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Abstract. We examine the challenges of implementing a framework for automat-
ing Monitor-Oriented Programming in the context of actor-based systems. The
inherent modularity resulting from delineations induced by actors makes such
systems well suited to this style of programming because monitors can surgically
target parts of the system without affecting the computation in other parts. At the
same time, actor systems pose new challenges for the instrumentation of the resp.
monitoring observations and actions, due to the intrinsic asynchrony and encap-
sulation that characterise the actor model. We discuss a prototype implementa-
tion that tackles these challenges for the case of Erlang OTP, an industry-strength
platform for building actor-based concurrent systems. We also demonstrate the
effectiveness of our Monitor-Oriented Programming framework by using it to
augment the functionality of a third-party software written in Erlang.

1 Introduction

Monitor-Oriented Programming (MOP) [9, 10] (also termed monitoring [40, 23]), is a
code design principle advocating for the separation of concerns between the core func-
tionality of a system and ancillary functionality that deals with aspects such as safety,
security, reliability and robustness. MOP organises code in a layered onion-style ar-
chitecture where the innermost core consists of the plain-vanilla system, and the outer
layers are made up of monitors — software entities that observe the execution of the
inner layers and react to these observations. Monitor actions typically include basic
notifications of detected behaviour (to outer layers), the suppression of inner-layer ob-
servable behaviour, the filtering of stimuli coming from outer layers, and adaptation
actions that affect the structure and future behaviour of the inner layers.

Software development and maintenance can benefit from MOP in various ways.
For instance, MOP facilitates an incremental deployment strategy where outer layers
may be added at a later stage, which may improve the time-to-market of a develop-
ment process (e.g., in the Simplex Architecture [42], monitoring was proposed as an
automated method for upgrade-control systems). Arguably, this also fits better with
real-world development processes, where requirements often become apparent at later
stages of development. Monitoring may also be used as a means of software customisa-
tion, where every deployed system instance comes with its own auxiliary requirements
in terms of security practices, privacy policies and robustness requirements that are han-
dled by dedicated monitors [40, 16]. MOP is also used as a discipline for augmenting
systems with a last line of defense, so as to improve execution correctness and robust-
ness. For instance, they can shield the inner layers by filtering harmful external stimuli
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[6], or steer the execution of the inner system to remain within its “stability envelope”,
from where a system can be controlled using safe and well-understood procedures [9].
In fact, monitors are the main mechanism used in formal techniques such as Runtime
Verification (RV) [33, 10] and Security/Edit Automata [40, 34].

A restricted flavour of MOP is already used extensively in a number of actor-based
technologies for building reactive systems, such as the Erlang [8] and Scala [27] pro-
gramming languages, and the AKKA concurrency framework for Java [1]. In particular,
these actor systems — collections of self-contained, asynchronously-executing, inter-
acting processes called actors — are typically organised in hierarchical fashion, where
supervisor actors monitor other actors at a lower layer through a mechanism called pro-
cess linking. In the example of Fig. 1(left) the supervisor actor S is linked to three actors
A, B and C; when either child actor fails, a special exit() notification is sent to S who
is set to trap these exit messages1 and react to them [8, 35]. Common coding practices
for such technologies then advocate for the fail-fast design pattern, whereby inner-layer
actors should focus on the core functionality of the system and not engage in defensive
programming that attempts to anticipate and handle errors locally [8]; instead, actors
should fail as soon as such errors are encountered, so as to allow their abnormal termi-
nation to be detected and handled by the resp. supervisor monitors. Once a (process)
failure is detected, a supervisor may react in a number of ways: in the case of the Erlang
language, a supervisor may reinstate the failed actor or replace it by a “limp-home” sur-
rogate actor, terminate other actors at the same layer that are potentially “infected” by
the error, or even fail themselves so as to allow the abnormal termination notification to
percolate to monitors in outer layers that are better equipped to handle the error.

In [7], the authors propose an abstract formal model for extending this mechanism
(based on supervision trees and process linking) to a more comprehensive MOP model:

1. They extend the events that are monitored for, from mere (actor) failures to se-
quences of actor events that include message communication and actor spawning.
As depicted in Fig. 2, this allows monitors to react to a wider range of behaviour and
take preemptive action before actors fail. As is often the case in MOP frameworks
[37, 10], the authors use a formal logic to rigorously specify the actor behaviour of
interest to the monitor, namely the logic presented in [26] and studied in [24].

