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Abstract. Distributed programs are hard to get right because they are
required to be open, scalable, long-running, and dependable. In particu-
lar, the recent approaches to distributed software based on (micro-) ser-
vices, where different services are developed independently by disparate
teams, exacerbate the problem. Services are meant to be composed to-
gether and run in open contexts where unpredictable behaviours can
emerge. This makes it necessary to adopt suitable strategies for monitor-
ing the execution and incorporate recovery and adaptation mechanisms
so to make distributed programs more flexible and robust. The typical
approach that is currently adopted is to embed such mechanisms within
the program logic. This makes it hard to extract, compare and debug.
We propose an approach that employs formal abstractions for specifying
failure recovery and adaptation strategies. Although implementation ag-
nostic, these abstractions would be amenable to algorithmic synthesis of
code, monitoring, and tests. We consider message-passing programs (a
la Erlang, Go, or MPI) that are gaining momentum both in academia
and in industry. We first propose a model which abstracts away from
three aspects: the definition of formal behavioural models encompassing
failures; the specification of the relevant properties of adaptation and
recovery strategy; and the automatic generation of monitoring, recovery,
and adaptation logic in target languages of interest. To show the efficacy
of our model, we give an instance of it by introducing reversible chore-
ographies to express the normal forward behaviour of the system and the
condition under which adaptation has to take place. Then we show how
it is possible to derive Erlang code directly from the global specification.

1 Introduction

Distributed applications are notoriously complex and guaranteeing their cor-
rectness, robustness, and resilience is particularly challenging. These reliability
requirements cannot be tackled without considering the problems that are not
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generally encountered when developing non-distributed software. In particular,
the execution and behaviour of distributed applications is characterised by a
number of factors, a few of which we discuss below:

– Firstly, communication over networks is subject to failures (hardware or
software) and to security concerns: nodes may crash or undergo management
operations, links may fail or be temporarily unavailable, access policies may
modify the connectivity of the system.

– Secondly, openness —a key requirement of distributed applications— intro-
duces other types of failures. A paradigmatic example are (micro-)service ar-
chitectures where distributed components dynamically bind and execute to-
gether. In this context, failures in the communication infrastructures are pos-
sibly aggravated by those due to services’ unavailability, their (behavioural)
incompatibility, or to unexpected interactions emerging from unforeseen com-
positions.

– Also, distributed components may belong to different administrative do-
mains; this may introduce unexpected changes to the interaction patterns
that may not necessarily emerge at design time. In addition, unforeseen be-
haviour may emerge because components may evolve independently (e.g., the
upgrade of a service may hinder the communication with partner services).

– Another element of concern is that it is hard to determine the causes of errors,
which in turn complicates efforts to rectify and/or mitigate the damage via
recovery procedures. Since the boundary of an application are quite “fluid”,
it becomes infeasible to track and confine errors whenever they emerge. These
errors are also hard to reproduce for debugging purposes, and some of them
may even constitute instances of Heisenbugs [27].

For the above reasons (and others), developers have to harness their software
with mechanisms that ensure (some degree of) dependability. For instance, the
use of monitors capable of detecting failures and triggering automated counter-
measures can avoid catastrophic crashes in distributed settings [24]. The typical
mechanisms to foster reliability are redundancy (typically to tackle hardware
failures) and exception handling for software reliability. It has been observed
(see e.g., [42]) that the use of exception handling mechanisms naturally leads to
defensive approaches in software development. For instance, network communi-
cations in languages such as Java require to extensively cast code in try-catch
blocks in order to deal with possible exceptions due to communications. This
muddles the main program logic with auxiliary logic related to error handling.
Defensive programming, besides being inelegant, is not appealing; in fact, it
requires developers to entangle the application-specific software with the one
related to recovery procedures.

We advocate the use of choreographies to specify, analyse, and implement
reliable strategies for recovery and monitoring of distributed message-passing
applications. We strive towards a setup that teases apart the main program logic
from the coordination of error detection, correction and recovery. The rest of
the paper motivates our approach: Section 2 further introduces our motivations,
Section 3 presents our (abstract) model by posing some research challenges, while
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Sections 4 to 6 provide and instance of such model. We draw some conclusions
in Section 7.

