
Uniqueness Typing for Resource Management in

Message-Passing Concurrency

Edsko de Vries Adrian Francalanza Matthew Hennessy
Computer Science Dept. Inf. & Comm. Technology Computer Science Dept.
Trinity College Dublin University of Malta Trinity College Dublin
College Green, Dublin 2 MSD 2080 College Green, Dublin 2
Ireland Malta Ireland

Edsko.de.Vries@cs.tcd.ie Adrian.Francalanza@um.edu.mt Matthew.Hennessy@cs.tcd.ie
+353 1 896 1115 (+356) 2340 2745 +353 1 896 2634

October 29, 2010

Abstract

We view channels as the main form of resources in a message-passing programming paradigm.
These channels need to be carefully managed in settings where resources are scarce. To study
this problem, we extend the pi-calculus with primitives for channel allocation and deallocation
and allow channels to be reused to communicate values of different types. Inevitably, the added
expressiveness increases the possibilities for runtime errors. We define a substructural type system
which combines uniqueness typing and affine typing to reject these ill-behaved programs.

1

1 Introduction

Message-passing concurrency is a programming paradigm whereby shared memory is prohibited and
process interaction is limited to explicit message communication. This concurrency paradigm forms the
basis for a number of process calculi such as the pi-calculus [16] and has been adopted by programming
languages such as the actor based language Erlang [3].

Message-passing concurrency often abstracts away from resource management and programs writ-
ten at this abstraction level exhibit poor resource awareness. In this paper we study ways of improving
this shortcoming. Specifically, we develop a statically typed extension of the pi-calculus in which re-
sources, i.e. channels, can be reused at varying types and resources can be safely deallocated when
they are no longer required.

Idiomatic pi-calculus processes are often characterized by wasteful use-once-throw-away channels
[16, 15]. Consider the following two pi-calculus process definitions

timeSrv , recX.getTime ?x. x!(hr, min).X

dateSrv , recX.getDate ?x. x!(year, mon, day).X

timeSrv defines a server that repeatedly waits on a channel named getTime to dynamically receive
a channel name, represented by the bound variable x, and then replies with the current time on x.
dateSrv is a similar service which returns the current date. An idiomatic pi-calculus client definition
is

client0 ,
new ret1. getTime !ret1.ret1?(yhr, ymin).

new ret2. getDate !ret2.ret2?(zyear , zmon , zday). P

client0 uses two distinct channels ret1 and ret2 as return channels to query the time and date servers,
and then continues as process P with the values obtained. These return channels are scoped (private)
to preclude interference from other clients concurrently querying the servers.

From a resource management perspective it makes pragmatic sense to try and reduce the number
of channels used for the interactions between this client and the two servers. In particular, since the
servers use the reply channel once and do not keep any reference to this channel after use, the client
can economize on the resources required for these interactions and use one channel to communicate
sequentially with both the time server and the date server.

client1 , new ret. getTime !ret.ret?(yhr , ymin). getDate !ret.ret?(zyear , zmon , zday). P

From a typing perspective, this reuse of the same channel entails strong update on the channel: that
is, reuse of a channel to communicate values of different types. Strong update must be carefully
controlled; for instance, an attempt to use one channel to communicate with both servers in parallel
is unsafe:

clienterr , new ret.(getTime !ret.ret?(yhr, ymin). P1 ‖ getDate !ret.ret?(zyear , zmon , zday). P2)

Standard pi-calculus type systems accept only client0 and rule out both client1 and clienterr.
However, client1 is safe because, apart from the fact that the time server uses the return channel
once, the communication with the date server happens strictly after the communication with the time
server.

Adequate resource management also requires precise descriptions of when resources are allocated
and existing ones are disposed. The scoping construct new c.P is unfit for this purpose and should
be used only as a bookkeeping construct delineating name scoping (which evolves during computa-
tion through scope extrusion). One reason against interpreting new as an allocation construct is the
structural rule

(sScp) P ≡ new c.P whenever c 6∈ fn P

2

whose symmetric nature would entail implicit garbage collection of channels (when read from right
to left), but also the possibility of unfettered spurious channel allocations (when read from left to
right); clearly, this obscures resource usage assessment. Another reason against this interpretation is
the fact that the pi-calculus semantics does not specify whether, in a process such as client0, channel
ret2 is allocated before or after the input on ret1. This problem becomes more acute when scoping
occurs inside recursive definitions. We address this shortcoming by introducing an explicit allocation
construct allocx.P . When the allocation is executed, a new channel c is created at runtime and the
allocx.P changes to new c.P{c/x}. Dually, we also extend the calculus with an explicit deallocation
operator free c.P . We can then rewrite the client as:

client2 , allocx.getTime !x.x?(yhr , ymin).getDate !x.x?(zyear , zmon , zday).freex.P

Inevitably, the added expressiveness of this extended pi-calculus increases the possibilities for run-
time errors such as in clienterr2 below. In this client, potential interleavings of the sub-processes
getTime!x.x?(yhr, ymin). P1 and getDate!x.x?(zyear , zmon , zday).freex. P2 can lead to both value mis-
match during communication (since the subprocesses are using channel x to communicate values of
different types) but also to a premature deallocation of this channel by the second sub-process while
it is still in use by the first subprocess.

clienterr2 , allocx.(getTime!x.x?(yhr, ymin). P1 ‖ getDate!x.x?(zyear , zmon , zday).freex. P2)

We define a type system which rejects processes that are unsafe; the type system combines unique-
ness typing [4] and affine typing [15], while permitting value coercion across these modes through
subtyping. Uniqueness typing gives us global guarantees, simplifying local reasoning when typing both
strong updates and safe deallocations. Uniqueness typing can be seen as dual to affine typing [11],
and we make essential use of this duality to keep track of uniqueness across channel-passing parallel
processes.

The rest of the paper is structured as follows. Section 2 introduces our message-passing language
with explicit channel allocation and deallocation. Section 3 describes our type system and outlines
how examples are typechecked. Section 4 then details the proof of soundness for our type system.
Finally Section 5 discusses related work and Section 6 concludes with directions for future work.

2 The Resource Pi-Calculus

Fig. 1 shows the syntax for the resource pi-calculus. The language is the standard pi-calculus extended
with primitives for explicit channel allocation and deallocation; moreover, channel scoping records
whether a channel is allocated (>) or deallocated (⊥). The syntax assumes two separate denumerable
sets of channel names c, d ∈ Name and variables x, y ∈ Var, and lets identifiers u, v ∈ Name ∪Var
range over both. The input and channel allocation constructs are binders for variables ~x and x resp.,
whereas scoping is a binder for names (i.e., c). The syntax also assumes a denumerable set of process
variables X,Y ∈ PVar which are bound by the recursion construct.

Channels are stateful (allocated, >, or deallocated, ⊥) and process semantics is defined over sys-
tems, 〈M,P 〉 where M ∈ Σ : Chan ⇀ {>,⊥} describes the state of the free channels in P , and
stateful scoping new c.sP describes the state of scoped channels. A tuple 〈M,P 〉 is a system whenever
fn(P) ⊆ dom(M) and is denoted as M . P . We say that a system M . P is closed whenever P does
not have any free variables. An example system would be

c : > . (new d :>.c!d)

whereby, apart from the visible state relating to channel c, M = c : >, the system also describes
internal state through the stateful scoped channel in the process part P = new d :>.c!d

Fig. 2 defines contexts over systems where C[M . P] denotes the application of a context C to a
system M . P . In the case where a context scopes a name c the definition extracts the state relating

3

P,Q ::= u!~v.P (output) | u?~x.P (input)
| nil (nil) | if u = v then P else Q (match)
| recX.P (recursion) | X (process variable)
| P ‖ Q (parallel) | new c.sP (stateful scoping)
| allocx.P (allocate) | freeu.P (deallocate)

Figure 1: Polyadic resource pi-calculus syntax

to c from M and associates it with the scoping of c. For example,

new c.[(c : >, d : >) . d!c] = d : > . (new c :>.d!c)

The reduction relation is defined as the least contextual relation over closed systems satisfying the
rules in Fig. 2. It relies on a quasi-standard pi-calculus structural equivalence relation over processes
(≡) whereby the only notable difference is that redundant channel scoping can only be discarded when
it is deallocated (sNm); this allows us characterize ”memory leakages” during the computation, which
take the form of new c :>.nil. System communication (rCom) requires the communicating channel to
be allocated but does not place any constraint on the status of the channels communicated. Allocation
(rAll) creates a private allocated channel and substitutes it for the bound variable of the allocation
construct in the continuation; the condition c 6∈ dom(M) ensures that c is fresh in P . Deallocation
(rFree) is the only construct that changes the visible state of a system, M ; through the scoping
contextual rule we can then also express changes in the internal state of a system. We can therefore
express computations such as

M . allocx.(x!c.nil ‖ x?y.freex.P)→M . new d :>.(d!c.nil ‖ d?y.free c.P) x 6∈ fv(P)
→M . new d :>.(free d.P{c/y})
→M . new d :⊥.(P{c/y}) ≡ M . P{c/y}

Fig. 2 also defines error reductions as the least contextual relation satisfying the rules for err−−→.
These rules capture errors resulting from arity mismatch and attempts to communicate on deallocated
channels. In particular arity mismatch can come from the unconstrained use of strong updates such
as in the case of clienterr in the Introduction.