2. They propose a range of adaptation actions that a monitor may take in response to
some observed behaviour, but also argue that for such adaptations to be effective,

1 Setting the trap exit flag to false causes linked actors to fail upon receiving an exit message.



fine-tuned synchronisations between the monitor and a subset of the actors are re-
quired. Thus, they define language extensions to the logic of [26, 24] that permit the
specification of synchronisation strategies and develop (sound) type-based analysis
techniques to identity erroneous synchronisation procedures.

In this paper, we follow up on this work and study implementability aspects of the
formal model proposed in [7]. In particular, we focus on one representative actor-based
technology — the Erlang platform [8, 35] — and identify concrete instances of moni-
torable events and adaptation actions that are useful to MOP in such a setting. We then
study the feasibility of such adaptation actions, together with the implementability of
the synchronisation mechanisms designed in [7] wrt. the constraints of the runtime en-
vironment of the platform. In fact, we show that we can build a tool that fully automates
the synthesis of monitors observing and reacting to the actor behaviour specified in the
extended logic of [7]. Finally, we demonstrate the effectiveness and utility of the im-
plemented framework by augmenting ancillary robustness functionality of a third-party
software through our MOP framework.

To our knowledge, this is the first prototype implementation of a MOP framework
for actor systems that allows programmers to add functionality in an incremental and
disciplined manner through layers of monitors (implemented as actors themselves). Al-
though the modular nature of actor-based systems facilitates the delineation of monitor-
ing analysis and actions to a target subset of the system, the model poses new challenges
to MOP. In particular, the encapsulated nature of actor state (as defined by formal mod-
els such as [2, 3] and attested by the Erlang implementation [35]) makes it hard for the
monitor to access and change it. In addition, the asynchronous nature of actor executions
complicates the task of synchronising observed behaviour with timely administration of
monitor actions. In fact, our work appears to be one of the first to introduce synchronous
monitoring atop an inherently asynchronous computing platform.

The rest of the paper is structured as follows. Sec. 2 reviews the logic used for speci-
fying the monitor behaviour for our MOP framework. Subsequently, in Sec. 3 and Sec. 4
we discuss the implementation challenges for building an actor-centric MOP framework
for this logic. Sec. 5 validates this framework by using it to administer MOP extensions
to a third-party actor-based system. Sec. 6 discusses related work and concludes.

2 Monitor Specification Language

We adopt the specification language of [7] to describe monitor behaviour in our study,
restated here as the abstract syntax of Fig. 3. There are mild cosmetic changes reflecting
the syntax used in the implementation presented in this paper: e.g., the guard constructs
[p] rel~v. c and *[p] rel~v. c in Fig. 3 correspond to the resp. necessity formulas
[p] a

~v c and [p] b
~v c of the formal logic (in [7], the qualifiers a and b differentiate between

asynchronous (a) and blocking (b) pattern matching), and the termination constructs
flag and end correspond to the resp. logic formulas ff and tt. In spite of these syntactic
changes, the construct semantics is identical to that in [7].

The logic is defined over streams of visible events, α, generated by the monitored
system made up of actors — independently-executing processes that are uniquely-
identifiable by a process identifier, have their own local memory, and can either spawn



c, d ∈ SPEC ::= flag (detect) | end (terminate)

| c & d (conjunction) | if b then c else d (branch)

| rec X.c (recursion) | X (recursive call)

| [p] rel~v. c (guard) | *[p] rel~v. c (blocking guard)

| A(x) rel~v. c (asyn. adaptation) | S(x) rel~v. c (sync. adaptation)

Fig. 3. Monitor Specification Syntax

other actors or interact with other actors in the system through asynchronous messaging;
we use i, j, h ∈ Pid to denote the unique identifiers. For the Erlang implementation we
discuss in this paper, events monitored include the sending of messages, i > j ! v, (con-
taining the value v from actor with identifier i to actor j), the receipt of messages, i ? v,
(containing the value v received by actor i), function calls, call(i, {m, f , l}), (at actor i
for function f in module m with argument list l) and function returns, ret(i, {m, f , a, v})
(at actor i for function f in module m with argument arity a and return value v). Event
patterns, p, q ∈ Pat, follow a similar structure to that of events, but may contain term
variables x, y, z ∈ Var (in place of values) that are bound to values v, u ∈ Val (where
Pid ⊆ Val), at runtime through pattern matching (we use ~v to denote lists of values).