Disclaimer. This paper gathers the results obtained in [13, 23] with the intent to
present them as a whole. In particular, the model presented in Section 3 is taken
from [13], while Sections 4 to 6 are adapted from [23]. These results were obtained
during the COST Action IC1405 within the case study “Reversible Choreogra-
phies via Monitoring in Erlang” of the Working Group 4 on case studies. We
thank Carla Ferreira and Ulrik Pagh Schultz for having wisely led such working
group.

2 Motivation

We are interested in message-passing frameworks, i.e., models, systems, and
languages where distributed components coordinate by exchanging messages.
One archetypal model of the message-passing paradigm is the actor model [5]
popularised by industry-strength language implementations such as those found
in Akka (for both Scala and Java) [46], Elixir [44], and Erlang [15]. In particular,
one effective approach to fault-tolerance is the model adopted by Erlang.

Rather than trying to achieve absolute error freedom, Erlang’s approach
concedes that failures are hard to rule out completely in the setting of open dis-
tributed systems. Accordingly, Erlang-based program development takes into ac-
count the possibility of computation going wrong. However, instead of resorting
to the usual defensive programming, it adopts the so-called “let it fail” principle.
In place of intertwining the software realising the application logic with logic for
handling errors and faults, Erlang proposes a supervisory model whereby compo-
nents (i.e., actors) are monitored within a hierarchy of independently-executing
supervisors (which can be monitor for other supervisors themselves). When an
error occurs within a particular component, it is quarantined by letting that
component fail (in isolation); the absence of global shared memory of the actor
model facilitates this isolation. Its supervisor is then notified about this fail-
ure, creating a traceable event that is useful for debugging. More importantly
to our cause, this mechanism also allows the supervisor to take remedial action
in response to the reported failure. For instance, the failing component may be
restarted by the supervisor. Alternatively, other components that may have been
contaminated by the error could also be terminated by the supervisor. Occasion-
ally supervisors themselves fail in response to a supervised component failing,
thus percolating the error to a higher level in the supervision hierarchy.

Erlang’s model is an instance of a programming paradigm commonly termed
as Monitor Oriented Programming (MOP) [35, 16]. It neatly separates the ap-
plication logic from the recovery policy by encapsulating the logic pertaining to
the recovery policy within the supervision structure encasing the application.
Despite this clear advantage, the solution is not without its shortcomings. For
instance, the Erlang supervision mechanism is still inherently tied to the con-
structs of the host language and it is hard to transfer to other technologies.
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Despite it being localised within supervisor code, manual effort is normally still
required to disentangle it from the context where it is defined in order to be
understood in isolation. Also, the manual construction of logic associated with
recovery is itself prone to errors.

We advocate for a recovery mechanism that sits at a higher level of abstrac-
tion than the bare metal of the programming language where it is deployed. In
particular, we envisage the three challenges outlined below:

1. The explicit identification and design of recovery policies in a technology
agnostic manner. This will facilitate the comprehension and understanding of
recovery policies and allow for better separation of concerns during program
development.

2. The automated code synthesis from high-level policy descriptions. There ex-
sist only a handful of methods for recovery policy specification and these
have limited support for the automatic generation of monitors that imple-
ment those policies.

3. The evaluation of recovery policies. We require automated techniques that
allow us to ascertain the validity of recovery policies with respect to notions
of recovery correctness. We are also unaware of many frameworks that permit
policies to be compared with one another and thus determine whether one
recovery policy is better than (or equivalent to) another one.

To the best of our knowledge, there is a lack of support to take up the first
challenge. For instance, Erlang folklore’s to recovery policies simply prescribes
the “one-for-one” or the “one-for-all” strategies. Recently, Neykova and Yoshida
have shown how better strategies are sometimes possible [40]. We note that the
approach followed in [40] is based on simple yet effective choreographic models.