Example 1. For Q = timeSrv ‖ dateSrv, whenever M(getDate) = M(getTime) = > we have the
following successful reduction sequences:

M . client2 ‖ Q →∗ M . P{hr,min/yhr , ymin}{year,mon, day/zyear , zmon , zday} ‖ Q

M . clienterr2 ‖ Q→∗ M . P1{hr,min/yhr , ymin} ‖ P2{year,mon, day/zyear , zmon , zday} ‖ Q

However, in the case of clienterr2, we can also have premature deallocation errors—the second sub-
process getDate!x.x?(zyear , zmon , zday).freex. P2 may deallocate the shared allocated channel, c below,
while the right sub-process is still using it.

M . clienterr2 ‖ Q→∗

M . new c :⊥.(c?(yhr, ymin). P1 ‖ c!(hr, min).timeSrv ‖ P2{year,mon, day/zyear , zmon , zday}) ‖ dateSrv
err−−→

We can also have arity mismatch errors caused by communication interferences on the shared allocated
channel c:

M . clienterr2 ‖ Q→∗ M . new c :>.

(
c?(yhr, ymin). P1 ‖ c!(year,mon, day).dateSrv
‖ c?(zyear , zmon , zday).free c. P2 ‖ c!(hr,min).timeSrv

)
err−−→

4

Contexts
C ::= [−] | C ‖ P | P ‖ C | new c.C

[M . P] def= M . P

C[M . P] ‖ Q
def= M ′ . (P ′ ‖ Q) if C[M . P] = M ′ . P ′

Q ‖ C[M . P] def= M ′ . (Q ‖ P ′) if C[M . P] = M ′ . P ′

new c.C[M . P] def= M ′ . new c :s.P ′ if C[M . P] = M ′, c : s . P ′

Structural equivalence

sCom P ‖ Q ≡ Q ‖ P sAss P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R
sNil P ‖ nil ≡ P sNm new c :⊥. nil ≡ nil

sSwp new c :s.(new d :s′.P) ≡ new d :s′.(new c :s.P)
sExt P ‖ new c :s.Q ≡ new c :s.(P ‖ Q) c /∈ fn P

Reduction Rules

M(c) = >
rCom

M . c!~d.P ‖ c?~x.Q→M . P ‖ Q{~d/~x}
rRec

M . recX.P →M . P{recX.P/X}

rThen
M . if c = c then P else Q→M . P

c 6= d
rElse

M . if c = d then P else Q→M . Q

c 6∈ dom(M)
rAll

M . allocx.P →M . new c :>.P{c/x}
rFree

M, c :> . free c.P →M, c :⊥ . P

P ≡ P ′ M . P ′ →M . Q′ Q′ ≡ Q
rStr

M . P →M . Q

Error Reduction Rules

|~d| 6= |~x|
eAty

M . c!~d.P ‖ c?~x.Q
err−−→

M(c) = ⊥
eOut

M . c!~d.P
err−−→

M(c) = ⊥
eIn

M . c?~x.Q
err−−→

P ≡ Q M . Q
err−−→

eStr
M . P

err−−→

Figure 2: Contexts, Reduction Rules and Error Predicates

5

Strong updates, as in the case of client2, should only be allowed when there is no other processes
still using the channel. �

Example 2. Client client3 demonstrates channel reuse across processes. Rather than allocating a
new channel, client3 requests a currently unused channel from a heap of channels and returns the
channel to the heap when it no longer needs it. A heap, in this case, is a designated channel heap.

client3 , heap?x. getTime!x. x?(yhr , ymin). getDate!x. x?(zyear , zmon , zday). heap!x. P

This allows us to have multiple replicas of the clients while keeping the cost of the server interactions
(in terms of additional channels required) constant. Of course, in the arrangement below, client-server
interactions are sequentialized for each client, depending on who currently has access to channel c held
on heap. But this is necessary so as not to have any interferences during the multiple reuses of channel
c.

M . client3 ‖ client3 ‖ . . . ‖ client3 ‖ new c :>.(heap!c) ‖ timeSrv ‖ dateSrv (1)

It is instructive to run through an execution of this system and analyze how access to channel c evolves
throughout computation, as it turns out that exclusive access to such a channel is what enables a
process to safely performs operations such as deallocations and strong updates. For instance in (1),
after a client inputs on heap, it obtains access to c; as standard in the pi-calculus, this is denoted by
the scope extrusion of channel c to the client and the system in (1) reduces to

M . client3 ‖ client3 ‖ . . . ‖ new c :>.(client′3) ‖ timeSrv ‖ dateSrv (2)

At that point, only client′3 is in a position to interact with the servers, while the other clients are
blocked waiting for the next output on channel heap. After client′3 queries timeSrv the scope of c
is extruded again, this time to timeSrv, and from (2) we obtain

M . client3 ‖ client3 ‖ . . . ‖ new c :>.(client′′3 ‖ timeSrv′) ‖ dateSrv (3)

After the interaction with timeSrv terminates the scope of c can be tightened again to

M . client3 ‖ client3 ‖ . . . ‖ new c :>.(client′′′3) ‖ timeSrv ‖ dateSrv (4)

In similar fashion the scope of c extrudes to dateSrv and then contracts back again to the client so
as to reach the following system from (4).

M . client3 ‖ client3 ‖ . . . ‖ new c :>.(heap!c.P ′) ‖ timeSrv ‖ dateSrv (5)

At this point, the client heap!c.P ′ explicitly transfers exclusive access to channel c to some other client.

M . client3 ‖ new c :>.(client′3) ‖ . . . ‖ P ′ ‖ timeSrv ‖ dateSrv (6)

The following variants of client client′3 are unsafe and lead to errors in the above computational
sequence:

clienterr1
3 , heap?x.getTime!x.x?yhr , ymin .getDate!x.x?zyear , zmon , zday .heap!x.x!.P

clienterr2
3 , heap?x.getTime!x.x?yhr , ymin .getDate!x.x?zyear , zmon , zday .freex.heap!x.P

The erroneous client clienterr1
3 highlights the fact that, for the above system to work as intended, it

is crucial that the client transfers exclusive access to channel c on heap. If, instead, the client attempts
to use this channel after transfer, it will lead to an interference that can result in a runtime error
as shown earlier in Example 1. Although the communication of deallocated channels is permitted in
resource pi-calculus, the second erroneous client clienterr2

3 shows how this can indirectly lead to a
premature deallocation when this deallocated channel is then transferred to other clients.