Example 1. The pattern x > j ! {y,true} describes an output event from an arbitrary
actor x to a specific actor j, carrying a tuple value where the first item y is unspecified
but the second item must be the value true. It can match with the event i > j ! {5,true}
returning the substitution {i, 5/x, y}. However, the same pattern does not match with either
i ? {5,true} (different type of event) or i > h ! {5,false} (same event type but the event
argument j conflicts with h, as does true with false). �

In addition to term variables, the abstract syntax in Fig. 3 also assumes a distinct
denumerable set of formula variables X,Y, . . . ∈ LVar, used to define recursive spec-
ifications. It is also parameterised by a set of decidable boolean expressions, b, c ∈
Bool, and the aforementioned set of event patterns. Monitor specifications include
commands for flagging violations, flag, and terminating (silently), end, conjunctions,
c1 & c2, recursion, rec X.c, and conditionals to reason about data, if b then c1 else c2.
The specification syntax in Fig. 3 includes two guarding constructs, [p] rel~i. c and
*[p] rel~i. c, instructing the resp. monitor to observe system events that match pat-
tern p, and progressing as c if the match is successful. Following [7], these constructs
encompass directives for blocking and releasing actor executions, depending on the
events observed. The guarding construct *[p] rel~i. c is blocking, meaning that it sus-
pends the execution the actor whose identifier is the subject of the event matched by
the pattern (e.g., actor i is the subject in the events i > j ! v, i < j ? v, call(i, {m, f , l})
and ret(i, {m, f , a, r})). By contrast, the guarding construct [p] rel~i. c does not block
any actor when its pattern is matched. However, for both constructs [p] rel~i. c and
*[p] rel~i. c, pattern mismatch terminates monitoring, but also releases all the blocked
actors in the list of identifiers~i. The syntax in Fig. 3 also specifies two adaptation con-
structs, A( j) rel~i. c and S( j) rel~i. c. Both constructs instruct the monitor to admin-



ister an adaptation action (A and S ) on actor j, releasing the (blocked) actors in~i after-
wards, then progressing as c. The only difference between these two constructs is that
the adaptation in S( j) rel~i. c, namely S , expects the target actor j to be blocked (i.e.,
synchronised with the monitor) when the adaptation is administered, and must therefore
be blocked by some preceding guarding construct.

Example 2. Consider the monitor script below. It instructs the monitor to analyse two
output events, first from actor i and then from actor j, sent to the same destination x
(which is pattern-matched and determined at runtime). If the outputted values sent are
equivalent, y==z, monitoring terminates. Otherwise, the monitor terminates the execu-
tion of the recipient actor x, restarts the two sender actors i and j, and recurses.

rec X.*[i > x ! y] rel []. *[ j > x ! z] rel [i]. if y==z then end else

kill(x) rel []. restart(i) rel []. restart( j) rel [i, j]. X

The restart adaptation action is synchronous, requiring the actors i and j to be blocked
(the kill adaptation is not). Therefore, the script specifies an incremental strategy for
synchronising with actors i and j before the resp. adaptations are administered: match-
ing with pattern i > x ! y blocks actor i, whereas pattern-matching with j > h ! z (for
some actor h instantiated for x in j > x ! z by the previous match) blocks actor j. How-
ever, mismatching with pattern j > h ! z releases the previously blocked actor i, thereby
allowing it to continue executing as normal because the monitor would terminate and
the adaptation would not be administered. Importantly, if we assume that actor j’s be-
haviour does not depend on communications from actor i, the temporary pause of actor
i does not visibly affect computation since actors execute asynchronously wrt. to one
another. See [7] for a complete formal description of the synchronisation mechanism.�

3 Instrumenting Actors

In Erlang, actors limit the sharing of data by explicitly sending copies of this data to
the destination actor; identifiers act as unique actor addresses. These asynchronous mes-
sages are received at the destination actor’s mailbox (a message queue buffer) and can be
exclusively read by this actor using pattern-matching, which retrieves the first message
in the mailbox matching a specified pattern; this two-step communication mechanism
allows the recipient actor to prioritize certain messages over others by potentially read-
ing them out-of-order of arrival. Asynchronous actor execution is one of the tenets of
the actor model and, in the case of Erlang, has lead to systems that are more scalable,
maintainable and resilient — asynchronous actor computation is inherently modular,
easier to understand in isolation, and its failure can be readily quarantined [8, 35].