The second challenge somehow depends on the support one provides for the
design and implementation of recovery strategies. A basic requirement of (good)
abstract software models is that an artefact has a clear relationship with the
other artefacts that it interacts with, possibly at different levels of abstraction.
This constitutes the essence of model-driven design. The preservation of these
clearly defined interaction-points (across different abstraction levels) is crucial
for sound software refinement. Such a translation from one abstraction level to
a more concrete one forms the basis for an actual “compilation” from one model
to the other. In cases where such relations have a clear semantics, they can be
exploited to verify properties of the design (and the implementation) as well
as to transform models (semi-)automatically. In our case, we would expect run-
time monitors to be derived from their abstract models, to ease the development
process and allow developers to focus on the application logic (such as in [11,
6]).

Finally, the right abstraction level should provide the foundations necessary
to develop formal techniques to analyse and compare recovery policies as out-
lined in our third challenge. The right abstraction level would also permit us
to tractably apply these techniques to specific policy instances; these may ei-
ther have been developed specifically for the policy formalism considered by the
technique or obtained via reverse-engineering methods from a technology-specific

4



application. Possible examples that may be used as starting points for such an
investigation are [20], where various pre-orders for monitor descriptions are de-
veloped, and [21] where intrinsic monitor correctness criteria such as consistent
detections are studied.

3 The Model

We advocate that the development of recovery logic is orthogonal to the appli-
cation logic, and this separation of concerns could induce separate development
efforts which are, to a certain degree, independent from one another. Similar to
the case for the application logic, we envisage global and local points of view
for the recovery logic whereby the latter is attained by projecting the global
strategy. Our approach is schematically described in Figure 1. The left-most
part of the diagram illustrates the top-down approach of choreographies of the
application logic described in Section 4.1. We propose to develop a similar ap-
proach for the recovery logic as depicted in the right-most part of Fig. 1, where
the triangular shape for monitors evokes that monitors are possibly arranged in
a complex structure (as e.g., the hierarchy of Erlang supervisors). In fact, we
envisage that a local strategy could correspond to a subsystem of monitors as
in the case of [10, 6] (unlike the choreographies for the application logic, where
each local view typically yields one component).

Local View

proj projproj

Global View

Application Logic

Global Strategy

Recovery Logic

Monitors

Research Challenge 1

Local View Local View Local 
Strategy

projprojproj

Local 
Strategy

Local 
Strategy

Research Challenge  2

ComponentComponent Component

Research Challenge  3

Monitors Monitors

Fig. 1. A Global-Local approach to Adaptation Strategies incorporating the three Re-
search Challenges identified in Section 2

Models to express global and local strategies. Choreographic models should be
equipped with features allowing us to design and analyse the recovery logic of
systems. This requires, on the one hand, the identification of suitable linguis-
tic mechanisms for expressing global/local strategies and, on the other hand, to
define principles of monitors programming by looking at state-of-the-art tech-
niques. For example, the (global) recovery logic should allow us to specify recov-
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ery points where parties can roll-back if some kind of error is met or compensa-
tions to activate when anomalous configurations are reached.

A challenge here is the definition of projection operations that enable fea-
turing recovery mechanisms. A first step in this direction is a recent proposal of
Mezzina and Tuosto [39] who extend the global graphs reviewed in Section 4.1
with reversibility guards to recover the system when it reaches undesired config-
urations. A promising research direction in this respect is to extend the language
of reversibility guards with the patterns featured by adaptEr [10–12] and then
define projection operations to automatically obtain adaptEr monitors.

Properties of recovery logic. We should understand general properties of inter-
est of recovery as well as specific ones. One general property could be the fact
that the strategy guides the application toward a safe state (i.e. stability enve-
lope [35]) when errors occur. For example, the recovery strategy could guarantee
causal consistency, namely that a safe state is one that the execution could have
reached, possibly following a different interleaving of concurrent actions. Recov-
ery strategies may be subject to resource requirements that need to be taken into
consideration and/or adhered to. One such example would be the minimisation
of the number of components that have to be re-started when a recovery pro-
cedure is administered, whereby the restarted components are causally related
to the error detected. The work discussed in [10, 11] provides another example
of resource requirements for recovery strategies: in an asynchronous monitoring
setting, component synchronisations are considered to be expensive operations
and, as a result, the monitors are expected to use the least number of component
synchronisations for the adaptation actions to be administered correctly.