6

Type Structure

T ::= [
−→
T]a (channel type)

| proc (process)

a ::= 1 (affine)
| ω (unrestricted)
| (•, i) (unique after i steps, i ∈ N)

Type Splitting

pUnr
[~T]ω = [~T]ω ◦ [~T]ω

pProc
proc = proc ◦ proc

pUnq
[~T](•,i) = [~T]1 ◦ [~T](•,i+1)

Subtyping

sIndx
(•, i) <: (•, i + 1)

sUnq
(•, i + 1) <: ω

sAff
ω <: 1

a1 <: a2
sTyp

[~T]a1 <: [~T]a2

Structural rules (�) is the least reflexive transitive relation satisfying

T = T1 ◦T2
tCon

Γ, u : T � Γ, u : T1, u : T2

T = T1 ◦T2
tJoin

Γ, u : T1, u : T2 � Γ, u : T

tWeak
Γ, u : T � Γ

T1 <: T2
tSub

Γ, u : T1 � Γ, u : T2

tRev
Γ, u : [~T1]• � Γ, u : [~T2]•

Figure 3: Type Language and Operations

3 Type System

We define a type system to statically approximate the class of safe resource pi-calculus systems. The
type-level concept that corresponds to “exclusive access” is uniqueness: when a process is typed in
a typing environment in which a channel has a unique type, then that process is guaranteed to have
exclusive access to that channel. Strong update and deallocation are therefore safe for unique channels.

The type system is an adaptation of uniqueness type systems for lambda calculi [4, 8], but unlike
the latter it allows uniqueness to be temporarily violated. As we saw in Example 1, a client might have
exclusive access to a channel, then use this channel to communicate with a server, and then regain
exclusive access to this channel, provided that the server does not use the channel anymore.

We must therefore generalize uniqueness typing to introduce a type that records that a channel
may not be unique now, but it will be after some number i of communication steps (“unique-after-i”);
moreover, we need to combine uniqueness typing with affine types to limit how often a channel can
be used (for instance, we might limit the time server to use a channel at most once).

3.1 The type language

The core type of our system is the channel type, [
−→
T]a, consisting of an n-ary tuple of types describing

the values carried over the channel, ~T, and an attribute a which can take one of three forms:

• A channel of type [
−→
T]ω is an unrestricted channel: it can be used arbitrary often, and provides

no information on how many other processes have access to the channel. Such type assumptions
correspond to type assumptions of the form [

−→
T] in standard (non-substructural) type systems.

• A channel of type [
−→
T]1 is affine, and comes with an obligation: it can be used at most once.

7

• A channel of type [
−→
T](•,i) is unique-after-i communication actions, comes with a guarantee: a

process typed using this assumption will have exclusive access to the channel after i communica-
tion actions. We abbreviate the type [

−→
T](•,0) of channels that are unique now to [

−→
T]• and refer

to it as simply a unique channel.

We give a number of examples illustrating the use of these types with reference to the examples
from Section 2.

1. Unrestricted channels can be used to describe channels such as getTime and getDate on which
replicated servers receive requests.

2. Affine types can be used to limit how often servers can use a return channel sent to them by a
client. For instance, we can give the type [[~T]1]ω to getTime and getDate.

3. A channel which has just been allocated will have a unique type. We can also use uniqueness
to ensure that the heap really carries channels that are unused, by giving the heap channel the
type [[~T]•]ω.

4. A channel which is unique-after-1 can be used by the client to record that after it has commu-
nicated with a server it will once again recover exclusive access to the channel.

3.2 Typing environments

Processes will be typed under a typing environment Γ, which is a multiset of pairs of identifiers and
types. Since the type system is substructural, typing assumptions can be used only once in a typing
derivation. For instance, when typing two parallel processes under some environment Γ, assumptions
in Γ can be used to type the left process or the right, but never both.

However, we define a number of structural rules, shown in Figure 3, which allow to manipulate
typing environments. The simplest is weakening (tWeak), which allows to disregard typing assump-
tions (the type system does not guarantee that a channel will be used). We discuss the other rules
separately, below.

3.2.1 Splitting and Joining

Although typing assumptions can be used only once, typing assumptions can be split (logically, con-
tracted) under certain conditions (tCon). We write T = T1 ◦T2 if an assumption x : T can be split
as two assumptions x : T1 and x : T2.

For instance, after allocation client2 is allowed to split the unique assumption x : [~T]• as two
separate assumptions x : [~T](•,1) and x : [~T]1. This allows the client to send x to the server at type
[~T]• while retaining the assumption x : [~T](•,1) for its own use.

More generally, an assumption c : [~T](•,i) can be split as two assumptions c : [~T](•,i+1) and c : [~T]1.
Unrestricted assumptions can be split as two unrestricted channels, so that unrestricted channels can
be used arbitrary often. Finally, affine assumptions cannot be split at all, so that affine channels can
be used only once.

Joining (tJoin) is simply the dual of splitting; it is not strictly necessary to define the type system,
but makes the technical development a lot cleaner.

3.2.2 Revision

After the client from Example 1 communicates with the time server over channel x, it regains exclusive
access to that channel. It is therefore safe to the client to reuse the same channel to communicate
with the date server, even though the date server sends values of a different type. This strong update
is safe only for unique channels, and is embodied by rule tRev.

8

3.2.3 Subtyping

Since uniqueness is a guarantee that a channel c will be unique after a number of uses, it is safe to
weaken this guarantee: a channel at type [~T](•,u) can also be used at type [~T](•,u+1) or even at [~T]ω.
For example, after getting a unique channel from the heap a process might choose to disregard the
uniqueness information about this channel and use it in an unrestricted fashion instead.

Conversely, affinity is an obligation forcing an upper bound on the number of uses. Thus, it is also
safe to regard a unique channel or an unrestricted channel as an affine channel. For instance, a client
might send an unrestricted channel to a server expecting an affine channel.

We therefore have the following subtyping chain (tSub):1

[~T]• <: [~T](•,1) <: [~T](•,2) <: · · · [~T]ω <: [~T]1

Through a combination of subtyping and splitting, we can split a unique-after-i assumption into
two unrestricted assumptions, [~T](•,i) <: [~T]ω = [~T]ω ◦ [~T]ω, and an unrestricted assumption into an
unrestricted assumption and an affine assumption, [~T]ω = [~T]ω ◦ ([~T]ω <: [~T]1).

3.2.4 Consistency

The type systems allow for compositional reasoning with respect to uniqueness (we prove formally in
Section 4.2). For instance, the clients in Examples 1 and 2 can be shown to be to be safe using only
the typing assumptions assigned to them, and without requiring the full code relating to the servers
they interact with.

Such compositional reasoning is safe only if the total type assumptions used to analyze the entire
system are consistent amongst themselves. For example, an environment of the form

c : [T]•, c : [T]1

allows to type a system in which one process deallocates channel c while another, parallel, process
attempts to communicate on it. This is clearly unsound.

Clearly an environment with at most one assumption per channel (a partial function) must be
consistent, but we have already seen that we sometimes need to split assumptions. We define an
environment to be consistent if it can be obtained from a partial function by applying any of the
structural rules we just defined:

Definition 3.1 (Consistency). A typing environment Γ is consistent if there exists a partial function
Γ′ such that Γ′ � Γ.

This definition is justified by the soundness theorem, which says that if a system can be typed
under a consistent environment, it will not produce any runtime errors. For now, observe that the
structural rules have been carefully defined so that if a consistent environment contains an assumption
c : [~T](•,i) then it cannot contain any unrestricted assumptions about c, and the number of affine
assumptions about c must be less than or equal to i (Lemma 4.1).

3.3 The typing relation

The typing relation over (open and closed) processes is the least relation defined by the rules in Figure 4.
It takes the usual shape, Γ ` P , which reads as “P is well-typed under the typing environment Γ”. It
is extended to systems so that Γ `M . P is well-typed if Γ types P and Γ only contains assumptions
about channels that are allocated in M .

We do not a priori make the assumption that the type environment is consistent (Section 3.5), but
soundness of the type system will only be stated with respect to consistent environments.

1Since we do not consider channel input/output-modalities in this paper, channels are invariant with respect to their

object types, ~T.

9

Logical rules

Γ, u : [~T]a−1,
−−−→
x : T ` P

tIn
Γ, u : [~T]a ` u?~x.P

Γ, u : [~T]a−1 ` P
tOut

Γ, u : [~T]a,
−−−→
v : T ` u!~v.P

Γ1 ` P Γ2 ` Q
tPar

Γ1, Γ2 ` P ‖ Q

u, v ∈ Γ Γ ` P Γ ` Q
tIf

Γ ` if u = v then P else Q

Γω, X : proc ` P
tRec

Γω ` recX.P
tVar

X : proc ` X

Γ, x : [
−→
T]• ` P

tAll
Γ ` allocx.P

Γ ` P
tFree

Γ, u : [
−→
T]• ` freeu.P

tNil
∅ ` nil

Γ, c : T ` P
tRst1

Γ ` new c :>.P

Γ ` P
tRst2

Γ ` new c :⊥.P

Γ′ ` P Γ � Γ′
tStr

Γ ` P

where Γω is an environment containing only unrestricted assumptions and all bound variables are fresh.

