessible from l (or viceversa) while the second
determine that it is not anymore. However, k (or viceversa l) can become inaccessible
because it died and not because the link broke; to ensure that k (or l) became inaccessible
because of a link failure, we perform the test from both endpoints, l and k, and synchronise
at k0.

We next give an outline of the proof for one of the non-standard actions, kill : l; the
proof of definability for l= k is similar, whereas the proof for the remaining two actions

can be extracted from [HR04, HMR04]. For the first clause, from Σ . N `kill:l
−−−→ Σ′ . N′ we

know thatΣ `obs l :alive, thusΣ+ `obs l :alive, which means we can perform the reduction
involving a positive ping:

Σ+ .N | l[[kill]] | k0[[!〈〉]] | k0[[ping l.ping l.d?().!〈〉e]] −→
Σ+ . l[[kill]] | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]]

(3.34)

From Σ .N kill:l
−→ Σ′ .N′, I(Σ+) allows kill : l and Proposition 3.5.6 we derive

Σ+ .N kill:l
−→ Σ′+ .N′ where Σ+ `obs l :alive and Σ′+ 6`obs l :alive (3.35)

and from (3.35) and Lemma 3.5.25 we get

Σ+ .N | l[[kill]] −→ Σ′+ .N′

and (r-par-ctxt) we derive

Σ+ .N | l[[kill]] | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] −→
Σ′+ .N′ | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]]

(3.36)

Subsequently we derive the sequence of reductions

Σ′+ .N′ | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] −→
Σ′+ .N′ | k0[[!〈〉]] | k0[[?().!〈〉]] −→

Σ′+ .N′ | k0[[!〈〉]]
(3.37)

Combining the reductions in (3.34), (3.36) and (3.37) we prove the first clause.

Chapter 3. Dπ with Location and Link Failure 64

For the second clause, the set of barbs Σ′+ . N′ ⇓@k0 , Σ
′
+ . N′ 6⇓@k0 can only be

obtained through the sequence of reductions

Σ+ .N | l[[kill]] | k0[[!〈〉]] | k0[[ping l.ping l.d?().!〈〉e]] =⇒ (3.38)

Σ1
+ .N1

| l[[kill]] | k0[[!〈〉]] | k0[[ping l.ping l.d?().!〈〉e]] −→

Σ1
+ .N1

| l[[kill]] | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] =⇒ (3.39)

Σ2
+ .N2

| l[[kill]] | k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] −→ (3.40)

Σ2
+ − l .N2

| k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] =⇒ (3.41)

Σ3
+ − l .N3

| k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] −→

Σ3
+ − l .N3

| k0[[!〈〉]] | k0[[?().!〈〉]] =⇒ (3.42)

Σ4
+ − l .N4

| k0[[!〈〉]] | k0[[?().!〈〉]] −→

Σ4
+ − l .N4

| k0[[!〈〉]] =⇒ (3.43)

Σ′+ .N′ | k0[[!〈〉]]

From (3.40) and Lemma 3.5.25 we deduce

Σ2
+ .N2

| k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]] `kill:l
−−−→

Σ2
+ − l .N2

| k0[[!〈〉]] | k0[[ping l.d?().!〈〉e]]

and by the inductive hypothesis of (l-par-ctxt), the fact that I(Σ2) allows kill : l and
Proposition 3.5.6, we derive

Σ2 .N2 kill:l
−→ Σ2

− l .N2 (3.44)

From (3.38), (3.39), (3.41), (3.42) and (3.43) and (r-par-ctxt) obtain

Σ+ .N =⇒ Σ1
+ .N1 =⇒ Σ2

+ .N2

Σ2
− l+ .N2 =⇒ Σ3

+ .N3 =⇒ Σ4
+ .N4 =⇒ Σ+ .N′

(3.45)

and from (3.45) and Lemma 3.5.27 we obtain

Σ .N =⇒ Σ1 .N1 =⇒ Σ2 .N2

Σ2
− l .N2 =⇒ Σ3 .N3 =⇒ Σ4 .N4 =⇒ Σ′ .N′

(3.46)

Finally, using Proposition 3.5.14 to convert the reductions in (3.46) into weak silent actions
and merging these with (3.44) we obtain as required

Σ .N
kill:l
|==⇒≡ Σ′ .N′ �

The result of Proposition 3.5.28 means that intuitively we can provoke the action
Σ .N

µ
=⇒ Σ′ .N′ by extending Σwith a fresh location k0 and fresh channels and

and placing N in parallel with Tµ(Nm, , , k0) for a suitably chosen Nm. But in the
case of actions where bn(µ) , ∅ we do not get precisely the residual Π′ . N′ but instead
Σ′′+ . (νbn(µ)) N | k0[[!〈bn(µ)〉]]where Σ′′ + bn(µ) = Σ′. We therefore state and prove a
variant the extrusion lemma in [HR04, HMR04], which enables us to recover the residual
Σ′ . N′ from Σ′′+ . (νbn(µ))N | k0[[!〈bn(µ)〉]]; this lemma uses the preliminary lemma
below, which we chose to extract as an important step of the proof.

Chapter 3. Dπ with Location and Link Failure 65

Lemma 3.5.29. Suppose δ, k0 are fresh to the systems M, k[[P(X)]]. Suppose also that k ∈ C.
Then:

Σ |= (ν ñ : T̃)(M | k[[P(ñ)]]) �
(ν ñ : T̃)(ν δ :ch)(ν k0 :loc[a, C])(M | k0[[δ!〈ñ〉]] | k0[[δ?(X).go k.P(X)]])

Proof. We note that the left hand system can be obtained from the right hand system in
two reductions, communication on δ and migrating from k0 to k, that cannot be interfered
with by any context. It is easy to come up with a bisimulation proving that the two
systems are reduction barbed congruent. �

Lemma 3.5.30 (Extrusion). Suppose , , k0 are fresh to the network representations
ΣM, ΣN, M and N. Then

I |= ΣM
+ . (ν ñ : T̃)M|k0[[!〈ñ〉]] � ΣN

+ . (ν ñ : Ũ)N|k0[[!〈ñ〉]]
implies ΣM + ñ : T̃ .M � ΣN + ñ : Ũ .N

Proof. We define the relation R as:

R =

 〈ΣM + ñ : T̃ .M,ΣN + ñ : Ũ .N〉

∣∣∣∣∣∣∣ ΣM
+ . (ν ñ : T̃)M|k0[[!〈ñ〉]] �
ΣN
+ . (ν ñ : Ũ)N|k0[[!〈ñ〉]]

and show that R satisfies the defining properties of �. It is obviously reduction closed.
We here outline the proof for the barb preserving and contextuality properties.

Suppose ΣM + ñ : T̃ . M R ΣN + ñ : Ũ . N and ΣM + ñ : T̃ . M ⇓a@l; we have to
show ΣN + ñ : Ũ . N ⇓a@l. If l, a < ñ this is straightforward since in this case ΣM

+ . (ν ñ :
T̃)M|k0[[!〈ñ〉]] ⇓a@l, by barb preserving, ΣN

+ . (ν ñ : Ũ)N|k0[[!〈ñ〉]] ⇓a@l which can only
be because ΣN + ñ : Ũ .N ⇓a@l. So suppose, as an example, that a ∈ ñ. Even though we no
longer have that ΣM

+ . (ν ñ : T̃)M|k0[[!〈ñ〉]] ⇓a@l, the restricted name a can be extruded
via through the system:

Ta ⇐ k0[[?(X).mv l(Xa?().go k0.δ!〈〉)]]

where δ is a fresh channel and Xa is the variable xi where a is bound on input. Since
ΣM .M ⇓a@l it follows that

ΣM
+ + δ :ch . (ν ñ : T̃)M|k0[[!〈ñ〉]] |Ta ⇓δ@k0

From the definition of �, we know

ΣM
+ + δ :ch . (ν ñ : T̃)M|k0[[!〈ñ〉]] |Ta � Σ

N
+ + δ :ch . (ν ñ : Ũ)N|k0[[!〈ñ〉]] |Ta

and by barb preservation we conclude

ΣN
+ + δ :ch . (ν ñ : Ũ)N|k0[[!〈ñ〉]] |Ta ⇓δ@k0

which only be because ΣN .N ⇓a@l as required.
The case for when n = l is similar, only that instead of Ta we use the system:

Tl ⇐ k0[[?(X).(ν k : (dom(Σ′
O

)∪Xl))go k,Xl.a?().go k, k0.δ!〈〉]]

Chapter 3. Dπ with Location and Link Failure 66

This system is similar to Ta with the exception that a specific location k is created so that
we short-circuit our route to l, similar to the procedure we used earlier in the definability
proof of bound outputs (see Proposition 3.5.28).

We still have to show that R is contextual. As an example we show that it is preserved
by parallel system contexts and leave the simpler case, that for network extensions, to the
interested reader. Suppose I |= ΣM .M R ΣN . N; we have to show that for arbitrary
k[[P]] such that I ` k[[P]] then we have I |= ΣM .M | k[[P]] R ΣN .N | k[[P]].

By definition of R, we have I |= ΣM .M R ΣN .N because

I
′
|= ΣM

+ . (ν ñ : T̃)M|k0[[!〈ñ〉]] � ΣN
+ . (ν ñ : Ũ)N|k0[[!〈ñ〉]] (3.47)

We define the system

Tk[[P]] ⇐ k0[[?(X).go k′0.δ!〈X〉 | (X)go k.P]]

where δ, k′0 are fresh names and (X)go k.P substitutes all occurrences of ñ in go k.P by the
appropriate variables xi ∈ X. From I ` k[[P]] we deduce that I′′ ` Tk[[P]] for I′′ = I′ + δ :
ch + k′0 :loc[a,dom(I′

O
)] and subsequently, by contextuality of � and (3.47), we obtain

I
′′
|= ΣM

++ .M′ |Tk[[P]] � Σ
N
++ .N′ |Tk[[P]] (3.48)

where

M′ = (ν ñ : T̃)M | k0[[!〈ñ〉]]

N′ = (ν ñ : Ũ)N | k0[[!〈ñ〉]]

ΣM
++ = ΣM

+ + δ :ch + k′0 :loc[a,dom(I′
O

)]

ΣN
++ = ΣN

+ + δ :ch + k′0 :loc[a,dom(I′
O

)]

From (3.48) and Proposition 3.5.24 we deduce that we can scope and k0 to obtain

I
′
|= ΣM

+ . (ν , k0)M′ |Tk[[P]] � Σ
N
+ . (ν , k0)N′ |Tk[[P]] (3.49)

and by Lemma 3.5.29 and we get

I
′
|= ΣM

+ . (ν ñ : T̃)M | k[[P]] | k′0[[δ!〈ñ〉]] � ΣN
+ . (ν ñ : T̃)N | k[[P]] | k′0[[δ!〈ñ〉]] (3.50)

from which, by definition ofR, we deriveI |= ΣM .M|k[[P]] R ΣN .N|k[[P]] as required. �

Proposition 3.5.31 (Completness).

I |= Σ1 .M1 � Σ
2 .M2 implies I |= Σ1 .M1 ≈ Σ

2 .M2

Proof. Suppose Σ1 .M1
µ
7−→ Σ1

1 .M′1; we must find a move Σ2 .M2

µ̂

|==⇒ Σ2
1 .M′2 such

that Σ1
1 .M′1 � Σ

2
1 .M′2. If µ is an internal move then the matching move is obtained

from the fact that � is reduction closed, together with Proposition 3.5.14. If µ is an
external action, then by choosing Nm so that it contains all the free names in IN and

Chapter 3. Dπ with Location and Link Failure 67

choosing fresh , , k0, from the first part of Proposition 3.5.28 and the assumption
Σ1 .M1

µ
7−→ Σ1

1 + bn(µ) .M′1 we obtain

Σ1
+ .M1|Tµ(Nm, , , k0) =⇒ Σ1

1+ . (νbn(µ))M′1 | k0[[!〈bn(µ)〉]]

By contextuality and reduction closure of �, we know that there is a matching move

Σ2
+ .M2|Tµ(Nm, , , k0) =⇒ Σ .N

for some Σ . N such that Σ1
1+ . (νbn(µ))M′1 | k0[[!〈bn(µ)〉]] � Σ . N. This in turn

means that Σ . N ⇓@k0 and Σ . N 6⇓@k0 and so the second part of Proposition 3.5.28
now gives that Σ . N ≡ Σ2

1+ . (νbn(µ))M′2 | k0[[!〈bn(µ)〉]] for some Σ2
1+, M′2 such that

Σ2 .M2

µ

|==⇒ Σ2
1 + bn(µ) .M′2. This is the required matching move, since the Extrusion

Lemma 3.5.30, gives us the required

Σ1
1 + bn(µ) .M′1 � Σ

2
1 + bn(µ) .M′2 �

3.6 Summary

In this chapter we have carried over the work presented in Chapter 2 and extended it
to obtain a simple adaptation of Dπ, in which there is an explicit representation of the
underlying network on which processes execute, exhibiting both node and link failures;
a core aspect of this adaptation is the encoding of node status and connections as type
information. We then defined a reduction semantics to describe the behaviour of systems
in the presence of node and link failures; afterwards we applied techniques for actions
dependent on the observer’s knowledge, developed for the π-calculus in [HR04] and Dπ
in [HMR04], to characterise a natural notion of barbed congruence. Our main result is a
fully-abstract bisimulation equivalence with which we can reason about the behaviour of
systems in the presence of dynamic network failures. To the best of our knowledge, this is
the first time system behaviour in the presence of link failure has ever been investigated.

We chose to develop the theory in terms of the calculus itself, despite the widely held
view that representation of nodes only is sufficient; this would typically entail encoding
a link between location l and k as an intermediary node lk, encoding migration from l to
k as a two step migration from l to lk and lk to k and finally encoding link failure as the
intermediary node lk failing. We believe that a calculus with partial connection between
nodes is very natural in itself since WANs are often not a clique. Our calculus also gives
rise to an interesting theory of partial views that we believe deserves to be investigated
in its own right. In addition, we also wanted to explore the interplay between node
and link failure and their respective observation from the software’s point of view. With
these points in mind, we postulate that any such encoding of DπF- expressing both node
and link failure - in terms of a node failure only calculus would be cumbersome to use
and the corresponding theory of partial views would be too complicated to develop.
Moreover, it is unlikely that this resultant theory would be fully abstract, due to the fact
that any encoding would typically decomposes atomic reductions such as migration into
sub-reductions, which in turn affects the resulting bisimulation equivalence; see [GG89].

Chapter 3. Dπ with Location and Link Failure 68

Rather than being a body of work that could be directly applied to real case scenarios,
we believe that the work in this Chapter is best viewed as a succinct well-founded
framework from which numerous variations could be considered. Having said this, we
feel that our framework, as it currently stands, lends itself well to the study of distributed
software that needs to be aware of the dynamic computing context in which it is executing;
various examples can be drawn from ad-hoc networks, embedded systems and generic
routing software. In these settings, the software typically discovers new parts of the
neighbouring network at runtime and updates its knowledge of the current underlying
network with changes caused by failure.
+

Chapter 4

Fault Tolerance

In this chapter we carry over the work done in Chapter 2 to study fault tolerant systems
in DπLoc, a distributed calculus that expressed node failure only. In § 4.2, we introduce
a typed version of the language called typed DπLoc , where the types are used to define
a restricted observer view of the system. This typed restricted observer view is then
used as a foundation for the definition of fault tolerance, which we develop in § 4.3.
We subsequently develop bisimulation techniques in § 4.4 that enable us to prove fault
tolerant properties of systems.

4.1 Motivation

Distributed computing lends itself very well to fault tolerance because distribution yields
natural notions of partial failure, that is faults that affect a subset of the computation.
Faults inherent to distribution, such as unstable connections between locations and dead
locations without processing power, lead to failure such as unreliable migration across
locations and halted computation limited to the faulty location, respectively. As a result,
this setting also provides scope for space and time redundancy across multiple locations
in terms of replication.

With reference to the review of § 1.4, in the sequel we base our discussion on simple
examples using stateless replicas that are invoked only once; these can alternatively be
viewed as read-only replicas. This simplification obviates the need for additional ma-
chinery to sequence multiple requests (in the case of active replication) or synchronise the
state of replicas (in the case of passive replication); as a result management techniques
based on lazy replication simply collapse into passive replication category. Nevertheless,
these simple examples still capture the essence of the concepts we chose to study.

Example 4.1.1. Consider the DπLoc systems server1..server3, three server implementa-
tions similar to the ones seen earlier in Example 2.2.9, accepting client requests on channel
req with two arguments, x being the value to process and y being the channel name on

Chapter 4. Fault Tolerance 70

which the answer is returned:

server1 ⇐ (ν data)

 l[[req?(x, y).go k1.data!〈x, y, l〉]]
| k1[[data?(x, y, z).go z.y!〈 f (x)〉]]

server2 ⇐ (ν data)

l

req?(x, y).(νsync)

go k1.data!〈x, sync, l〉
| go k2.data!〈x, sync, l〉
| sync?(x).y!〈x〉

| k1[[data?(x, y, z).go z.y!〈 f (x)〉]]
| k2[[data?(x, y, z).go z.y!〈 f (x)〉]]

server3 ⇐ (ν data)

l

req?(x, y).(νsync)

go k1.data!〈x, sync, l〉
| go k2.data!〈x, sync, l〉
| go k3.data!〈x, sync, l〉
| sync?(x).y!〈x〉

| k1[[data?(x, y, z).go z.y!〈 f (x)〉]]
| k2[[data?(x, y, z).go z.y!〈 f (x)〉]]
| k3[[data?(x, y, z).go z.y!〈 f (x)〉]]

The theory developed in Chapter 2 enabled us to differentiate between these three

implementations, based on the different behaviour observed when put in parallel with
systems such as

client ⇐ l[[req!〈n, ret〉]]

In this Chapter, we would like to say more about these three implementations. In
particular, whereas server1 holds a single remote copy of its database, server2 and server3

keep multiple redundant copies distributed at k1, k2 and k3; moreover, they employ them
is specific manner to reduce the dependency on these remote locations. Stated otherwise,
in a setting where locations may incur faults, server2 seems to be more fault tolerant than
server1 because it preserves its behaviour when at most one (location) fault is induced in a
network with no faults. More formally, if we consider the network representation used
in § 2 of the form Π = 〈N ,A〉, where N = A = {l, k1, k2, k3} , that is all the locations are
alive, we are always guaranteed that

for i = 1..3, ∀ Π′,N if Π . server2 | client | ki[[kill]] −→∗ Π′ .N then Π′ .N ⇓ret@l

In contrast,

∃ Π′,N such that Π . server1 | client | k1[[kill]] −→∗ Π′ .N where Π′ .N 6⇓ret@l

Similarly, server3 is more fault tolerant than server1 and server2 because it preserves its
behaviour up to two faults induced, that is

for i, j = 1..3, we have
∀ Π′,N if Π . server3 | client | ki[[kill]] | k j[[kill]] −→∗ Π′ .N then Π′ .N ⇓ret@l

Chapter 4. Fault Tolerance 71

whereas

for any j = 1..3 ∃ Π′,N such that

Π . server1 | client | k1[[kill]] | k j[[kill]] −→∗ Π′ .N where Π′ .N 6⇓ret@l

∃ Π′,N such that

Π . server2 | client | k1[[kill]] | k2[[kill]] −→∗ Π′ .N where Π′ .N 6⇓ret@l

One way to envisage fault tolerance for the above configurations would be to use a
mechanism that separates a configuration into two parts: the observable part and hidden
part. Intuitively, fault tolerance would be defined with respect to observations such as
barbs, limited to the observable part; the hidden part of the configuration would delineate
where redundancy is held and where faults occur.

In the sequel, we define the observable and hidden parts of a configuration by par-
titioning the potentially failing entities, in our case locations, into two groups: public
and confined. The observable part of a configuration is defined in terms of the processes
located at public locations; a valid observer is therefore allowed to place code at public lo-
cations only. The hidden part of a configuration is similarly defined in terms of processes
located at confined locations; thus, redundancy would be located at confined locations.
Subsequently, our fault tolerance definition would be based on observations made on the
public part and would assume that faults are only induced on the confined part. Hence,
in Example 4.1.1, location l would be set as public whereas k1..3 would be set as confined.
The intuitions behind this setup are twofold:

• the public locations are dependable locations: we can assume, up to a high degree of
certainty, that they will not fail. Based on this dependability assumption, we allow
the observer to interact with the system through these locations.

• the confined locations are assume to be undependable, or else locations where we
do not have any guarantee that they will not fail. It seems natural to prohibit the
observer from using these locations, or else, only assume responsibility for observers
that use public locations. In accordance, we assume that these are the only locations
that can fail and these are the locations where we place redundancy to be able to
tolerate these faults.

It also seems natural to limit our definition of fault tolerance to configurations that ob-
serve this delineation. The rationale would be that valid obeserver that limit interactions
to reliable resources never end up using unrealiable resources as a result of interaction.
Stated otherwise, valid observers only expect to learn fresh reliable resource names through
scope extrusion. We explain this further in the following example.

Example 4.1.2. [Breaking the delineation] We have so far argued, at least informally, that
server2 in Example 4.1.1, exhibits fault tolerant properties because it preserves certain
observable behaviour when faults are induced. For instance, for observers such as client,
limited to the public location l, we have the property

∀ Π′,N if Π . server2 | client −→∗ Π′ .N then Π′ .N ⇓ret@l

Chapter 4. Fault Tolerance 72

and this property is preserved if one fault is induced,

for i = 1..3, ∀ Π′,N if Π . server2 | client | ki[[kill]] −→∗ Π′ .N then Π′ .N ⇓ret@l

In a value passing calculus such as DπLoc, we may however have the variant server:

server′2 ⇐ server2 | l[[a!〈k1〉]]

which breaks the delineation between the public locations (used by the system and
the observer) and confined locations (used only by the system). We note that server′2
communicates the confined value k1 at a public location l and this value may be obtained
by a valid observer listening on channel a at the public location l. More specifically, if we
consider the valid observer located at l

client′ ⇐ client | l[[a?(x).Q(x)]]

where Q(x) consists of public names only, then we have the reduction

Π . server′2 | client′ −→∗ Π′ . server2 | client | l[[Q(k1)]]

where the resulting observer, client | l[[Q(k1)]], is now also defined in terms of the confined
location k1. This may interfere with our intuition of fault tolerance so far. If for example
Q(x) = ping x.b!〈〉dc!〈〉e, the process Q(k) may perform simple observations from l that
change when failure occurs. Using the previous argument, in a setting with no faults, we
have the behaviour

∀ Π′,N if Π . server′2 | client′ −→∗ Π′ .N then Π′ .N ⇓b@l andΠ′ .N 6⇓c@l

On the other hand, when we induce a fault at k1 we may have the sequence of reductions
where

∃ Π′,N such that Π.server′2 | client′ | ki[[kill]] −→∗ Π′.N where Π′.N ⇓c@l andΠ′.N 6⇓b@l

Even worse, if Q(x) def
= go x.kill, then the resultant client | l[[Q(k1)]] would induce an addi-

tional fault which would interfere with the observation obtained from the server. More
specifically, while

∀ Π′,N if Π . server′2 | client′ −→∗ Π′ .N then Π′ .N ⇓ret@l

for the case were we try to induce a single fault at k2, we now have

∃ Π′,N such that Π . server′2 | client′ | k2[[kill]] −→∗ Π′ .N where Π′ .N 6⇓ret@l

since the client induced a second fault at k1. �

In the sequel, we limit our definition of fault tolerance to configurations thatnever
communicate confined values to observers. More specifically, in the next section, we
enrich DπLoc with a type system that uses types to partition resources into public and
confined and guarantees that all well formed configurations never violate the delineation
between the public part and the confined parts.

Chapter 4. Fault Tolerance 73

Table 15. Syntax of typed DπLoc

Types
T, U ::= loc[B, S] | ch〈B, W̃〉 S ::= a | d

W, Z ::= loc[B] | ch〈B, W̃〉 B ::= p | c

Processes
P,Q ::= . . . | (νn :T)P | . . .

Systems
M,N,O ::= . . . | (νn :T)N

4.2 Typed DπLoc

In Chapter 2 we used types to separate between channel names and location names and
also represent the state of locations: we used ch to denote channel names and loc[A]
to denote locations with state A, ranging over a (alive) or d (dead). Typed DπLoc is an
extension of DπLoc, where we enrich the type system to attain two aims:

1. We create a restricted observer view of the configuration based on typing (as opposed
to a restricted view based on reachability as in Chapter 3.

2. We guarantee that this view is never violated during any sequence of reductions
with observers that respect this restricted view.

We introduce the notion of stateless boundary types, ranged over by W, Z in Table 15,
which state whether a channel or a location name is public and confined, using the re-
spective tags p and c. Using this classification, we can create our restricted view of the
configuration: as the name suggests, public names can be used publicly, outside the scope
of a configuration by observers, whereas the use of confined names is limited to within
the configuration. Boundaries are not only set on location types, loc[B], as motivated
earlier in § 4.1, but also on channel types; moreover, the object type of channels, W̃, are
also specified and thus a channel is denoted as ch〈B, W̃〉. These additions are required to
allow the communication of confined values in a controlled manner and thus enabling us
to ensure that the observer restricted view is preserved.

Stateless boundary types are merged with the previous simple state types used in
Chapter 2 to obtain stateful boundary types, ranged over by T, U in Table 15. The only
difference between stateless and stateful boundary types are the way location types are
denoted: stateful location boundary types are represented as loc[B, A] where we also
represent the state of the location A; by contrast stateless location boundary types are
simply denoted as loc[B]. The channel types are the same for both stateful and stateless
boundary types. In Table 15, processes, P,Q, and systems, M,N, use stateful types,
declaring the state of the resource and its boundary level.

Chapter 4. Fault Tolerance 74

Definition 4.2.1 (Well Formed Typed Configuration). Systems in typed DπLoc are subject
to a typed network representation, Γ, a tuple of the form 〈T ,A〉where

• T is a set of tuples, {n1 : W1, . . . ,nm : Wm}, associating a stateless type to every defined
name in the network

• A is the liveset as before, consisting of a set of locations that are alive in the network,
A ⊆ loc(T).

The type system of typed DπLoc restricts well formed types through the use of purely
public types.

• A purely public stateless type, denoted by P, is defined as

P = loc[p] | ch〈p, P̃〉

and excludes public channels that communicate confined values.

• A well-formed type in typed DπLoc is either a (stateful or stateless) location type,
loc[B, S] or loc[B], a confined channel, ch〈c, W̃〉 or a purely public channel type
ch〈p, P̃〉.

A well-formed typed network representation Γ, is one such that every type used in ΓT is
a well-formed type. We say a configuration Γ .N in typed DπLoc is well-formed if:

• Γ is a well-formed typed network representation.

• N used only well-formed stateful types and is valid with respect to Γ, denoted as
Γ ` N, and defined in terms of the typing rules in Table 16.

Finally, an observer system O is valid with respect to a typed network representation Γ,
denoted as Γ `obs O, if it is well typed with respect to the public names declared in Γ,
denoted as pub(Γ) in Table 16; see Appendix for definition. �

The restriction on a well-formed configuration, imposed through purely public types,
is used to ensure that the public and confined views are never violated during reduction
(Example 4.1.2). Intuitively, since configurations can only use purely public types, then
by the definition of purely public channels, their object type is always a list of public
types: if the typing discipline is observed and the types of the values communicated on a
channel is matched with the object type, then we are guaranteed that no confined value
is ever communicated on a public channel. As a consequence, since observers are only
allowed to use public channels, they can never obtain any confined valued from purely
public types. In fact, a public channel used for communicating confined values does not
make much sense in our calculus because:

• an observer, limited only to public values, can never output on such a channel
because it does not have confined values to match the object type.