Also, as typical for choreographies, we should unveil the conditions under
which a recovery strategy is realisable in a distributed settings. In other words,
not all globally-specified recovery policies are necessarily implementable in a
choreographed distributed setting; we therefore seek to establish well-formedness
criteria that allow us to determine when a global recovery policy can be projected
(and thus implemented) in a decentralised setup.

Compliance. In the case of recovery strategies, it is unclear when monitors are
deemed to be compliant with their local strategy. A central aspect that we
should tackle is that of understanding what it actually means for monitors and
local strategy to be compliant, and subsequently to give a suitable compliance
definition that captures this understanding. One possible approach to address
this problem is to emulate and extend what was done for the application logic
where several notions of behavioural compliance have been studied (e.g.[14, 8]).

Another potential avenue worth considering is the work on monitorability
[22, 2] and enforceability [43, 4] that relates the behaviour of the monitor to that
specified by the correctness property of interest; the work in [25] investigates
these issues for a target actor calculus that is deeply inspired by the Erlang
model. In such cases we would need to extend the concept of monitorability and
enforceability to adaptability with respect to the local strategy derived from the
global specification.
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Once we identify and formalise our notions of compliance, we should study
their decidability properties, and investigate approaches to check compliance
such as type-checking or behavioural equivalence checking (e.g., via testing pre-
orders or bisimulations [20, 3]).

Seamless integration. A key driving principle of our proposed approach is that
the recovery logic should be orthogonal to the application logic. This separa-
tion of concerns allows the traditional designers to focus on the application logic
and just declare the error conditions to be managed by the recovery logic. The
dedicated designers of the recovery logic would then use those error conditions
and the structure of the choreography of the application logic to specify a re-
covery strategy. Finally, the application and recovery logic should be integrated
via appropriate code instrumentation mechanisms to cater for reliability. The
driving principle we will follow is that of minimising the entanglement between
the respective models of the application logic and those of the recovery logic.
This principled approach with clearly delineated separation of concerns should
also manifest itself at the code level of the systems produced, that will, in turn,
improve the maintainability of the resulting systems.

4 An instance

We propose a line of research that aims to combine the run-time monitoring and
local adaptation of distributed components with the top-down decomposition
approach brought about by choreographic development. Our manifesto may thus
be distilled as:

Local Runtime Adaptation + Static Choreography Specifications
= Choreographed MOP

Our work stems from two existing bodies of work. On the one hand, our
investigation is grounded on the Erlang monitoring framework developed and
implemented in [10, 11], which showed that these concepts are realisable. On the
other hand, the end point of what we want to achieve is driven by the design of
a choreographic model for distributed computation with global views and local
projections of [34], reviewed in Section 4.1.

4.1 Global and Local Specifications

A key reason that makes choreographies appealing for the modelling, design, and
analysis of distributed applications is that they do not envisage centralisation
points. Roughly, in a choreographic model one describes how a few distributed
components interact in order to coordinate with each other. There is a range
of possible interpretations for choreographies [7]; a widely accepted informal
description is the one suggested by W3C’s [30]:
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[...] a contract containing a global definition of the common ordering condi-
tions and constraints under which messages are exchanged, is produced that
describes, from a global viewpoint [...] observable behaviour [...]. Each party
can then use the global definition to build and test solutions that conform to
it. The global specification is in turn realised by combination of the resulting
local systems [...]

According to this description, a global and a local view are related as in the
left-most diagram in Fig. 1 which evokes the following software development
methodology. First, an architect designs the global specification and then uses
the global specification to derive, via a ‘projection’ operation, a local specifica-
tion for the distributed components. Programmers can then use the local spec-
ifications to check that the implementation of their components are compliant
with the local specification. The keystones of this process are (i) that the global
specification can be used to guarantee good behaviour of the system abstracting
away from low level details (typically assuming synchronous communications),
(ii) that projection operation can usually be automatised so to (iii) produce
local specifications at a lower level of abstraction (where communication are
asynchronous) while preserving the behaviour of the global specification.

We remark that the relations among views and systems of choreographies are
richer than those discussed here. For instance, local views can also be compiled
into template code of components and the projection operation may have an
“inverse” (cf. [34]). Those aspects are not in scope here.