By contrast, monitors (expressed as actors) require tighter synchronisations wrt. the
execution of actors they observe. Adequate MOP would occasionally need to momen-
tarily pause the execution of an actor — typically after observing an event generated by
it — while continuing to observe behaviour generated by other (independently execut-
ing) actors; in the event that an aggregate behaviour is detected, the monitor could then
either issue notifications involving the paused actor (thereby attaining timelier detec-
tions) or else administer adaptations on the paused actor. Complex adaptations consist-
ing of multiple operations often require adaptee actors to be inactive for their correct



. . .

system action e1,
trace(e1,self(),nonce1),
loop() →
{nonce1, Adpt} = block recv();
if Adpt contains:

restart → invoke
restart action(),
loop();

purge → invoke
purge action(),
loop();

. . .
ack → ok

end
. . .

loop(Map)→
{Evt,Id,Nonce} =

blocking recv(),
if Nonce , null,

Map2 =

Updt(Id,Nonce,Map);
else

Map2 = Map;
end,
{PtrnMtch,AL,RL} =

handle(Evt),
if (PtrnMtch , null) →

adapt(AL,Map2),
release(RL,Map2),
loop(Map2);

end.

evt(e1,{i,nonce1})

adpt(restr,nonce1)

ack(nonce1)

Fig. 4. The Runtime Adaptation protocol between a System Actor (left) and the Monitor (right).

administration. In our case, the specifications of Fig. 3 necessitate an incremental syn-
chronisation mechanism whereby actors are cumulatively synchronised to (and desyn-
chronised from) a monitor during their execution, based on the observed behaviour.

The implementability of this synchronisation mechanism hinges on the capability of
externally interrupting the execution of an actor. In order to encapsulate the execution of
an actor, the Erlang OTP libraries [35] (the layer of abstraction provided by the Erlang
Virtual Machine) specifically limit external actor interventions to either actor killing2

or asynchronous messaging. Neither method provides the desired functionality: (actor)
killing is too coarse of an intervention, whereas sending an interrupt message to an actor
does not guarantee that it will be picked up or handled adequately by the receiving actor.

Our solution was to engineer an implementation that uses an Aspect-Oriented Pro-
gramming (AOP) framework to instrument injections at specific points of interest in
the the monitored actors’ code, and then use messaging (from the monitor) to trigger
synchronisation procedures at specific stages of the monitored actor’s computation; see
Fig. 4, where the red code constitutes the code injected on the instrumented actors. The
points of interest required by our aspect-based instrumentation are derived automati-
cally from the patterns of the guarding constructs used in the specification scripts of
Fig. 3. In particular, these patterns provide the necessary information to generate ad-
vices for AOP injections that match events at specific parts in the monitored system’s
source code and report back these events to the monitor for processing (first line of the
injected code in Fig. 4). In the case of a blocking guard, further code is injected imple-
menting the synchronisation protocol (injected code in Fig. 4, second line onwards).

In the actor code shown in Fig. 4 (left), specification script non-blocking guards
(Fig. 3) translate into reported events with null nonces whereas blocking guards gen-

2 This may be either explicit using the BIF exit/2 or implicit through process linking[8].



erate a fresh nonce uniquely identifying a blocking session (an actor may be blocked
multiple times during the course of a monitored execution). Once the monitor — the
code in Fig. 4 (right) — receives an event with a non-null nonce, it creates a map en-
try linking the resp. actor ID to that nonce, and uses it to send directives during that
blocking session. The monitor may send two kinds of directives: adaptation directives,
instructing the actor to execute some predefined function (cf. Sec. 4), or resumption
directives which unblock the monitored actor. After a blocking event (i.e., containing a
non-null nonce) is reported, the injected instrumentation code on the system-side enters
a loop, waiting for directive messages from the monitor: whereas adaptation directives
(e.g., restart and purge) cause the monitored actor to stay in this blocking loop, the
resumption directive (denoted by ack in Fig. 4) instructs the loop to be exited.

Remark 1. We extended an AOP Framework for Erlang [32] to carry out the necessary
instrumentation (the tool did not support aspects for sends and receives). Our instrumen-
tation thus requires an aspect file that specifies the actions requiring instrumentation,
along with a purpose built module called advices.erl containing three types of ad-
vices used by the AOP injections, namely before advice, after advice and upon advice
advices. Function call events specified in the aspect file generate before advice ad-
vices woven before the function invocation, whereas for outputs and function returns,
the AOP weaves after advice advices (after advice are necessary for function returns,
since return values are only known after the return of the call). For mailbox reading, the
resp. Erlang receive construct may contain multiple pattern-guarded clauses i.e.,

recieve g1->exp1; g2->exp2; g3->exp3; . . . ;gn->expn end.