Channel Usage

Γ, c : [
−→
T]a−1 def=

Γ if a = 1
Γ, c : [~T]ω if a = ω

Γ, c : [~T](•,i) if a = (•, i + 1)

Typing systems
Γ ` P dom(Γ) ⊆ alloc(M)

tSys
Γ `M . P

Figure 4: Typing rules

The rule for parallel (tPar) requires to divide the assumptions in the typing environment between
the left and right process. Restriction introduces a new typing assumption into the typing environment,
provided that the channel is allocated (tRst1, tRst2). As expected, allocation introduces unique
channels (tAll), and only unique channels can be deallocated (tFree). We discuss the remaining
rules separately, below.

3.3.1 Input and Output

In the client–server example, after the client has communicated with the server over channel x, the
server is no longer allowed to use x, and the client is guaranteed that it once again has exclusive access
to the channel. From a typing perspective, the server had an affine permission x : [~T]1 and lost that
permission after the communication; the client had a permission x : [~T](•,1) which became x : [~T]•

after the communication.
This is expressed in the type system as an operation Γ, c : [~T]a−1 on typing environments (defined

in Figure 4); it computes the typing environment after a communication action on c: affine permission
are removed, unique-after-(i + 1) permissions become unique-after-i and unrestricted permissions are
unaffected.

This operation is used in the rules for input and output (tOut and tIn). Moreover, tOut requires
separate typing assumptions for each of the channels that are sent. The attributes on these channels
are not decremented, because no communication action has been performed on them; instead, the

10

corresponding assumptions are handed over to the parallel process receiving the message. If the sending
process wants to use any of these channels in its continuation (P) it must split the corresponding
assumptions first.

3.3.2 Conditionals

As is standard in substructural (and standard) type systems, the rule for conditions rIf types both
branches under the same typing environment, as only one will be executed. It also requires that the
process must have a typing assumption for the two channels it is comparing.

We claimed that after a communication with the server over channel x the client regains exclusive
access to that channel. At the type level, the server looses its affine permission for x after the com-
munication, as we saw above. The side condition on the rule for conditionals implies that this means
that the server cannot even use x in a comparison anymore, thus guaranteeing the client true exclusive
access to the channel.

3.3.3 Recursion

Recursive processes must be typed in an environment that contains only unrestricted channels (tRec).
This is reasonable since recursion can be used to define processes with an unbounded number of
parallel uses of some channel. Nevertheless, it is not as serious a restriction as it may seem, as
recursive processes can still send, receive and allocate unique channels. For instance, the following
process models an “infinite heap” that keeps allocating new channels and sends them across a channel
heap : [[T]•]ω:

infHeap , recX.allocx.heap!x.X

3.4 Examples

The systems clienti ‖ timeSrv ‖ dateSrv for i ∈ {0, 1, 2} can all be typed in our type system,
whereas clienterr is rejected because type splitting enforces a common object type (cf. pUnr, pUnq
in Fig. 4.) The derivation below outlines how client2 from the introduction is typed, where we recall
that x is not free in P . It assumes an environment Γ = getTime : [[T1, T2]1]ω, getDate : [[T3, T4, T5]1]ω

and proceeds as follows:

...

Γ, x : [T3, T4, T5]•, yhr : T1, ymin : T2 ` getDate!x.x?(zyear , zmon , zday).freex.P
tStr

Γ, x : [T1, T2]•, yhr : T1, ymin : T2 ` getDate!x.x?(zyear , zmon , zday).freex.P
tIn

Γ, x : [T1, T2](•,1) ` x?(yhr , ymin).getDate!x.x?(zyear , zmon , zday).freex.P
tOut

Γ, x : [T1, T2](•,1), x : [T1, T2]1 ` getTime!x.x?(yhr , ymin).getDate!x.x?(zyear , zmon , zday).freex.P
tStr

Γ, x : [T1, T2]• ` getTime!x.x?(yhr , ymin).getDate!x.x?(zyear , zmon , zday).freex.P
tAll

Γ ` allocx.getTime!x.x?(yhr , ymin).getDate!x.x?(zyear , zmon , zday).freex.P

Rule tAll assigns the unique type [T1, T2]• to variable x. Using tStr with tCon, this unique
assumption is split in two using pUnq. Rule tOut uses the affine assumption for x for the output
argument and the unique-after-1 assumption to type the continuation. Rule tIn restores the uniqueness
of x for the continuation of the input after decrementing the uniqueness index, at which point tRev
is applied to the environment through tStr to change the object type of x from pairs of values (for
time) to triples (for dates). The pattern of applying tStr with tCon, tOut and tIn repeats, at
which point x is unique again and can be safely deallocated by tFree.

Through the type environment Γ below, we can type system (1) from Example 2 as well.

Γ = getTime : [[T1, T2]1]ω, getDate : [[T3, T4, T5]1]ω, heap : [[~T]•]ω

11

Since the type for channel heap is unrestricted, we can split this assumption for every occurrence of
client3 in (1). When typechecking each instance of this client, we obtain a unique channel assumption
as soon as we apply tIn for the input on channel heap. The rest of the type derivation then proceeds
in similar fashion to that of client2 discussed above. It is however instructive to see why clienterr1

3

and clienterr2
3 , also from Example 2, cannot be typed. Through the application of tStr with tCon,

tOut and tIn we reach the two type judgements below for clienterr1
3 and clienterr2

3 respectively:

Γ, x : [T3, T4, T5]•, yhr : T1, ymin : T2, zyear : T3, zmon : T4, zday : T5 ` heap!x.x!.P (7)
Γ, x : [T3, T4, T5]•, yhr : T1, ymin : T2, zyear : T3, zmon : T4, zday : T5 ` freex.heap!x.P (8)

In the case of type derivation (7), even though we can revise the object type of the type assumption
for x from T3, T4, T5 to ~T, so as to enable the typing of the output of x on channel heap, this would
leave us with no remaining type assumptions for channel x, precluding the typing of the remaining
process x!.P . Similarly, in the case of type derivation (8), typing the deallocation of x would consume
all the type assumptions relating to x, which rules out any possible typing for the remaining process
heap!x.P .

Finally, system (1) in Example 2 can be safely extended with processes such as client4 which uses
unique channels obtained from the heap in unrestricted fashion. Our type system accepts client4 by
applying subtyping from unique to unrestricted on the channel x obtained from heap.

client4 , heap?x.recX.(getTime!x.x?(yhr , ymin).P ‖ X)

3.5 (In)consistency

Due to our substructural treatment of assumption, when two processes both need a typing assumption
relating to the same channel c, tPar from Fig. 4 forces us to have two separate assumptions in the
typing environment. As we discussed already, these two assumptions need not be identical and can be
derived from a single assumption; for example, an assumption c : []• can be split as two assumptions

c : [](•,1), c : []1

As mentioned, soundness of the type system is stated only with respect to consistent environments.
However, in the definition of the typing relation we allow processes to be typed under arbitrary (possibly
inconsistent) environments. In this section we explain why we cannot restrict the typing relation to
consistent environments.

It turns out that even if a process can be typed in a consistent environment, some of its subprocesses
might have to be typed in an inconsistent environment. As an example, consider the typing derivation

tOut
a : [[]1]ω, u : []1 ` a!u

a : [[]1]ω, u : []•, x : []1 ` freeu ‖ a!x
tIn

a : [[]1]ω, u : [](•,1), x : []1 ` u?().freeu ‖ a!x
tIn

a : [[]1]ω, u : [](•,1) ` a?x.u?().freeu ‖ a!x
tPar

a : [[]1]ω, a : [[]1]ω, u : []1, u : [](•,1) ` a!u ‖ a?x.u?().freeu ‖ a!x
tStr (twice)

a : [[]1]ω, u : []• ` a!u ‖ a?x.u?().freeu ‖ a!x

This is a valid typing derivation, and moreover the typing environment used at every step is consistent.
But now consider what happens after this process takes a reduction step:

u : []•, u : []1 ` freeu ‖ a!u
tIn

u : [](•,1), u : []1 ` u?().freeu ‖ a!u
tCon

u : []• ` u?().freeu ‖ a!u

The continuation of this process looks suspicious as it attempts to free u while simultaneously sending
it on a. Indeed, freeu ‖ a!u can only be typed in an inconsistent environment u : []•, u : []1.