We choose two specific formalisms for global and local specifications. More
precisely, we adapt to our needs the global graphs of [34] for global specifications
and Erlang actors to express local views of choreographies.

Global specifications. Global graphs, originally proposed in [18] and recently
generalised in [45, 28], are a convenient specification language for global views
of message-passing systems. They yield both a formal framework and a sim-
ple visual representation that we review here, adapting notation and definition
from [45].

Hereafter we fix two disjoint sets P and M; the former is a finite set of
participants (ranged over by A, B, etc.) and M is the set of messages (ranged
over by m, x, etc.). To exchange messages and coordinate with each other, par-
ticipants use asynchronous point-to-point communication via channels following
the actor model [29, 5]. We remark that global graphs abstract away from data;
the messages specified in interactions of global graphs have to be thought of as
data types rather than values.

The syntax of global graphs is defined by the grammar

G ::= A−→B : m | G;G′ | G |G′ | G+G′ | ∗G@A

A global graph can be a simple interaction A−→B : m (for which we require A 6=
B), the sequential composition G;G′ of G and G′, the parallel composition (for
which the participants of G and of G′ are disjoint), a nondeterministic choice
G+G′ between G and G′, or the iteration ∗G@A of G. The syntax captures the
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A
i−→B : m

source node

sink node

G

G′

G G′

fork gate

join gate

G G′

branch gate

merge gate

G

branch gate

merge gate

interaction sequential parallel branching iteration

Fig. 2. A visual notation for global graphs

structure of a visual language of distributed workflows illustrated in Fig. 2. Each
global graphs G can be represented as a rooted diagram with a single source
node and a single sink node respectively represented as ◦ and }. Other nodes are
drawn as • and a dotted edge from/to a •-node singles out the source/sink nodes
the edge connects to. For instance, in the diagram for the sequential composition,
the top-most edge identifies the sink node of G and the other edge identifies the
source node of G′; intuitively, • is the node of the sequential composition of G
and G′ obtained by “coalescing” the sink of G with the source of G′. In our
diagrams, branches and forks are marked respectively by and nodes; also,
to each branch/fork nodes corresponds a “closing” gate merge/join gate.

Example 1. Consider a protocol where iteratively participant C sends a newReq
message to a logging service L. In parallel, a C’s partner, A, makes either requests
of either type req1 or type req2 to a service B, which, in turn, replies via two
different types of responses, namely res1 and res2. Once a request is served, B
also sends a report to A, which logs this activity on L. This protocol can be
modelled with the graph G = ∗

(
G1 |G′

1

)
;G2;G3@A where

G1 =C−→L : newReq

G2 =L−→C : ack |B−→A : rep

G3 =A−→L : log

G′
1 =A−→B : req1;B−→A : res1

+

A−→B : req2;B−→A : res2

The decision to leave or repeat the loop is non-deterministically taken by one
of the participants (in this case A) which then communicates to all the others
what to do. This will become clearer in Section 6. The diagram in Fig. 3 is the
visual counterpart of G. �

The (forward) semantics of global graphs can be defined in terms of partial
orders of communication events [45, 28]. We do not present this semantics here
(the reader is referred to [45, 28]) for space limitations; instead, we give only a
brief and informal account through a “token game” similar to the one of Petri
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A−→B : req1 A−→B : req2

B−→A : res1 B−→A : res2

C−→L : newReq

B−→A : rep
L−→C : ack

A−→L : log

The topmost gate is the entry point of
a loop which simply lets the token to flow.
At the first gate, the token is dupli-
cated, forking the computations along the
two threads. In the leftmost thread, the to-
ken enables the interaction C−→L : newReq;
this allows the output event from C (which
then waits for the ack message from L) and
later the input event of L. The token on
the leftmost thread then enables the last
interaction L−→C : ack. Observe that, after
the input of message ack, C can start the
next iteration while the other threads may
still be completing the current iteration.
Concurrently, the token flowing on the
rightmost thread reaches another branch
gate which non-deterministically routes
the token either on the left or on the right
branch. On both branches A and B execute
a request-response type of protocol simi-
larly to what C and L run on the leftmost
thread. When the token flows through the
merge gate at the end of the choice, it en-
able a last interaction from B to A (which
allows B to go the next iteration) and sub-
sequently, the last logging interaction be-
tween A and L. Finally, also A and L can
repeat the loop.
Note that the body of an iteration is exe-
cuted at least once.