The AOP thus weaves upon advice advice for every guarded expression matching the
message pattern defined by the receive aspects, as specified in the aspect file. E.g.,

recieve g1->upon advice(..), exp1; g2->exp2; g3->upon advice(..), exp3; . . . end.

4 Implementing Adaptations

The instrumentation setup outlined in Sec. 3 enables the implementation of a wide range
of adaptation actions that can be administered on individual actors using their unique
actor ID. We here discuss a number of these that were successfully implemented as pre-
defined adaptations by our prototype implementation. Following [7], these adaptations
fall under two main categories, namely asynchronous and synchronous adaptations.

Asynchronous adaptations may be applied to actors whose execution need not nec-
essarily be synchronised to that of the resp. effectuating monitor at the time of the
adaptation. This is permissible because the resp. administration can execute correctly
independently of the status of the adaptee’s execution, typically because the execu-
tion environment provides the necessary interface for the adaptation to be effectuated
externally from the monitor. Erlang OTP prioritises actor encapsulation and provides
a limited interface for external interference. Accordingly, our prototype implementa-
tion offers the following predefined asynchronous adaptations: actor killing, using the
OTP exit() library function, actor registering and deregistering with a global name,



using register() and deregister() OTP functions, actor memory optimisation us-
ing the OTP garbage collect() function, exit message un/trapping setting using the
OTP process flag() function, and a composite adaptation that terminates the exe-
cution of all the actor linked to an actor (apart from itself), defined in terms of the
process info() and exit() OTP functions. These adaptations are generic in nature
and agnostic to the instrumentation infrastructure discussed in Sec. 3 — in fact, they can
also be used in asynchronous monitoring setups such as that of [26]. There are however
scenarios where asynchronous adaptations would need to be applied to synchronised
actors (e.g., suspending the execution of an actor before killing it may guarantee a more
timely monitor intervention); our prototype implementation allows this as well.

By contrast, synchronous adaptations require the adaptee’s execution to be syn-
chronised to that of the effectuating monitor (i.e., temporarily suspended), as outlined
in Sec. 3. In the case of the Erlang, one major reason for this requirement is the lim-
ited set of handles offered to externally affect the adaptee’s execution — apart from
the OTP functions mentioned above, messaging is the only other way of influencing
an actor’s execution. However, for a MOP framework to be effective, some adaptations
would ideally have access an actor’s internal state, even though the OTP restricts this
to the owning actor exclusively. In our particular context (i.e., Erlang), the only plau-
sible method of carrying out such adaptations is that of sending a message instructing
the recipient actor to carry out the adaptation itself. Note, however, that sending such
a message to an actor that is not synchronised may either (i) be ignored by an adaptee
that does not block to perform a mailbox read, or be not picked up since messages may
be read out-of-order (ii) interfere abnormally with an actor’s execution, either because
the recipient actor does not know how to interpret the message directive, or because the
directive-message reaches the actor at an execution point where it was expecting another
type of message. The instrumentation in Sec. 3 avoids these pitfalls by forcing the ac-
tor to (autonomously) relinquish control (at specific execution points) to the observing
monitor, which then sends it a message with the appropriate directive. Synchronisa-
tions are required for other reasons apart from those relating to Erlang OTP constraints.
For instance, an adaptation may consist of a number of smaller actions that need to
appear as one atomic action. Again, the instrumentation of Sec. 3 yields a straightfor-
ward implementation for this by suspending the adaptee’s execution at the beginning
and releasing it once the full list of sub-actions is completed. As a proof-of-concept,
our implementation offers the pre-defined synchronous actions below:

– purge(x): This adaptation requires access to (part of) the internal state of an actor
(i.e., its mailbox). It is implemented as a loop of non-blocking receives (using the
receive after 0 construct) consuming all the messages in the mailbox.

– silent kill(x): This composite adaptation terminates the execution of the argu-
ment actor x without informing the sibling actors to which it is linked. It is imple-
mented by first obtaining the list of actor IDs to which it is currently linked (using
process info(self(), links)) and then unlinking it from this list of actors
(using unlink()) and finally killing the adaptee once it is completely severed.