12

Nevertheless, the fact that this process is typeable is not a violation of type safety. The assumption
u : []• tells us that there are no processes that output on u so that the input on u is blocked: the
continuation of the process will never execute.

Thus, when an environment
Γ, c : [~T]a, c : [~T]a

′

(e.g., u : [](•,1), u : []1) is consistent, it may be the case that

Γ, c : [~T]a−1, c : [~T]a
′

(e.g., u : []•, u : []1) is inconsistent : this means that the tails of input or output processes may have
to be typed under inconsistent environments, even when the larger process is typed in a consistent
environment. However, communication in the pi-calculus provides synchronization points: when two
processes communicate, both will start executing their continuations. It is an important property of
our typing environments that if Γ, c : [~T]a, c : [~T]a

′
is consistent, then

Γ, c : [~T]a−1, c : [~T]a
′−1

will also be consistent (Lemma 4.1). This is crucial when proving subject reduction, which says that if
a system is typeable in a consistent environment, it will remain typeable in a consistent environment.

4 Soundness

We show that our type system is sound: well-typed programs do not go wrong. The presentation of this
proof proceeds as follows: Section 4.1 outlines some preliminary properties of consistent environments
and the typing relation, and states the necessary substitution lemmas; Section 4.2 details the subterm
typing lemma, which turns out to be the most involved aspect of the soundness proof; Section 4.3
finally states and proves the standard safety and subject reduction theorems: well-typed programs
don’t have runtime errors and remain well-typed when they reduce.

4.1 Preliminaries

We first state some properties of consistent environments.

Lemma 4.1 (Consistent environments). Let Γ be a consistent environment. Then:

1. If Γ = Γ′, c : [~T]a, c : [~T′]a
′

then ~T = ~T′.

2. If Γ = Γ′, c : [
−→
T]• then c 6∈ dom(Γ′).

3. If Γ � Γ′, c : [
−→
T]• then ∃Γ′′ such that Γ = Γ′′, c : [

−→
T′]• and Γ′′ � Γ′.

4. If c ∈ dom(Γ) and Γ′ � Γ then c ∈ dom(Γ′).

5. If Γ = Γ1, Γ2 then both Γ1 and Γ2 are consistent.

6. If Γ contains only unrestricted assumptions then Γ � Γ, Γ.

7. If Γ = Γ′, u : [~T]a1 , u : [~T]a2 then

Γ′, u : [~T]a1 , u : [~T]a2 � Γ′, u : [~T]a1−1, u : [~T]a2−1

Proof. Properties (1)–(6) are easily verified. For the proof of (7), we do case analysis on a1 and a2. If
a1, a2 are affine or unrestricted, the lemma follows from weakening (unrestricted assumptions are not
affected by the decrement operation). The only interesting case is where a1 = (•, i) and a2 = 1 (or
vice versa), in which case it follows from tJoin.

13

One of the advantages of phrasing the structural rules of the type system using an auxiliary tran-
sitive relation (�) is that we can conveniently state inversion principles. For example,

Lemma 4.2 (Inversion for output). If Γ ` c!~d.P then

Γ � Γ′, u : [~T]a,
−−→
d : T

and Γ′, u : [~T]a−1 ` P .

The inversion lemmas for the other constructs are similar.
As usual, we need two substitution lemmas; however, the typing rules have been set up in such a

way that these are easy to prove.

Lemma 4.3 (Process substitution). If Γ1, X : proc ` P and Γω
2 ` Q then Γ1, Γω

2 ` P{Q/X}.

Proof. By induction on P followed by inversion on the typing relation. The only tricky case is the
case for parallel, where we might duplicate the process. However, since the process is typed under an
environment containing only unrestricted assumptions, this follows from Lemma 4.1(6).

Lemma 4.4 (Identifier substitution). If Γ,
−−−→
x : T ` P , where the ~x are pairwise disjoint and do not

occur in the domain of Γ, then Γ,
−−−→
u : T ` Q{~u/~x}.

Proof. This is a simple renaming of variables throughout the typing derivation.

Lemma 4.5 (Preservation of types under structural equivalence). If Γ ` P and P ≡ P ′ then Γ ` P ′.

Proof. Since the typing relation is not sensitive to the order of the assumptions in the typing envi-
ronment, reordering parallel processes and extrusion do not affect typing. Removing or adding nil
processes and adding or removing a restriction around the nil process do not affect typing because
nil can be typed in any environment. Finally, alpha-renaming bound names does not affect typing
because those bound names are not in the (original) typing environment.

4.2 Subterm typing lemma

The preservation theorem (Section 4.3) states that if a system M .P is typed under some environment
Γ, and M .P takes a step to M ′ .P ′, then this new system is typeable under some typing environment
Γ′ such that such that Γ � Γ′. An important case in the proof of this theorem is the case for contexts:
that is, part of the system takes a step, while the rest of the system remains the same. This case is
dealt with by the subterm typing lemma, which we state and prove in this section. The subterm typing
lemma is important, because it shows that the type system is compositional : in particular, if P and
Q are two parallel processes in some system, and P deallocates a channel, then this will not affect Q.

Unfortunately, the subterm typing lemma is also a little technical to state and non-trivial to prove.
We will therefore give the proof in detail, after we first give a number of small definitions and lemmas
that we will require in the proof.

Definition 4.6 (Restriction of a typing environment to a resource environment).

Γ|M = {d : T | d : T ∈ Γ ∧M(d) = >}

Definition 4.7 (Applying a context to a typing environment). We define an operation C(Γ) which
removes all assumptions about channels that are restricted in C from Γ:

[](Γ) = Γ (C ‖ P)(Γ) = C(Γ)
(new c.C)(Γ) = C(Γ)\c (P ‖ C)(Γ) = C(Γ)

14

Definition 4.8 (Sub-environment). M ′ is a sub-environment of M with respect to a typing environ-
ment Γ, denoted as M �Γ M ′, if

1. dom(M ′) = dom(M)

2. If M(c) = > and M ′(c) = ⊥ then c : [~T]• ∈ Γ.

Intuitively, M �Γ M ′ if we might end up in state M ′ by running a process typed under Γ in state
M . This is formalized by the following lemma:

Lemma 4.9 (Sub environments and Reduction). Γ `M . P and M . P →M ′ . P ′ then M �Γ M ′

We will also require the following result which relates sub-environments and the operation on typing
environments that we defined above:

Lemma 4.10. Let M1 �Γ M2. Suppose C[M1 . P1] = M ′1 . P ′1 and C[M2 . P2] = M ′2 . P ′2 for some P1

and P2. Then M ′1 �C(Γ) M ′2.

We can now state the subterm typing lemma:

Lemma 4.11 (Subterm typing). Suppose ΓC1 ` C[M1 . P1] (ΓC1 consistent). Then the following hold.

1. There exist some Γp
1 such that ΓC1 � C(Γp

1) and Γp
1 `M1 . P1.

2. For all systems M2 . P2 where M1 �Γp
1

M2 and for all environments Γp
2 where Γp

1 � Γp
2,

if Γp
2 `M2 . P2 then there exist a ΓC2 such that ΓC1 � ΓC2 and ΓC2 ` C[M2 . P2].

In words: if a system M1 . P1 is placed in some context C, and the whole thing is typeable under
some environment ΓC1 , then

1. There is some environment Γp
1 which types M1 . P1; the assumptions in this environment come

from ΓC1 , with the exception of the assumptions for channels restricted by C, and

2. If we replace M1 .P1 by M2 .P2, typed under an environment Γp
2 obtained by applying structural

rules to Γp
1, then—provided there are unique permissions in Γp

1 for the channels that are allocated
in M1 but deallocated in M2—the whole thing is typeable under an environment ΓC2 , obtained
by applying structural rules to ΓC1 .

Proof. By induction on C. The base case (C = []) is trivial; remains to consider case for parallel and
the case for restriction.