• an observer should not be allowed to input on such a channel because it would
obtain confined values, thereby violating the public view of the configuration.

Chapter 4. Fault Tolerance 75

As a result, whenever the system needs to communicate confined values, it needs to do
so using confined channel; as we have just mentioned, this however does not affect the
observer in any way.

The typing rules in Table 16, merely ensure that the typing in Γ is observed by the
system N. Thus, (t-out) checks that the output value matches the object type of the channel
whereas (t-in-rep) and (t-rest) ensure that the process P uses its bound variables according
to the type assigned to them; the remaining rules are straightforward. In fact, we note that
the only rules where boundary tags are used are in rules (t-out) and (t-in-rep). In the typing
rules of Table 16 we make extensive use of the partial operator for extending networks,
defined for fresh names n in Γ as:

Γ + n :T def
= 〈T ∪ {n :ch〈B, W̃〉}, A〉 if Γ = 〈T , A〉 and T = ch〈B, W̃〉
〈T ∪ {n :loc[B]}, A〉 if Γ = 〈T , A〉 and T = loc[B, d]
〈T ∪ {n :loc[B]}, A∪ {n}〉 if Γ = 〈T , A〉 and T = loc[B, a]

We also make extensive use of the type judgement Γ ` n :T defined as before as

Γ + n :T ` n :T

This also means that values have a unique type according to a typed network representa-
tion Γ. This property is formalised in the follow lemma and assume in every proof in the
sequel using type judgements.

Lemma 4.2.2 (Type Uniqueness). If Γ ` n :T and Γ ` n :U then T = U.

Proof. Immediate from the definitions of Γ ` n :T and Γ + n :T �

Notation 4.2.3. In Table 16 and the rest of the Chapter, we use a number of abbreviations
for types in typed DπLoc. We use B[S] and B〈W̃〉 as a shorthand for the location type
loc[B, S] and channel type ch〈B, W̃〉 respectively. We omit the boundary level from the
types and use loc[S], loc and ch〈W̃〉 when the boundary level is not important, we omit
the location state type, B[−], and the channel object type, B〈−〉, when these are irrelevant
and use loc, ch when we simply want to distinguish between a location and a channel
name. In addition, when we are only concerned about the boundary level of a type,
we use p, c as a shorthand for p[S], p〈T̃〉 and c[S], c〈T̃〉 respectively. Finally, we also use
extensively the judgment Γ `obs n to denote Γ ` n : p and Γ `obs T to denote that T is
purely public, that is T = p[−] or T = p〈P̃〉; in doing so, we standardise our notation with
that used in the preceding two chapters. �

4.2.1 Reduction Semantics

The reductions for typed DπLoc configurations take the form

Γ .N −→ Γ′ .N′

and are defined in terms of the reduction rules in Tables 2, 4 and 3 given earlier in
Chapter 2, where we simply substitute the former network representation, Π, with the

Chapter 4. Fault Tolerance 76

Table 16. Typing rules for typed DπLoc

Systems

(t-rest)

Γ + ñ : T̃ ` N
Γ ` (ν ñ : T̃)N

(t-par)

Γ ` N, M
Γ ` N|M

(t-proc)

Γ ` l : loc
Γ ` P
Γ ` l[[P]]

Processes
(t-out)

Γ ` u : ch〈T〉
Γ ` V : T
Γ ` P
Γ ` u!〈V〉.P

(t-in-rep)

Γ ` u : ch〈T〉
Γ + X :T ` P
Γ ` u?(X).P
Γ ` ∗u?(X).P

(t-nw)

Γ + ñ : T̃ ` P
Γ ` (ν ñ : T̃)P

(t-cond)

Γ ` u : T, v : T
Γ ` P, Q
Γ ` if u=v.PdQe

(t-fork)

Γ ` P, Q
Γ ` P|Q

(t-axiom)

Γ ` 0, kill

(t-go)

Γ ` u : loc
Γ ` P
Γ ` go u.P

(t-ping)

Γ ` u : loc
Γ ` P, Q
Γ ` ping u.PdQe

Observers
(t-obs)

pub(Γ) ` O
Γ `obs O

typed network representation, Γ. We note that reductions may still alter the network
representation when a kill process is executed, yielding Γ − l, which is defined in similar
fashion to the previous Chapters. Based on this definition of reduction, we are able to
formalise the intuition given earlier in § 4.1 as to what reductions we want to prohibit.
As usual, our discussion is guided by the following touchstone examples.

Example 4.2.4. Consider the system

err1 ⇐ l[[a!〈k〉.P]]

If we subject err1 to the typed network Γ, where l and a are public and k is confined,
then Γ . err1 breaks the boundary condition because the communicated value, k, may be
inputted by an observer; if we consider the valid observer

O ⇐ l[[a?(x).Q(x)]] where Γ `obs l[[Q(x)]]

then we may have the reduction

Γ . err1|O −→ Γ . l[[P]] | l[[Q(k)]]

where the observer gains access to the confined value k, which invalidates the observer
because Γ 6`obs l[[Q(k)]]. If we however assume the typed network Γ to be well-formed,

Chapter 4. Fault Tolerance 77

Table 17. Runtime Error

(r-err)

M ≡ M′|l[[a!〈V〉.P]] Γ ` l, a : p ∃vi ∈ V such that Γ ` vi : c

Γ .M −→err

then from the assumption that a is a public channel we conclude that its object type must
be public as well since well-formed types cannot have public channels which are not
purely public. Stated otherwise, we should have the following judgement

Γ ` a :p〈P〉

and as a result, according to the typing rule (t-out), we can never typecheck Γ ` err1 which
means that Π . err1 cannot be a well-formed configuration. �

The rule (r-err) in Table 17 formalises this notion of a erroneous reduction step, or runtime
error. Using this formalisation, we can now prove that our type system is in some sense
correct, since it rejects systems that perform error reductions.

Proposition 4.2.5 (Type Safety). If a configuration is well-formed, it cannot perform an
error. Stated otherwise,

Γ .N −→err implies Γ 0 N

Proof. By (r-err) of Table 17, we know:

N ≡ N′|l[[a!〈V〉.P]] (4.1)

Γ ` l, a : p (4.2)

∃vi ∈ V . Γ ` vi : c (4.3)

From (4.1) we deduce that, to prove Γ ` N, we have to use (t-par) and (t-proc), and
ultimately prove:

Γ ` a!〈V〉.P (4.4)

But according to (4.2) and the assumption that Γ is well formed, we derive Γ ` a : p〈p̃〉.
From (4.3), we know that the type of V can never match the object type p̃, and thus (t-out)

can never be applied to typecheck (4.4). Thus we derive Γ 0 N as required. �

Even though a configuration may not produce an error immediately, it may reduce to
another configuration that may produce an error, as we see in the following examples.

Example 4.2.6. One of the reasons why we typecheck scoped names as well as free names
is that a runtime error may occur as a result of scope extrusion. The type system therefore
statically determines which scoped names may be scope extruded, that is the public ones,
and which cannot, that is the confined ones. Consider the system

err2 ⇐ (ν b :ch〈T〉)l[[a!〈b〉]] | l[[b!〈k〉.P]]

Chapter 4. Fault Tolerance 78

If we subject this system to the typed network Γwhere l and a are public and k is confined,
it may result in a boundary violation irrespective of the boundary level associated with
the type of the scoped channel b. Consider the valid observer

O⇐ l[[a?(x).x?(y).Q(y)]]

If the type associated with b it is confined, that is ch〈T〉 = c〈T〉, then clearly after the first
reduction

Γ . err2 |O −→ Γ . (ν b :c〈T〉)(l[[b!〈k〉.P]] | l[[b?(y).Q(y)]])

the observer l[[b?(y).Q(y)]] has gained access to the confined (scoped) name b. If, on the
other hand, b is public, that is ch〈T〉 = p〈T〉, then the observer gains access to a confined
value, in this case k, by the second reduction, l[[Q(k)]], after the scope extrusion of b

Γ . err2 |O −→ · −→ Γ . (ν b :p〈T〉)(l[[P]] | l[[Q(k)]])

It turns out that the typing rules of Table 16 do not typecheck err2 for either case of the type
ch〈T〉:

• If ch〈T〉 = c〈T〉, then we are not able to typecheck l[[a!〈b〉]]: since the type of a is
(purely) public, its object type is also public and can therefore never be matched by
the type of b in (t-out), which is confined, c〈T〉.

• If ch〈T〉 = p〈T〉, then we also conclude, by the same restriction on public channel
types, that the object type T, must be public. As a result, we cannot typecheck
l[[b!〈k〉.P]] using (t-out) because we cannot match this public object type with the type
of k which we assumed to be confined.

Even without scope extrusion, it can be non-trivial to statically determine whether a
system may eventually produce a runtime error. The following example illustrates why
we make use of object types to typecheck channels. Consider the following system

err3 ⇐ l[[b!〈k〉]] | l[[b?(x).a!〈x〉.P]]

subject to the typed network representation Γ, where l and a are public and k and b are
confined names. Even though the output of the confined location k is a valid one, since
it happens on a confined channel b, the configuration Γ . err3 may produce an error after
one internal reduction because

Γ . err3 −→ Γ . l[[a!〈k〉.P]] −→err

However, to be able to reject err3, the type system needs to use channel object types. Thus

• if Γ ` b : c〈c[]〉 we reject err3 on the basis that, from b we should expect a confined
location, c[−]: the rule (t-in-rep) typechecks a!〈x〉.P under the assumption that x has
the confined type c[−] and since the type of a is purely public, the rule (t-out) rejects
it.

• If, on the other hand, Γ ` b :c〈p[−]〉,we still reject err3 since (t-out) does not typecheck
the process b!〈k〉 on the premise that the type of the value outputted k, that is c[−],
does not match the object type of the channel, p[−]. �

Chapter 4. Fault Tolerance 79

Example 4.2.6 shows how the type system rejects a number of systems that may
produce runtime errors indirectly, either as a result of a sequence of interaction with the
observer (err2), or after a sequence of internal reductions (err3). We however need to
prove that the type system rejects any such system that may produce a runtime error.
Stated otherwise, from Lemma 4.2.5 we know that well-formed configurations do not
produce an error immediatley; by showing that our reduction system is closed under
well-formed configurations, we can conclude that a well-formed configuration can never
reduce to another configuration that can produce an error.

The proposition stating closure over well-formed configurations is called Subject Re-
duction ; this Proposition makes us of the following lemmas, the most notable of which
is Lemma 4.2.10, the Substitution Lemma, defined for processes instead of system.

Lemma 4.2.7. If Γ `M and M ≡ N, then Γ ` N.

Proof. Proof by induction on the length of derivation on why M ≡ N. �

Lemma 4.2.8 (Weakening). If Γ ` M and Γ + u : T is a valid well formed network repre-
sentation, then Γ + u :T `M

Proof. Proof by induction on the derivation of Γ `M �

Lemma 4.2.9 (Strenghtening). If Γ + u :T `M and n < (fn(M) ∪ fv(M)), then Γ `M.

Proof. Proof by induction on the derivation of Γ + u :T `M �

Lemma 4.2.10 (Substitution). If Γ + x :T ` P and Γ ` v :T, then Γ ` P{v/x}

Proof. The proof progresses by induction on the length of derivation of Γ + x : T ` P. In
this proof, whenever x < fv(P), then P{v/x} = P and as a consequence, the result follows
from Lemma 4.2.9 (Strenghtening). We thus focus on the cases where x ∈ fv(P).

Case the last rule used was:

• (t-axiom), this would constitutes the base case. It is immediately true by the fact that
x < fv(0, kill).

• (t-out), we know P ≡ u!〈V〉.Q, Γ ` u :ch〈Ũ〉 Γ ` V : Ũ and Γ ` Q.

– If x = u then Γ ` v :ch〈Ũ〉

– If x = vi ∈ V then Γ ` V{v/x} : Ũ

– If x ∈ fv(Q) then by inductive hypothesis we obtain Γ ` Q{v/x}

As a result, in any of the above cases, we are still able to reconstruct Γ ` (u!〈V〉.Q){v/x}.

• (t-in-rep), we know P ≡ u?(X).Q or P ≡ ∗u?(X).Q, Γ ` u : ch〈Ũ〉 and Γ + X :T ` Q

– If x = u then we know that Γ ` v : ch〈Ũ〉

– If x ∈ fv(Q) then by inductive hypothesis we obtain Γ ` Q{v/x}

As a result, in either case we are still able to reconstruct Γ ` (u?(X).Q){v/x} and
Γ ` (∗u?(X).Q){v/x}

Chapter 4. Fault Tolerance 80

• (t-ping), we know P ≡ ping u.PdQe, Γ ` u :loc, Γ ` P,Q.

– If x = u then we know Γ ` v : loc

– By inductive hypothesis we obtain Γ ` P{v/x}, Q{v/x}

As a result, we are always able to reconstruct Γ ` (ping u.PdQe){v/x}

• (t-match), (t-fork), (t-go) and (t-new) are similar to the cases above. �

We are now in a position to prove one of the main (standard) results of our type
system, Subject Reduction.

Proposition 4.2.11 (Subject Reduction). If Γ `M and Γ .M −→ Γ′ .N, then Γ ` N

Proof. The proof proceed by induction on the derivation of Γ .M −→ Γ′ . N. We here
analyse in depth the most involving cases and leave the remainder to the interested reader.

Case the last rule used to derive Γ .M −→ Γ′ .N:

• (r-comm), we know M ≡ l[[a!〈V〉.P]]|l[[a?(X).Q]], N ≡ l[[P]]|l[[Q{V/X}]] and Γ = Γ′. From
Γ `M, (t-par) and (t-proc) we derive

Γ ` l : loc (4.5)
Γ ` a!〈V〉.P (4.6)
Γ ` a?(X).Q (4.7)

From (4.7) and (t-in-rep) we obtain

Γ ` a : ch〈T〉 (4.8)
Γ + X :T ` Q (4.9)

Moreover, from (4.6) and the fact that names have unique types (Lemma 4.2.2) we
derive

Γ ` V :T (4.10)
Γ ` P (4.11)

From (4.9), (4.10) and Substitution Lemma 4.2.10 we obtain

Γ ` Q{V/X} (4.12)

and using (t-proc), (4.5), (4.11), (4.12) and finally (t-par), we are able to reconstruct
Γ ` l[[P]]|l[[Q{V/X}]].

• (r-rep) we know M ≡ l[[∗a?(X).P]], N ≡ l[[a?(X).(P| ∗ a?(Y).P{Y/X})]] and Γ′ = Γ. From
Γ ` l[[∗a?(X).P]], (t-proc), (t-in-rep) we obtain

Γ ` l : loc (4.13)
Γ ` a : ch〈T〉 (4.14)
Γ + X :T ` P (4.15)

from (4.15), the Weakening Lemma 4.2.8 and the Substitution Lemma 4.2.10, we
obtain

Γ + X :T + Y :T ` P{Y/X} (4.16)

Chapter 4. Fault Tolerance 81

and from (4.16), (4.14) and (t-in-rep) we derive

Γ + X :T ` ∗a?(Y).P{Y/X} (4.17)

Subsequently, by (t-fork), (4.15), (4.17), (4.14) and (t-in-rep) we obtain

Γ ` a?(X).(P | ∗ a?(Y).P{Y/X}) (4.18)

and thus from (4.13) and (t-proc) Γ ` l[[a?(X).(P| ∗ a?(Y).P{Y/X})]] as required.

• (r-new) we know M ≡ l[[(νn :T)P]], N ≡ (νn : T)l[[P]] and Γ = Γ′. From Γ ` l[[(νn : T)P]],
(t-proc) and (t-new) we get

Γ ` l : loc (4.19)
Γ + n :T ` P (4.20)

By weakening and (4.19) we get

Γ + n : T ` l : loc (4.21)

Thus by (4.20), (4.21) and (t-proc) we derive Γ + n : T ` l[[P]] and by (t-rest) we get
Γ ` (νn :T)l[[P]] as required. �

4.2.2 Equivalences in typed DπLoc

As a touchstone equivalence for comparing typed DπLoc configurations, we use reduction
barbed congruence once again. We carry over most definitions from Chapter 2, with the
exception of those dealing with observables, which we now state.

Definition 4.2.12 (Barbs for Typed DπLoc). Γ.N ⇓a@l denotes an observable barb exhibited
by the configurationΓ.N, on channel a at location l. Formally, it means thatΓ.N −→∗ Γ′.N′

for some Γ′ .N′ such that N′ ≡ (ν ñ : T̃)M|l[[a!〈V〉.Q]], Γ ` l :alive and Γ `obs l, a �

Definition 4.2.12 strengthens the previous definition of a barb, requiring in addition,
that the channel and location of the barb are public, that is Γ `obs l, a. This further
requirement stems from the fact that valid observers are limited to public resources and
well-formed configuration never let observers gain access to confined names. In fact the
boundary information, vested as the stateless types and the respective type system, is
only required internally by the configuration, in order to ensure that the configuration
does not violate the restricted view. Stated otherwise, the observer should be oblivious
to confined boundary types since it uses only public names. Moreover, we can also claim
that observers are oblivious to boundary tags altogether since it uses only one kind. We
therefore define the partial function over types

simp(T) def
= loc[A] if T = loc[p, A]
ch if T = ch〈p, W̃〉

which allows us to recover the simple state types used in Chapter 2. In the sequel, we
allow the type variables S, R to range over these simple state types loc[A] and ch. This
operation allows us to recover the previous definition of an observer of Chapter 2, with
the interpretation that previous observers defined in terms of simple state types used

Chapter 4. Fault Tolerance 82

public names only. It also allows us to recover the observer’s knowledge of the state of
the network used in Chapter 2: more specifically, the observer is only concerned with the
knowledge regarding public names and the state of public locations. We formalise this in
the next definition.

Definition 4.2.13 (Knowledge Representation). As before, we use I to range over knowl-
edge representations in typed DπLoc. It consisting of pairs 〈N ,O〉where:

• N is a set of names,N ⊆ N.

• O is a set of public location names fromN that are alive, O ⊆ loc(N).

The knowledge representation can be obtained from a typed network representation as:

I(Γ) def
= 〈{n |Γ `obs n}, (ΓA ∩ {l |Γ `obs l}〉)

where we filter the public names from ΓT and strip away their type and also filter away
dead confined locations fromA. �

When we give our fault tolerance definitions in § 4.3, we find it useful to define an
alternative form of contextual relation, used to study systems under the assumption that
the state of the underlying (public) network is static and does not suffer further faults.
For this we need contexts that do not induce faults.

Definition 4.2.14 (Failure-Free Contextual typed relations). A typed relation R over
configurations is failure-free contextual if:

(Failure-free Parallel Systems)

•
Γ |=M R N

and Γ`obs O, where O does not use kill
implies

− Γ |=M|O R N|O
− Γ |= O|M R O|N

(Network Extensions)

•
Γ |=M R N

and Γ`obsT, n fresh
implies Γ+n :T |=M R N

�

We thus inherit the definitions of reduction closed, barb preserving and contextual
relations from Chapter 2 and that of typed relations from Chapter 3 and together with
Definition 4.2.14, we define two reduction barbed congruences.

Definition 4.2.15 (Reduction Barbed Congruences for typed DπLoc).

• Reduction barbed congruence, denoted by �, is the largest symmetric typed relation
over configurations which is:

– barb preserving

– reduction closed

– contextual

Chapter 4. Fault Tolerance 83

• Failure-free reduction barbed congruence, denoted by�ff, is the largest symmetric typed
relation over configurations which is:

– barb preserving

– reduction closed

– failure-free contextual

Both congruences are once again denoted as

I |= Γ1.M1 � Γ2.M2 whenever I(Γ1) = I(Γ2)

and we specialise the notation to
Γ |=M � N

when we are simply comparing systems running on the same network, that is I(Γ) |=
Γ.M � Γ.N. �

The latter reduction barbed congruence, �ff, is a weaker form or congruence, where
two systems are evaluated under the assumption that the underlying observable network
will not incur further failure; since we use this relation later on for our definition of fault
tolerance, we defer any further discussion about it to § 4.3.

Once again, both reduction barbed congruence definitions suffer form the problem of
quantification over all contexts, discussed earlier in Chapters 2 and 3; this makes them
harder to use in practice to show that two configurations are equivalent. We solve this
problem as before, by defining a derived lts for two bisimulations that are sound and
complete with respect to these equivalence. This derived lts simply filters out boundary
information from the types of bound names present in transition labels using the operation
simp(T) defined earlier; derived labels thus use only simple types. We start by presenting
the full lts.

Definition 4.2.16 (Labelled Transition System for typed DπLoc). The lts for typed DπLoc
consists of the collection of actions, Γ .N

µ
−→ Γ′ .N′, where µ can take one of the forms

• τ (internal action)

• (ñ : T̃)l : a?(V) (bound input)

• (ñ : T̃)l : a!〈V〉 (bound output)

• kill : l (external location killing)

The transitions, are defined as the least relations satisfying different axioms and rules,
found in Tables 18, 19 and 20. �

The main difference between the rules in Tables 18, 19 and 20 and those given in
Chapter 2 are those dealing with external actions, namely (l-out), (l-in), (l-halt). These
axioms introduce extra side conditions for actions denoting interactions to and from the
observer, requiring that they involve public channels and locations only.

Chapter 4. Fault Tolerance 84

Table 18. Local Operational Rules for Typed DπLoc

Assuming Γ ` l : alive

(l-in)

Γ . l[[a?(X).P]]
l:a?(V)
−−−−→ Γ . l[[P{V/X}]]

Γ `obs l, Γ ` a : p〈W̃〉, V : W̃

(l-out)

Γ . l[[a!〈V〉.P]]
l:a!〈V〉
−−−−→ Γ . l[[P]]

Γ `obs l, a

(l-fork)

Γ . l[[P|Q]] τ
−→ Γ . l[[P]] | l[[Q]]

(l-in-rep)

Γ . l[[∗a?(X).P]] τ
−→ Γ . l[[a?(X).(P| ∗ a?(Y).P{Y/X})]]

(l-eq)

Γ . l[[if u=u.PdQe]] τ
−→ Γ . l[[P]]

(l-neq)

Γ . l[[if u=v.PdQe]] τ
−→ Γ . l[[Q]]

u , v

Table 19. Network Operational Ruled for typed DπLoc

Assuming Γ ` l : alive
(l-kill)

Γ . l[[kill]] τ
−→ (Γ − l) . l[[0]]

(l-halt)

Γ .N kill:l
−−−→ (Γ − l) .N

Γ `obs l :alive

(r-new)

Γ . l[[(νn : T)P]] −→ Γ . (νn : T) l[[P]]

(r-go)

Γ . l[[go k.P]] τ
−→ Γ . k[[P]]

Γ ` k← l

(r-ngo)

Γ . l[[go k.P]] τ
−→ Γ . k[[0]]

Γ 0 k← l

(r-ping)

Γ . l[[ping k.PdQe]] τ
−→ Γ . l[[P]]

Γ ` k← l

(r-nping)

Γ . l[[ping k.PdQe]] τ
−→ Γ . l[[Q]]

Γ 0 k← l

As a result of the conditions restricting names in labels to public names only, we also
modify (l-par-comm) so as to remove any of these restrictions for internal communication;
the operation ↑ (Γ) translates all the confined types in Γ into perfectly public types, thereby
collapsing the public network in Γ into the biggest possible, as in the case of (l-par-comm)

Chapter 4. Fault Tolerance 85

Table 20. Context Operational Rules for typed DπLoc

(l-open)

Γ + n : T .N
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Γ′ .N′

Γ . (νn : T)N
(n:T,ñ:T̃)l:a!〈V〉
−−−−−−−−−−→ Γ′ .N′

l, a , n ∈ V

(l-weak)

Γ + n : T .N
(ñ:T̃)l:a?(V)
−−−−−−−−→ Γ′ .N′

Γ .N
(n:T,ñ:T̃)l:a?(V)
−−−−−−−−−−→ Γ′ .N′

l, a , n ∈ V

(l-rest)

Γ + n : T .N
µ
−→ Γ′ + n : U .N′

Γ . (νn : T)N
µ
−→ Γ′ . (νn : U)N′

n < fn(µ)

(l-par-ctxt)

Γ .N
µ
−→ Γ′ .N′

Γ .N |M
µ
−→ Γ′ .N′ |M

Γ .M |N
µ
−→ Γ′ .M |N′

Γ `M

(l-par-comm)

↑ (Γ) .N
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Γ′ .N′ ↑ (Γ) .M

(ñ:T̃)l:a?(V)
−−−−−−−−→ Γ′′ .M′

Γ .N |M τ
−→ Γ . (ν ñ : T̃)(N′ |M′)

Γ .M |N τ
−→ Γ . (ν ñ : T̃)(M′ |N′)

of Table 13. It is defined as

↑ (Γ) = 〈{n :↑ (W) |Γ ` n :W}, ΓA〉

↑ (W) =

 p〈↑ (W̃)〉 if T = ch〈W̃〉
p[] if T = loc

and ↑ (W1, .., Wn) = ↑ (W1), .., ↑ (Wn)

As we stated earlier, the bisimulations are defined on a derived lts, using simple
types for bound names in labels instead of the full boundary types, required only for
type-checking reasons.

Definition 4.2.17 (Derived Labelled Transition System for typed DπLoc). The derived
lts for typed DπLoc is similar to the untyped version, consisting of the same collection of
actions, Γ .N

µ
7−→ Γ′ .N′, where µ can take one of the forms

• τ (internal action)

• (ñ : S̃)l : a?(V) (bound input)

• (ñ : S̃)l : a!〈V〉 (bound output)

• kill : l (external location killing)

The transitions, are defined as the least relations satisfying different axioms and rules,
found in Tables 18, 19 and 20 just presented and the filtering rules in Table 21. �

Based on this derived lts, we now define the required bisimulations. While we inherit
the standard bisimulation definition from Definition 2.3.2 for the general bisimulation

Chapter 4. Fault Tolerance 86

Table 21. The derived lts for typed DπLoc

(l-deriv-1)

Γ .N
µ
−→ Γ′ .N′

Γ .N
µ
7−→ Γ′ .N′

µ ∈ {τ, kill : l}

(l-deriv-2)

Γ .N
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Γ′ .N′

Γ .N `
(ñ:simp(T̃))l:a!〈V〉
−−−−−−−−−−−−→ Γ′ .N′

(l-deriv-3)

Γ .N
(ñ:T̃)l:a?(V)
−−−−−−−−→ Γ′ .N′

Γ .N `
(ñ:simp(T̃))l:a?(V)
−−−−−−−−−−−−→ Γ′ .N′

ranging over all the labels in Definition 4.2.17, we need to come up with an alternative
definition for a bisimulation that corresponds to failure-free reduction barbed congruence:
we do this by restricting the range of actions.

Definition 4.2.18 (Failure-free weak bisimulation equivalence). We let γ range over
the actions (ñ : S̃)l : a!〈V〉, (ñ : S̃)l : a?(V) and τ but not kill : l. Then failure-free weak
bisimulation equivalence, denoted as ≈ff, is defined to be the largest typed relation over
configurations such that if Γ1 .M1 ≈ff Γ2 .M2 then

• Γ1 .M1
γ
7−→ Γ′1 .M′1 implies Γ2 .M2

γ̂

|==⇒ Γ′2 .M′2 such that Γ′1 .M′1 ≈ff Γ
′

2 .M′2

• Γ2 .M2
γ
7−→ Γ′2 .M′2 implies Γ1 .M1

γ̂

|==⇒ Γ′1 .M′1 such that Γ′1 .M′1 ≈ff Γ
′

2 .M′2 �

It is easy to see that failure free weak bisimulation equivalence is weaker than the
standard weak bisimulation equivalence, as we show below.