– restart(x): The main complication when implementing this adaptation is that of
preserving the identifier of the restarted adaptee, since other actors may be using
it; a naive implementation using killing and spawning would yield a fresh iden-
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Fig. 5. Yaws client connection protocol

tifier for the restarted actor. Our implementation keeps the adaptee alive, empties
its mailbox and process dictionary [8, 35] can then calls the original function with
which it was spawned initially. This requires modifying spawn functions through
AOP instrumentation) so as to record the actor spawn information (i.e., the func-
tion spawned and its arguments) in its process dictionary; this information is then
retrieved when the restart adaptation is invoked.

– untrace(x): This action makes events from actor x unmonitorable. It extends the
instrumented code of Fig. 4 with a flag indicating whether an actor should report
events or not. By default, the flag is set to true whereas the action inverts it.

Remark 2. Other pre-defined adaptations can be added to the existing suite. For in-
stance, one can define a runtime-enforcement deletion operation in the form of syn-
chronous adaptations that intercept specific messages, using the message consumption
mechanism of the purge() adaptation discussed above but refined for specific message
patterns. One can also have an application-specific asynchronous adaptation that sends
messages as insertion operations in a runtime-enforcement setup [34]. Since Erlang is
higher-order and treats functions as first-class citizens, the framework can also be easily
extended to handle dynamic adaptations that are not part of the predefined suite. �

5 Augmenting Functionality through MOP

As a representative system for our evaluation we consider Yaws [43, 30], a third-party,
(open source) HTTP webserver that uses actors to handle multiple client connections.
For every client connection, the server assigns a dedicated (concurrent) handler that
services HTTP client requests, thereby parallelising processing for multiple clients.

Fig. 5 depicts the Yaws protocol for establishing client connections. Upon creation,
an acceptor component spawns a connection handler to be assigned to the next client
connection. The acceptor component waits for client connection requests while the
unassigned handler waits for the next TCP connection request. Clients send connec-
tion requests through standard TCP ports (1), which are received as messages in the
handler’s mailbox. The current handler accepts these requests by reading the resp. mes-
sage from its mailbox and (2) sending a message containing its own Id and the port of
the connected client to the acceptor; this acts as a notification that it is now engaged
in handling the connection of a specific client. Upon receiving the connection request
message, the acceptor records the information sent by the handler and (3) spawns a new
handler listening for future connection requests. Once it is assigned a handler, the con-
nected client interacts directly with it using (4) standard HTTP requests; these normally
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consist of six (or more) HTTP headers containing the information such as the client’s
User Agent, Accept-Encoding and the Keep-Alive flag status. In Yaws, HTTP request
information is not sent in one go but follows a protocol of messages: it starts by sending
the http req, followed by six http header messages containing client information,
terminated by a final http eohmessage. The dedicated connection handler inspects the
client information received in the headers, and services the HTTP request accordingly.

To asses the effectiveness of our framework, we used our MOP tool to define Yaws
extensions that augment its functionality. We here showcase one such extension, strength-
ening Yaws against dot-dot-slash attacks that exploit a directory traversal vulnerability
[29]. Through additional monitor layers, the extended Yaws can detect malicious client
requests (by comparing the requested URLs against a white-list) and take the necessary
remedial actions. For our exposition, we define the monitoring script below assuming
the following simplifications: (i) we consider a simple white-list with two files (i.e.,
pic.png and site.html) and (ii) we only vet the first request of every new client. In-
tuitively, the script specifies that every time a client connects, and the handler actor
assigned by the server receives an HTTP GET request for a file stored on the server,
followed by 6 HTTP headers (h1 to h6) and the end-of-headers notification, then the re-
quested file can only refer to either for pic.png or site.html. If not the handler is killed,
and the mailbox contents of the server’s acceptor actor is purged.

1 rec X.(
2 *[acc?{hId,next,_}] rel [].
3 [ret(hId,{yaws,do_recv,3,{ok,{http_req,’GET’,{abs_path,path},_}}})] rel [acc].
4 [ret(hId,{yaws,do_recv,3,{ok,h1}})] rel [acc].
5 . . .