1. Case C = C′ ‖ Q. Let C′[M1 . P1] = M ′1 . P ′1. Then C[M1 . P1] = M ′1 . P ′1 ‖ Q. By inversion we
get

ΓC1
′ ` P ′1 Γq ` Q

ΓC1 � ΓC1
′
, Γq

ΓC1 ` P ′1 ‖ Q dom(ΓC1) ⊆ alloc(M ′1)

ΓC1 ` C[M1 . P1] = M ′1 . P ′1 ‖ Q

(9)

It is not hard to see that
ΓC1
′ ` P ′1 dom(ΓC1

′
) ⊆ alloc(M ′1)

ΓC1
′ ` C′[M1 . P1] = M ′1 . P ′1

so that by the induction hypothesis there exist a
ih

ΓΓp
1 such that ΓC1

′ � C′(
ih

ΓΓp
1) and

ih

ΓΓp
1 `M1 . P1.

Choose Γp
1 =

ih

ΓΓp
1. Clearly ΓC1 � ΓC1

′ � C′(Γp
1) = C(Γp

1).

15

Suppose we have a system M2 . P2 where M1 �Γp
1

M2 and an environment Γp
2 where Γp

1 � Γp
2,

such that Γp
2 ` M2 . P2. By the induction hypothesis there exist a

ih

ΓΓC2 such that ΓC1
′ �

ih

ΓΓC2 and
ih

ΓΓC2 ` C′[M2 . P2].

Let C[M2 . P2] = M ′2 . P ′2 ‖ Q where C′[M2 . P2] = M ′2 . P ′2. By inversion we have

ih

ΓΓC2 ` P ′2 dom(
ih

ΓΓC2) ⊆ alloc(M ′2)
ih

ΓΓC2 ` C′[M2 . P2] = M ′2 . P ′2

(10)

By (9) we have Γq = Γq|M ′
1
, and by Lemma 4.10 we have M ′1 �C(Γp

1) M ′2. Hence channels allocated
in M ′1 but deallocated in M ′2 must have a unique permission in C(Γp

1). Since ΓC1
′ � C(Γp

1) they
must therefore have a unique permission in ΓC1

′. Finally, since ΓC1 � (ΓC1
′
, Γq) and ΓC1 is assumed

consistent, this means that there cannot be any assumptions about these channels in Γq. Hence

Γq = Γq|M ′
1

= Γq|M ′
2
. Finally, we have

ih

ΓΓC2 =
ih

ΓΓC2 |M ′
2

by (10).

Choose ΓC2 = ΓC1 |M ′
2

(clearly ΓC1 � ΓC2). We have

ΓC2 � (ΓC1
′
, Γq)|M ′

2
� (

ih

ΓΓC2 , Γq)|M ′
2

=
ih

ΓΓC2 , Γq

The proof is completed by

ih

ΓΓC2 ` P ′2 Γq ` Q
tPar

ih

ΓΓC2 , Γq ` P ′2 ‖ Q
tStr

ΓC2 ` P ′2 ‖ Q dom(ΓC2) ⊆ alloc(M ′2)
tSys

ΓC2 ` C[M2 . P2] = M ′2 . P ′2 ‖ Q

2. Case C = new c.C′. Let C′[M1 . P1] = M ′1, c : s1 . P ′1. Then C[M1 . P1] = M ′1 . new c :s1.P
′
1.

We take cases on s1.

(a) Case s1 = >. By inversion we get

ΓC1
′
, c : T ` P ′1

ΓC1 � ΓC1
′

ΓC1 ` new c :>.P ′1 dom(ΓC1) ⊆ alloc(M ′1)

ΓC1 ` C[M1 . P1] = M ′1 . new c :>.P ′1

(11)

where c /∈ dom(ΓC1) ⊇ dom(ΓC1
′) by Barendregt. It is not hard to see that

ΓC1
′
, c : T ` P ′1 dom(ΓC1

′
, c : T) ⊆ alloc(M ′1, c : >)

ΓC1
′
, c : T ` C′[M1 . P1] = M ′1, c : > . P ′1

so that by the induction hypothesis there exist a
ih

ΓΓp
1 such that ΓC1

′
, c : T � C′(

ih

ΓΓp
1) and

ih

ΓΓp
1 `M1 . P1. Choose Γp

1 =
ih

ΓΓp
1. We have

ΓC1 �
(

ΓC1
′

= (ΓC1
′
, c : T)\c

)
�
(
C′(Γp

1)\c = C(Γp
1)
)

16

Suppose we have a system M2 . P2 where M1 �Γp
1

M2 and an environment Γp
2 where

Γp
1 � Γp

2, such that Γp
2 ` M2 . P2. By the induction hypothesis there exist a

ih

ΓΓC2 such that

(ΓC1
′
, c : T) �

ih

ΓΓC2 and
ih

ΓΓC2 ` C′[M2 . P2].

Let C[M2 .P2] = M ′2 .new c :s2.P
′
2 where C′[M2 .P2] = M ′2, c : s2 .P ′2. By inversion we have

ih

ΓΓC2 ` P ′2 dom(
ih

ΓΓC2) ⊆ alloc(M ′2, c : s2)
ih

ΓΓC2 ` C′[M2 . P2] = M ′2, c : s2 . P ′2

(12)

Choose ΓC2 = ΓC1 |M ′
2

(clearly ΓC1 � ΓC2). Note that since ΓC1 � ΓC1
′ by (11) we have ΓC2 �

ΓC1
′|M ′

2
, and moreover

ih

ΓΓC2 =
ih

ΓΓC2 |M ′
2,c:s2 by (12).

We take cases on s2.

i. Case s2 = >. We have ΓC2 , c : T �
(

(ΓC1
′|M ′

2
, c : T) = (ΓC1

′
, c : T)|(M ′

2,c:>)

)
�

ih

ΓΓC2 .
The proof is completed by

ih

ΓΓC2 ` P ′2
tStr

ΓC2 , c : T ` P ′2
tRst1

ΓC2 ` new c :>.P ′2 dom(ΓC2) ⊆ alloc(M ′2)
tSys

ΓC2 ` C[M2 . P2] = M ′2 . new c :>.P ′2

ii. Case s2 = ⊥. We have ΓC2 � ΓC1
′|M ′

2
�

ih

ΓΓC2 since we must have c /∈ dom(
ih

ΓΓC2).
Hence, the proof can be completed as above using tRst2.

(b) Case s1 = ⊥. By inversion we get

ΓC1
′ ` P ′1

ΓC1 � ΓC1
′

ΓC1 ` new c :⊥.P ′1 dom(ΓC1) ⊆ alloc(M ′1)

ΓC1 ` C[M1 . P1] = M ′1 . new c :⊥.P ′1

(13)

where c /∈ dom(ΓC1) ⊇ dom(ΓC1
′) by Barendregt. It is not hard to see that

ΓC1
′ ` P ′1 dom(ΓC1

′
) ⊆ alloc(M ′1, c : ⊥)

ΓC1
′ ` C′[M1 . P1] = M ′1, c : ⊥ . P ′1

so that by the induction hypothesis there exist a
ih

ΓΓp
1 such that ΓC1

′ � C′(
ih

ΓΓp
1) and

ih

ΓΓp
1 `M1.P1.

Choose Γp
1 =

ih

ΓΓp
1. Since c /∈ dom ΓC1

′ ⊇ dom C′(
ih

ΓΓp
1) we have

ΓC1 � ΓC1
′
�
(
C′(

ih

ΓΓp
1) = C′(

ih

ΓΓp
1)\c

)
� C(Γp

1)

Suppose we have a system M2.P2 where M1 �Γp
1

M2 and an environment Γp
2 where Γp

1 � Γp
2,

such that Γp
2 ` M2 . P2. By the induction hypothesis there exist a

ih

ΓΓC2 such that ΓC1
′ �

ih

ΓΓC2
and

ih

ΓΓC2 ` C′[M2 . P2].