Proposition 4.2.19. If Γ1 .M1 ≈ Γ2 .M2 then Γ1 .M1 ≈ff Γ2 .M2.

Proof. We define R as

R =
{
Γ1 .M1 ,Γ2 .M2 Γ1 .M1 ≈ Γ2 .M2

}
and show that R ⊆≈ff. The result follows since the actions over which ≈ff is defined are a
subset of the actions over which ≈ is defined. �

Just as in Chapters 2 and 3 we need to justify the use of bisimulations for relating
systems, based on the equivalences defined in Definition 4.2.15. First of all, we need to
show that the lts is closed with respect to well-formed configurations. We here do not
give the full proof, since this is similar to Proposition 3.5.13.

Similar to the proofs in Chapter 3, the proof of soundness for both ≈ and ≈ff hinges
on whether they are contextual relations or not. The proof for contextuality in turn
uses extensively the Composition and Decomposition Lemmas, which have to be set up
specifically for the lts of typed DπLoc. We here state these three main results without

Chapter 4. Fault Tolerance 87

delving into the specifics of the proofs, since they turn out to be similar to the proofs given
in Chapter 3. We only note that the clauses dealing with composing and decomposing
internal communication in Lemmas 4.2.20 and 4.2.21 specify that the types of both the
bound inputs and the bound outputs match: this is because we know that the channel on
which the communication happens has to be public, and since we assume well-formed
configurations that used only perfectly public types, we know that the respective object
type is public as well.

Lemma 4.2.20 (Composition).

• Suppose Γ .M
µ
7−→ Γ′ .M′. If Γ ` N for arbitrary system N, then

– Γ .M|N
µ
7−→ Γ′ .M′|N

– Γ .N|M
µ
7−→ Γ .N|M

• Suppose Γ .M `
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Γ′ .M′ and Γ .N `

(ñ:T̃)l:a?(V)
−−−−−−−−→ Γ′′ .N′. Then

– Γ .M|N τ
7−→ Γ . (ν ñ : T̃)M′|N′

– Γ .N|M τ
7−→ Γ . (ν ñ : T̃)N′|M′

Proof. (Outline) The proof progresses by extracting the necessary structure of the systems
M, N and the network Γ to be able to re-compose them using rules such as (l-par-ctxt),
(l-par-comm) and (l-rest) �

Lemma 4.2.21 (Decomposition). Suppose Γ .M|N
µ
7−→ Γ′ .M′ where Γ `obs M or Γ `obs N.

Then, one of the following conditions hold:

1. M′ is M′′|N, where Γ .M
µ
7−→ Γ′ .M′′.

2. M′ is M|N′ and Γ .N
µ
7−→ Γ′ .N′.

3. M′ is (ν ñ : T̃)M′′|N′, µ is τ, Γ′ = Γ and either

• Γ .M `
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Γ′′ .M′′ and Γ .N `

(ñ:T̃)l:a?(V)
−−−−−−−−→ Γ′′′ .N′

• Γ .M `
(ñ:T̃)l:a?(V)
−−−−−−−−→ Γ′′ .M′′ and Γ .N `

(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Γ′′′ .N′

Proof. (Outline) The proof progressed by induction on the derivation of Γ . M|N
µ
7−→

Γ′ .M′. �

Proposition 4.2.22 (Contextuality of Behavioural Equivalence).

• If two configurations are bisimilar, they are also bisimilar under any context. Stated
otherwise, I |= Γ1 .M1 ≈ Γ2 .M2 implies that for I `obs O, T and n fresh in I we
have:

– Γ1 .M1|O ≈ Γ2 .M2|O and Γ1 .O|M1 ≈ Γ2 .O|M2

– Γ1+n :T .M1 ≈ Γ2+n :T .M2

Chapter 4. Fault Tolerance 88

• If two configurations are failure-free bisimilar, they are also failure-free bisimilar
under any context. Stated otherwise, I |= Γ1 . M1 ≈ff Γ2 . M2 implies that for
I `obs O, Twhere O . O|l[[kill]] and n fresh in Iwe have:

– Γ1 .M1|O ≈ff Γ2 .M2|O and Γ1 .O|M1 ≈ff Γ2 .O|M2

– Γ1+n :T .M1 ≈ff Γ2+n :T .M2

Proof. (Outline) The proof for both clauses are similar. For example, the proof for the first
clause proceeds by inductively defining a relation R as the largest typed relation over
configurations satisfying:

R =

〈Γ1 .M1, Γ2 .M2〉 | Γ1 .M1≈Γ2 .M2

〈Γ1 .M1|O, Γ2 .M2|O〉
〈Γ1 .O|M1, Γ2 .O|M2〉

∣∣∣∣∣∣∣ Γ1 .M1RΓ2 .M2

〈Γ1+n :T .M1|O, Γ2+n :T .M2|O〉

∣∣∣∣∣∣∣ I |= Γ1 .M1 R Γ2 .M2,

I ` T and n is fresh

〈Γ1 . (νn :T)M1, Γ2 . (νn :U)M2〉 | Γ1+n :T .M1RΓ2+n :U .M2

and showing that R ⊆≈; since ≈ is the biggest possible relation, this would mean that it is
contextual. �

The proof of completeness relies on the concept of definability, where we have to show,
amongst other things, that the observer is capable of determining the current state of the
public locations as well as the state of the scope extruded locations; this task is facilitated
by the fact that well-formed configurations scope extrude public locations only.

Lemma 4.2.23 (Observable Network). Assume that for arbitrary network representation
Γ, Γ+ stands for

Γ + k0 :p[a] + :p〈−〉

Then, for every I = 〈N ,O〉 and every Γ, there exists a system NI where Γ+ ` NI such
that,

Γ+ .NI −→∗ Γ+ . k0[[!〈〉]] iff O = I(Γ)O andloc(N) = loc(pub(Γ)N).

Stated otherwise, NI can determine the state of every public location.

Proof. (Outline) We set the process NI to k0[[verPubStatI()]], where verPubStatI(x) is
defined as:

verPubStat〈N ,O〉(x) ⇐ (ν sync)

∏
l∈O

ping l.dsync!〈〉e |
∏

l∈(loc(N)/O)

ping l.sync!〈〉

| sync?(). . . . sync?()︸ ︷︷ ︸
|loc(N)|

.x!〈〉

Chapter 4. Fault Tolerance 89

Then we prove this lemma by contradiction. We analyse all the possible cases whyO , ΓO
and loc(N)/O , loc(I(Γ)N)/I(Γ)O and then show that for each of these cases

Γ+ . k0[[verPubStat〈N ,O〉()]] 6−→∗ Γ+ . k0[[!〈〉]]

�

Proposition 4.2.24 (Definability). Assume that for an arbitrary network representation
Γ, the network Γ+ denotes:

Γ+ = Γ + k0 :p[a], :p〈−〉, :p〈−〉

where k0, and are fresh to ΓT . Thus, for every external action µ and network
representation Γ, every non-empty finite set of names Nm where names(ΓT) ⊆ Nm,
every fresh pair of channel names , < Nm, and every fresh live location
name k0 < Nm, there exists a system Tµ(Nm, , , k0) with the property that Γ+ `obs

Tµ(Nm, , , k0), such that:

1. Γ .N
µ
7−→ Γ′+bn(µ) : T̃ .N′ implies

Γ+ .N |Tµ(Nm, , , k0) −→∗ Γ′+ . (νbn(µ) : T̃) N′ | k0[[!〈bn(µ)〉]]

2. Γ+ . N |Tµ(Nm, , , k0) −→∗ Γ′+ . N′, where Γ′+ . N′ ⇓@k0 , Γ
′
+ . N′ 6⇓@k0

implies that

N′ ≡ (νbn(µ) : T̃)N′′|k0[[!〈bn(µ)〉]] for some N′′ such that Γ .N
µ

|==⇒ Γ′+bn(µ) :
T̃ .N′′.

Proof. (Outline) We have to prove that the above two clauses are true for all of the three
external actions. If µ is kill : l, the test required are:

l[[kill]] | k0[[!〈〉]] | k0[[ping l.ping l.d?().!〈〉e]]

If µ is the bound input action (ñ : S̃)l : a?(V), the required system is

(ν ñ : T̃)(l[[a!〈V〉.go k0.?().!〈〉]] | k0[[!〈〉]]) where S̃ = simp(T̃)

For the output case where µ is (ñ : S̃)l : a!〈V〉, the required Tµ(Nm, , , k0) is

k0[[!〈〉]] |

l

a?(X).(ν sync)

m∏
i=1

if xi<Nm.sync!〈〉 |
|X|∏

j=m+1

if x j=v j.sync!〈〉

| sync?()..sync?()︸ ︷︷ ︸
|X|

.go k0.(νc)

 verPubStatI+x(m+1)..x|X|:T(m+1)..T|X|(c)
c?().?().!〈x(m+1)..x|X|〉

For the sake of presentation ,we once again assume that the first v1 . . . vm in V = v1 . . . v|V|
in µ are bound, and the remaining vm+1 . . . v|V| are free. �

Theorem 4.2.25 (Soundness and Completeness for typed DπLoc). In typed DπLoc,

• I |= Γ1 .M1 ≈ff Γ2 .M2 if and only if I |= Γ1 .M1 �ff Γ2 .M2.

• I |= Γ1 .M1 ≈ Γ2 .M2 if and only if I |= Γ1 .M1 � Γ2 .M2. �

Proof. (Outline) Again, even though it is a laborious process, we here omit the details of
the proof, as the result can be derived as a similar case of Theorem 3.5.10. �

Chapter 4. Fault Tolerance 90

Table 22. β-Transition Rules for Typed DπLoc

Assuming Γ ` l : alive

(b-in-rep)

Γ . l[[∗a?(X).P]] τ
7−→β Γ . l[[a?(X).(P| ∗ a?(Y).P{Y/X})]]

(b-fork)

Γ . l[[P|Q]] τ
7−→β Γ . l[[P]] | l[[Q]]

(b-eq)

Γ . l[[if u=u.PdQe]] τ
7−→β Γ . l[[P]]

(b-neq)

Γ . l[[if u=v.PdQe]] τ
7−→β Γ . l[[Q]]

u , v

(b-new)

Γ . l[[(νn :T)P]] τ
7−→β Γ . (νn :T) l[[P]]

(b-ngo)

Γ . l[[go k.P]] τ
7−→β Γ . k[[0]]

Γ 0 k← l

(b-nping)

Γ . l[[ping k.PdQe]] τ
7−→β Γ . l[[Q]]

Γ 0 k← l

(b-rest)

Γ + n : T .N τ
7−→β Γ

′ + n : U .N′

Γ . (νn : T)N τ
7−→β Γ

′ . (νn : U)N′

(b-par)

Γ .N τ
7−→β Γ

′ .N′

Γ .N |M τ
7−→β Γ

′ .N′ |M
Γ .M |N τ

7−→β Γ
′ .M |N′

Γ `M

4.2.3 Bisimulation up-to proof techniques

In § 4.2.2 we proved that in order to show that two configurations are reduction barb
congruent and failure-free reduction barb congruent, it suffices to give a relation that
satisfies the requirements of a bisimulation ranging over the respective actions. In this
section, we develop auxiliary methods that can relieve some of the burden of exhibiting
such relations.

We start by identifying a number of τ actions, which we refer to as β-actions or
β-moves, inspired by the work in [JR04, CHR05]. These are denoted as

Γ .N τ
7−→β Γ

′ .N

and are defined in Table 22; we also use the notation |==⇒β as a shorthand for τ
7−→

∗

β. The
purpose of these β-moves is to develop up-to bisimulation techniques, by showing that
in our witness bisimulations, we can abstract away from matching configurations that
denote β-moves. For our specific case, however, the details are slightly more complicated
than in [JR04, CHR05] because we deal with distribution and failure. Hence, Table 22
contains local τ-actions that do not involve any interaction with other located processes
such as (b-in-rep), (b-fork) and (b-eq), together withτ-actions that involve distribution whose
outcome is predetermined to fail because a (permanent) fault has already occurred, such
as (b-ngo) and (b-nping).

Chapter 4. Fault Tolerance 91

Table 23. β-Equivalence Rules for Typed DπLoc

(b-comm) Γ |= N|M ≡f M|N
(b-assoc) Γ |= (N|M)|M′ ≡f N|(M|M′)
(b-unit) Γ |= N|l[[0]] ≡f N
(b-extr) Γ |= (νn :T)(N|M) ≡f N|(νn :T)M n < fn(N)
(b-flip) Γ |= (νn :T)(νm :U)N ≡f (νm :U)(νn :T)N
(b-inact) Γ |= (νn :T)N ≡f N n < fn(N)
(b-dead) Γ |= l[[P]] ≡f l[[Q]] Γ 0 l : alive

In addition, to obtain the required results in a distributed setting with failure, we have
to define a new structural equivalence, denoted as ≡f, which takes into consideration the
state of the network as well. This enables us to obtain confluence for β-moves with respect
to actions that change the state of the network and kill locations; we revisit this point
in greater detail in the following proofs. The new structural equivalence relation ranges
over configurations and is the least symmetric contextual relation defined by the rules in
Table 23. The new rule worth highlighting is (bs-dead), which allows us to ignore dead
code in our structural equivalence relation. Thus for example if for an arbitrary Γwe have
Γ 0 l : alive then we can conclude Γ . l[[P]] |N ≡f Γ . l[[Q]] |N.

The first property we prove about our β-moves, τ
7−→β, is that they are defined over con-

figurations with the same underlying network; this simplifies their handling in subsequent
proofs.

Lemma 4.2.26. If Γ .M |==⇒β Γ′ .M′ then Γ = Γ′.

Proof. By simple induction on why Γ .M |==⇒β Γ′ .M′. �

We next show that ≡f is a strong bisimulation with respect to the actions defined in
§ 4.2.2.

Lemma 4.2.27 (β-Structural Equivalence and Strong Bisimulation). If Γ |=M ≡f N then

• if Γ .M
µ
−→ Γ′ .M′ then Γ .N

µ
−→ Γ′ .N′ such that Γ |=M′ ≡f N′

Stated otherwise, ≡f ⊆ ∼

Proof. The proof proceed by induction on why Γ |=M ≡f N. An outline of a very similar
proof was already given for Proposition 2.3.3 �

At this point, we are able to state an important property about β-moves, namely that
these internal actions respect the commutative (diamond) property up to β-structural
equivalence, as we now state.

Chapter 4. Fault Tolerance 92

Lemma 4.2.28 (Confluence of β-moves). Suppose Γ .N τ
7−→β Γ .M. Then for every action

Γ .N
µ
−→ Γ′ .N′:

• either µ = τ and Γ .M = Γ′ .N′

• or there is a configuration Γ′.M′ such that Γ′.N′ |==⇒β≡f Γ
′.M′ and Γ.M

µ
−→ Γ′.M′.

This can be diagrammatically depicted as:

Γ .N_
µ

��

� τ

β
// Γ .M

Γ′ .N′ Γ′ .M′

implies Γ .N_

µ

��

� τ

β
// Γ .M_

µ
��

Γ′ .N′
�� τ

β
+3 ≡f Γ

′ .M′

or µ = τ and Γ .M = Γ′ .N′

Proof. The proof proceeds by case analysis of the different types ofµ and then by induction
on the derivation of the β-move.

As an example, we here consider one of the cases, where µ = kill : l and a respective
key case of the induction on the derivation of the β-move. Thus if

Γ .N `kill:l
−−−→ Γ′ .N′

then through a lemma such as Lemma 3.5.3, we deduce that Γ ` l : alive and Γ `obs l,
which we abbreviate to

Γ `obs l : alive (4.22)

We also deduce that
Γ′ = Γ − l (4.23)

We now proceed by induction on the length of derivation of

Γ .N τ
7−→β Γ .M (4.24)

As an example, if the last rule used to derive (4.24) is (b-fork), then we can easily deduce
that N and M have the form l[[P|Q]] and l[[P]]|l[[Q]] respectively.

The weak beta move required is the empty move. From (4.22), (4.23) and (l-halt) we
deduce

Γ . l[[P]]|l[[Q]] `kill:l
−−−→ Γ − l . l[[P]]|l[[Q]]

Finally, it is easy to show that

Γ − l . l[[P|Q]] ≡f Γ − l . l[[P]]|l[[Q]]

using the rule (bs-dead) and the obvious fact that Γ − l 0 l : alive. �

We also prove that when a configuration performs a β-move, the reduct and redex
configurations are weakly bisimilar.

Proposition 4.2.29. Suppose Γ .N |==⇒β Γ .M. Then Γ |= N ≈ M.

Chapter 4. Fault Tolerance 93

Proof. We prove the above statement by defining R as

R =
{
Γ .N ,Γ .M | Γ .N |==⇒β Γ .M

}
and showing that R is a bisimulation. The proof is an easy one and follows as a conse-
quence of Lemma 4.2.28. �

This result provides us with valid equations for reasoning about configurations such
as

Γ |= (ν ñ : T̃) N | l[[P |Q]] ≈ (ν ñ : T̃) N | l[[P]] | l[[Q]]
Γ |= (ν ñ : T̃) N | l[[if v=v.PdQe]] ≈ (ν ñ : T̃) N | l[[P]]
Γ |= (ν ñ : T̃) N | l[[(νn :T)P]] ≈ (ν ñ : T̃) N | (νn :T)l[[P]]
Γ |= (ν ñ : T̃) N | l[[go k.P]] ≈ (ν ñ : T̃) N | k[[0]] if Γ+ñ : T̃ 0 k : alive

But more importantly, it also provides us with a powerful method for approximating
bisimulations. From here onwards, we focus our proofs for the most involving bisimu-
lation ≈, in the knowledge that some of these results, such as Posposition 4.2.29, can be
immediately extrapolated to ≈ff using Proposition 4.2.19, while others can be proved for
≈ff using the same method of the proofs for ≈.

Definition 4.2.30 (Bisimulation up-to β-moves). Bisimulation up-to β-moves, denoted
as ≈β, is the largest typed relation between configurations such that whenever we have
Γ1 .M1 ≈β Γ2 .M2 then

• Γ1 .M1
µ
−→ Γ′1 .M′1 implies Γ2 .M2

µ̂
=⇒ Γ′2 .M′2 such that Γ′1 .M′1Al ◦ ≈β ◦ ≈ Γ

′

2 .M′2

• Γ2 .M2
µ
−→ Γ′2 .M′2 implies Γ1 .M1

µ̂
=⇒ Γ′1 .M′1 such that Γ′2 .M′2Al ◦ ≈β ◦ ≈ Γ

′

1 .M′1

whereAl is the relation |==⇒β ◦ ≡f.

In the approximate bisimulation ≈β just defined, one can match an action Γ1 .M1
µ
−→

Γ′1 .M′1 by finding a β-derivative of Γ′1 .M′1, that is Γ′1 .M′1 |==⇒β Γ
′

1 .M′′1 , and a weak

matching action Γ2 .M2
µ̂
=⇒ Γ′2 .M′2 such that, up to structural equivalence on the one

side and up-to bisimilarity on the other, the pairs Γ′1 . M′′1 and Γ′2 . M′2 are once more
related. Intuitively then, in any such relation satisfying ≈β, a configuration can represent
all the configurations to which it can evolve using β-moves. We justify the use of ≈β by
proving Proposition 4.2.32; this in turn uses the following lemma, which we extract from
the proof.

Lemma 4.2.31. Suppose Γ1 .M1 ≈β Γ2 .M2 and Γ1 .M1

µ̂

|==⇒ Γ′1 .M′1. Then

Γ2 .M2

µ̂

|==⇒ Γ′2 .M′2, such that Γ′1 .M′1 ≈ ◦ ≈β ◦ ≈ Γ
′

2 .M′2

Proof. We proceed by induction on the length of Γ1 .M1

µ̂

|==⇒ Γ′1 .M′1:

• The base case, when the length is zero and Γ1 .M1 = Γ
′

1 .M′1 is trivial.

Chapter 4. Fault Tolerance 94

• There are two inductive cases. We here focus on one case where

Γ1 .M1
τ
7−→ Γ1

1 .M1
1

µ̂

|==⇒ Γ′1 .M′1 (4.25)

and leave the other (similar) case for the interested reader.

By Definition 4.2.30 (for ≈β),

∃ Γ2 .M2 |==⇒ Γ
1
2 .M1

2 such that Γ1
1 .M1

1Al ◦ ≈β ◦ ≈ Γ
1
2 .M1

2 (4.26)

By expanding (4.25) and (4.26) we have the following diagram to complete

Γ1
1 .M1

1__

µ̂
��

� τ

β

∗// Γ1
1 .M2

1
≡f Γ1

1 .M3
1
≈β Γ2

2 .M2
2 ≈ Γ1

2 .M1
2

Γ′1 .M′1

Through Lemma 4.2.28 (confluence of β-moves) we can fill the first part of the
diagram as

Γ1
1 .M1

1__

µ̂
��

� τ

β

∗// Γ1
1 .M2

1__

µ̂
��

≡f Γ1
1 .M3

1
≈β Γ2

2 .M2
2 ≈ Γ1

2 .M1
2

Γ′1 .M′1
� τ

β

∗ // Γ′1 .M4
1

and by Lemma 4.2.27 we can fill the third part

Γ1
1 .M1

1__

µ̂
��

� τ

β

∗// Γ1
1 .M2

1__

µ̂
��

≡f Γ1
1 .M3

1__

µ̂
��

≈β Γ2
2 .M2

2 ≈ Γ1
2 .M1

2

Γ′1 .M′1
� τ

β

∗ // Γ′1 .M4
1
≡f Γ′1 .M5

1

By induction we fill in the fourth part

Γ1
1 .M1

1__

µ̂
��

� τ

β

∗// Γ1
1 .M2

1__

µ̂
��

≡f Γ1
1 .M3

1__

µ̂
��

≈β Γ2
2 .M2

2__

µ̂
��

≈ Γ1
2 .M1

2

Γ′1 .M′1
� τ

β

∗ // Γ′1 .M4
1
≡f Γ′1 .M5

1
≈ ◦ ≈β ◦ ≈ Γ3

2 .M3
2

And finally we complete the diagram by the definition of ≈

Γ1
1 .M1

1__

µ̂
��

� τ

β

∗// Γ1
1 .M2

1__

µ̂
��

≡f Γ1
1 .M3

1__

µ̂
��

≈β Γ2
2 .M2

2__

µ̂
��

≈ Γ1
2 .M1

2__

µ̂
��

Γ′1 .M′1
� τ

β

∗ // Γ′1 .M4
1
≡f Γ′1 .M5

1
≈ ◦ ≈β ◦ ≈ Γ3

2 .M3
2
≡f Γ

′

2 .M′2

The required result follows from the above completed diagram and the fact that
|==⇒β ⊆≈, (Proposition 4.2.29), and ≡f ⊆≈ (Lemma 4.2.27).

�

Chapter 4. Fault Tolerance 95

Proposition 4.2.32 (Inclusion of bisimulation up-to β-moves). If Γ1 .M1 ≈β Γ2 .M2 then
Γ1 .M1 ≈ Γ2 .M2

Proof. We prove the above proposition by defining the relation R as

R =
{
Γ1 .M1 ,Γ2 .M2 Γ1 .M1 ≈ ◦ ≈β ◦ ≈ Γ2 .M2

}
and show that R ⊆≈. The required result can then be extracted from this result by
considering the special cases where the ≈ on either side are the identity relations.

Assume Γ1 .M1
µ
−→ Γ′1 .M′1.

By our definition of R, ∃M′′1 andΓ′2 .M′2 such that

Γ1 .M1≈Γ
′′

1 .M′′1 (4.27)

Γ′′1 .M′′1 ≈β Γ
′

2 .M′2 (4.28)

Γ′2 .M′2 ≈ Γ2 .M2 (4.29)

From (4.27) and the definition of bisimulation we know

Γ′′1 .M′′1
µ̂
=⇒ Γ′′′1 .M′′′1 such that Γ′1 .M′1 ≈ Γ

′′′

1 .M′′′1 (4.30)

By Lemma 4.2.31, (4.30), and (4.28) we know

Γ′2 .M′2
µ̂
=⇒ Γ′′2 .M′′2 such that Γ′′′1 .M′′′1 ≈ ◦ ≈β ◦ ≈ Γ

′′

2 .M′′2 (4.31)

and by induction on the number of actions in (4.31) and (4.29) we also conclude

Γ2 .M2
µ̂
=⇒ Γ′′′2 .M′′′2 such that Γ′′2 .M′′2 ≈ Γ

′′′

2 .M′′′2 (4.32)

which is our matching move.
Finally Γ′1 .M′1 and Γ′′′2 .M′′′2 are related inR by (4.30), (4.31), (4.32) and the transitivity

of ≈. �

In the sequel, we will always give bisimulations up-to β-moves for both ≈ and ≈ff; we
refer to the end of § 4.3 for such examples.

4.3 Defining Fault Tolerance

We now turn our attention to the definition of fault tolerance for typed DπLoc terms.
The server implementations server2 and server3 discussed in Example 4.1.1 are our sole
motivating examples of fault tolerant systems so far; they attain fault tolerance by masking
faults through active replication while at the same time, avoiding the use of any fault
detection mechanisms. Before we embark on the actual definition of fault tolerance, we
overview some examples that use passive replication and fault detection.