Fig. 3. The diagram of a global graph and its semantics

nets based on Fig. 3. The token game would start from the source node and flow
down along the edges in the diagram as described by the test in Fig. 3.

For the semantics of global graphs to be defined, well-branchedness [45, 28]
is a key requirement. This is a simple condition guaranteeing that all the partic-
ipants involved in a distributed choice follow a same branch. Well-branchedness
requires that each branch in a global graph (i) has a unique active participant
(that is a unique participant taking the decision on which branch to follow) and
(ii) that any other participant is passive, namely that it is either able to ascer-
tain which branch was selected from the messages it receives or it does not play
any role in the branching.

Example 2. In the branch of Example 1, A is the active participant while the
others are passive; in fact, C and L are not involved in the choice, while B can
determine that the left or the right branch was selected depending on which type
of request it receives. �
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Local specifications. We adopt systems of CFSMs [9] as our model of local spec-
ifications. A CFSM is a finite-state automaton where transitions represent input
or output events from/to other machines. Each machine in the system corre-
sponds to an actor which can send or receive messages to/from other machines.
Communications take place on unbound FIFO buffers: for each pair of machines,
say A and B, there is a buffer from A to B and one from B to A. Basically, when a
machine A is in a state q with a transition to a state q′ whose label is an output
of message m to B, then m is put in the buffer from A to B and A moves to state
q′. Similarly, when B is in a state q with a transition to a state q′ whose label is
an input of m from B and the m is on the top of the buffer from A to B then B
pops m from the buffer and moves to state q′.

Noteworthy, the model of CFSMs is very close to the actor model and CFSMs
can be projected from global graphs automatically. Moreover, when the global
graph, say G, is well-formed then the behaviour of the projected machines faith-
fully refines the semantics of G [28]. In this paper, we will directly synthesise
Erlang code from the global specification, that is we will use Erlang actors to
model our local specifications.

5 Global Graphs for Reversibility

We propose a variant of global graphs, dubbed reversibility-enabling (global)
graphs (REGs for short) that generalises the branching construct to cater for
reversibility. We will use REGs to render the recovery model in Section 3.

Example 3. Recall the global graph in Example 1. A possible reversion guard for
B could specify that the port required to respond A needs to be available at the
time of communication, or that the size of the communication buffer for this port
does not exceed a given threshold. At runtime, both conditions may prohibit the
respective participants from completing the execution of the specified protocol.
By reversing the choice taken (i.e. A making requests of either type req1 or of
type req2), the participants involved can make alternative choices. �

The syntax of REGs uses control points1 to univocally identify positions
where choices have to be made on how to continue the protocol. Syntactically,
control points are written as i.G , where i is a strictly positive integer.

Definition 1 (Reversibility-enabling global graphs). The set G of rever-
sibility-enabling global graphs (REGs) consists of the terms G derived by the
following grammar:

G ::=A−→B : m | G;G′ | i.(G |G′) |
i.
(
G1 unless φ1 + G2 unless φ2

)
| (1)

i.
(
∗G@A

)
(2)

that satisfy the following conditions:

1 Control points can be automatically generated; for simplicity, we explicitly put them
in the syntax of REGs.
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– in i.
(
∗G@A

)
, A is the active participant of G and

– for any two control points i and j occurring in different positions of a REG
it must be the case that the indices are distinct, i 6= j.

In (1), the formulas φh (for h ∈ {1, 2}) are reversion guards expressed in terms
of boolean expressions.

In Definition 1, the participant A in (2) decides whether to repeat the body G
or exit an iteration. Hereafter, we consider equivalent REGs that differ only in
the indices of control points (the indices of control points are, in fact, irrelevant
as long as they are unique) and may omit control points when immaterial, e.g.
writing G unless φ + G′

unless φ′ instead of i.
(
G unless φ + G′

unless φ′
)
.

The new branching construct (1) extends the usual branching construct of
choreographies to control reversible computations. The semantics of this con-
structs is rendered by the encoding in Section 6 which realises the following
intended behaviour. The execution of i.