6 [ret(hId,{yaws,do_recv,3,{ok,h6}})] rel [acc].
7 *[ret(hId,{yaws,do_recv,3,{ok,http_eoh}})] rel [acc].
8 if (path == ‘‘/pic.png’’ orelse path == ‘‘/site.html’’)
9 then untrace(hId) rel [acc, hId]. X

10 else silent_kill(hId) rel []. purge(acc) rel [acc,hId]. X
11 )

Through pattern-matching, the script binds the assigned handler with variable hId (line 2),
which is then used for pattern-matching with the HTTP GET request, the 6 HTTP head-
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ers, and the ending header http_eoh (lines 3 to 7)3. On line 3, the file requested is
bound to the variable path and checked against the white-list (line 8). The guard com-
mands on lines 2 and 7 block acc and hId resp. (whereas acc may be known prior
deployment, the Id bound to hId can only be determined at runtime). If the white-list
check is successful, the script removes hId from the list of traceable actors, releases it
together with acc, and recurs on the script variable X (line 9). Otherwise, a synchronous
kill action is applied on hId, the mailbox contents of the acc actor are purged, and the
two adaptees are released before recursing (line 10). If the HTTP message sequence is
not matched at any point, the blocked actor acc is also released (lines 3 to 7).

From this script, our prototype implementation generates the augmented system
depicted in Fig. 6. Our tool automates the necessary instrumentation required for the
acceptor actor and every dynamically created handler actor. This instrumentation re-
ports events to a monitor actor, also synthesised from the above script, which processes
events and reacts by administering adaptation actions accordingly.

We also examined the overheads introduced by our MOP framework in terms of
our Yaws case study. We considered a number of monitor scripts (similar to the one
discussed earlier) and calculated the relative overheads when subjecting the resulting
(augmented) webserver to varying client loads (measured as number of server requests)
in terms of (i) the average CPU utilization; (ii) the memory required per client request;
and (iii) the average time taken for the server to respond to batches of simultaneous
client request. The experiments were carried out on an Intel Core 2 Duo T6600 pro-
cessor with 4GB of RAM, running Microsoft Windows 7 and EVM version R16B03.
For each script and client load, we average out three sets of readings; since the varia-

3 These input operations are encapsulated by OTP library functions that are part of the Erlang
VM. To keep the VM standard, we instead instrumented on the call returns of these functions.



tion between different monitor scripts was not substantial we again averaged the results
and reported them in Fig. 7. The overheads obtained are at an acceptable level, espe-
cially since that monitoring is not merely observing the system but adding functionality
(e.g., at the worst level, the Memory overhead averaged at 17.4%. Fig. 7 does show a
sharp increase in CPU overheads (46.7% at 2000 requests). This is in part attributed
to the code serialisations introduced by the monitor synchronisations, which create in-
evitable bottlenecks and wasted CPU cycles when processing multiple requests (e.g., in
the previous script, blocking the acceptor process prohibits it from servicing other client
requests in waiting). However, such steep overheads where not reflected in the average
response times per client request (e.g., we recorded 7.4% overheads at 2000 requests).

6 Conclusion

We present implementability results for a MOP framework targeting actor-based sys-
tems of a representative, industry-strength platform. The concrete contributions are:

1. A prototype 4 implementation that can fully automate the synthesis and instrumen-
tation of monitors from formal descriptions specifying the system behaviour to
be observed and the monitor actions to take in response. The implementation gives
fine-grained control for non-trivial monitor actions to be carried out while imposing
few system-monitor synchronisations (in accordance with the actor computational
model), affecting only the sub-system targeted by the monitor actions.

2. A validation of the generality and effectiveness of the approach. We show that the
functionality of third-party software can indeed be extended (with relative ease)
by our framework, thereby attaining the MOP separation of concerns described in
Sec. 1. Moreover, we give evidence that this can also be done feasibly, maintaining
reasonable overheads when the extended system is subjected to varying stress loads.

The implementation is backed up by a formal model describing the monitor behaviour
and a type system guaranteeing that synchronous monitor actions are only applied to
blocked actors, as previous presented in [7]. For future work, we plan to incorporate
techniques for lowering the monitor overheads (e.g., code inlining [22]), and to extend
our incremental synchronisation mechanisms to other monitor specification logics.

Related Work. Monitoring can be either inlined [22, 41, 11] or consolidated a separate
code unit; we opted for the latter option. In multithreaded settings, inlining of inter-
thread monitoring requires a choreographed setup [41, 25] whereas we could afford
an orchestrated solution whereby a centralised monitor analyses events and issues re-
medial actions. Monitor inlining tends to yield lower overheads and is generally more
expressive because it has full access of the system code [22]. By contrast, having mon-
itoring as a separate unit minimally alters the code of the monitored system (all the
decision branching is performed inside the monitor), is less error-prone (orchestration
tends to be easier to program than monitor choreographies), allows monitor compu-
tation to be offloaded to other machines [14], and facilitates compositional analysis
whereby monitors are treated in isolation [23, 24].