Let C[M2 .P2] = M ′2 .new c :s2.P
′
2 where C′[M2 .P2] = M ′2, c : s2 .P ′2. By inversion we have

ih

ΓΓC2 ` P ′2 dom(
ih

ΓΓC2) ⊆ alloc(M ′2, c : s2)
ih

ΓΓC2 ` C′[M2 . P2] = M ′2, c : s2 . P ′2

(14)

17

Choose ΓC2 = ΓC1 |M ′
2

(clearly ΓC1 � ΓC2). As above, since ΓC1 � ΓC1
′ by (13) we have ΓC2 �

ΓC1
′|M ′

2
, and moreover

ih

ΓΓC2 =
ih

ΓΓC2 |M ′
2,c:s2 by (14). In addition, we have c /∈ dom(

ih

ΓΓC2) since
c /∈ ΓC1

′. The proof therefore is completed as above.

4.3 Safety and Preservation

We can now state and prove the main theorems of this paper: type safety and safety reduction.

Theorem 4.12 (Type safety). If Γ `M . P (Γ consistent) then M . P 9err.

Proof. By induction on P
err−−→ followed by inversion on Γ ` M . P . We do not show the entire proof

here as it is reasonably straightforward. The case for eAty relies on Lemma 4.1(1), the case for eStr
relies on Lemma 4.5, and the case for contexts relies on Lemma 4.11.

Theorem 4.13 (Subject Reduction). If Γ ` M . P (Γ consistent) and M . P → M ′ . P ′ then there
exists an Γ′ such that Γ � Γ′ and Γ′ `M ′ . P ′.

Proof. By induction on M . P →M ′ . P ′. We show only a number of the cases; of the omitted cases,
rRec relies on the process substitution lemma, rThen and rElse are trivial, rStr follows from the
induction hypothesis and preservation of types under structural equivalence (Lemma 4.5), and the case
for contexts finally is dealt with by the subterm typing lemma (Section 4.2).

1. Case
M(c) = >

rCom
M . c!~d.P ‖ c?~x.Q→M . P ‖ Q{~d/~x}

By inversion on the typing relation we get dom(Γ) ⊆ alloc(M) and

Γ1, c : [~T]a1−1 ` P
Γp � Γ1, c : [~T]a1 ,

−−→
d : T

Γp ` c!~d.P

Γ2, c : [~T]a2−1,
−−−→
x : T ` Q

Γq � Γ2, c : [~T]a2

Γq ` c?~x.Q
Γ � Γp, Γq

Γ ` c!~d.P ‖ c?~x.Q

where Lemma 4.1(1) allows us to conclude that the two assumptions c : [~T1]a1 and c : [~T2]a2 , used
to type the left and right process respectively, must refer to the same object type ~T1 = ~T = ~T2.
By the identifier substitution lemma (Lemma 4.4), we have that

Γ2, c : [~T]a2−1,
−−→
d : T ` Q{~d/~x}

Pick Γ′ = Γ. Clearly dom(Γ′) ⊆ alloc(M). We construct the required type derivation as follows:

Γ1, c : [~T]a1−1 ` P Γ2, c : [~T]a2−1,
−−→
d : T ` Q{~d/~x}

tPar
(Γ1, c : [~T]a1−1), (Γ2, c : [~T]a2−1,

−−→
d : T) ` P ‖ Q{~d/~x} (∗)

tStr
Γ ` P ‖ Q{~d/~x}

where the side condition (∗) is

Γ � (Γ1, c : [~T]a1−1), (Γ2, c : [~T]a2−1,
−−→
d : T)

and follows from Lemma 4.1(7), since environment are unordered.

18

2. Case
c 6∈ dom(M)

rAll
M . allocx.P →M . new c :>.P{c/x}

By inversion we get dom(Γ) ⊆ alloc(M) and

Γ1, x : [
−→
T]• ` P

Γ � Γ1
Γ ` allocx.P

We have c /∈ dom(M) ⊇ alloc(M) ⊇ dom(Γ) ⊇ dom(Γ1) and hence c /∈ fn(P).

Choose Γ′ = Γ. Clearly Γ � Γ′ and dom(Γ′) ⊇ alloc(M). The proof is completed by

Γ1, c : [
−→
T]• ` P{c/x} Γ′, c : [

−→
T]• � Γ1, c : [

−→
T]•

tStr
Γ′, c : [

−→
T]• ` P{c/x}

tRst1
Γ′ ` new c :>.P{c/x}

where the premise is established by the identifier substitution lemma (Lemma 4.4).

3. Case rFree
M, c : > . free c.P →M, c :⊥ . P

By inversion we get dom(Γ) ⊆ alloc(M, c : >) and

Γ′1 ` P
Γ � Γ′1, u : [

−→
T]•

Γ ` freeu.P

By Lemma 4.1(3) there exist an Γ1 such that Γ = Γ1, c : [
−→
T′]• and Γ1 � Γ′1.

Choose Γ′ = Γ1. Clearly Γ � Γ′. Moreover dom(Γ′) ⊆ alloc(M, c : ⊥) since c /∈ dom(Γ′) by
Lemma 4.1(2). The proof is completed by

Γ′1 ` P Γ′ � Γ′1
tStr

Γ′ ` P

5 Related Work

The literature on using substructural logics to support destructive or strong updates is huge and we
can give but a brief overview here. More in-depth discussions can be found in [8, 18].

Resources and pi-calculus Resource usage in a pi-calculus extension is studied in [20] but it differs
from our work in many respects. For a start, their scoping construct assumes an allocation
semantics while we tease scoping and allocation apart as separate constructs. The resource
reclamation construct in [20] is at a higher level of abstraction than free c.P , and acts more
like a “resource finalizer” leading to garbage collection. Resource reclamation is implicit in [20],
permitting different garbage collection policies for the same program whereas in the resource
pi-calculus resource reclamation is explicit and fixed for every program. The main difference
however concerns the aim of the type systems: our type system ensures safe channel deallocation
and reuse; the type system in [20] statically determines an upper bound for the number of
resources used by a process and does not use substructural typing.

19

Linearity versus Uniqueness In the absence of subtyping, affine typing and uniqueness typing
coincide but when subtyping is introduced they can be considered dual [11]. For linear typing,
the subtyping relation allows coercing non-linear assumptions into a linear assumptions, i.e.,
!U → U , but for uniqueness typing, the subtyping relation permits coercing unique assumptions
into non-unique assumptions. Correspondingly, the interpretation is different: linearity (resp.
affinity) is a local obligation that a channel must be used exactly (resp. at most) once, while
uniqueness is a global guarantee that no other processes have access to the channel. Combining
both subtyping relations as we have done in this paper appears to be novel. The usefulness of the
subtyping relation for affine or linear typing is well-known (e.g., see [13]); subtyping for unique
assumptions allows to “forget” the uniqueness guarantee; client4 above shows one scenario
where this might be useful.

Linearity in functional programming In pure functional programming languages, data structures
are always persistent and destructive updates are not supported: mapping a function f across a
list [x1, . . . , xn] yields a new list [f x1, . . . , f xn], leaving the old list intact. However, destructive
updates cannot always be avoided (e.g., when modelling system I/O [1]) and are sometimes
required for efficiency (e.g., updating arrays). Substructural type systems can be used to support
destructive update without losing referential transparency: destructive updates are only allowed
on terms that are not shared. Both uniqueness typing [4] and linear typing have been used for
this purpose, although even some proponents of linear typing agree that the match is not perfect
[21, Section 3].

In functional languages with side effects, substructural type systems have been used to support
strong (type changing) updates. For instance, Ahmed et al. have applied a linear type system
to support “strong” (type changing) updates to ML-style references [2] in a setting with no
subtyping.

It has been recognized early on that it is useful to allow the uniqueness of an object to be tem-
porarily violated. In functional languages, this typically takes the form of a sequential construct
that allows a unique object (such as an array) to be regarded as non-unique to allow multiple
non-destructive accesses (such as multiple reads) after which the uniqueness is recovered again.
Wadler’s let! construct [22] (or the equivalent Clean construct #!) and observer types [17]
both fall into this category, and this approach has also been adopted by some non-functional
languages where it is sometimes called borrowing [7]. It is however non-trivial to extend this
approach to a concurrent setting with a partial order over execution steps; our approach can be
regarded as one preliminary attempt to do so.