Example 4.3.1. [Passive replication with simple failure detection] The server implemen-
tation srvPng2 defined below, uses two identical replicas of the distributed database at

Chapter 4. Fault Tolerance 96

k1 and k2, similar to server2; the way it manages these replicas is however different from
server2.

srvPng2 ⇐ (ν data)

l

 serv?(x, y).ping k1.go k1.data!〈x, y, l〉
dgo k2.data!〈x, y, l〉e

| k1[[data?(x, y, z).go z .y!〈 f (x)〉]]
| k2[[data?(x, y, z).go z .y!〈 f (x)〉]]

More specifically, srvPng2 treats the replica at k1 as primary replica and the one at k2 as a
secondary (backup) replica. The coordinating proxy at l uses the ping construct as a simple
failure detector to check the state of the primary replica: if k1 is alive, the request is sent to
the replica at k1 and the secondary replica at k2 is not invoked; if, on the other hand, the
primary replica is dead, then the passive replica at k2 is promoted to a primary replica
and the request is sent to it. This implementation saves on time redundancy since for any
request, only one replica is invoked. �

It turns out that srvPng2 is less reliable than server2, in spite of the fact that it also
uses two replicas. In fact, srvPng2 might still block even if only one fault occurs during
computation. More formally,

∃ Γ′,N such that Γ . srvPng2 | client | k1[[kill]] =⇒ Γ′ .N where Γ′ .N 6⇓ret@l

This happens when srvPng2 receives a request from client, tests for the liveness of the
primary replica, determines that it is still alive and then sends the request to it. If the fault
on k1 is induced after the ping test, but before the replica at k1 sends back the answer to
the proxy at l, srvPng2 blocks. We have already seen that this never happens in the case
of server2, irrespective of when the fault is induced. This is not to say that srvPng2 does
not exhibit any fault tolerant behaviour. In fact, if we consider a milder form of static fault
induction, it exhibits the same fault tolerant behaviour as server2. More formally,

for i = 1..3, ∀ Γ′,N such that (Γ−ki) . srvPng2 | client =⇒ Γ′ .N then Γ′ .N ⇓ret@l

and
for i = 1..3, ∀ Γ′,N such that (Γ−ki) . server2 | client =⇒ Γ′ .N then Γ′ .N ⇓ret@l

Example 4.3.2. The monitor construct, defined earlier in Example 3.2.2, fits adequately
into the well established theory of distributed systems and maps closely to the notion of
failure detectors introduced in [CT96]; it turns out that monitor satisfies the characteristics
of a perfect failure detector (P), which always gives a correct view of the state of the
network. Using the new monitor construct, we modify srvPing2, swapping the simple
failure detection using ping with monitor

srvPFD2 ⇐ (ν data)

l

serv?(x, y).(νsync)

go k1.data!〈x, sync, l〉
| monitor k1dgo k2.data!〈x, sync, l〉e
| sync?(z).y!〈z〉

| k1[[data?(x, y, z).go z .y!〈 f (x)〉]]
| k2[[data?(x, y, z).go z .y!〈 f (x)〉]]

Chapter 4. Fault Tolerance 97

The new server implementation, srvPFD2, still uses passive replication in the sense that
the replica at k1 is still the primary replica and is queried first. The server proxy, however,
launches a parallel monitor on the primary replica, and the repreated tests allows it to
recover and promote the secondary replica at k2 to a primary one, when (and if) the
primary replica fails. In order to keep our implementation simple, we do not alter the
internal workings of monitor to synchronise it with the reply from the replica at k1. As a
result, we might have the sequence of events where the primary replica returns a result at
l, then k1 becomes dead and then the monitor launches a request to the secondary replica
at k2. In this case, we run the risk of receiving two replies at l, which would be detectable
by the observer. We thus use the same synchrnonisation mechanism for multiple replies
using the scoped channel sync, already used in server2 and server3. �

It turns out that srvPFD2 is as fault tolerant as server2 is, in the sense that no observer,
limited to location l, can tell the two servers apart if at most one fault occurs at either
k1, k2 or k3. More specifically,

for i = 1..3, ∀ Γ′,N such that Γ . srvPFD2 | client | ki[[kill]] =⇒ Γ′ .N then Γ′ .N ⇓ret@l

At this point, we finally turn our attention to the actual definitions of fault tolerance,
where we formalise all the intuitions given so for Examples 4.1.1, 4.3.1 and 4.3.2; we also
use these examples as testbeds for our definitions. The fault tolerance definitions we give
are based on two concepts: controlled fault injection on confined locations hosting redundant
computation and the respective difference in behaviour observed at public locations as a result
of the fault injections. We thus start to build this definition incrementally, by defining
alternative methods for fault injection.

Definition 4.3.3 (Fault Contexts). We identify two ways how to inject faults (thus failures)
on a typed network representation Γ: either statically, using the operation Γ − l or else
dynamically, using the located process l[[kill]]. The difference between these two methods
is that the former, inject the fault immediately, whereas the latter can induce the fault
asynchronously, at any stage during reduction.

Based on these two methods of fault injection, we define what we call fault contexts,
instantiated with a parameter n, denoting the maximum number of faults that the context
can induce. Thus:

• A Static n-fault context, or n-s.f.context for short, is denoted as an operation on
typed network representation Fn

S(x) and is defined as

Fn
S(x) = x − l1 . . . − ln or x − l1..n for short

• A Dynamic n-fault context, or n-d.f. context for short, is a system denoted as Fn
D and

defined as

Fn
D = l1[[kill]] | . . . | ln[[kill]] or

n∏
i=1

li[[kill]] for short

Chapter 4. Fault Tolerance 98

We here note that all the locations in a fault context need not be distinct, meaning that an
n-fault context kills at most n locations. If there are duplicate locations in a fault context
(li = l j for some i, j ∈ 1..n where i , j), they effectively amount to a single fault, since
a location cannot be killed more than once. As a shorthand, we often also remove the
differentiating marks S and D denoting static and dynamic, and denote a fault context as
Fn, where these can be inferred from the text.

Finally, we also define the notion of a valid fault context with respect to a typed network
representation Γ, where all the faults are injected on confined locations: this denoted as
Γ ` Fn and defined as

Γ ` Fn def
= ∀ l ∈ fn(Fn) then Γ ` l : c

�

As we shall see in the sequel, the way we induce failure influences the kind of fault
tolerance we define. In particular, we now define two forms of fault tolerance called
static fault tolerance and dynamic fault tolerance; as the name implies, the former injects
faults using static fault contexts whereas the latter uses dynamic fault contexts. These
definitions can also be viewed as defining perfect fault tolerance, by which we mean that
we require that all the observable barbs of a configuration are preserved for any reduction
sequence when faults are injected. For this reason, it seems appropriate to reuse the
equivalence relation �ff defined earlier in § 4.2.14; this allows us to keep the state of the
public locations stable while we alter the state of the confined locations internally.

Definition 4.3.4 (n-Static Fault Tolerance). A (well-formed) configuration Γ .N is said to
be n-static fault tolerant, or n-s.f.t., if and only iff

∀ Fn
S(x) such that Γ ` Fn

S(x) we have Γ .N �ff (Fn
S(Γ)) .N

�

Example 4.3.5. According to Definition 4.3.4, for

Γ = 〈 { l :p, k1..3 :c, req :p〈p, p〈−〉〉, ret :p〈−〉 }, ∅ 〉

we can conclude that the configurations Γ.server2, Γ.server3, Γ.srvPng2 and Γ.srvPFD2

are all 1-static fault tolerant, whereas Γ . server1 is not, because

Γ . server1 6�ff (Γ − k1) . server1

Moreover, we can also conclude that Γ . server3 is also 2-static fault tolerant, whereas all
the rest are not; for instance,

Γ . server2 6�ff (Γ − k1, k2) . server2

We can verify that a configuration is n-static fault tolerant by using the bisimulations
developed in § 4.2.2: thus, to show that Γ . srvPng2 is 1-static fault tolerant, we provide
witness relations satisfying

Γ . srvPng2 ≈ff Γ − k1 . srvPng2 (4.33)

Γ . srvPng2 ≈ff Γ − k2 . srvPng2 (4.34)

Γ . srvPng2 ≈ff Γ − k3 . srvPng2 (4.35)

Chapter 4. Fault Tolerance 99

We here give the witness relation for (4.33) and leave the other simpler relations for the
interested reader: Thus, the witness relation is R defined as

R
def
= {〈Γ . srvPng2,Γ − k1 . srvPng2〉} ∪

 ⋃
u,v∈N

R
′(u, v)

R
′(u, v) def

=

Γ . (νd)l[[Png(u, v)]] | R1 | R2 ,Γ − k1 . (νd)l[[Png(u, v)]] | R1 | R2

Γ . (νd)l[[Q1(u, v)]] |R1 |R2 ,Γ − k1 . (νd)l[[Q2(u, v)]] |R1 |R2

Γ . (νd)k1[[d!〈u, v, l〉]] |R1 |R2 ,Γ − k1 . (νd)k2[[d!〈u, v, l〉]] |R1 |R2

Γ . (νd)k1[[go l .v!〈 f (u)〉]] |R2 ,Γ − k1 . (νd)R1 | k2[[go l .v!〈 f (u)〉]]
Γ . (νd)l[[v!〈 f (u)〉]] |R2 ,Γ − k1 . (νd)R1 | l[[v!〈 f (u)〉]]
Γ . (νd)R2 ,Γ − k1 . (νd)R1

where d stands for data and
Png(x, y) ⇐ ping k1.Q1(x, y)dQ2(x, y)e

Qi(x, y) ⇐ go ki.d!〈x, y, l〉
Ri ⇐ ki[[d?(x, y, z).go z .y!〈 f (x)〉]]

R is the union of all the relations R′(x, y) where the variables x, y are parameterised
by names u, v ∈ N. In turn, R′(x, y) is an up-to-β-moves failure free bisimulation
relating Γ . srvPng2 and Γ − k1 . srvPng2. In this mapping one can see that while all the
requests are serviced by the primary replica at k1 in Γ . srvPng2, they are serviced by the
secondary replica at k2 in Γ − k1 . srvPng2. �

Definition 4.3.6 (n-Dynamic Fault Tolerance). A (well-formed) configuration Γ.N is said
to be n-dynamic fault tolerant, or n-d.f.t., if and only if

∀ Fn
D such that Γ ` Fn

D we have Γ .N �ff Γ .N |Fn
D

�

Example 4.3.7. According to Definition 4.3.6, for

Γ = 〈 {l :p, k1..3 :p, req :p〈p, p〈−〉〉, ret :p〈−〉}, ∅ 〉

we can conclude that the configurations Γ . server2, Γ . server3 and Γ . srvPFD2 are all
1-dynamic fault tolerant, whereas Γ . server1 and Γ . srvPng2 are not. For instance we can
show that

Γ |= srvPng2 6�ff srvPng2 | k1[[kill]]

We can also conclude that Γ . server3 is also 2-dynamic fault tolerant, whereas all the rest
are not; for instance,

Γ . server2 6�ff Γ . server2 | k1[[kill]] | k2[[kill]]

Once again, we can use the bisimulations developed in § 4.2.2 to verify that a configuration
is n-dynamic fault tolerant: thus, to show that Γ . server2 is 1-dynamic fault tolerant, we

Chapter 4. Fault Tolerance 100

provide witness relations satisfying

Γ . server2 ≈ff Γ . server2 | k1[[kill]] (4.36)

Γ . server2 ≈ff Γ . server2 | k2[[kill]] (4.37)

Γ . server2 ≈ff Γ . server2 | k3[[kill]] (4.38)

Below we give the witness relation R for (4.36); we leave the other simpler relations for
the interested reader. It is the union of all the relations R′(x, y) where the variables x, y
are parameterised by names u, v ∈ N.

R
def
=

 〈Γ . server2, Γ . server2 | k1[[kill]]〉,
〈Γ . server2, Γ−k1 . server2〉

 ∪
 ⋃

u,v∈N

R
′(u, v)

The relation R′(x, y) is an up-to-β-moves failure free bisimulation relating Γ . server2

and Γ.server2 | k1[[kill]]. The mapping of the intermediary states in this relation is based on
the separation of the sub-systems making up server2 and its derivatives into two classes:

• sub-systems whose behaviour is independent of the state of ki for i = 1..2, that
is the locations that may potentially fail. Such an example is the located process
l[[sync?(x).y!〈x〉]], denoted as l[[S(y)]] below.

• sub-systems whose behaviour depends directly on the state of ki for i = 1..2: typically
theses sub-systems are

– located processes that intend to go to ki, such as the queries sent to the database
replica go ki.d!〈x, y, l〉, denoted as Qi(x, y) below.

– processes that reside at ki, such as the database replicas themselves, denoted as
Ri below.

– located processes that have migrated from ki, such as replies from these replicas,
l[[y!〈 f (x)〉]].

To relate the sub-systems of the second kind (those dependent on the state of ki), R′(x, y)
uses three relations ranging over systems, namely

• R
Id
i (x, y), an identity relation.

• R
0
i (x, y) mapping all the left-hand located processes depending on ki to the null

process at ki on the right hand side, ki[[0]], typically used when ki is killed.

• R
≥

i (x, y) mapping all the left-hand located processes depending on ki to the null
process at l on the right hand side, l[[0]], denoting the right hand side state where
the replica at ki has been successfully queried, the answer has been successfully
returned and consumed by l[[S(y)]].

Sub-systems of the second kind are related with these three relations inR′(x, y) depending
on two factors, that is the state of k1 and whether the global system is in a position to
output an answer back to the observer.

• As long as k1 is alive, then relate the sub-systems depending on k1 and those de-
pending on k2 using RId

i (x, y) for i = 1..2.

Chapter 4. Fault Tolerance 101

• When k1 dies, then we refer to the second criteria. If the global system is not in a
position to output an answer back to the observer, derived from the fact that l[[S(y)]]
has not yet reduced, then we relate the sub-systems depending on k1 using R0

1(x, y),
exploiting β-moves such as those using (b-ngo) and structural rules such as (bs-dead)
from Table 22 and Table 23 respectively; the sub-systems depending on k2 are still
related using RId

i (x, y).

• If the global system is in a position to output an answer back to the observer
(l[[y!〈 f (x)〉]]), or has already done so, then we then we relate the sub-systems de-
pending on k1 using R0

1(x, y). We also map the sub-systems depending on k2 using
R
≥

2 (x, y), based on the idea that if k1 died before servicing the query, then the only
way we can output an answer back to the observer is through the complete servicing
of the replica at k2.

There is one exception to the cases when k1 is dead and the global system is in a position
to output an answer back to the observer; this is when the answer returned by the global
system on the right is from the replica at k1. In this case, we simply match it by the identity
relation for both sub-systems depending on k1 and k2.

R
′(x, y) def

=

Γ . (νd, s)

 l[[S(y)]]
|M1 |M2

 ,Γ .
(νd, s)

 l[[S(y)]]
|N1 |N2

| k1[[kill]]

〈M1,N1〉 ∈ R
Id
1 (x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

Γ . (νd, s)

 l[[S(y)]]
|M1 |M2

 ,Γ−k1 . (νd, s)

 l[[S(y)]]
|N1 |N2

 〈M1,N1〉 ∈ R
0
1(x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

Γ . (νd, s)

 l[[y!〈 f (x)〉]]
|M1 |M2

 ,Γ . (νd, s)

 l[[y!〈 f (x)〉]]
|N1 |N2

| k1[[kill]]

〈M1,N1〉 ∈ R
Id
1 (x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

Γ . (νd, s)

 l[[y!〈 f (x)〉]]
|M1 |M2

 ,Γ−k1 . (νd, s)

 l[[y!〈 f (x)〉]]
|N1 |N2

 〈M1,N1〉 ∈ R
0
1(x, s)

〈M2,N2〉 ∈ R
≥

2 (x, s)

Γ . (νd, s)
(

M1 |M2

)
,Γ .

(νd, s)
(

N1 |N2

)
| k1[[kill]]

〈M1,N1〉 ∈ R
Id
1 (x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

Γ . (νd, s)
(

M1 |M2

)
,Γ−k1 . (νd, s)

(
N1 |N2

) 〈M1,N1〉 ∈ R
0
1(x, s)

〈M2,N2〉 ∈ R
≥

2 (x, s)

R
0
i (x, y) def

=

Qi(x, y) |Ri , ki[[0]]

ki[[d!〈x, y, l〉]] |Ri , ki[[0]]
ki[[go l .y!〈 f (x)〉]] , ki[[0]]
l[[y!〈 f (x)〉]] , ki[[0]]
l[[0]] , ki[[0]]

R
≥

i (x, y) def
=

Qi(x, y) |Ri , l[[0]]

ki[[d!〈x, y, l〉]] |Ri , l[[0]]
ki[[go l .y!〈 f (x)〉]] , l[[0]]
l[[y!〈 f (x)〉]] , l[[0]]
l[[0]] , l[[0]]

Chapter 4. Fault Tolerance 102

R
Id
i (x, y) def

=

Qi(x, y) |Ri ,Qi(x, y) |Ri

ki[[d!〈x, y, l〉]] |Ri , ki[[d!〈x, y, l〉]] |Ri

ki[[go l .y!〈 f (x)〉]] , ki[[go l .y!〈 f (x)〉]]
l[[y!〈 f (x)〉]] , l[[y!〈 f (x)〉]]
l[[0]] , l[[0]]

where d, s stand for data and sync respectively and

S(y) ⇐ s?(x).y!〈x〉
Qi(x, y) ⇐ go ki.d!〈x, y, l〉

Ri ⇐ ki[[d?(x, y, z).go z .y!〈 f (x)〉]]

We consider a number of possible transitions in R′(x, y). Assume we are in a state

Γ . (νd, s)

 l[[S(y)]]
|M1 |M2

 ,Γ . (νd, s)

 l[[S(y)]]
|N1 |N2

| k1[[kill]]

where
〈M1,N1〉 ∈ R

Id
1 (x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

then if we accept an answer from any replica and l[[S(y)]] goes to l[[y!〈 f (x)〉]], then we
transition to the state

Γ . (νd, s)

 l[[y!〈 f (x)〉]]
|M′1 |M

′

2

 ,Γ . (νd, s)

 l[[y!〈 f (x)〉]]
|N′1 |N

′

2

 where
〈M′1,N

′

1〉 ∈ R
Id
1 (x, s)

〈M′2,N
′

2〉 ∈ R
Id
2 (x, s)

If on the other hand, k1[[kill]] injects the fault, we transition to the pair

Γ . (νd, s)

 l[[S(y)]]
|M1 |M2

 ,Γ−k1 . (νd, s)

 l[[S(y)]]
|N1 |N2

 where
〈M1,N1〉 ∈ R

0
1(x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

At this point, any actions by M2 or N2 are mapped by the identical action on the opposite
side, while still remaining in the same state of the relation. If M1 is involved in an action,
then we have two cases: if the action involving M1 causes l[[S(y)]] to reduce to l[[y!〈 f (x)〉]]
while reducing to M′1 itself, then we transition to

Γ . (νd, s)

 l[[y!〈 f (x)〉]]
|M′1 |M2

 ,Γ−k1 . (νd, s)

 l[[y!〈 f (x)〉]]
|N1 |N′2

 where
〈M′1,N1〉 ∈ R

0
1(x, s)

〈M2,N′2〉 ∈ R
≥

2 (x, s)

where on the right hand side N2 has to reduce to N2 while interacting with its respective
l[[S(y)]] using a weak action, to reduce it to l[[y!〈 f (x)〉]]. We note that this internal interaction
cannot be done by N1 since k1 is dead. Otherwise, if l[[S(y)]] is not affected, we match the
silent move from M1 with the empty move. �

Example 4.3.7 indicates that dynamic fault tolerance is stricter that static fault toler-
ance. In fact, a subset of the 1-static fault tolerant configurations in Example 4.3.5 satisfy

Chapter 4. Fault Tolerance 103

Table 24. Network Operational Ruled for typed DπLoc

(l-fail)

Γ .N `fail
−−→ (Γ − l) .N

Γ ` l :c[a]

the requirements of 1-dynamic fault tolerance. In spite of the indication that it is weaker,
we argue, at least informally, that static fault tolerance is still useful for applications
where fault tolerant conditions are not as stringent: to ensure dynamic fault tolerance,
the additional fault tolerant mechanism required in terms of redundancy is often more
expensive and in settings where there are limits on the number of resources that can be
used, static fault tolerance might suffice.

4.4 Bisimulation techniques for Fault Tolerance

The fault tolerant definitions 4.3.4 (static) and 4.3.6 (dynamic), quantify over all valid fault
contexts and even though we have tractable ways how to calculate fault tolerance through
the bisimulations developed in § 4.2.2, we still have to go through a lot of unnecessary
repeated work. For instance, to prove that server3 is 2-dynamic fault tolerant, we need
to provide 6 bisimulations, one of every different valid fault context; close inspection of
these relations shows that there is a lot of overlap between the individual bisimulations.

Such an overlap would be automatically eliminated if we require a single relation
that is somewhat the merging of all of these separate relations. Because of this reason,
we reformulate our fault tolerant definitions to reflect such a merging of relations. In
the sequel, we focus only on dynamic fault tolerance, since it is the most demanding of
the two fault tolerance definitions and because we use it again in Chapter 5; a similar
definition for the static case should not be more difficult to construct.

The new definition for dynamic fault tolerance is based on the failure-free actions de-
fined earlier in § 4.2.2 together with the new action defined in Table 24. Intuitively, the new
action fail allows the observer to kill confined locations but prohibits it from determining
which confined location died. Stated otherwise, the action allows the observer to count
the number of confined locations that are killed. Counting of confined location killings
is central to Definition 4.4.1: The asymmetric relation defined, �n

D, is parameterised with
a number n, denoting the maximum number of confined locations that can be killed on
the right hand side. Thus, a fail move on the right hand side may be matched by a weak
τ-move on the left hand side and the two residuals need to be related in �n−1

D .

Definition 4.4.1 (Dynamic Fault Tolerant Simulation). Dynamic n-fault tolerant simula-
tion, denoted �n

D, is the largest asymmetric typed relation over configurations such that
whenever Γ1 .M1 �

n
D Γ2 .M2,

• Γ1 .M1
γ
7−→ Γ′1 .M′1 implies Γ2 .M2

γ̂

|==⇒ Γ′2 .M′2 such that Γ′1 .M′1 �
n
D Γ
′

2 .M′2

Chapter 4. Fault Tolerance 104

• Γ2 .M2
γ
7−→ Γ′2 .M′2 implies Γ1 .M1

γ̂

|==⇒ Γ′1 .M′1 such that Γ′1 .N′1 �
n
D Γ
′

2 .M′2

• if n > 0, Γ2.M2
fail
7−→ Γ′2.M

′

2 implies Γ1.M1 |==⇒ Γ
′

1.M
′

1 such that Γ′1 .M′1 �
n−1
D Γ′2 .M′2

�

Before we can use Definition 4.4.1 to show that a configuration is dynamic fault tolerant
according to Definition 4.3.6, we need to show that, the former definition is sound with
respect to the latter. To show this, we prove the following lemmas.

Lemma 4.4.2 (Internal and External Kills). If Γ .M | l[[kill]] τ
7−→ Γ − l .M | l[[0]] then

• If Γ ` l : p, then Γ .M `
kill:l
−−−→ Γ − l .M

• If Γ ` l : c, then Γ .M `
fail
−−→ Γ − l .M

Proof. From
Γ .M | l[[kill]] τ

7−→ Γ − l .M | l[[0]]

we know Γ ` l : alive. Thus if Γ ` l : p, we combine these to get Γ ` l : p[a] and by (l-halt)

we get

Γ .M `
kill:l
−−−→ Γ − l .M

otherwise we can combine Γ ` l : alive and Γ ` l : c to obtain Γ ` l : c[a] and by (l-fail) we
get

Γ .M `
fail
−−→ Γ − l .M

as required. �

Proposition 4.4.3 (Soundness of �n
D).

Γ |=M1 �
n
D M2 implies ∀Fn such that Γ ` Fn then Γ |=M1 �ff M2 |Fn

Proof. Let Rn be a relation parameterised by a number n and defined as

Rn
def
=
{
Γ1 .M1 ,Γ2 .M2 |Fi

I |= Γ1 .M1 �
i
D Γ2 .M2, I ` Fi and 0 ≤ i ≤ n

}
We prove that �n

D is sound with respect to n-dynamic fault tolerance by showing that Rn

is a failure-free bisimulation, that is Rn ⊆≈ff.
We focus on the actions possible by the right hand side, and leave the simpler case,

that is the actions possible by the left hand side, to the interested reader. Thus assume
Γ1 .M1 Rn Γ2 .M2 |Fi for some 0 ≤ i ≤ n and we have

Γ2 .M2 |Fi γ
7−→ Γ′2 .M′2

We have to show that

Γ1 .M1

γ̂

|==⇒ Γ′1 .M′1 such that Γ′1 .M′1 Rn Γ
′

2 .M′2

Chapter 4. Fault Tolerance 105

From the structure of Fi, we deduce that there can be no interaction between M2 and Fi

and by (l-par) we conclude that this action can be caused by either of the following actions

either Γ2 .M2
γ
7−→ Γ′2 .M′′2 where M′2 ≡M′′2 |F

i (4.39)

or Γ2 . Fi γ
7−→ Γ′2 . F′ where M′2 ≡M2 |F′ (4.40)

If the action is caused by (4.39), then from the end clause of definition of Rn and the
definition of �i

D we know that (4.39) can be matched by

Γ1 .M1

γ̂

|==⇒ Γ′1 .M′1 where Γ′1 .M′1 �
i
D Γ
′

2 .M′′2

and as a result we know that Γ′1 .M′1 Rn Γ
′

2 .M′′2 |F
i.

If on the other hand, the action is caused by (4.40), then from the structure of Fi, we
conclude that γ can only have the form τ. From the assumption that Γ2 ` Fi, we can
rewrite (4.40) as

Γ2 . k j[[kill]] |Fi−1 τ
7−→ Γ2 − k j . k j[[0]] |Fi−1 for some k j such that Γ2 ` k j : c (4.41)

From (4.41) and the application of (l-par), we obtain

Γ2 .M2 | k j[[kill]] τ
7−→ Γ2 − k j .M2 | k j[[0]] (4.42)

and by (4.42) and Lemma 4.4.2 we get

Γ2 .M2
fail
7−→ Γ2 − k j .M2 (4.43)

By (4.43), the final clause of definition of Rn and �i
D we get the matching move

Γ1 .M1 |==⇒ Γ′1 .M′1 where Γ′1 .M′1 �
i−1
D Γ2 − k j .M2

from which we deduce
Γ′1 .M′1 Rn Γ2 − k j .M2|Fi−1

as required. �

Corollary 4.4.4. If Γ |=M �
n
D M then Γ .M is n-dynamically fault tolerant.

Proof. Immediate consequence of Proposition 4.4.3 and Definition 4.3.6 �

Any proofs for fault tolerance would greatly benefit if, in addition to �n
D, we apply

the same techniques for β-moves and structural equivalence developed in § 4.2.3 to �n
D,

so that we only need to provide fault tolerant simulations up-to β-moves and structural
equivalence. We thus dedicate the remainder of the chapter to develop up-to techniques
for �n

D.

We start by giving a definition of a counting bisimulation, that can match the number
of confined location killings and compare behaviour after these killings happen. Admit-
tedly, this bisimulation is hard to justify on it own; we however use it to facilitate the
development of up-to-β-move techniques for �n

D.

Chapter 4. Fault Tolerance 106

Definition 4.4.5 (Counting weak bisimulation equivalence). We let ρ range over the
actions (ñ : S̃)l : a!〈V〉, (ñ : S̃)l : a?(V), τ and the new action fail. Then, counting weak
bisimulation equivalence, denoted as ≈cnt, is defined to be the largest typed relation over
configurations such that if Γ1 .M1 ≈cnt Γ2 .M2 then

• Γ1 .M1
ρ
7−→ Γ′1 .M′1 implies Γ2 .M2

ρ̂

|==⇒ Γ′2 .M′2 such that Γ′1 .M′1 ≈cnt Γ
′

2 .M′2

• Γ2 .M2
ρ
7−→ Γ′2 .M′2 implies Γ1 .M1

ρ̂

|==⇒ Γ′1 .M′1 such that Γ′1 .M′1 ≈cnt Γ
′

2 .M′2 �

We next show that the commutative (diamond) property of β-moves is preserved for
ρ actions, up-to configurations that are ≡f structurally equivalent.

Lemma 4.4.6. Suppose Γ .N τ
7−→β Γ .M. Then for every action Γ .N

ρ
7−→ Γ′ .N′,

• either µ = τ and Γ .M = Γ′ .N′

• or there is a configuration Γ′.M′ such that Γ′.N′ |==⇒β≡f Γ
′.M′ and Γ.M

ρ
7−→ Γ′.M′.

Proof. The proof is similar to the one for Lemma 4.2.28, by case analysis on ρ and induction
on the length of derivation of Γ . N τ

7−→β Γ .M; we here consider the only different case,
ρ = fail, as an example.

If ρ = fail then through a lemma such as Lemma 3.5.3, we deduce that

Γ ` l : c[a] where

Γ .N `fail
−−→ Γ − l .N

(4.44)

By induction on the length of derivation, if the last rule used in the derivation of
Γ . N τ

7−→β Γ . M is (b-eq), then we can easily deduce that N and M have the form
l[[if v=v.PdPe]] and l[[P]] respectively.