4 The implementation can be downloaded from https://bitbucket.org/casian/adapter.



As opposed to offline monitoring, which assumes complete execution traces (logs)
and executes after the system terminates its computation (e.g., [18, 17, 4]), online mon-
itoring executes alongside the system and has the ability to influence its computation.
The prevalently used online monitoring frameworks typically employ synchronous in-
strumentation [31, 11, 19, 14, 5]. However, there are a few tools relying exclusively on
asynchronous monitoring [13, 26, 12], which is easier to instrument since system com-
ponents can be treated as black-boxes. In fact, if the monitor adaptations of Sec. 4 are
limited to the asynchronous ones, then the less intrusive instrumentation setup of [26]
(based on the tracing mechanism offered by the Erlang VM [35]) would suffice.

There are also frameworks offering both synchronous and asynchronous monitor-
ing, such as MOP [10, 11], JPAX [28, 39] and DB-Rover [21, 20]; in these tools, the
specifier can choose whether to monitor synchronously or asynchronously for a prop-
erty. By contrast, we offer finer-grained control that allows a monitor to switch be-
tween synchronous and asynchronous modes (and vice-versa) within the same property.
We are aware of one other work that studies these fine-grained monitor controls [15],
proposing a model where decoupling between system and monitor executions can be
inserted, together with explicit mechanisms for pausing the system while the lagging
(asynchronous) monitor execution catches up. There are nevertheless key differences
between our work and that of [15]: (i) they treat the monitored system as one mono-
lithic entity whereas we have the facility of introducing synchronisations with parts of
the system; (ii) they assume a synchronous monitoring setup and introduce asynchrony
at certain points of the computation whereas, contrarily, our setting starts off with a com-
pletely decoupled system-monitor setup and introduces synchronisations when needed.
Also, we study adaptations in this setting whereas [15] limit themselves to detections.

MOP frameworks that support monitor adaptations typically lean more towards giv-
ing full flexibility [37, 36] by allowing the specifier to define recovery procedures in the
host language of the monitored system (e.g., Java code in the case of JavaMOP[10]).
Our current framework takes a different approach, offering only a finite subset of pre-
defined adaptations that are classified into two groups (synchronous and asynchronous).
Although less expressive, our approach allows for a cleaner separation between the
monitor specification logic and the implementation of the system (our adaptations are
implementation-agnostic abstract actions as opposed to actual Erlang code) which, in
turn, facilitates the analysis of monitor scripts (e.g., the type system presented in [7]).

EnforceMOP [36] is a JavaMOP extension for monitoring multithreaded computa-
tion, where they also use a centralised monitor for analyses across threads. However, as
opposed to our setting, this centralised monitor does not have its own thread of control
and is implemented as a static Java object that is invoked by inlined code in the resp.
threads. Event reporting is thus necessarily synchronous, whereas our non-blocking
event reporting is asynchronous and free of deadlock errors (the two-way handshake
protocol of our blocking events amount to synchronous monitoring). Since they give
full expressive power when defining remedial monitor actions, EnforceMOP employs
additional runtime checks to avert errors introduced by the monitor itself; by contrast
we offer predefined monitor actions and check for errors prior to deployment.

The implementation solutions discussed in this paper can be potentially applied
to other MOP frameworks targeting asynchronous component-based systems, such as



Enterprise Service Bus (ESB) architectures [12, 38]. BusMOP [38] is an instance of the
MOP suite of tools [37] where monitoring is used for component-based systems (COTS
- Components Off The Shelf) made up of uniquely-identifiable devices connected to
a bus. The tool treats components as black-boxes which limits monitor actions that
can be taken. On the contrary, our framework adopts more of a grey-box approach for
actors which allows for more powerful instrumentation mechanism and a wider range
of adaptation actions. The monitoring in [38] is also completely synchronous and at a
lower level of abstraction than ours (e.g., they can monitor for low-level events such as
memory reads and writes on the bus). The work in [12] is another example of a black-
box monitor treatment of components; they study RV instrumentation alternatives on
an ESB; the instrumentations considered are exclusively asynchronous and monitoring
is limited to detections (i.e., they do not support monitor adaptations).
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36. Q. Luo and G. Roşu. EnforceMOP: A Runtime Property Enforcement System for Multi-

threaded Programs. In ISSTA, pages 156–166, New York, NY, USA, 2013. ACM.
37. P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu. An overview of the MOP runtime
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