(
G1 unless φ1 + G2 unless φ2

)
requires first

to non-deterministically choose h ∈ {1, 2} and execute the REG Gh. At the end
of the execution of Gh then its guard φh is checked. It the guard is false, then
the execution exits the branch and continues executing normally. It the guard is
true we may have two sub-cases depending whether the other branch has been
already reversed or not. In the first case, then the execution is forced to pro-
ceed normally (e.g., there is no alternatives to try), in the second case then the
execution of Gh is reversed and the other branch is executed.

Note that, by keeping track of all reversed branches and fully executing the
last branch when all the others have been reversed, we can easily generalise to a
branching construct i.

(
G1 unless φ1 + · · · + Gh unless φh

)
with h ≥ 2; for simplicity

we just consider h = 2 here.
Definition 1 parameterises REGs on the notion of reversion guard. However,

our study required us to address crucial design choice on how reversion guards
are rendered in a language like Erlang (without a global state). Roughly, re-
version guards can be thought of as propositions predicating on the state of
the forward execution. A key requirement for a proper projection, however, is
that the evaluation of such guards must be “distributable”, i.e. we want revision
guards to be “projectable” from the global view to the components realising the
behaviour of the participants. To meet this requirements, we use local guards,
i.e. boolean expression that predicate on the state of a specific participant and
assume that a revision guard is a conjunction of the local guards at each partici-
pant. More concretely, we exploit Erlang’s support [1] for accessing the status of
a process implementing a participant via system functions such as process info

or system info, which return a dictionary with miscellaneous information about
a process or a physical node respectively.

Example 4. Consider the following concrete examples of revision guards:

queue_len(Threshold, State) ->
Info = from_list(State),
{_,Len} = find(message_queue_len, State),
(Len > Threshold).
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Fig. 4. The instrumentation architecture connecting participant actors, coordinating
(selector) actors and their respective monitor actors

message_exists(Filter, State) ->
Info = from_list(State),
{_,messages} = find(message_queue_len,State),
Filter(messages).

Predicate queue_len checks if the size of the mailbox is above a threshold,
whereas message_exists checks for the presence of a message matching some
pattern in a mailbox. Other examples of reversion guards are conditions on PIDs
and port identifiers, heap size, or the status of processes (e.g., waiting, running,
runnable, suspended). �

Our reversible semantics still requires well-branchedness: a REG, say G, is
well-branched when the global graph obtained by removing reversion guards from
G is well-branched (as defined in Section 4). This guarantees communication
soundness in presence of reverse executions.

6 From REGs to Erlang

This section shows how we map REGs into Erlang programs. This mapping cor-
responds to the definition of projection from the global view provided by REGs
into Erlang implementations of their local view. Our encoding embraces the
principles advocated in [13] and reviewed in Section 3: we strive for a solution
yielding a high degree of decoupling between forward and reverse executions. Un-
surprisingly, the most challenging aspect concerns how branches are projected.
This is done by realising a coordination mechanism which interleaves forward
and reversed behaviour, as described in Section 5. In the following, we first de-
scribe the architecture of our solution. We then show how forward and reversed
executions are rendered in it.

6.1 Architecture

The abstract architecture of our proposal is given in Fig. 4. Each participant
of a REG is mapped to a pair of Erlang actors, the participant actor and the
participant monitor which liaise with one another in order to realise reversible
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distributed choices. The execution of a distributed choice is supported by another
pair of (dynamically generated) actors, the selector actor which liaises with its
corresponding selector monitor. The basic idea is that participant and selector
actors are in charge of executing the forward logic part of the choice while their
respective monitors deal with the reversibility logic.

A key structural invariant of the architecture is that monitors can interact
only with their corresponding participant or with the monitors of the selectors
currently in execution, as depicted in Figure 4. This organisation is meant to
represent the information and control flow of our solution. The coordination
protocol required to resolve a distributed choice specified in a REG is made of
the following phases:

1. Inception: The selector actor (started at a branching point) decides which
branch to execute and communicates its decision to the participants involved.

2. Forward attempt: Participant actors execute the selected branch accord-
ingly and report their local state at the end of the branch to their participant
monitor.