Thus the weak beta move required is matched by the empty move and from (4.44)
and (l-fail) we deduce

Γ . l[[P]] `fail
−−→ Γ − l . l[[P]]

and it is easy to show that

Γ − l . l[[if v=v.PdPe]] ≡f Γ − l . l[[P]]

�

Before we give the actual definition of our n-fault tolerant simulation up-to-β-moves
and justify it, we still need to prove these two lemmas to stitch up the proof.

Proposition 4.4.7 (β-Structural equivalence and Counting bisimulation). If Γ |=M ≡f N
then Γ |=M ≈cnt N

Proof. By simple case analysis of why M ≡f N. �

Proposition 4.4.8. Suppose Γ .N |==⇒β Γ .M. Then Γ |= N ≈cnt M.

Chapter 4. Fault Tolerance 107

Proof. An immediate consequence of Lemma 4.4.6. �

Definition 4.4.9 (Fault Tolerant Simulation up-to β-moves). An n-fault tolerant simula-
tion up-to β-moves, denoted as �n

β , is the largest typed relation R between configurations
parameterised by the number n, such that whenever we have Γ1 .M1 �

n
β Γ2 .M2 then

• Γ1 .M1
γ
7−→ Γ′1 .M

′

1 implies Γ2 .M2

γ̂

|==⇒ Γ′2 .M
′

2 such that Γ′1 .M
′

1Al◦ �
n
β ◦ ≈cnt Γ

′

2 .M
′

2

• Γ2 .M2
γ
7−→ Γ′2 .M

′

2 implies Γ1 .M1

γ̂

|==⇒ Γ′1 .M
′

1 such that Γ′2 .M
′

2Al ◦ �
n
β ◦ ≈ff Γ

′

1 .M
′

1

• If n > 0 then Γ2 .M2
fail
7−→ Γ′2 .M′2 implies Γ1 .M1 |==⇒ Γ

′

1 .M′1 such that
Γ′2 .M′2 �

n−1
β ◦ ≈ff Γ

′

1 .M′1

whereAl is the relation |==⇒β ◦ ≡f. �

We highlight the asynchrony in the above definition, where for the first clause we use
the new counting bisimulation, ≈cnt, for matching the residuals whereas for the second
and third clauses we use ≈ff as before. The reason for this is that the right hand side
configuration can also produce fail moves if n ≥ 1, which we have to match using ≈cnt.
We use this fact in the proofs below.

Lemma 4.4.10. Suppose Γ1 .M1 �
n
β Γ2 .M2 then

• if Γ1.M1

µ̂

|==⇒ Γ′1.M
′

1 then Γ2.M2

µ̂

|==⇒ Γ′2.M
′

2, such that Γ′1.M
′

1 ≈ ◦ ≈β ◦ ≈cnt Γ
′

2.M
′

2

• if Γ2.M2

µ̂

|==⇒ Γ′2.M
′

2 then Γ1.M1

µ̂

|==⇒ Γ′1.M
′

1, such that Γ′1.M
′

1 ≈ ◦ ≈β ◦ ≈cnt Γ
′

2.M
′

2

• if n ≥ 1 and Γ2 .M2
fail
|==⇒ Γ′2 .M′2 then Γ1 .M1 |==⇒ Γ

′

1 .M′1, such that
Γ′1 .M′1 ≈ ◦ ≈β ◦ ≈cnt Γ

′

2 .M′2

Proof. Similar to the earlier proof for Lemma 4.2.31, where we have to complete a series
of matching moves using Lemma 4.4.6, Proposition 4.4.7 and Proposition 4.4.8. �

Proposition 4.4.11 (Inclusion of fault tolerant simulation up-to β-moves). If Γ1 .M1 �
n
β

Γ2 .M2 then Γ1 .M1 �
n
D Γ2 .M2

Proof. We prove the above proposition by defining the relation Rn as

Rn =
{
Γ1 .M1 ,Γ2 .M2 Γ1 .M1 ≈ff ◦ �

i
β ◦ ≈cnt Γ2 .M2 and 0 ≤ i ≤ n

}
and show that Rn ⊆�

n
D. The required result can then be extracted from this result by

considering the special cases where ≈ff and ≈cnt on either side are the identity relations.

The interesting case in this proof is when Γ2 .M2
fail
−→ Γ′′′2 .M′′′2 , since we exploit the

use of ≈cnt in Definition 4.4.9.

Chapter 4. Fault Tolerance 108

By Definition of Rn, ∃M′′1 andΓ′2 .M′2 such that

Γ1M1 ≈ff Γ
′′

1 M′′1 (4.45)

Γ′′1 .M′′1 �
i
β Γ
′

2 .M′2 (4.46)

Γ′2 .M′2 ≈cnt Γ2 .M2 (4.47)

By (4.47) we derive

Γ′2 .M′2
fail
=⇒ Γ′′2 .M′′2 such that Γ′′2 .M′′2 ≈cnt Γ

′′′

2 .M′′′2 (4.48)

By Lemma 4.4.10, (4.48), (4.46) and the definition of �i
β for some 1 ≤ i ≤ n we deduce

Γ′′1 .M′′1
τ̂
=⇒ Γ′′′1 .M′′′1 such that Γ′′′1 .M′′′1 ≈ff ◦ �

i−1
β ◦ ≈cnt Γ

′′

2 .M′′2 (4.49)

By induction on the number of actions in (4.49) and (4.45) we get

Γ1 .M1
µ̂
=⇒ Γ′1 .M′1 such that Γ′′′1 .M′′′1 ≈ff Γ

′

1 .M′1 (4.50)

which is our matching move. Once again, from (4.48), (4.49), (4.50) and the transitivity of
≈cnt and ≈ff we get

Γ′1 .M′1 ≈ff ◦ �
i−1
β ◦ ≈cnt Γ

′′′

2 .M′′′2

which is still in Rn. �

Example 4.4.12. [Fault tolerant Simulation] Using the result of Proposition 4.4.3 and
Proposition 4.4.7 we can now prove that server1 is 1-dynamically fault tolerant by giving
the single relation

R
def
= {〈Γ . server2, Γ . server2〉} ∪

 ⋃
u,v∈N

R
′(u, v)

as opposed to the three relations required in Example 4.3.7. Once again, R is the union of
all the relationsR′(x, y) where the variables x, y are parameterised by names u, v ∈ N.
We also reuse the relations RId

i (x, y),R0
i (x, y), R≥i (x, y), Ri, Qi(x, y) and S(y) defined earlier

in Example 4.3.7.
R
′(x, y) is a generalization of the previous relation given in Example 4.3.7 where we

now consider up to one fault injected at either location k1, k2 and k3. The case where k3

dies is similar to the case when no fault is injected because server2 does not have any
located processes dependent on k3. The case for when k1 is identical to Example 4.3.7
whereas the case where k2 dies is dual with k1.

Chapter 4. Fault Tolerance 109

R
′(x, y) def

=

Γ . (νd, s)

 l[[S(y)]]
|M1 |M2

 ,Γ . (νd, s)

 l[[S(y)]]
|N1 |N2

 〈M1,N1〉 ∈ R
Id
1 (x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

Γ . (νd, s)

 l[[S(y)]]
|M1 |M2

 ,Γ−k1 . (νd, s)

 l[[S(y)]]
|N1 |N2

 〈M1,N1〉 ∈ R
≥

1 (x, s)
〈M2,N2〉 ∈ R

Id
2 (x, s)

Γ . (νd, s)

 l[[S(y)]]
|M1 |M2

 ,Γ−k2 . (νd, s)

 l[[S(y)]]
|N1 |N2

 〈M1,N1〉 ∈ R
Id
1 (x, s)

〈M2,N2〉 ∈ R
≥

2 (x, s)

Γ . (νd, s)

 l[[S(y)]]
|M1 |M2

 ,Γ−k3 . (νd, s)

 l[[S(y)]]
|N1 |N2

 〈M1,N1〉 ∈ R
Id
1 (x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

Γ . (νd, s)

 l[[y!〈 f (x)〉]]
|M1 |M2

 ,Γ . (νd, s)

 l[[y!〈 f (x)〉]]
|N1 |N2

 〈M1,N1〉 ∈ R
Id
1 (x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

Γ . (νd, s)

 l[[y!〈 f (x)〉]]
|M1 |M2

 ,Γ−k1 . (νd, s)

 l[[y!〈 f (x)〉]]
|N1 |N2

 〈M1,N1〉 ∈ R
0
1(x, s)

〈M2,N2〉 ∈ R
≥

2 (x, s)

Γ . (νd, s)

 l[[y!〈 f (x)〉]]
|M1 |M2

 ,Γ−k2 . (νd, s)

 l[[y!〈 f (x)〉]]
|N1 |N2

 〈M1,N1〉 ∈ R
≥

1 (x, s)
〈M2,N2〉 ∈ R

0
2(x, s)

Γ . (νd, s)

 l[[y!〈 f (x)〉]]
|M1 |M2

 ,Γ−k3 . (νd, s)

 l[[y!〈 f (x)〉]]
|N1 |N2

 〈M1,N1〉 ∈ R
Id
1 (x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

Γ . (νd, s)
(

M1 |M2

)
,Γ . (νd, s)

(
N1 |N2

) 〈M1,N1〉 ∈ R
Id
1 (x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

Γ . (νd, s)
(

M1 |M2

)
,Γ−k1 . (νd, s)

(
N1 |N2

) 〈M1,N1〉 ∈ R
0
1(x, s)

〈M2,N2〉 ∈ R
≥

2 (x, s)

Γ . (νd, s)
(

M1 |M2

)
,Γ−k2 . (νd, s)

(
N1 |N2

) 〈M1,N1〉 ∈ R
≥

1 (x, s)
〈M2,N2〉 ∈ R

0
2(x, s)

Γ . (νd, s)
(

M1 |M2

)
,Γ−k3 . (νd, s)

(
N1 |N2

) 〈M1,N1〉 ∈ R
Id
1 (x, s)

〈M2,N2〉 ∈ R
Id
2 (x, s)

�

4.5 Summary

In this Chapter we formalised a definition of fault-tolerance for DπLoc, an extension of
Dπ with location failure only: this fault-tolerance definition is paramertised by a natural
number n, denoting the maximum number of faults that are assumed to occur. Our
definition was based on a partitioning of resources into two categories, dependable and
non-dependable: the observations are limited to dependable resources and fault are
injected on the non-dependable resources.

Chapter 4. Fault Tolerance 110

We developed a type-system, which ensured that an observer limited to dependable
resources never gains access to non-dependable resources, and obtained type safety and
subject reduction results for this type system. We also refined the bisimulation developed in
Chapter 2 and proved that it is fully abstract with respect to a reduction barbed congruence
that assumes observers limited to dependable resources. We then showed how this
bisimulation can be used to prove n-fault tolerance for certain DπLoc configurations.

We then went a step further and developed what we called fault tolerant simulations,
adapting up-to techniques based on β-moves, [JR04], to enable a better handling of our
proof for fault tolerance, since, even for the simple fault-tolerant configurations consid-
ered in this Chapter, the bisimulations required using our preliminary methods were of a
prohibitive size. We obtained soundness results for these techniques.

To the best of our knowledge, this is the first time fault-tolerance has been investigated
in a distributed calculus setting. We postulate that the fault tolerance definition we
formalised is general enough to be applied to fault-tolerant systems that encode a notion
of state; the examples we considered in this Chapter used stateless replication. This
would enable us to study a wider spectrum of fault-tolerance techniques, such as those
using lazy replication, discussed in the Introduction. The bisimulation techniques we
developed should also suffice for the necessary proofs.

Chapter 5

Case Study: Consensus

It has long been understood that systems can enhance their level of dependability through
fault tolerance. In his survey [Fis83], Fischer claims that consensus is a pervasive fault
tolerant problem in distributed computing. Despite of this claim, even though consensus
has been throughly studied, solved and proved to be correct under a number of assump-
tions [CT96], to the best of our knowledge, it has never be approach from a fault tolerance
perspective.

In this Chapter, we explore the viability of proving the correctness of a consensus
solving algorithm by viewing it as fault tolerance problem; we consider the simplest
scenario for consensus where perfect failure detectors are used [CT96], implement the
algorithm in typed DπLoc, and then prove its correctness using the theory developed in
Chapter 4. Encoding the pseudo-code algorithm given in [CT96] in typed DπLoc ensures
a formal development in a well defined language and as a result, we can use the corre-
sponding typed DπLoc theory. Moreover, such an encoding would be an opportunity to
demonstrate the expressivity of typed DπLoc.

5.1 Consensus Overview

The specification of the consensus problem is based on n processes that execute indepen-
dently from one another. The task of every process is to input a value v from a set of values
V and then decide by outputting a value v′ ∈ V. At any point during the execution, the
process may fail independently from other processes in fail-stop fashion. The critical aspect
of consensus specification is that three correctness conditions need to be satisfied:

Termination: All non-failing processes must eventually decide.

Agreement: No two processes decide on different values

Validity: If all processes are given the same value v ∈ V as input, then v is the only
possible decision value.

The implication of the last two conditions is that every process needs to coordinate
with other processes in order to agree on a value before deciding: since the value decided

Chapter 5. Case Study: Consensus 112

is dependent on the input (validity), such a coordination cannot be avoided by pre-
agreeing on some default value before the execution starts. The main task is to guarantee
termination, agreement and validity, irrespective of the failures that occur at any point
during execution.

The seminal paper by Toueg and Chandra, [CT96], classifies consensus-solving algo-
rithms according to the type of failure detectors used. They also give algorithms in
pseudocode for a number of these classes and prove their correctness using an algorith-
mic analysis. We here adapt the simplest of the algorithms given in [CT96] using perfect
failure detectors. This algorithm assumes n asynchronous, replicated participants, where
every participant, Pi, holds an initial value v from a value set V. Each participant tries to
attain consensus in flood-set fashion, by:

1. broadcasting its value to all the other participants.

2. receiving enough values from all the other participants to be able to decide on a
value.

Intuitively, since all participants are replicas, they use the same decision criteria and assum-
ing that they all receive the same (flood) set of value on which to base their decisions, the
participants should decide the same value, thereby attaining consensus. The complica-
tion however arises because participants may fail at any point in time; this may have two
adverse effects on the algorithm, namely:

Decision Blocking: a participant may be waiting for a value to arrive from another
participant which has failed before deciding. In this case, the value will never reach
the waiting participant, which will block and never decide.

Corrupted Broadcast: a participant may broadcast its values to a subset of the other
participants before failing. This may lead to an incomplete set of values at every
participant.

The algorithm is thus made fault tolerant in two ways:

1. The problem of blocking is solved through the use of perfect failure detectors:
every participant Pi employs (n−1) failure detectors, each observing the state of the
remaining (n− 1) participants. Once a participant P j fails, the failure detector for P j
at Pi instructs Pi not to wait for the value from P j.

2. The problem of corrupted broadcast is overcome by using consecutive rounds of
broadcasting, gathering sets of values (ignoring the values of dead participants)
and updating the decided value. If the maximum number of participants failing is
m, then by performing m + 1 rounds, we are guaranteed that there is at least one
round with no corrupted broadcast, and as a result, all the participants will reach
consensus at that round. Moreover, for the remaining rounds, participants will be
broadcasting to each other the agreed estimate, and since the decision criteria at
every participant needs to satisfy validity, every participant holds that value for the
remaining rounds.

Chapter 5. Case Study: Consensus 113

5.2 Defining Consensus in typed DπLoc

In this section, we adapt the definition of consensus over-viewed in § 5.1 to a specific
DπLoc setting. We precede our adaptation of the consensus problem by stating a number
of assumptions about the network over which the system solving consensus executes.
More specifically, we assume that to solve consensus for n processes, the underlying
network consists of at least n locations, l1, . . . , ln; this allows us to distribute the participants
P1..n at distinct locations, thereby simulating n independently failing processes. In addition,
we assume that these locations are confined so as to limit the observation of their failure
and facilitate our analysis.

For the purposes of our study, the decision set is chosen to be the minimum possible,
that is the set of boolean values V = {t, f }. We model these values by two free channel
names, named t and f respectively. We also assume that the network representation
permits every participant to use the free channel p to input the proposed initial value from
the value set and the free channel d to return the decided value at the end of the n rounds.
Finally, we assume that the network representation defines a public channel and a
public location k0 that are fresh to the algorithm solving consensus. We formalise all this
in the definition below, using the abbreviation notation defined earlier in § 4.2.3.

Definition 5.2.1 (Consensus Permitting Network Representation). For any system N, a
network representation Γ is consensus permitting for n participants iff

1. ∀i = 1..n we have Γ ` li : c[a] (The network representation specifies n confined
locations where to distribute our participants.

2. Γ ` t : ch〈−〉, f : ch〈−〉, p : ch〈ch〈−〉〉 , d : ch〈ch〈−〉〉 (The network representation
specifies two channels t, f representing the every value in the value set V and
another two channels, one to initialise the participant with a value in the value set,
p, and the other to obtain the decided value, d)

3. Γ ` : p〈〉, k0 : p[a] where , k0 < fn(N) (The network representation
defines a public channel, and a public location k0, both fresh to N)

4. Γ ` N (The configuration Γ .N is well-formed) �

We next specify the three requirements defining consensus for DπLoc systems, given
earlier in § 5.1. The definitions of termination, validity and agreement are based on the
encodings just stated, and formalised in Definition 5.2.1. Before we do this, we adapt
a standard notion of termination used in process calculi and call it stabilisation to avoid
confusion with the first criteria of consensus.

Definition 5.2.2 (Stabilisation). A stable configuration is a configuration Γ . N that can
not perform any reduction. This is denoted as

Γ .N 6−→

Thus a configuration Γ . N eventually stabilises, (or stabilise for short) if there exists a
maximal number of reduction steps n after which it always stops reducing. More formally

∃n such that ∀Γ′,N′ if Γ .N−→ · . . . · −→︸ ︷︷ ︸
≤n

Γ′ .N′ then Γ′ .N′ 6−→

Chapter 5. Case Study: Consensus 114

�

We here define two forms of termination, called weak termination and strong termination.
Intuitively, weak termination states that if a system N is initialised properly, then for all
possible reductions, the system can return a decision at every location li. However,
weak termination does not guarantee that the system will return a decision at every
location li; indeed it can loop forever internally. For this stronger condition we use strong
termination.

Definition 5.2.3 (Termination).

• A system N satisfies weak termination for n participants if and only if, there exists an
n-participant consensus permitting network representation Γ for N such that when
we initialize every participant in N with any a value v ∈ V, we are guaranteed that,
for all reductions possible, all the n participants can eventually decide, or else die.
More formally, for any n − 1 dynamically fault inducing contexts, Fn−1, such that
Γ ` Fn−1, we have:

∀Γ′,N′

if Γ .N |Fn−1
| (ν c1..n)

k0[[c1?()...cn?().!〈〉]] |

n∏
i=1

li[[p!〈t〉 | p!〈 f 〉]] |
li[[d?(x).go k0.ci!〈〉]] |
k0[[monitor lidci!〈〉e]]

 −→∗ Γ′ .N′

then Γ′ .N′ ⇓@k0

In the above test we first initialise all participants with either t or f , li[[p!〈t〉 | p!〈 f 〉]].
We then define n scoped channels c1..n, where ci denotes completion for participant
Pi. Completion can be triggered if either Pi decides, that is outputting a value on
channel d at li, or else Pi dies: the code li[[d?(x).go k0.ci!〈〉]] and k0[[monitor lidci!〈〉e]]
check for either and report the signalling output on ci at the fresh location k0. Here,
the code k0[[c1?()...cn?().!〈〉]] checks that every participant completes and reports
on the fresh channel when this happens.

• A system N satisfies strong termination for n participants if and only if, there exists an
n-participant consensus permitting network representation Γ for N such that Γ .N

1. weakly terminates

2. stabilises �

Definition 5.2.4 (Validity). A system N satisfies validity for n participants if and only if,
there exists an n-participant consensus permitting network representation Γ for N such
that when we initialize every participant in N with a homogeneous value v ∈ V, we are
guaranteed that, for all reductions possible, no n participants will never decide anything
else other than the value v. More formally, for any n − 1 fault inducing contexts, Fn−1,
such that Γ ` Fn−1 we have:

Γ .N |Fn−1
|

n∏
i=1

li[[p!〈t〉]] | li[[d?(x).if (x = f).go k0.!〈〉]] 6⇓@k0

and

Γ .N |Fn−1
|

n∏
i=1

li[[p!〈 f 〉]] | li[[d?(x).if (x = t).go k0.!〈〉]] 6⇓@k0

Chapter 5. Case Study: Consensus 115

In the above two tests, we initialise every participant with a homogeneous value: in the
first case all participants are initialise with a t value using the code li[[p!〈t〉]] whereas in
the second case all participants are set to f using li[[p!〈 f 〉]]. In both tests we then collect
decided values, if any, and check whether it is different from the value inputs, that is
li[[d?(x).if (x = f).go k0.!〈〉]] for the first test and li[[d?(x).if (x = t).go k0.!〈〉]] for the
second. If so, we report on the fresh channel at location k0. �

Definition 5.2.5 (Agreement). A system N satisfies agreement for n participants if and only
if, there exists an n-participant consensus permitting network representation Γ for N such
that, when we initialize every participant in N with a value v ∈ V, we are guaranteed
that, for all reductions possible, no two participants will ever decide different values,
v′, v′′ ∈ V where v′ , v′′. More formally, for any n − 1 fault inducing contexts, Fn−1, such
that Γ ` Fn−1 we have:

Γ .N |Fn−1
| (ν c)

 k0[[c?(x).c?(y).if (x , y).!〈〉]] |∏n
i=1 li[[p!〈t〉|p!〈 f 〉]] | li[[d?(x).go k0.c!〈x〉]]

 6⇓@li

In the above test, we initialise every participant with either t or f , li[[p!〈t〉|p!〈 f 〉]], collect the
decision and report it back to the location k0 on the scoped channel c, li[[d?(x).go k0.c!〈x〉]].
Here, a process randomly checks whether two decided values are different. �

We have just defined termination, validity and agreement for systems; in the sequel,
we overload these terms - termination, validity and agreement - so that they refer to
configurations, as long as the network representation of the configuration is consensus
permitting with respect to the system of the configuration. Finally, we give the definition
for an algorithm that solves consensus in typed DπLoc.

Definition 5.2.6 (Consensus in typed DπLoc). A system N solves consensus for n partic-
ipants if and only iff there exists a consensus permitting network representation Γ for N
such that:

1. Γ .N satisfies strong termination

2. Γ .N satisfies validity

3. Γ .N satisfies agreement �

5.3 Implementing the Consensus-solving Algorithm in typed DπLoc

The DπLoc implementation of the consensus-solving algorithm given by Toueg and
Chandra, outlined in § 5.1, is called consn and is defined in Table 25. In this table,
every participant process is denoted as Pr

i 〈v〉, where i is the participant number, r is the
current round number and v is the current value estimate held by Pi at round r. Pr

i 〈v〉 is
defined in terms of three parallel processes:

• Br
i 〈v〉 handles the broadcasting of v to all other participants

• Mr
i 〈v〉 is a collection of n − 1 failure detectors (monitors), instructing Pi not to wait

for value estimates from dead participants

Chapter 5. Case Study: Consensus 116

Table 25. Consensus Algorithm in typed DπLoc

Broadcasting
Br

i 〈v〉 ⇐
∏n

j=1 go l j.sr
i !〈v〉

Failure Detection
Mr

i ⇐
∏n

i, j=1 monitor l jdsr
j!〈t〉e

Decision Making
Rr

i 〈t〉 ⇐ (ν tr, f r) (Sr
〈t〉 | Tr

| Fr) Rr
i 〈 f 〉 ⇐ (ν er) (Sr

〈 f 〉 | Cr)

Sr
〈t〉 ⇐

∏n
j=1 sr

j?(x). if (x = f). f r!〈〉d tr!〈〉e Sr
〈 f 〉 ⇐

∏n
j=1 sr

j?(x). er!〈〉

Fr
⇐ f r?().Pr+1

i 〈 f 〉
Tr
⇐ tr?()...tr?()︸ ︷︷ ︸

n

.Pr+1
i 〈t〉 Cr

⇐ er?()...er?()︸ ︷︷ ︸
n

.Pr+1
i 〈 f 〉

Participants
Pr

i 〈v〉 ⇐ Rr
i 〈v〉 | B

r
i 〈v〉 | M

r
i r < n Pn+1

i 〈v〉 ⇐ d!〈v〉

Consensus
consn

⇐
∏n

i=1 li[[p?(x).P1
i 〈x〉]]

• Rr
i 〈v〉 handles the receiving of n value estimates for round r and deciding the value

estimate for round r + 1

For the sake of this case study, requiring us to reason about strong termination, we
work at the level of abstraction where the macro monitor ldPe is treated as a basic language
construct, with the atomic reduction and transition steps defined in Table 26. This allows
us to abstract away from the internal τ-actions associated with repeatedly checking for the
liveness of a location k, thereby simplifying our analysis of stabilisation of the algorithm
consn. We even define this τ-action as a beta move, due to its confluence properties,
thereby alleviating much of its burden when considering bisimulations that involve the
monitor construct. We leave it up to the interested reader to check that this does not affect
the results obtained in § 4.2.3 and § 4.4.

Based on the value set V = {t, f }, the decision criteria is chosen to be conjunction over
booleans. Using our encoding of booleans in terms of the two free channel names t and f ,
a branching on the conjunction for two values v and v′ can typically be implemented as
follows:

• the actual values v and v′ can be implemented as outputs on the respective channel.
Thus t!〈〉 denotes a true whereas f !〈〉 denotes a false.

• The branching based on the conjunction for v and v′, that is if (v ∧ v′) then P else Q

Chapter 5. Case Study: Consensus 117

Table 26. Reduction and Operational Rules for monitor in typed DπLoc

Assuming Γ ` l : alive

(r-mon)

Γ . l[[monitor kdPe]] −→ Γ . l[[P]]
Γ 0 k :alive

(l-mon)

Γ . l[[monitor kdPe]] τ
−→ Γ . l[[P]]

Γ 0 k :alive

(b-mon)

Γ . l[[monitor kdPe]] τ
7−→β Γ . l[[P]]

Γ 0 k :alive

is then implemented as t?().t?().P | f ?().Q. If there are only two boolean values v!〈〉,
v′!〈〉, then we are guaranteed that only one branch, either P or Q will trigger.

The process Rr
i 〈v〉 in Table 25 extends this implementation to n boolean values, v1∧ . . .∧vn,

for a particular round r. To distinguish these value from boolean values of another round,
we use outputs on unique names tr!〈〉 and f r!〈〉. Once again, the branches of the conditional
are implemented as two parallel subprocesses:

• Fr is the branch that decides that the estimate for Pi for the next round is false, and
according to the decision criteria, it only needs one signalling output on channel f r

to proceed as Pr+1
i 〈 f 〉, that is the participant at the next round with an f estimate.

• Tr is the branch that decides that the estimate for next round if true, and needs n
signalling outputs on channel tr to proceed as Pr+1

i 〈t〉, that is the participant at the
next round with an t estimate.

These two branches, Pr+1
i 〈 f 〉 and Pr+1

i 〈t〉, are mutually exclusive if and only if the number of
boolean values, that is signalling outputs on tr or f r, is exactly n. Due to the asynchronous
nature of the participants, race conditions may arise that lead to two estimates for a
single participant, which would subsequently violate this condition. More specifically,
a participant P j may send its estimate to Pi and then fail, while at the same time, the
monitor for P j at Pi detects the failure and releases the unblocking values estimate for P j

at Pi, thereby resulting in two value estimates for a round r for the same participant P j at
Pi. The implementation in Table 25 solves this problem by packaging estimates from P j

to Pi for round r in channels sr
j; the process Sr filters multiple estimate values for a single

participant P j to only one estimate, thereby guaranteeing n signalling outputs only, on
either of the internal channels f r or tr.