Strong update in the presence of sharing There is substantial research on type systems that al-
low strong update even in the presence of sharing; the work on alias types and Vault [19, 23, 9]
and on CQual [10] are notable examples of this. These type systems do explicit alias analysis by
reflecting memory locations at the type level through singleton types. This makes it possible to
track within the type system that a strong (type changing) update to one variable changes the
type of all its aliases. The interpretation of unique (or linear) in these systems is different: a
unique reference (typically called a capability in this context) does not mean that there is only a
single reference to the object, but rather that all its aliases are known. For non-unique reference
not all aliases are known and so strong update is disallowed.

These systems are developed for imperative languages. They are less useful for functional lan-
guages because they cannot guarantee referential transparency, and they appear to be even less
useful for concurrent languages: even if we track the effect of a strong update on a shared object
on all its aliases, this is only useful if we know when the update happens. In an inherently
non-deterministic language such as the pi-calculus this is usually hard to know before execution.

Linearity in the pi-calculus Linear types for the pi-calculus were introduced by Kobayashi et al.
[15] but do not employ any subtyping. Moreover, their system cannot be used as a basis for strong

20

update or channel deallocation; although they split a bidirectional linear (“unique”) channel into
a linear input channel and a linear output channel (cf. Definition 2.3.1 for the type combination
operator (+)) these parts are never “collected” or “counted”. The more refined type splitting
operation we use in this paper, combined with the type decrement operation (which has no
equivalent in their system) is key to make uniqueness useful for strong updates and deallocation.
Our system can easily be extended to incorporate modalities but it does not rely on them; in
our case, channel modalities are an orthogonal issue.

Fractional permissions and permission accounting Boyland [6] was one of the first to consider
splitting permissions into fractional permissions which allow linearity or uniqueness to be tem-
porarily violated. Thus, strong update is possible only with a full permission, whereas only
passive access is permitted with a “fraction” of a permission. When all the fractions have been
reassembled into one whole permission, strong update is once again possible.

Boyland’s suggestion has been taken up by Bornat et al. [5], who introduce both fractional
permissions and “counting” permissions to separation logic. Despite of the fact that their model
of concurrency is shared-memory, their mechanism of permission splitting and counting is sur-
prisingly similar to our treatment of unique assumptions. However, while their resource reading
of semaphores targets implicit ownership-transfer, uniqueness typing allow us to reason about
explicit ownership-transfer. Moreover, subtyping from unique to unrestricted types provides the
flexibility of not counting assumptions whenever this is not required, simplifying reasoning for
resources that are not deallocated or strongly updated.

Session types Session types [12] and types with CCS-like usage annotations [13] are used to describe
channels which send objects of different types. However, these types give detailed information
on how channels are used, which makes modular typing difficult. For example, the heap channel
used by client3 cannot be given a type without knowing all the processes that use the heap.

6 Conclusions and Future Work

We have extended ideas from process calculi, substructural logics and permission counting to define
a type system for a the pi-calculus extended with primitives for channel allocation and deallocation,
where strong update and channel deallocation is safe for unique channels.

The purpose of our type system is not to ensure that every resource that is allocated will also
be deallocated (i.e., the absence of memory leaks). This is difficult to track in a type system. For
instance, consider

allocx.
(

c!d1.d1!.nil ‖ c!d2.nil ‖ c?y.y?.freex
)

Statically, it is hard to determine whether the third parallel process will eventually execute the freex
operation. This is due to the fact that it can non-deterministically react with either the first or second
parallel process and, should it react with the second process, it will block at d2?.freex. In order
to reject this process as ill-typed, the type-system needs to detect potential deadlocks. This can be
done [14], but requires a type system that is considerably more complicated than ours. We leave the
responsibility to deallocate to the user, but guarantee that resources once deallocated will no longer
be used.

The simplicity of our type-system makes it easily extensible. For instance, one useful extension
would be that of input/output modalities, which blend easily with the affine/unique duality. Presently,
when a server process splits a channel c : [T]• into one channel of type [T](•,2) and two channels of type
[T]1 to be given to two clients, the clients can potentially use this channel to communicate amongst
themselves instead of the server. Modalities are a natural mechanism to preclude this from happening.

We are currently investigating ways how uniqueness types can be used to refine existing equational
theories, so as to be able to equate processes such as client1 and client0.

21

Funding

Edsko de Vries and Matthew Hennessy are supported by supported by SFI project SFI 06 IN.1 1898.

References

[1] Achten, P. M., and Plasmeijer, M. J. The ins and outs of Clean I/O. Journal of Functional
Programming 5, 1 (1995), 81–110.

[2] Ahmed, A., Fluet, M., and Morrisett, G. A step-indexed model of substructural state.
In Proceedings of the 10th ACM SIGPLAN International Conference on Functional Programming
(ICFP) (2005), ACM, pp. 78–91.

[3] Armstrong, J. Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf,
July 2007.

[4] Barendsen, E., and Smetsers, S. Uniqueness typing for functional languages with graph
rewriting semantics. Mathematical Structures in Computer Science 6 (1996), 579–612.

[5] Bornat, R., Calcagno, C., O’Hearn, P., and Parkinson, M. Permission accounting in
separation logic. SIGPLAN Not. 40, 1 (2005), 259–270.

[6] Boyland, J. Checking interference with fractional permissions. In Static Analysis: 10th Inter-
national Symposium (2003), R. Cousot, Ed., vol. 2694 of LNCS, Springer, pp. 55–72.

[7] Clarke, D., and Wrigstad, T. External uniqueness is unique enough. In ECOOP 2003 –
Object-Oriented Programming (2003), vol. 2743 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, pp. 59–67.

[8] de Vries, E. Making Uniqueness Typing Less Unique. PhD thesis, Trinity College Dublin,
Ireland, 2008.

[9] Fähndrich, M., and DeLine, R. Adoption and focus: practical linear types for imperative
programming. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation (2002), ACM, pp. 13–24.

[10] Foster, J. S., Terauchi, T., and Aiken, A. Flow-sensitive type qualifiers. In PLDI ’02:
Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design and imple-
mentation (2002), ACM, pp. 1–12.

[11] Harrington, D. Uniqueness logic. Theoretical Computer Science 354, 1 (2006), 24–41.

[12] Honda, K., Vasconcelos, V. T., and Kubo, M. Language primitives and type discipline for
structured communication-based programming. In ESOP ’98: Proceedings of the 7th European
Symposium on Programming (1998), Springer-Verlag, pp. 122–138.

[13] Kobayashi, N. Type systems for concurrent programs. In Formal Methods at the Crossroads:
From Panacea to Foundational Support (2003), vol. 2757 of LNCS, Springer Berlin / Heidelberg,
pp. 439–453.

[14] Kobayashi, N. A new type system for deadlock-free processes. In CONCUR 2006 Concurrency
Theory (2006), vol. 4137 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg,
pp. 233–247.

[15] Kobayashi, N., Pierce, B. C., and Turner, D. N. Linearity and the pi-calculus. ACM
Trans. Program. Lang. Syst. 21, 5 (1999), 914–947.

22

[16] Milner, R., Parrow, J., and Walker, D. A calculus of mobile processes, parts i and ii. Inf.
Comput. 100, 1 (1992), 1–40.

[17] Odersky, M. Observers for linear types. In Proceedings of the 4th European Symposium on
Programming (ESOP) (1992), B. Krieg-Brückner, Ed., vol. 582 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 390–407.

[18] Pottier, F. Wandering through linear types, capabilities, and regions, 2007. Survey talk given
at INRIA, Rocquencourt, France.

[19] Smith, F., Walker, D., and Morrisett, J. G. Alias types. In ESOP ’00: Proceedings of
the 9th European Symposium on Programming Languages and Systems (2000), Springer-Verlag,
pp. 366–381.

[20] Teller, D. Recollecting resources in the pi-calculus. In Proceedings of IFIP TCS 2004 (2004),
Kluwer Academic Publishing, pp. 605–618.

[21] Wadler, P. Is there a use for linear logic? In PEPM, pp. 255–273.

[22] Wadler, P. Linear types can change the world! In Proceedings of the IFIP TC2 WG 2.2/2.3
Working Conference on Programming Concepts and Methods (Apr. 1990), M. Broy and C. B.
Jones, Eds., North-Holland, pp. 561–581.

[23] Walker, D., and Morrisett, J. G. Alias types for recursive data structures. In TIC ’00:
Third International Workshop on Types in Compilation (2001), Springer-Verlag, pp. 177–206.

23