The implementation of Table 25 also makes an optimisation on the algorithm given in
[CT96]: from the values set, V = {t, f }, and the decision criteria, conjunction, we easily
conclude that once a participant decides on a false estimate f at round r, it keeps this

Chapter 5. Case Study: Consensus 118

estimate for the remaining rounds and finally decides on this value. This happens because
it will keep on sending an f estimate to itself for the following rounds, thereby excluding
the possibility of receiving n t estimates in any future round r+m. As a result, in Table 25,
the definition of the Rr

i 〈 f 〉 component in Pr
i 〈 f 〉 does not consider the actual values of the

estimates received from other participants. It simply collects n estimates, one for every
participant, and progresses to the next round, r+ 1, without performing and decisions or
updates to its estimate.

5.4 A Correctness proof for the Consensus Algorithm using Intensional Tests

Our next task is to show that our implementation, consn, satisfies the consensus correct-
ness Definition 5.2.6 for DπLoc. We here propose an alternative approach to the proof.
According to Definition 5.2.6, we have to show that consn stabilises and also that it satis-
fies weak termination, validity and agreement; the latter three conditions are defined in
terms of four test contexts that are composed in parallel with consn. Instead of proving
that consn satisfies certain correctness conditions for these four test contexts directly, we
propose to construct three similar tests for which we have to prove conditions and then
show that the necessary correctness conditions required for the four test contexts defined
in Definitions 5.2.3, 5.2.4 and 5.2.5 can be extracted from the conditions proved for the
three alternative tests.

More specifically, the conditions imposed by Definitions 5.2.3, 5.2.4 and 5.2.5 are at
a specification level and their intention is mainly to encode, as close as possible, the
traditional definitions given in English; two of these definitions, agreement and validity
are defined in terms of negative conditions. Intensionally however, these Definitions
require that when we initialise every participant in consn with either t or f , all participants
either decide and agree on a single value or else fail. In addition, they specify an even
stricter behaviour for the two extreme cases, that is when the participants are initilialised
all with t or all with f : they require that not only participants decide and agree, but
they can only agree on the value inputted. Accordingly, we construct three testing
systems reqn

〈e〉, reqn
〈t〉 and reqn

〈 f 〉, defined in Table 27. The first test, reqn
〈e〉 encode the

intentional behaviour of the generic case while the other two, reqn
〈t〉 and reqn

〈 f 〉 encode
the intentional behaviour of the two extreme cases just discussed. As before these tests
are intended to be composed in parallel with the consensus algorithm consn as the system

consn
| reqn

〈v〉 for v ∈ {t, f , e}.

and produce a signalling output on the fresh channel at the fresh location k0 if and
only if the intended criteria is met by consn.

We claim that our approach to the proof has a number of advantages:

• The first obvious advantage is that we have to prove conditions for three tests
instead of four test. Since, as we shall see, the proofs for the three tests are at most
as involving as the required proofs for the four test, the total work required is less.

• Instead of dealing with reasoning about negative barbs, as is required by Defini-
tion 5.2.4 and Definition 5.2.5, we can use bisimulation techniques, developed earlier

Chapter 5. Case Study: Consensus 119

Table 27. Requirement Contexts in typed DπLoc

Initialising
I〈t〉 ⇐

∏n
i=1 li[[p!〈t〉]]

I〈 f 〉 ⇐
∏n

i=1 li[[p!〈 f 〉]]
I〈e〉 ⇐

∏n
i=1 li[[p!〈t〉 | p!〈 f 〉]]

Decision Gathering
G ⇐

∏n
i=1 li[[d?(x).(d!〈x〉 |go k0.ci!〈x〉)]] | k0[[monitor lidci!〈e〉e]]

Agreement
Ai
〈t〉 ⇐ ci?(x).if x ∈ {t, e}.Ai+1

〈t〉 i ≤ n
Ai
〈 f 〉 ⇐ ci?(x).if x ∈ { f , e}.Ai+1

〈 f 〉 i ≤ n
Ai
〈e〉 ⇐ ci?(x).if x = t.Ai+1

〈t〉dif x = f .Ai+1
〈 f 〉dAi+1

〈e〉ee i ≤ n
An+1
〈v〉 ⇐ !〈〉 v ∈ {t, f , e}

Checking
C〈v〉 ⇐ (ν c1..n)(G | k0[[A1

〈v〉]]) v ∈ {t, f , e}

Requirement Contexts
reqn
〈v〉 ⇐ I〈v〉 | C〈v〉 v ∈ t, f , e

in Chapter 4, to prove conditions about a single positive barb, as is the case for the
systems consn

| reqn
〈v〉 for v ∈ {t, f , e}.We claim that with systems the size of consn,

it can be prohibitive to perform any analysis dealing with negative barbs.

• As we will see in the sequel, the tests reqn
〈e〉, reqn

〈t〉 and reqn
〈 f 〉, share a lot of com-

mon structure, which can be exploited when constructing the witness bisimulations
as proofs.

• Most importantly, from our point of view, we get a chance to alleviate some of the
burden involved in constructing these witness bisimulations as proofs, by using
fault tolerant techniques. We however defer this discussion to § 5.6.

The first of these three tests, reqn
〈e〉, checks for the general intentional behaviour: if

participants are initialised with a non-homogeneous input, then they either decide and
agree on a common value, or else fails. The other two tests, reqn

〈t〉 and reqn
〈 f 〉, focus

on fringe cases and are more specific regarding the values inputted and decided by the
participants: they initialise the participants with a homogeneous input (all t and all f
respectively) and then check that the decided value is the same as the input.

As expected, these three tests are very similar. Each of these tests consists of two
sub-systems:

• I〈v〉 initialises the participants with the value v.

Chapter 5. Case Study: Consensus 120

• C〈v〉 checks that the decided values are all equal to v.

The latter system, C〈v〉, is decomposed into two further sub-systems:

• G gathers the decided values from the participants and returns them to k0 on the
respective scoped channel ci. It generates empty decisions for dead participants.

• Ai
〈v〉 checks that all decisions taken by participants Pi..Pn reported on the scoped

channels ci..cn agree on v.

In the above definitions, as in the definition of consn, the names t and f denote a particular
state the participant or test is in; for example, the t in Pr

i 〈t〉 denotes that the participant Pi

is in a state with estimate t at round r; similarly, the f in Ai
〈 f 〉 denotes that we are currently

checking that the participant Pi has decided and agreed on the value f . For this reason,
we use an additional value, v = e, for the systems of the more generic test, reqn

〈e〉, which
intuitively stands for either value. Thus, I〈e〉 initialises the participants to either values t or
f and C〈e〉 checks that all the decided values are either all t or all f , that is they all agree.
Moreover, the process that gathers decided values from participants, generates a value
ci!〈e〉, denoting the empty decision, if participant Pi dies; subsequently, the decided value
of Pi is ignored by the process that checks for agreement, Ai

〈v〉. We also note that since
gathering is a read operation, after consuming the decide value, we regenerate it again;
the fact that we leave this information intact at the participant location happens also to
smooth our proofs.

The three agreement processes, Ai
〈t〉, Ai

〈 f 〉 and Ai
〈e〉, for the tests reqn

〈e〉, reqn
〈t〉 and

reqn
〈 f 〉 deserve further discussion. In particular, we note that Ai

〈t〉 and Ai
〈 f 〉 in Table 27

are defined in terms of Ai+1
〈t〉 and Ai+1

〈 f 〉, respectively: this is to say that Ai
〈t〉 progresses

to Ai+1
〈t〉 if the value gathered on channel ci is t; similarly for Ai

〈 f 〉. The other process that
checks agreement Ai

〈e〉 is defined in terms of Ai+1
〈t〉, Ai+1

〈 f 〉 and Ai+1
〈e〉. It determines

whether the remaining decisions, gathered on ci..cn, all agree on either t or f : if the value on
ci is t, it continues as Ai+1

〈t〉, which forces the remaining i+1..n decided values to all be t, if
the value on ci is f , it continues as Ai+1

〈 f 〉whereas if the the value on ci is e, that is empty,
it postpones the branching to Ar

〈t〉 or Ar
〈 f 〉 till the next round, and thus continues as

Ai+1
〈e〉. The final output on the fresh channel , indicating that the test was successful,

is produced by An+1
〈v〉, where the index n + 1 means that all the n participants agreed on

v.
We conclude this section by showing how the weak termination, validity and agree-

ment properties, defined earlier through four tests in Definition 5.2.3, Definition 5.2.4 and
Definition 5.2.5, can be extracted from properties proved about the three tests reqn

〈e〉,
reqn
〈t〉 and reqn

〈 f 〉. Together with the proof stabilisation, we go on to show how to prove
that consn satisfied consensus.

First we state the property we plan to prove about the three intensional tests reqn
〈v〉

for v ∈ {t, f , e}: we call it test (weak) termination, which is not to be confused with the
consensus weak termination defined earlier.

Definition 5.4.1 (Test Weak Termination). A well-formed configuration Γ . N such that
Γ is consensus permitting and , k0 < fn(N) is said to weakly terminate up-to m failures

Chapter 5. Case Study: Consensus 121

under a test reqn
〈v〉 for v ∈ {t, f , e}, if and only if for all valid dynamic fault contexts Fm

where Γ ` Fm

∀Γ′,N′ if Γ .N | reqn
〈v〉 |Fm

−→
∗ Γ′ .N′ then Γ .N′ ⇓@k0

�

Thus we state the property we need to prove for consn and the intentional tests.

Proposition 5.4.2 (Test Termination for the Consensus-Solving Algorithm). For any
consensus permitting network representationΓ for consn, thenΓ.consn weakly terminates
under any test reqn

〈v〉 for v ∈ {t, f , e}. Stated otherwise:

∀Γ′,N′

if Γ .N | reqn
〈t〉 |Fm

−→
∗ Γ′ .N′ then Γ .N′ ⇓@k0

if Γ .N | reqn
〈 f 〉 |Fm

−→
∗ Γ′ .N′ then Γ .N′ ⇓@k0

if Γ .N | reqn
〈e〉 |Fm

−→
∗ Γ′ .N′ then Γ .N′ ⇓@k0

We defer the proof of Proposition 5.4.2 to § 5.6, where is it expressed as a fault tolerance
problem. For the time being, we will assume it is true and show how the other properties
can be extracted from this result.

We next prove the following two lemmas, the premises of which are the negated validity
and agreement conditions.

Lemma 5.4.3 (Extracting Validity). Consider a consensus-permitting network Γ, such
that Γ . consn is well-formed. For any dynamic fault context Fn−1 such that Γ ` Fn−1

• If Γ . consn
|Fn−1

|
∏n

i=1 li[[p!〈t〉]] | li[[d?(x).if (x = f).go k0.!〈〉]] ⇓@k0

then ∃Γ′,N′ such that Γ . consn
|Fn−1

| reqn
〈t〉 −→? Γ′ .N′ 6⇓@k0

• If Γ . consn
|Fn−1

|
∏n

i=1 li[[p!〈 f 〉]] | li[[d?(x).if (x = t).go k0.!〈〉]] ⇓@k0

then ∃Γ′,N′ such that Γ . consn
|Fn−1

| reqn
〈 f 〉 −→? Γ′ .N′ 6⇓@k0

Proof. We here prove the first clause, and leave the second similar clause for the interested
reader. Assume

Γ . consn
|Fn−1

|

n∏
i=1

li[[p!〈t〉]] | li[[d?(x).if (x = f).go k0.!〈〉]] ⇓@k0 (5.1)

Since

 < fn(consn, Fn−1,
n∏

i=1

li[[p!〈t〉]])

Then this barb can only be caused by the subsystem
∏n

i=1 li[[d?(x).if (x = f).go k0.!〈〉]].
However,

n∏
i=1

Γ . li[[d?(x).if (x = f).go k0.!〈〉]] 6−→

Chapter 5. Case Study: Consensus 122

and from the structure of
∏n

i=1 li[[d?(x).if (x = f).go k0.!〈〉]] we conclude that the only
way we can have (5.1) is, if

∃ Γ′, N′, li for 1 ≤ i ≤ n such that Γ . consn
|Fn−1

|

n∏
i=1

li[[p!〈t〉]] −→?≡ Γ′ .N′ | li[[d!〈 f 〉]]

(5.2)
This is the required condition needed to prove the implication. By (5.2) we conclude
that the gathering sub-system G in reqn

〈t〉 can produce ci!〈 f 〉 at ki. Thus, even if for
the remaining 1 ≤ j ≤ n where j , i the G sub-system can produce c j!〈v j〉 at k0 where
v j are either t or e, C〈t〉 may still block because when we reach Ai

〈t〉, the input defined
as ci?(x).if x ∈ {t, e}.Ai+1

〈t〉 may consume ci!〈 f 〉 which will not branch to Ai+1
〈t〉 since

f < {t, e}. �

Lemma 5.4.4 (Extracting Agreement). Consider a consensus-permitting network Γ, such
that Γ . consn is well-formed. Then for any dynamic fault context Fn−1 such that Γ ` Fn−1

if

Γ . consn
|Fn−1

| (ν c)

k0[[c?(x).c?(y).if (x , y).!〈〉]] |

n∏
i=1

li[[p!〈t〉]] | li[[p!〈 f 〉]] | li[[d?(x).go k0.c!〈x〉]]

 ⇓@k0

then
∃Γ′,N′ such that Γ . consn

|Fn−1
| reqn

〈e〉 −→? Γ′ .N′ 6⇓@k0

Proof. The proof for this lemma is similar to that of Lemma 5.4.3. By a similar analysis
we conclude that the gathering sub-system G in reqn

〈e〉 can produce ci!〈 f 〉 at c j!〈t〉 for
1 ≤ i, j ≤ n. We thus conclude that C〈e〉may block. Assuming that i < j, then we have the
following cases

• If we have Ai
〈t〉we trivially block.

• If we have Ai
〈e〉 then by consuming ci!〈 f 〉 first (since i < j) we proceed as Ai + 1〈 f 〉;

if this reaches A j
〈 f 〉 it may block by consuming c j!〈t〉

• We have a similar case if we have Ai
〈 f 〉. �

From Proposition 5.4.2, we can conclude that the premises of Lemma 5.4.3 and
Lemma 5.4.4 are always false, and by double negation we obtain validity and agree-
ment for consn. We next prove a more straightforward proof for extracting consensus
weak termination.

Lemma 5.4.5 (Extracting Weak Termination). If Γ . consn
| reqn

〈e〉 satisfies test weak
termination (Definition 5.4.1), then Γ . consn satisfies consensus weak termination (Defini-
tion 5.2.3).

Chapter 5. Case Study: Consensus 123

Proof. If we expand Definition 5.4.1, that is test weak termination, and the Definition of
reqn
〈e〉 from Table 27, the by our assumption we have:

∀Γ′,N′ and Fn−1 such that Γ ` Fn−1

if Γ . consn
|Fn−1

| (ν c1..n)

k0[[A1

〈e〉]] |

n∏
i=1

li[[p!〈t〉 | p!〈 f 〉]] |
li[[d?(x).go k0.ci!〈x〉]] |
k0[[monitor lidci!〈e〉e]]

 −→

∗ Γ′ .N′

then Γ′ .N′ ⇓@k0

By expanding Definition 5.2.3, that is consensus weak termination, then we require:

∀Γ′,N′ and Fn−1 such that Γ ` Fn−1

if Γ . consn
|Fn−1

| (ν c1..n)

k0[[c1?()...cn?().!〈〉]] |

n∏
i=1

li[[p!〈t〉 | p!〈 f 〉]] |
li[[d?(x).go k0.ci!〈〉]] |
k0[[monitor lidci!〈〉e]]

 −→

∗ Γ′ .N′

then Γ′ .N′ ⇓@k0

But this is close to our assumption with the exception of the agreement function. More
specifically, in consensus weak termination we have k0[[c1?()...cn?().!〈〉]] instead of
k0[[A1

〈e〉]], that is just collecting instead of collecting and matching the decided values. By
virtue of the fact that the implication is a simplification of the assumption, the lemma is
trivially true. �

Once again, from Proposition 5.4.2, we immediately obtain weak termination for consn

as a result of Lemma 5.4.5. The only remaining result that needs to be proved about consn

is stabilisation, which we now state and prove.

Lemma 5.4.6 (Consensus-Solving Algorithm Stabilisation). For a suitable consensus-
permitting network representation Γ, the configuration Γ.consn stabilises. More formally

∃n such that ∀Γ′,N′ if Γ . consn
−→ · . . . · −→︸ ︷︷ ︸

≤n

Γ′ .N′ then Γ′ .N′ 6−→

Proof. A static analysis of the consn implementation of Table 25 reveals that no replicated
input is used. Since this is the only way infinite computation can be achieved in typed
DπLoc, we immediately conclude that there exists an upper limit on the number of
reductions possible. �

We conclude the section by giving the final theorem, showing that our implemenata-
tion, consn, satisfies consensus.

Theorem 5.4.7 (Consensus Satisfaction). The implementation consn of Table 25 satisfies
consensus.

Proof. We recall that for consn to satisfy consensus, for a suitable consensus-permitting
network representation Γwe have to show that:

Chapter 5. Case Study: Consensus 124

1. Γ . consn stabilises.

2. Γ . consn satisfies weak termination

3. Γ . consn satisfies validity

4. Γ . consn satisfies agreement

By Lemma 5.4.6 we have condition 1, stabilisation.
From Proposition 5.4.2, that is weak test termination of consn, and Lemma 5.4.5,

extracting weak termination, we obtain condition 2, weak termination and thus together
with condition 1 we have strong termination.

From Proposition 5.4.2, that is weak test termination of consn, and Lemma 5.4.3,
extracting validity, we obtain condition 3, validity.

Finally, from Proposition 5.4.2, that is weak test termination of consn, and Lemma 5.4.4,
extracting agreement, we obtain condition 4, agreement.

Thus by Definition 5.2.6, consn satisfies consensus. �

With this result, we know that the proof that consn satisfies consensus hinges on
proving that consn satisfies test weak termination for the tests reqn

〈t〉, reqn
〈 f 〉 and reqn

〈e〉,
that is Proposition 5.4.2. The remainder of the Chapter is dedicated for this proof, which
we express as a fault tolerant problem and prove using the bisimulation techniques
developed in Chapter 4.

5.5 Analysis of the Consensus-solving Algorithm and Tests

Before we delve into the actual proofs, we analyse the dynamic characteristics of the
systems at hand and develop notation that enables us to describe the significant states of
their execution. This notation will then facilitate the presentation of our proofs in terms
of witness bisimulations.

We note that the implementation of the participants making up the algorithm consn of
Table 25 consists entirely of asynchronous outputs that migrate between locations and are
consumed by a limited number of inputs that in turn generate more asynchronous out-
puts. More specifically, the asynchronous outputs of a participant go through successive
iterations of migration, filtering and deciding, making up a round.

Migration The broadcasting and monitor sub-systems, defined as Br
i 〈v〉 and Mr

j〈V〉 in
Table 25, are the only entities affecting the migration of an asynchronous message
sr

i !〈v〉 from li to l j. Thus we generally have the following setting for a particular
round r

li[[go l j.sr
i !〈v〉]] | l j[[monitor lidsr

i !〈t〉e]] |M

where li[[go l j.sr
i !〈v〉]] tries to send sr

i !〈v〉 to l j, at the destination l j[[monitor lidsr
i !〈t〉e]] is

ready to launch sr
i !〈t〉 at l j if li fails, and M cannot produce any more outputs on the

channel sr
i at location l j. There are three sub-cases for migration we need to consider

in our bisimulations, depending on the liveness of li and l j:

• If the destination, l j, is dead, then we have a β-move for li[[go l j.sr
i !〈v〉]] using

(b-ngo) defined in Table 22.

Chapter 5. Case Study: Consensus 125

• If the source destination, li, is dead, then we also have a β-move, this time for
l j[[monitor lidsr

i !〈t〉e]] using (b-mon) of Table 26.

• If both the source and destination locations are alive, then we have a scenario
where go l j.sr

i !〈v〉may reach its destination, but also, if li subsequently fails, the
possibility of monitor lidsr

i !〈t〉e releasing its message at l j. This leads to a race
condition where we have two estimate for Pi at P j, which may in turn affect
our implementation of the conditional over booleans, which requires exactly
n values to function properly. This however, turns out not to be important for
our analysis, as we discuss in the next step.

Filtering To avoid the problem of having two round values for a particular participant
we use a filtering mechanism defined by the process Sr in Table 25. Apart from the
β-moves generated by name matching on the values inputted, we may have two
possible cases for a filtering input sr

i ?(x). if (x = f). f r!〈〉d tr!〈〉e

• The first case is when we have a single output for the filtering input,that is

l j[[sr
i !〈v〉]] | l j[[sr

i ?(x). if (x = f). f r!〈〉d tr!〈〉e]]

• The second case is when we have a two outputs for the filtering input, as
outlined above

l j[[sr
i !〈v〉]] | l j[[sr

i !〈t〉]] | l j[[sr
i ?(x). if (x = f). f r!〈〉d tr!〈〉e]]

It turns out that it is not important how many outputs on channel sr
i there are as long

as there is at least one; what affects the execution is the value of the asynchronous
output selected, since this affects the decision process.

Deciding The decision processes is made up of n values for round r, generated by the
filtering stage, together with the sub-processes Tr and Fr defined in Table 25. Once
the last input of either branch Tr and Fr is consumed, we start all over again for the
following round r + 1 or else decide. Here we also have two possible cases:

• In the first case we only have filtered t values for round r so far, that is

tr!〈〉| . . . |tr!〈〉︸ ︷︷ ︸
≤n

| f r?().Pr+1
i 〈 f 〉 | t

r?()...tr?()︸ ︷︷ ︸
≤n

.Pr+1
i 〈t〉

At this point, we can still take either branches of the conditional, proceeding
as Pr+1

i 〈t〉 or Pr+1
i 〈 f 〉.

• In the second case we have filtered at least one f values for round r, that is

f r!〈〉| . . . | f r!〈〉︸ ︷︷ ︸
≥1

| tr!〈〉| . . . |tr!〈〉︸ ︷︷ ︸
≤n

| f r?().Pr+1
i 〈 f 〉 | t

r?()...tr?()︸ ︷︷ ︸
≤n

.Pr+1
i 〈t〉

At this point, we know that we cannot generate the necessary n t values to
proceed as Pr+1

i 〈t〉. Thus only the f branch can be taken, proceeding as Pr+1
i 〈 f 〉.

Because of our optimisation in the algorithm, when a participant has an f estimate
at round r, deciding translates to merely collecting the estimates, with only one
possible branch for the next round. We therefore have the case where:

cr!〈〉| . . . |cr!〈〉︸ ︷︷ ︸
≤n

| cr?()...cr?()︸ ︷︷ ︸
≤n

.Pr+1
i 〈 f 〉

Chapter 5. Case Study: Consensus 126

Apart from migrating, filtering and deciding, and β-moves such as process spawning
using (l-fork), every participant produces also junk moves, where asynchronous outputs
are generated but there are no corresponding inputs to consume them; examples are
monitors that trigger and produce outputs for past rounds.These moves are not significant
for the outcome of the decided value of the participant.

A similarly analysis can be carried out for the tests, reqn
〈v〉 for v ∈ {t, f , e} that are

also based on asynchronous outputs. The core activity in these tests is carried out by the
sub-systems C〈v〉.

• The gathering sub-system, G, yields cases very similar to those considered above in
asynchronous output migration for participants; the only difference is that there is
one less possible beta move since the destination, k0, never fails.

• The agreement sub-system, Ai
〈v〉 is very similar to the filtering stage discussed

above, where it only considers one collected value from the gathering sub-system;
just like in the case of participants, the gathering system may collect two values for
a particular participant, the actual value decided and an empty value in case the
participant dies after it decides. In addition, the sub-system Ai

〈v〉 performs names
matching comparisons on the values collected, which are β-moves.

It turns out that only a subset of the actions mentioned above are significant for our
bisimulations. More specifically, a large number of these τ-actions do not affect the state
of the participant as it progresses from one round to another. By using bisimulations and
fault-tolerant simulations up-to β-moves, we automatically weed out all the unnecessary
β-moves. This still leaves us a considerable number or actions that yield confluent in-
termediary states for a participant; typical examples are junk moves or communication
where there can only be one input and one output.

One possible approach to deal with these τ-moves would be to develop further β-
moves; these however, turn out to be less straight forward compared to the β-moves
defined so far, because we need to defined certain conditions for code executing in
parallel to the located processes causing the β-move. In view that up-to techniques are
delicate to set up and the fact that the constraints of these latter moves may be difficult to
specify, we forgo this approach.

Instead we develop notation for participant aggregate states, which ranges over a
number of intermediary states a participant may be in as it progresses from one round to
the other. In essence, aggregate states represent code at location li which satisfies certain
conditions. This level of abstraction proves to be adequate for the presentation of the
subsequent bisimulations.

Notation 5.5.1. We find it convenient to use the shorthand notation Ni, for a system N
located entirely at li, that is

Ni
def
= N ≡ (ν ñ)li[[P]] | . . . | li[[Q]]

We also use the shorthand N0 for a group of processes that is entirely located at k0 �

Chapter 5. Case Study: Consensus 127

Participant aggregate states are defined in terms of two variables, that is r the current
round number and v ∈ {t, f }, the current estimate at round r. Thus Pnti(r, v) ranges over
all the code residing at li, that Ni, comprising of

• all the code generated by Pr
i 〈v〉.

• residual code from previous rounds r −m.

• all the asynchronous messages received at li from other participants.

• code placed at li by the test contexts reqn
〈v〉.

Due to our particular implementation optimisations, Pnti(r, t), the aggregate state for
a participant with a t estimate and its dual, Pnti(r, f), the aggregate state for a participant
with an f estimate, have a different structure and require distinct definitions.

Definition 5.5.2 (Participant Aggregate State with a t estimate). Pnti(r, t) ranges over all
the intermediary states of a participant Pi at round r with estimate t and is defined as:

Pnti(r, t)
def
=

(ν tr, f r, ñ) li[[f r?().P]] | li[[tr?().Q]] |Ni where Ni . N′i | li[[f r!〈〉]], 1 ≤ r ≤ n
(νñ)(li[[p?(x).Pr

i 〈x〉]]) | li[[p!〈t〉]] |Ni where Ni . N′i | li[[p!〈 f 〉]]
li[[d!〈t〉]] |Ni

Intuitively, Pnti(r, t) refers to all the code at li while the participant is still deciding which
estimate to adopt for round r + 1, which is why both the f branch, li[[f r?().P]], and the t
branch, li[[tr?().Q]], are still not taken. The conditions imposed on Pnti(r, t) make it such
that it could not refer to Pnti(r−m, t) at some earlier round r−m, because for those rounds,
only one branch, the f branch, would be available; it could neither refer to a future round
Pnti(r +m, t) either, because these branches would not have been launched yet.

The condition imposed on the remaining code at li, Ni . N′i | li[[f r!〈〉]], refers to the
second case of the decision phase discusses earlier in this section: If Ni ≡ N′i | li[[f r!〈〉]]
then, even though both branches are still available, only the f branch can be taken since n
messages of the form li[[tr!〈〉]], required by the t branch to proceed, can never be generated.

Pnti(r, t) also ranges over two fringe cases: when r = 1 the notation ranges over the
case when a participant is initialised with a t value only; When r = n + 1 it ranges over
the case when it has decided the value t. �

From all the τ-actions discussed above, the crucial action that denotes a change in the
state of a participant in Definition 5.5.2, is that is that of the decision, more specifically,
when either the t branch or the f branch is taken. The definition of the aggregate state of
a participant with an f estimate is similar.

Definition 5.5.3 (Participant Aggregate State with a f estimate). Pnti(r, f) ranges over
all the intermediary states of a participant Pi at round r with estimate f and is defined as:

Pnti(r, f) def
=

(ν f r−1, ñ) li[[f r−1!〈〉]] | li[[f r−1?().P]] |Ni for 1 ≤ r ≤ n
(ν er, ñ) li[[er?().P]] |Ni for 1 ≤ r ≤ n
(νñ)(li[[p?(x).Pr

i 〈x〉]]) | li[[p!〈 f 〉]] |Ni where Ni . N′i | li[[p!〈t〉]]
li[[d!〈 f 〉]] |Ni

Chapter 5. Case Study: Consensus 128

First of all, Pnti(r, f) ranges over participants that are still in the previous round r− 1 with
the currently held estimate being t, and at least one f estimate filtered for that round.
As we already discussed, the only branch that can be taken in this case is the f branch
proceeding as Pr

i 〈 f 〉.
Similar to the previous aggregate state with a t estimate, Pnti(r, f) refers to all the code

at li while the participant is still collecting estimates for round r, and is thus identified by
the input on channel er, li[[er?().P]].

Pnti(r, f) also ranges over two fringe states: the case where r = 1 is similar to Defini-
tion 5.5.2, whereas the case for r = n+ 1 states that the participant must have decided the
value f and completed all of its estimate broadcasts. �

There is only one participant aggregate state left and we define it next.

Definition 5.5.4 (Uninitialised Participant Aggregate State). Pnti(0) ranges over all the
states of a participant Pi before round 1, when it is initialised with either t or f , defined
as:

Pnti(0) def
= (ν ñ)(Ni | li[[p?(x).Pr

i 〈x〉]]) | li[[p!〈t〉]] | li[[p!〈 f 〉]]

�

Finally, we define aggregate states for the tests located at k0.

Definition 5.5.5 (Test Aggregate State). We define two aggregate states for tests, Testi
and Testdone, ranging over code located at k0 and defined as

Testi
def
=

 k0[[ci?(x).P]] |N0 for 1 ≤ i ≤ n
k0[[!〈〉]] |N0 for i = n + 1

Testdone
def
= N0 such that N0 . N′0 | k0[[ci?(x).P]] and N0 . N′0 | k0[[!〈〉]]

For 1 ≤ i ≤ n, Testi is defined in terms of how many decided values they still need to
check. We define a fringe states for when all the checks are successful, Testn+1. We define
an additional aggregate state, Testdone, for when the signalling fresh output k0[[!〈〉]] is
consumed. �

The witness bisimulations and fault tolerant simulations we given in the next chap-
ter are presented in terms of the aggregate states defined in Definition 5.5.2, 5.5.3, 5.5.4
and 5.5.5. From these definitions, we can easily conclude that a transition from one aggre-
gate state to another happens only as a result of communications between asynchronous
outputs and inputs. For instance, a participant Pnti(r, t) transitions to Pnti(r + 1, t) when
the last input on tr?().P is triggered by the nth asynchronous output tr!〈〉, releasing P
which contains the branches Tr+1 and Fr+1, as required by Pnti(r + 1, t); similarly Pnti(r, t)
transitions to Pnti(r+1, f) when one of the filtering processes sr

j?(x).ifx= f . f r!〈〉dtr!〈〉e reacts
with an asynchronous output !〈sr

j〉 f and produces f r!〈〉.
Since neither of the β-moves defined in Table 22 and Table 26, lead to any transition

in aggregate states, the witness bisimulations and fault tolerant simulations abstract over
β-moves and are thus bisimulations and fault tolerant simulations up-to β-moves. These
bisimulations and fault tolerant simulations also abstract over other confluent τ-moves

Chapter 5. Case Study: Consensus 129

when using aggregate states, such as the junk moves mentioned earlier, thereby making
our presentation more understandable and manageable.

5.6 Intentional Test Termination for the Consensus-Solving Algorithm

This final Section deals exclusively with the proof for Proposition 5.4.2, stated earlier in
§ 5.4, asserting that the consensus-solving algorithm, consn satisfies test termination for
the intentional tests reqn

〈t〉, reqn
〈 f 〉 and reqn

〈e〉. As a result of this proof, we also prove
that consn satisfies consensus, as described earlier in § 5.4.

Proposition 5.4.2 requires that we consider the behaviour of the systems consn
| reqn

〈t〉,
consn

| reqn
〈 f 〉 and consn

| reqn
〈e〉 under any valid fault-contexts Fn−1 and prove that

certain conditions are satisfied despite of the faults induced; see Definition 5.4.1 for test
termination. Even though the number of valid fault contexts is bounded by n, such an
analysis can be quite laborious and tedious since it involves a lot of repeated work in each
case. To alleviate this burden, our proof of Proposition 5.4.2 is split into two parts:

• In the first part, we consider the behaviour of consn
| reqn

〈v〉 for v ∈ {t, f , e} in failure-
free setting and ensure that it does weakly terminate. It turns out that for this proof,
we only require three failure-free witness bisimulations up-to β-moves.

• The analysis of the behaviour of consn
| reqn

〈v〉 for v ∈ {t, f , e} is relegated to the
second part, where we prove, that the behaviour of consn

| reqn
〈v〉 for v ∈ {t, f , e}

in failure-free setting is preserved under any Fn−1 fault context. According to Propo-
sition 4.4.3 and Proposition 4.4.11, for this proof we only require three witness
(n−1)-fault-tolerant simulations up-to β-moves.

Merging these two proofs, we obtain the required property that test termination is attained
by consn, for any test reqn

〈t〉, reqn
〈 f 〉 and reqn

〈e〉, under any valid fault-contexts Fn−1.

Lemma 5.6.1 (Test Termination in a Failure-Free Setting). For any valid consensus-
permitting network Γ such that Γ .consn is well formed, then Γ .consn weakly terminates
in a failure-free setting under any test reqn

〈t〉,reqn
〈 f 〉 and reqn

〈e〉.

Proof. According to Definition 5.4.1, we have to show that

∀Γ′,N′ if Γ .N | reqn
〈v〉 −→∗ Γ′ .N′ then Γ .N′ ⇓@k0

for v ∈ {t, f , e}. It turns out that @k0 is the only barb that can be produced by
Γ.N | reqn

〈v〉 for v ∈ {t, f , e}. Moreover, a configuration that trivially satisfies the condition

∀N′ such that Γ .N −→∗ Γ .N′ then Γ .N′ ⇓@k0

and also has @k0 as the only barb is Γ .k0[[!〈〉]]. Thus, the definition of failure-free
reduction barb congruence, developed in Chapter 4, which guarantees reduction closure
and barb preservation, can be used to prove Lemma 5.6.1. In other words, Lemma 5.6.1
can be proved by showing the following three clauses:

1. Γ |= k0[[!〈〉]] �ff consn
| reqn

〈e〉

Chapter 5. Case Study: Consensus 130

2. Γ |= k0[[!〈〉]] �ff consn
| reqn

〈t〉

3. Γ |= k0[[!〈〉]] �ff consn
| reqn

〈 f 〉

To prove these three statements, we use the failure-free bisimulation relation up-to-β-
moves, developed in Chapter 4. We also note that since we consider a failure-free setting,
the number of transitions we need to consider in these witness bisimulations is largely
minimised since locations never fail. We here mention two example transitions that are
simplified in a failure free setting:

• We are guaranteed that every migration will succeed. An further optimisation that
could be adopted for this τ-action would be to make (l-go) a β-move, so that we
can completely abstract from it. Nevertheless with our use of aggregate states, our
presentation is not affected.

• The failure detectors used by the participants and tests never trigger: thus we never
have race conditions with outputs (one from the participant and one from the failure
detector) for a single input. This one-to-one relationship between every output and
input minimises the range of states that need to be considered.

The proof for clause 1 is given by the failure-free bisimulation relation up-to-β-moves,
Re, defined below.

Re
def
=

Γ . k0[[!〈〉]] , Γ . consn
| reqn

〈e〉

Γ . k0[[!〈〉]] , Γ . (ν c1..n)(Test j |
∏n

i=1 Ni)
1 ≤ j ≤ n + 1
Ni = Pnti(0) or Pnti(1, t)

or Pnti(1, f)

Γ . k0[[!〈〉]] , Γ . (ν c1..n)(Test j |
∏n

i=1 Pnti(ri, t))
1 ≤ j ≤ n + 1
1 ≤ ri ≤ n + 1

Γ . k0[[!〈〉]] , Γ . (ν c1..n)(Test j |
∏n

i=1 Ni)
1 ≤ j ≤ n + 1
Ni = Pnti(1, t)or Pnti(ri, f)

for 1 ≤ ri ≤ n + 1

Γ . k0[[0]] , Γ . (ν c1..n)(Testdone |
∏n

i=1 Pnti(n + 1, t))

Γ . k0[[0]] , Γ . (ν c1..n)(Testdone |
∏n

i=1 Pnti(n + 1, f))

Re captures the fact that no matter what value the participants are initialised to, they

will all reach agreement by the second round:

• If the participants happen to be all initialised to t in round 1, that is they start in
agreement, then they will all broadcast a t value, Since these broadcasts are never
interfered by failure, they will all complete successfully and every participant will
receive n t estimates for round 1. Hence the participants all progress to round 2
using the t branch.

Chapter 5. Case Study: Consensus 131

• If at least one of the participants is initialised with f at round 1, then no participant
can progress to round 2 with a t estimate because they can at most receive n − 1 t
estimates. As a result, the only branch that can be taken by every participant is the
f branch, using the f estimate broadcasted by the participant initialised with f at
round 1, and by round 2, all participants will agree on f .

Once agreement is attained in round 2, it is maintained throughout the remaining rounds:
if the agreement at round 2 is on t, then we apply the same reasoning used for the the first
case above; if the agreement at round 2 is on f , then from the implementation optimisation
of Table 25, it is easy to see that no decision (or update) is used and that this estimate is
immutable for the remaining rounds.

If we had to explain all this in terms of the possible transitions in Re, as participants
start to get initialised with either t or f values, we transition from the first clause to the
second clause inRe. If we reach a state where all participants are initialised with a t value,
we transition to the third clause ofRe where participants can move to rounds 2..n+1 with
a t estimate; we note that participants move in lockstep, meaning that their round number
never differs by more that 1. If, on the other hand, we are in the second clause and reach
a state where all participants are initialised and at least one participant is initialised with
an f estimate, we transition to the fourth clause where in order to progress to rounds
2..n + 1 every participant must have an f estimate. As participants reach round n + 1 in
the third and fourth clauses, Test1 can transition to Testn+1 while still remaining at the the
third and fourth clauses respectively. If the left hand side produces the action k0 : !〈〉,
then the right hand side produces a matching weak action transitioning from the third
and fourth clause to the fifth and six clauses respectively in Re.

The bisimulation relations up-to-β-moves Rt and R f are the witness relations proving
clauses 2 and 3, that is when participants are either all initialised with a t value or else all
initialised with an f value. We leave the reader to check all the possible transitions; they
are similar to the transitions discussed for Re whereby agreement is reached immediately
by the second round.

Rt
def
=

Γ . k0[[!〈〉]] , Γ . consn
| reqn

〈t〉

Γ . k0[[!〈〉]] , Γ . (ν c1..n)(Test j |
∏n

i=1 Pnti(ri, t))
1 ≤ j ≤ n + 1
1 ≤ ri ≤ n + 1

Γ . k0[[0]] , Γ . (ν c1..n)(Testdone |
∏n

i=1 Pnti(n + 1, t))

R f
def
=

Γ . k0[[!〈〉]] , Γ . consn
| reqn

〈 f 〉

Γ . k0[[!〈〉]] , Γ . (ν c1..n)(Test j |
∏n

i=1 Pnti(ri, f))
1 ≤ j ≤ n + 1
1 ≤ ri ≤ n + 1

Γ . k0[[0]] , Γ . (ν c1..n)(Testdone |
∏n

i=1 Pnti(n + 1, f))

�

Chapter 5. Case Study: Consensus 132

Lemma 5.6.1 showed that whenever the tests reqn
〈e〉, reqn

〈t〉 and reqn
〈e〉where placed

in the context of consn, in a setting where no failure occurs, they always terminated. In
this second part, Lemma 5.6.2 states that this behaviour is preserved up to n − 1 failures,
that may occur at any point during the execution. According to Definition 4.3.6, this
amounts to showing that Γ . consn

| reqn
〈v〉 for v ∈ {t, f , e} is dynamically fault-tolerant

up-to n − 1 failures.

Lemma 5.6.2 (Fault Tolerance). The configurations Γ . consn
| reqn

〈t〉, Γ . consn
| reqn

〈 f 〉
and Γ . consn

| reqn
〈e〉 preserve their behaviour under any valid fault context Fn−1. Stated

otherwise, they are dynamically fault tolerant up to n − 1 failures.

Proof. According to Proposition 4.4.3, Corollary 4.4.4 and Proposition 4.4.11, this amounts
to showing that

1. Γ . consn
| reqn

〈t〉 �n−1
β Γ . consn

| reqn
〈t〉

2. Γ . consn
| reqn

〈 f 〉 �n−1
β Γ . consn

| reqn
〈 f 〉

3. Γ . consn
| reqn

〈e〉 �n−1
β Γ . consn

| reqn
〈e〉

More prosaically, we need to give three witness n − 1 fault-tolerant simulation re-
lations up-to β-moves for the configurations Γ . consn

| reqn
〈t〉, Γ . consn

| reqn
〈 f 〉 and

Γ . consn
| reqn

〈e〉. In the discussion of these witness relations, we refer to the ith partici-
pant of the configuration on the left of the relation as the ith left hand participant and call its
right hand side equivalent the ith right hand participant; to distinguish between the two, we
use the dashed notation, Pnt′i (r

′

i , v), for the ith right hand participant. The dashed notation
is also used for the Test code on the right hand side configuration of the relations.

The n − 1 fault tolerant simulation relation up-to β-moves satisfying clause 1 is Rt

defined below:

Rt
def
=

Γ . consn
| reqn

〈t〉 , Γ . consn
| reqn

〈t〉

Γ . (ν c1..n)Test j|

n∏
i=1

Pnti(ri, t)

, Γ′ . (ν c1..n)Test′h|
n∏

i=1

Ni

1 ≤ j ≤ h ≤ n + 1
if Γ′ ` li :alive

then Pnti(ri, t) RId Ni

else Pnti(ri, t) R0 Ni

Γ . (ν c1..n)Testdone|

n∏
i=1

Pnti(n + 1, t)

, Γ′ . (ν c1..n)Test′done|

n∏
i=1

Ni

if Γ′ ` li :alive
then Pnti(n + 1, t) RId Ni

else Pnti(n + 1, t) R0 Ni

where

RId =

 Pnti(0) , Pnt′i (0)
Pnti(r, v) , Pnt′i (r, v) | v ∈ {t, f }

R0 =

{
Pnti(r, v) , li[[0]] v ∈ {t, f }

}

Chapter 5. Case Study: Consensus 133

In essence, Rt gives a mapping between the state of every Pnti(r, v) in a failure free
setting and the corresponding ith participant in a setting where it may fail. The relation
states that as long as li is alive on the right hand side, its round number and value estimate
must match that of its corresponding participant on the left hand side. This mapping is
formalised in the relation RId, ranging over systems limited to a single location, relating
participants at the same round and with the same estimate, while abstracting away from
differing peripheral code. If, on the other hand, li is dead on the right hand side, then we
exploit up-to βmoves, and use the structural rule (bs-dead) to map to it to the null process
at li for simplification; this mapping is formalised in the relation R0, again ranging over
systems limited to a single location.

We again note that in this relation, Rt, and the ones following it, participants progress
in lockstep from one round to another. More specifically, Pr

i needs to receive n estimates
for round r to proceed to round r + 1; in turn, the other participants P j cannot sent their
estimate for round r unless they are in round r and because of this interdependency, the
round numbers of live participants one either side differ by at most 1. As we already
discussed at the end of § 5.5, most of these τ-actions are abstracted away through our
notation of aggregate states. Intuitively though, a participant on the left hand side can
always progress to the next round with a t estimate in a number of τ-moves since all the
participants are alive and can therefore send it their t estimate for that round. Moreover, a
participant on the right hand side can always progress to the next round with a t estimate
in a number of τ-moves as well: the sibling live participants can send their t estimate for
that round whereas the monitors generate the remaining t estimates for that round for
the sibling participants that are dead.

More specifically, inRt, a τ-action by a participant on either left or right configurations
is matched by the identical τ-action by its dual, unless its is dead, in which case it is
mapped by the empty transition. A fail-action on the right hand side is similarly matched
by an empty transition on the left hand side. As we already stated, a dead participant
does not prohibit any of its live sibling participants to match actions on the left hand
side: its estimate is immediately substituted by the respective monitors, that release a t
estimate for that round as well. In fact, since we work at up-to β-moves, when a location
fails, we automatically transition to a state, not explicitly represented by our aggregate
states, where all the active monitors on that location trigger and release their estimate,
using the beta rule (b-mon).

The test system Test′h on the right hand side is allowed to progress before that on the
left hand side: its failure detectors, which allow the test contexts to ignore the decision
of a dead participant, automatically trigger when a participant fails one the right hand
side, thereby allowing the test to proceed to the next participant. The test on the left hand
side however, Test j, still has to wait for its participant to decide before it progresses to
the next one and thus we have the condition 1 ≤ j ≤ j′ ≤ n + 1. We also note that since Rt

is a relation up-to β-moves, we abstract away from the name matching performed by the
tests; this is once again not explicitly represented by our aggregate states.

The n − 1-fault tolerant simulation relation up-to β-moves satisfying clause 2 is R f

Chapter 5. Case Study: Consensus 134

given below:

R f
def
=

Γ . consn
| reqn

〈 f 〉 , Γ . consn
| reqn

〈 f 〉

Γ . (ν c1..n)Test j|

n∏
i=1

Pnti(ri, f)

, Γ′ . (ν c1..n)Test′h|
n∏

i=1

Ni

1 ≤ j ≤ h ≤ n + 1
if Γ′ ` li :alive

then Pnti(ri, f) RId Ni

else Pnti(ri, f) R0 Ni

Γ . (ν c1..n)Testdone|

n∏
i=1

Pnti(n + 1, f)

, Γ′ . (ν c1..n)Test′done|

n∏
i=1

Ni

if Γ′ ` li :alive
then Pnti(n + 1, f) RId Ni

else Pnti(n + 1, f) R0 Ni

where RId and R≥ are defined as above. The relation R f is very similar to Rt. The only

point worth noting is that participants on the right-hand side (having an f estimate) are
not prohibited from progressing to the next round with an f estimate by dead siblings: the
monitors for the dead siblings will release t estimates. Our implementation makes sure
that participants with an f estimates never decide but merely collect estimates: thus the
value of estimates are released by the monitors is irrelevant and the only thing required
by the participant to progress to the next round is that n estimates are released or received.

The relation satisfying clause 3, that is for the test reqn
〈e〉, turns out to be slightly

harder than Rt and R f : whereas, in the first two relations, the individual participants
could only differ in one aspect, that is liveness, in clause 3, they may differ in another
aspect, namely the current estimate. Referring back to the corrupted broadcast discussion
of § 5.1, corrupted broadcast (caused by failure) may prohibit the participants on the right
hand side configuration of a fault-tolerant simulation relation from reaching agreement
by round 2, as opposed to the case of the failure-free setting of the participants on the left
hand side configuration of the relation. Thus, since the participants may be initialised
with different values, in round 1, the value estimates of the participants on either side
may not match for rounds equal or greater than 2. Even if failure does not lead to a
corrupted broadcast, and these participants reach agreement, they may reach agreement
on a different value from the one agreed on the left hand side: this happens when all the
participants initialised with f fail before they can send their estimate and influence the
update of any of the participants initialised with t. As a result, the participants on the
right hand side reach agreement at some round greater or equal to 2 on t, whereas the
participants on the left hand side, which are not subject to any failure, reach an agreement
on f .

Chapter 5. Case Study: Consensus 135

Due to this new factor, we construct Re using the following mapping:

Re
def
=

Γ . consn
| reqn

〈 f 〉 , Γ . consn
| reqn

〈 f 〉

Γ . (ν c1..n)Test j|

n∏
i=1

Pnti(ri, vi)

, Γ′ . (ν c1..n)Test′h|
n∏

i=1

Ni

1 ≤ j ≤ h ≤ n + 1, 0 ≤ ri ≤ 1,
if Γ′ ` li :alive

then Pnti(ri, vi) RId Ni

else Pnti(ri, vi) R0 Ni

Γ . (ν c1..n)Test j|

n∏
i=1

Pnti(ri, t)

, Γ′ . (ν c1..n)Test′h|
n∏

i=1

Ni

1 ≤ j ≤ h ≤ n, 1 ≤ ri ≤ n + 1,
if Γ′ ` li :alive
then Pnti(ri, t) RId Ni

else Pnti(ri, t) R0 Ni

Γ . (ν c1..n)Test j|

n∏
i=1

Pnti(ri, f)

, Γ′ . (ν c1..n)Test′h|
n∏

i=1

Ni

1 ≤ j ≤ h ≤ n, 1 ≤ ri ≤ n + 1
if Γ′ ` li :alive

then Pnti(1, t) RId Ni

or Pnti(ri, f) RId Ni or Pnti(ri, f) R= Ni

else Pnti(ri, f) R0 Ni

Γ . (ν c1..n)Testn+1|

n∏
i=1

Pnti(n + 1, t)

, Γ′ . (ν c1..n)Test′n+1|

n∏
i=1

Ni

if Γ′ ` li :alive
then Pnti(n + 1, t) RId Ni

else Pnti(n + 1, t) R0 Ni

Γ . (ν c1..n)Testn+1|

n∏
i=1

Pnti(n + 1, f)

, Γ′ . (ν c1..n)Test′n+1|

n∏
i=1

Ni

if Γ′ ` li :alive
then Pnti(n + 1, f) RId Ni

else Pnti(n + 1, f) R0 Ni

Γ . (ν c1..n)Testn+1|

n∏
i=1

Pnti(n + 1, f)

, Γ′ . (ν c1..n)Test′n+1|

n∏
i=1

Ni

case Γ′ ` li :alive
then Pnti(n + 1, f) R= Ni

else Pnti(n + 1, f) R0 Ni

Γ . (ν c1..n)Testdone|

n∏
i=1

Pnti(n + 1, t)

, Γ′ . (ν c1..n)Test′done|

n∏
i=1

Ni

if Γ′ ` li :alive
then Pnti(n + 1, t) RId Ni

else Pnti(n + 1, t) R0 Ni

Γ . (ν c1..n)Testdone|

n∏
i=1

Pnti(n + 1, f)

, Γ′ . (ν c1..n)Test′done|

n∏
i=1

Ni

if Γ′ ` li :alive
then Pnti(n + 1, f) RId Ni

else Pnti(n + 1, f) R0 Ni

Γ . (ν c1..n)Testdone|

n∏
i=1

Pnti(n + 1, f)

, Γ′ . (ν c1..n)Test′done|

n∏
i=1

Ni

case Γ′ ` li :alive
then Pnti(n + 1, f) R= Ni

else Pnti(n + 1, f) R0 Ni

Chapter 5. Case Study: Consensus 136

where RId and R0 are defined above and R= is defined below: it maps the ith participant
with an f estimate at round r, to the ith participant with an t estimate at the same round r.

R= =
{

Pnti(r, f) , Pnti(r, t)
}

The three key clauses in Re are the second, third and fourth:

• the second clause captures a state where not all participants have been initialised.
We thus use the relation RId to relate participant that are either uninitialised (r = 0),
or in the first round (r = 1). In these two cases, the participants have not updated
their value estimate and since not decision has been made yet, it could not be
interfered with by failure: thus we can safely use RId.

• the third clause is dedicated to the case where all the live participants on both sides
have been initialised with a t estimate. Similar to relation Rt given earlier, every
participant is related using RId if alive and R0 otherwise.

• the fourth clause is dedicated to the case where some participants have been ini-
tialised by a f estimate. As we discussed earlier, we have to map participants at
round 2 or greater from the left hand side configuration, all of which have an es-
timate of f , to participants from the right hand side configuration which may not
have the same estimate due to failure. We thus relate individual participants either
using RId, if the estimate matches, or else R=, if the estimate does not; note that the
round number always matches. As usual, if the right hand participant is dead, we
use R0.

The fifth, sixth and seventh cases in Re, makes it explicit that for the test code to reach
n+1, then all the participant need to agree. However, in the case where some participants
were initialised with an f , the right-hand side participants may agree on t instead of f ,
as is the case of the participants on the left-hand side. Thus the fifth case describes the
case where both the left-hand participants and right-hand participants have agreed on
t, the sixth case describes the case where both the left-hand participants and right-hand
participants have agreed on f and the seventh case represent the case were the left-hand
side participants agree on f whereas the right-hand side participants agree on t, which is
why we use R= to relate the live participants as opposed to RId. Finally, the eight, ninth
and tenth cases are just the respective direct derivatives of state five, six and seven after
they produce the output action k0 : !〈〉.

We still have two show that Re is closed under all possible actions. We here outline
the main actions for the main cases of the relation:

• If we are in the first clause of the relation, then any τ action from either side is
matched by an identical τ-action on the other side, transitioning to the second
clause. If the right hand configuration performs a fail action, this is matched by the
empty action and we transition to the second clause as well.

• Similarly, in the second clause, any τ action from either side is matched by an
identical τ-action on the other side. We transition to the third or fourth clause only
when all participants have been initialised: if they were all initialised to t, then we
transition to the third clause whereas if some where initialise to f , we transition to
the fourth clause. Once again, a right-hand side fail action, this is matched by the
empty action, remaining in the same clause.

Chapter 5. Case Study: Consensus 137

• Similar to the relationRt, participantτ-actions on either side are matched by identical
τ-actions on the opposite side. The test code on the right hand side may be at an
advance stage compared to the test on the left hand side, that is j ≤ h, because of
empty decisions generated for dead participants. As a result, if the left-hand test
code produces a τ-action, then this can either be matched by an identical τ-actions
to reach the same state or else be matched by the empty move if the right hand side
is already in that state; if the right-hand test code produces a τ-action, then this can
either be matched by an identical τ-actions if the left-hand test can match it or else
the empty move if it cannot. Once the test code on other side reaches n+1, the other
matches this τ-action by (at most) a weak τ-action, transitioning to case five in the
relation.

• In the fourth clause, τ-actions by the left hand participants, can be matched by
either an identical τ-action by the respective right-hand participant if it is alive, or
else an empty move; in doing so the right-hand participant may now be related to
the left hand participant using R= instead of RId if it transitions from a t estimate
to an f estimate. Dually, a τ-action by a right-hand participant is always matched
with a τ-action by the left participant. Right-hand side fail actions are once again
matched by empty actions. Similar to the third case just described, as soon as one
test code reaches n + 1, the other matches it and we transition to either case six, if
the participants on the right-hand side agree on f , or else case seven, if they agree
on t. We are guaranteed that they will agree because, for there to be a disagreement
at round r, there must have been a corrupted broadcast for every previous round.
Stated otherwise, if at round n, there is disagreement, there must have been n − 1
corrupted broadcasts, which mean that there have been n − 1 participants failing,
meaning that there is only one participant left alive, and thus we automatically have
agreement. �

As a result of these two Lemmas, we automatically have the proof of Proposition 5.4.2,
which we here restate as a Corollary.

Corollary 5.6.3 (Test Termination for the Consensus-Solving Algorithm). For any con-
sensus permitting network representation Γ for consn, then Γ . consn weakly terminates
under any test reqn

〈v〉 for v ∈ {t, f , e}. Stated otherwise:

∀Γ′,N′

if Γ .N | reqn
〈t〉 |Fm

−→
∗ Γ′ .N′ then Γ .N′ ⇓@k0

if Γ .N | reqn
〈 f 〉 |Fm

−→
∗ Γ′ .N′ then Γ .N′ ⇓@k0

if Γ .N | reqn
〈e〉 |Fm

−→
∗ Γ′ .N′ then Γ .N′ ⇓@k0

Proof. Immediate from Lemma 5.6.1 and Lemma 5.6.2. �

5.7 Summary

In this Chapter we used co-induction techniques to prove that the algorithm given in
[CT96] which assumes perfect failure detectors, satisfies consensus. We opted for such
bisimulation techniques instead of other techniques based on traces because the latter are
insensitive to divergences and one of the conitions we set out to prove, namely strong
termination, required that we show that the algorithm always yields a result.

Chapter 5. Case Study: Consensus 138

We encoded the pseudo-code algorithm in our source language for Chapter 4, typed
DπLoc; we also defined the consensus problem in terms of typed DπLoc code. For
the actual correctness proof, we employed the definition of dynamic fault-tolerance to
split the proof into two parts: in the first part, we isolated the behaviour of the system
implemented in a failure free setting and prove that it satisfies the required conditions; in
a second part we showed that the system is n−1 fault-tolerant meaning that this behaviour
is maintained up-to n−1 faults. Splitting the proof into two phases simplified our analysis
because:

• we only needed to consider the second phase, that is the fault tolerant behaviour of
the algorithm under n1 dynamic failures if the first phases, which is considerably
easier to prove, is successful.

• Our fault tolerance analysis is based on comparing the behaviour of our algorithm
under n1 faults with the behaviour of the same algorithm under no faults. Here we
exploited the common structure on both sides of the comparison in our analysis.

The up-to bisimulation techniques and fault-tolerant simulation relation developed ear-
lier in Chapter 4 alleviated the burden of exhibiting witness bisimulation relations by
abstracting over conflent moves and states, thus keeping the state space of the analysis
manageable. We conjuncture that a similar method of analysis could be carried over with
minimal effort, to prove the correctness of other distributed algorithms operating in the
presence of failure; see [Lyn96, Tel94] for examples.

Correctness proofs for consensus-solving algorithms have been given already: in
their pioneering work [CT96], Toueg and Chandra give proofs for the pseudo-code algo-
rithms using algorithmic techniques. Lynch [Lyn96] formalises these algorithms using
IO-automata so that correctness proofs can be given based on trace semantics. Nestmann,
Fuzzatti and Merro , [NFM03], implemented the hardest of these algorithms (assuming
only “eventually strong” failure detectors) in a tailor-made calculus with formal re-write
rules, translated this formal syntax into an abstract interpretation consisting of matrices
representing the state of the algorithm, and then proved correctness using the abstract
interpretation. Palamidessi’s work [Pal03] is also similar to ours, in that she encodes
leader election algorithms in terms of process calculi. The aim of this work are however
differ from ours and focusses on obtaining expressivity results for process calculi. The
details of her work also differ from ours: the calculi considered do not express failures
and thus there is no notion of fault tolerance; moreover, the proof techniques are based
on graph transformations instead of bisimulations.

Chapter 6

Conclusion and Outlook

This thesis presented a study of system behaviour in the presence of failure. Our start-
ing point was that of Hennessy and Riely, [RH01]; we extended this study of location
failure to Dπ, [HR02, HMR04], a distributed π-calculus that prohibits communication
across locations and can create new locations at runtime. We further extended this cal-
culus to describe link failure as well as node failure, and studied the interplay of these
two forms of failure on system behaviour. We then studied ways of guaranteeing de-
pendable behaviour in this setting. Since faults are often hard to predict and prevent
in distributed setting, we sought to achieve dependability through fault-tolerance, by
introducing enough redundancy in our computation so as to withstand any abnormal
behaviour cause by faults. Finally, we analysed a standard consensus-solving algorithm
from the point of view of the redundancy it employs to satisfy the consensus criteria in
the presence of failure.

6.1 Results obtained

Several results were obtained in this study, the most important of which can be found in
Chapters 3 and 4. We here list these results not in the order of importance but rather in
the order they were presented in this thesis.

• A sound and complete theory for a Dπ extension with node failure.

• A sound and complete theory for a Dπ extension with node and link failure.

• A formalisation of two definitions of fault tolerance, static and dynamic fault tolerance,
together with sound bisimulation techniques for verifying fault tolerance.

• A demonstration of the viability of bisimulation and fault-tolerant simulation tech-
niques for proving the correctness of consensus-solving algorithms.

Chapter 6. Conclusion and Outlook 140

6.2 Future Work

Our study is far from conclusive; rather, we believe it has paved the way for further lines
of research in the field. Apart from the directions suggested at the end of the individual
Chapters, we here discuss further research at greater length.

As we stated earlier in Chapter 3, dpiF is best viewed as a generic but succinct, well-
founded framework from which numerous variations could be considered. For example
links between sites could be uni-directional, rather than symmetric, or ping l.PdQe could
test for a path from the current site to l, rather than a direct connection. One could also
limit the use of the fault inducing actions kill : l and l = k; for instance, disallowing
them in the definition of the contextual equivalences would give a behavioural theory
between systems running on static but possibly defective networks. More generally, one
could allow the recovery of faults, in which dead nodes, or broken links may randomly be
restored; transient faults are also directly related to issues such as persistence and volatility
of code. Adapting our lts and the resulting bisimulation equivalence to such scenarios are
in some cases straightforward, and in others, serious undertakings; a typical example of
the former is the introduction of uni-directional links, while fault recovery and persistence
would probably fall into the latter; higher-order theories of Dπmay need to be considered
in the latter case.

The graph structure imposed on DπF locations should also be flexible enough to
express other location structures as instances of the calculus. For instance, a hierarchical
location structure such as that used in the distributed join-calculus can be elegantly
encoded in DπF by imposing restrictions on the starting graph structure (it must be a
tree) and the types of the new locations to be created (their only connection is to the
parent). Moreover, by restricting the observer’s view to the root nodes of this encoding,
we can also encode the failure of a subtree as the breaking of the link connecting the root
of the subtree to the remainder of the tree.

The obvious immediate extension to the work on fault tolerance, carried our in Chap-
ter 4, is to extend the definitions and underlying theory to the full failure calculus, DπF.
At a specification level, it would be interesting to investigate what constitutes a sensible
definition of fault tolerance in the presence of two kinds of faults, node and link. For
instance, one could decide to keep the unit count n to refer to nodes, and consider a com-
pletely disconnected node as a dead node; alternative, the definition may be extended to
two parameters, n and m, where the n would denote the maximum node fault and m the
maximum link faults that may be injected.

A more important line of research in the field of fault tolerance would however be
to have a compositional theory of systems, allowing us to construct fault tolerant systems
from smaller component sub-systems. Even though our work on fault-tolerant simulation
relations can be a good starting point, dependent type systems, [YH02, HRY05], should
shed more light on this problem whereas spatial logics such as [Rey02, ORY01] might
yield a better understanding and treatment of redundancy. Having said this, the fault-
tolerant definitions we formalised in this thesis should still serve as a valid specification
for validating the resultant compositional theory for fault tolerance.

Chapter 6. Conclusion and Outlook 141

More generally, the framework adopted from [HR04], that is that of configurations, to-
gether with our adaptations, such as environments and types that encode notions of state,
can be used to study other areas of distributed computing. The most obvious to us seems
to be that of limited resource handling and garbage collection. Our current understanding
is that similar concepts studied in our calculi can be found in such setting: for instance, the
software awareness of the state of the surrounding resources, and mechanisms such as fail-
ure detection and fresh network discovery, could be translated to resource state detection
and resource discovery. From the point of view of process calculi, resource management
have already been studied in various literature; we here name a few of these which might
be considered as suitable starting points[BBDS03, Hof02, IK05, Tel04, TZH02].

Finally, we believe that the application for the theory we developed in this thesis is
a crucial next step. Through application, we are able to justify our design decisions and
validate the results obtained. Moreover, any examples retrieved from these applications
should motivate the immediate future research directions. We have stated earlier that
DπF can be applied to the study of distributed software that needs to be aware of the
dynamic computing context in which it is executing; various examples can be drawn from
ad-hoc networks, embedded systems and generic routing software. In these settings,
the software typically discovers new parts of the neighbouring network at runtime and
updates its knowledge of the current underlying network with changes caused by failure.
In addition, the theory of DπF married with a theory of fault tolerance should be ade-
quate enough to give a lower level encoding of other preferred levels of abstraction in
distributed systems, whose underlying implementations use fault tolerant routing tech-
niques. Examples that springs to mind are the proposed middleware infrastructures such
as [Wie02, MSW03] whereby nodes are organised as clusters or groups, with broadcast
communication primitives extending to every member of the group.

Appendix A

Notation

Here we give the formal definitions for the various notation we have introduced for
extracting information from network representations, and for updating them.

A.1 DπLoc Notation

Recall that for DπLoc a network repsresentationΠ consists of the tuple 〈N ,D〉, whereN
is a set of names known andD is the set of dead locations. We thus define the following
judgements:

Π ` a :ch def
= a ∈ ΠN (valid channels)

Π ` l :loc[a] def
= l ∈ ΠN ∧ l ∈ ΠA (valid live location)

Π ` l :loc[d] def
= l ∈ ΠN ∧ l < ΠA (valid dead location)

Π ` l : alive def
= Π ` l :loc[a] (live locations)

Π ` k← l def
= Π ` k :alive, l :alive (k accessible from l)

Π `M def
= fn(M) ∈ ΠN (valid systems)

We also define the following operations:

Π+ a :ch def
= 〈ΠN∪{a},ΠA〉 (adding fresh channel)

Π+ l :loc[a] def
= 〈ΠN∪{l},ΠA∪{l}〉 (adding fresh live location)

Π+ l :loc[d] def
= 〈ΠN∪{l},ΠA〉 (adding fresh dead location)

Π − l def
=

 〈ΠN ,ΠA/{l}〉 if l ∈ ΠN
Π otherwise

(killing a location)

Appendix A. Notation 143

A.2 DπF Notation

Network representations in DπF are based on the notion of linksets L. We define the
following operations and judgements, using a set of locations C:

L/C def
= {〈k1, k2〉 | 〈k1, k2〉 ∈ L and neither k1, k2 < C} (filtering)

L`k← l def
= 〈l, k〉 ∈ L (accessibility)

L`kf l def
= L ` k← l or∃k′.L ` k′← l andL ` kfk′ (reachability)

l↔C def
= {l↔k | k ∈ C} (component creation)

Lf l def
= {k↔k′ | k↔k′ ∈ L andL ` kf l} (component reference)

For DπF we have two kinds of network representations, ranged over by ∆ and Σ. We
define the following operations on them:

∆ − l def
= 〈∆N , ∆A/{l}, ∆L〉 (location killing)

Σ − l def
= 〈ΣN , ΣO/{l}, ΣL/{l}〉 (location killing)

∆ − l↔k def
= 〈∆N , ∆A, ∆L/{〈l, k〉, 〈k, l〉}〉 (link breaking)

Σ − l↔k def
= 〈ΣN , ΣO/{〈l, k〉, 〈k, l〉}, ΣL/{〈l, k〉, 〈k, l〉}〉 (link breaking)

∆ + a :ch def
= 〈∆N∪{a}, ∆A, ΣL〉 (adding a channel)

Σ + a :ch def
= 〈ΣN∪{a}, ΣO, ΣH 〉 (adding a channel)

∆ + l :loc[a, C] def
= 〈∆N∪{l}, ∆A∪{l}, ΣL∪l↔C〉 (adding a location)

∆ + l :loc[d, C] def
= 〈∆N∪{l}, ∆A, ΣL∪l↔C〉

Σ + l :loc[d, C] def
= 〈ΣN∪{l}, ΣO, ΣH 〉 (adding a location)

Σ + l :loc[a, C] def
=

Case C ∩ dom(ΣO) = ∅ then 〈ΣN ∪ {n}, ΣO, H ′〉
where: H ′ = ΣH ∪ (l↔C)

C ∩ dom(ΣO) , ∅ then 〈ΣN ∪ {n}, O′, H ′〉
where: O′ = ΣO ∪ (l↔C) ∪ (ΣHfC)

and H ′ = ΣH/(ΣHfC)

We next define translations from one network representation to the other, together with
the definition of the observer network knowledge for every representation.

Σ(∆) def
= 〈∆N , ∆A, ∅〉 (from∆ toΣ)

∆(Σ) def
= 〈ΣN , (loc(ΣN)/dom(ΣO∪ΣH)), ΣO∪ΣH 〉 (fromΣ to∆)

I(Σ) def
= 〈ΣN , ΣO〉 (observer knowledge)

I(∆) def
= I(Σ(∆))

Finally, we define judgements made using the various network representations. Ide-
ally we would like that distinct network representations that have the same semantic
interpretations yield the same judgements as shown below.

Appendix A. Notation 144

Σ` l :alive def
= l ∈ dom(ΣO ∪ ΣH) (live locations)

Σ` l↔k def
= l↔k ∈ ΣO ∪ ΣH (live link)

Σ`T
def
= fn(T) ⊆ ΣN (valid types)

Σ`n :T, ñ : T̃ def
= Σ ` T and Σ + n :T ` ñ : T̃

Σ`N def
= fn(N) ⊆ ΣN (valid systems)

Σ`k← l def
= ΣO `k← l or ΣH `k← l (accessibility)

Σ`kf l def
= ΣO `kf l or ΣH `kf l (reachability)

∆` l :alive, l↔k, T, N def
= Σ(∆)` l :alive, l↔k, T, N

I+n :L def
= 〈IN∪{n}, IO∪L〉 (updates)

I` l :alive def
= l ∈ dom(IO) (live locations)

I` l↔k def
= l↔k ∈ IO (live link)

I`T
def
= fn(T) ⊆ dom(IO) (valid types)

I` l[[P]] def
= fn(P) ⊆ IN and l ∈ dom(IO) (valid systems)

I` (νn :T)N def
= I`T andI+n : T ` N

I`N|M def
= I`N andI`M

∆`obs l :alive, l↔k, T, N def
= I(∆) ` l :alive, l↔k, T, N (external judgments)

Σ`obs l :alive, l↔k, T, N def
= I(Σ) ` l :alive, l↔k, T, N

Finally we outline a number of operations on types used in reduction rules and transition
rules.

ch/{l1, .., ln}
def
= ch (type filtering)

loc[C]/{l1, .., ln}
def
= loc[C/{l1, .., ln}]

inst(loc[C], l,∆) def
= loc[{k | k ∈ C and∆`kf l}] (instantiate)

inst(loc[C], l,Σ) def
= loc[{k | k ∈ C andΣ`kf l}]

lnk(n :T,Σ) def
=

(n↔C) ∪ (ΣHfC)
if T=loc[a, C] and C∩loc(ΣO),∅
∅ otherwise

(link types)

Appendix A. Notation 145

A.3 Typed DπLoc Notation

Recall that for typed DπLoc a network repsresentation Γ consists of the tuple 〈T ,D〉,
where T is a set of tuples, n : W, matching defined names to their stateless type, andD is
the set of dead locations. We thus define the following judgements:

Γ ` a :B〈W̃〉 def
= a :B〈W̃〉 ∈ ΓT (channel judgement)

Γ ` l :loc[B, d] def
= l :loc[B] ∈ ΓT ∧ l < ΓA (dead location judgement)

Γ ` l :loc[B, a] def
= l :loc[B] ∈ ΓT ∧ l ∈ ΓA (live location judgement)

Γ ` l : alive def
= Γ ` l :loc[B, a] (live locations)

Γ ` k← l def
= Γ ` k :alive, l :alive (k accessible from l)

We also define the following operations:

Γ + a :B〈W̃〉 def
= 〈ΓT ∪{a :B〈W̃〉},ΓA〉 (adding fresh channel)

Γ + l :loc[B, a] def
= 〈ΓT ∪{l :loc[B]},ΓA∪{l}〉 (adding fresh live location)

Γ + l :loc[B, d] def
= 〈ΓT ∪{l :loc[B]},ΓA〉 (adding fresh dead location)

Π − l def
=

 〈ΠN ,ΠA/{l}〉 if l ∈ ΠN
Π otherwise

(killing a location)

pub(Γ) def
=

〈 n :T
Γ ` n :T and
T = p[A] or p〈P̃〉

 , {l | Γ ` l :p[a]}
〉

(public network)

Γ `obs N,n def
= pub(Γ) ` N,n

Appendix A. Notation 146

A.4 Auxilliary Proofs

We here prove a lemma that is used to show that our lts of § 3.3 is closed over valid
effective configurations.

Lemma A.4.1 (Valid Effective Network Updates). If Σ is a valid effective network, n is
fresh in Σ and the type T is a valid type with respect to Σ, denoted as Σ ` T (see Appendix
for definition) then Σ + n :T is a valid effective network.

Proof. The cases where T = ch and T = loc[d, C] are trivial so we focus our attention to the
case where T = loc[d, C]; at this point, according to Definition 3.3.5, we have two possible
subcases:

• If C ∩ dom(ΣO) = ∅ then Σ + n : loc[a, C] has the form 〈ΣN ∪ {n}, ΣO, H ′〉 where
H
′ = ΣH ∪ (l↔C). To prove that this resultant network is a valid effective network,

we have to show that it adheres to the three consistency requirements, defined
earlier in Definition 3.3.2:

1. dom(ΣO) ⊆ loc(ΣN ∪ {n}). This is immediate from the fact that Σ is valid and
thus dom(ΣO) ⊆ loc(ΣN).

2. dom(H ′) ⊆ loc(ΣN ∪ {n}) and that H ′ is a linkset. The inclusion is obtained
from the fact that dom(ΣH) ⊆ loc(ΣN) and the assumption that loc(loc[a, C]) ⊆
loc(ΣN). The fact that H ′ = ΣH∪l↔ C is a linkset is immediate from the fact
that l↔C is a component.

3. dom(ΣO) ∩ dom(H ′) = ∅. This is immediately obtained from the assumptions
that dom(ΣO) ∩ dom(ΣH) = ∅, n < ΣN and the condition for this subcase, that
is C ∩ dom(ΣO) = ∅.

• If (C ∩ dom(ΣO) , ∅) then Σ + n : loc[a, C] has the form 〈ΣN ∪ {n}, O′, H ′〉 where
O
′ = ΣO ∪ (l↔C ∪ (ΣHfC) andH ′ = ΣH/(ΣHfC). One again, we have to prove

that Σ + n :loc[a, C] satisfies the three consistency conditions:

1. dom(O′) ⊆ loc(ΣN ∪ {n}) and that O′ is a linkset. The proof here progresses
similar to the second requirement of the previous subcase.

2. dom(H ′) ⊆ loc(ΣN ∪ {n}) and thatH ′ is a linkset. The proof for the inclusion
is a simpler version of the above subcases, while the requirement that H ′ =
ΣH/ΣHfC is a linkset is obtained from the fact that ΣHfC is a component
and Lemma 3.3.4.

3. dom(O′)∩dom(H ′) = ∅. This is obtained from the assumptions that dom(ΣO)∩
dom(ΣH) = ∅, n < ΣN and the structure of O′ andH ′. �

Bibliography

[Ama97] Roberto M. Amadio. An asynchronous model of locality, failure, and process
mobility. In D. Garlan and D. Le Métayer, editors, Proceedings of the 2nd Interna-
tional Conference on Coordination Languages and Models (COORDINATION’97),
volume 1282, pages 374–391, Berlin, Germany, 1997. Springer-Verlag.

[AP94] Roberto M. Amadio and Sanjiva Prasad. Localities and failures. FSTTCS:
Foundations of Software Technology and Theoretical Computer Science, 14, 1994.

[BBDS03] F. Barbanera, M. Bugliesi, M. Dezani, and V. Sassone. A calculus of bounded
capacities. In Proceedings of Advances in Computing Science, 9th Asian Computing
Science Conference, ASIAN’03, volume 2896 of LNCS, pages 205–223. Springer,
2003.

[Ber04] Martin Berger. Basic theory of reduction congruence for two timed asyn-
chronous π-calculi. In Proc. CONCUR’04, 2004.

[BNP99] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Basic observables
for processes. Inf. Comput., 149(1):77–98, 1999.

[BNP02] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Trace and testing
equivalence on asynchronous processes. Inf. Comput., 172(2):139–164, 2002.

[CDT01] George Coulouris, Jean Dollimore, and Kindberg Tim. Distributed Systems:
Concepts and Design. International Computer Science. Addison Wesley, 3 edi-
tion, 2001.

[CG00] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer
Science, Special Issue on Coordination, 240(1):177–213, June 2000.

[Chr91] Flavin Christian. Understanding fault tolerant distributed systems. Commu-
nications of the ACM, 34(2):56–78, February 1991.

[CHR05] Alberto Ciaffaglione, Matthew Hennessy, and Julian Rathke. Proof method-
ologies for behavioural equivalence in Dπ. Technical Report 03/2005, Univer-
sity of Sussex, 2005.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225–267, March 1996.

[DGP05] R. De Nicola, D. Gorla, and R. Pugliese. Basic observables for a calculus
for global computing. In L. Caires et al., editor, Proc. of 32nd International
Colloquium on Automata, Languages and Programming (ICALP 2005), volume
3580 of LNCS, pages 1226–1238. Springer, 2005.

[DNGP04] Rocco De Nicola, Daniele Gorla, and Rosario Pugliese. Basic observables for
a calulus for global computing. Technical report, Universita di Roma, ”La
Sapienza”, 2004.

[FGLD96] Cedric Fournet, Georges Gonthier, Jean Jaques Levy, and Remy Didier. A
calculus of mobile agents. CONCUR 96, LNCS 1119:406–421, August 1996.

Bibliography 148

[Fis83] Michael J. Fischer. The consensus problem in unreliable distributed systems
(a brief survey). In Proceedings of the 1983 International FCT-Conference on
Fundamentals of Computation Theory, pages 127–140. Springer-Verlag, 1983.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM, 32(2):374–
382, April 1985.

[GG89] R.J. van Glabbeek and U. Goltz. Equivalence notions for concurrent sys-
tems and refinement of actions (extended abstract). In A. Kreczmar and
G. Mirkowska, editors, Proceedings 14th Symposium on Mathematical Foun-
dations of Computer Science, MFCS ’89, Pora̧bka-Kozubnik, Poland, Au-
gust/September 1989, volume 379 of lncs, pages 237–248. Springer-Verlag,
1989.

[HB00] Kohei Honda and Martin Berger. The two-phase commitment protocol in an
extended pi-calculus. In Luca Aceto and Björn Victor, editors, EXPRESS00:
7th International Workshop on Expressiveness in Concurrency, volume 39, pages
105–130, Amsterdam, The Netherlands, 2000. Elsevier.

[HMR04] Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a be-
havioural theory of access and mobility control in distributed systems. Theo-
retical Computer Science, 322:615–669, 2004.

[Hof02] Martin Hofmann. The strength of non-size increasing computation. In POPL
’02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 260–269, New York, NY, USA, 2002. ACM Press.

[HR98] Matthew Hennessy and James Riely. Resource access control in systems of
mobile agents. In Uwe Nestmann and Benjamin C. Pierce, editors, HLCL98:
High-Level Concurrent Languages (Nice, France, September 12, 1998), volume
16(3), pages 3–17. Elsevier Science Publishers, 1998.

[HR02] Matthew Hennessy and James Riely. Resource access control in systems of
mobile agents. Information and Computation, 173:82–120, 2002.

[HR04] Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for
processes in the presence of subtyping. Mathematical Structures in Computer
Science, 14:651–684, 2004.

[HRY05] Matthew Hennessy, Julian Rathke, and Nobuko Yoshida. Safedpi: A language
for controlling mobile code. Acta Informatica, 2005. To appear.

[HY95] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical
Computer Science, 152(2):437–486, 1995.

[IK05] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. ACM Trans.
Program. Lang. Syst., 27(2):264–313, 2005.

[JR04] Alan Jeffrey and Julian Rathke. A theory of bisimulation for a fragment of
concurrent ml with local names. Theoretical Computer Science, 2004.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

Bibliography 149

[MAB+98] Martin W. Murhammer, Orcun Atakan, Stefan Bretz, Larry R. Pugh, Kazunari
Suzuki, and David H. Wood. TCP/IP Tutorial and Technical Overview. IBM
Redbooks. International Technical Support Organization, 6 edition, October
1998.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MS92] Robin Milner and Davide Sangiorgi. Barbed bisimulation. ICALP’92: Au-
tomata, Languages and Programming, 632, 1992.

[MSW03] Sergio Mena, André Schiper, and Pawel T. Wojciechowski. A step towards
a new generation of group communication systems. In Markus Endler and
Douglas C. Schmidt, editors, Middleware, volume 2672 of Lecture Notes in
Computer Science, pages 414–432. Springer, 2003.

[NFM03] Nestmann, Fuzzati, and Merro. Modeling consensus in a process calculus. In
CONCUR: 14th International Conference on Concurrency Theory. LNCS, Springer-
Verlag, 2003.

[NH84] Rocco De Nicola and Matthew Hennessy. Testing equivalences for processes.
Theor. Comput. Sci., 34:83–133, 1984.

[ORY01] Peter O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about
programs that alter data structures. In Proc. of CSL’01, volume 2142 of LNCS,
pages 1–19. Springer-Verlag, 2001.

[Pal03] Catuscia Palamidessi. Comparing the expressive power of the synchronous
and asynchronous pi-calculi. Mathematical Structures in Computer Science,
13(5):685–719, 2003.

[Pra87] K. V. S. Prasad. Combinators and Bisimulation Proofs for Restartable Systems. PhD
thesis, Department of Computer Science, University of Edinburgh, December
1987.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proc. of LICS’02, pages 55–74. IEEE Computer Society, 2002.

[RH01] James Riely and Matthew Hennessy. Distributed processes and location fail-
ures. Theoretical Computer Science, 226:693–735, 2001.

[San92] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis CST–99–93, Department of Computer Science,
University of Edinburgh, 1992.

[SS83] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: An ap-
proach to designing fault-tolerant computing systems. Computer Systems,
1(3):222–238, 1983.

[SW01] Davide Sangiorgi and David Walker. The π-calculus. Cambridge University
Press, 2001.

[Tel94] Gerard Tel. Introduction to distributed algorithms. Cambridge University Press,
New York, NY, USA, 1994.

[Tel04] D. Teller. Recollecting resources in the pi-calculus. In Proceedings of TCS 2004
(tbp), 2004.

Bibliography 150

[TZH02] D. Teller, P. Zimmer, and D. Hirschkoff. Using Ambients to Control Resources.
In Proc. of CONCUR’02, volume 2421 of LNCS. Springer Verlag, 2002.

[VR01] Paulo Verissimo and Luis Rodrigues. Distributed Systems for System Architects.
Kluwer Academic Publishers, 2001.

[Wie02] M. Wiesmann. Group Communications and Database Replication: Techniques,
Issues and Performance. PhD thesis, École Polytechnique Fédérale de Lausanne,
Switzerland, May 2002. Number 2577.

[YH02] Nobuko Yoshida and Matthew Hennessy. Assigning types to processes. In-
formation and Computation, 173:82–120, 2002.