3. Guards checking: Participant monitors check their reversion guard and
communicate the outcome to the selector monitor.

4. Continuation: The selector monitor aggregates the individual outcome of
all participant monitors and reports the aggregated result to the selector
actor.

5. Decision: Based on suggestion forwarded by the selector monitor, the selec-
tor actor decides whether to continue forward or reverse the execution and
communicates the decision to all participants, which in turn propagate it to
their participant monitor.

These phases roughly correspond to the arrows in Figure 4.

6.2 Branching Actors and Monitors

We now describe the behaviour of actors and monitors in a choice, with the help
of their automata-like representation in Figure 5. The coordination protocol that
we describe here resembles a 2-phase commit protocol where participants report
the outcome of local computations to a coordinator that then decides how to
continue the execution.

When participant actors (start to) reach a branching point, the inception
phase begins. The actor corresponding to the (unique) active participant of the
choice spawns the selector actor and waits from the selector message telling
which branch to take in the choice; all other participant actors just wait for
the selector’s decision. The act of spawning the selector arrow by the active
participant is represented in Fig. 5 via the gray arrow and the cloud in the
automaton of the participant actor. Subsequently, all the actor participants in-
volved in a branch will wait from the selector to instruct them with the branch
(either left or right) to take—these are the yellow arrows in the automaton of
Figure 5. Upon the receipt of such a message, participant actors first forward
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– The syntax of labels is of the
form id!msg or id?msg indicating
respectively the act of sending (!)
or receiving (?) the message msg to
or from the actor id.

– Messages e, st, r, and l stand re-
spectively for exit, state, right
and left.

– Transitions of different automata
are coloured to help the reader
understanding the flow of the
communication: outputs or inputs
of actors match when the corre-
sponding transitions in the au-
tomata have the same colour.

– The fat arrow in the selector mon-
itor represents that an input ac-
tion is expected from all partic-
ipant monitors involved into a
branch; likewise, the fat arrow in
the selector actor represent that
the outputs will be done for all
participant actors. The fat dashed
arrow in the selector monitor in-
dicates that an input action is
expected from all the participant
monitors and that at least one of
them is a rev message.

Fig. 5. Automata-like description of actors and monitors for the projection of branches

this message to their monitor and then enter the second phase executing the
branch—represented by the cloud in the automaton. Unless the chosen branch
diverges, the third phase starts when participant actors finish the branch (pos-
sibly at different times) and they signal to their monitor that they are ready to
exit the choice. This is signalled by the exit message which also carries the local
state of execution (described in Section 5). At this point, participant actors take
part only in the last phase: they receive from the selector either an ack message
(confirming that the choice has been resolved) or a rev message to reverse the
execution. In either case, they propagate the message to their monitor and either
“commit” the branch or return to the state that waits for the message dictating
the next branch to take. Participant actors behave uniformly but for the active
one, which has the additional task of spawning the selector at the very beginning
(for non-active participants the grey transition is an internal step not affecting
communications).

Each participant monitor waits for the message carrying the local state that
its participant actor sends at the end of the second phase in the exit message.
The state is used to check whether the reversion guard of the branch, say φ, holds
or not. If φ holds for the local state of the participant actor, then the participant
monitor sends the selector monitor a request to reverse the branch (message
rev). Otherwise the monitor sends a message to commit the choice (message
exit). In Figure 5 this is represented by the label sel m!d, where d stands
for decision and sel m binds to the unique identifier of the selection monitor
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implemented as an actor. After this, the monitor waits from its participant actor
for the rev or the ack message sent in the last phase: if rev is received the
monitor returns to its initial state and leaves the branch otherwise.

The selector actor spawned in the inception phase starts by spawning a se-
lector monitor and then deciding which branch to take initially—represented in
Figure 5 by the grey transition and the cloud in the automaton of the selector.
After communicating its decision to all participant actors, the selector waits for
the request of its monitor and starts phase five of Section 6.1 by deciding whether
to reverse the branch or not. The decision process is as follows: if the selector
receives an ack message then the branch is committed and the selector monitor
terminates. Otherwise, the selector participants receive a rev message to reverse
the branch. If there are branches that have not been taken yet, then the last
executed branch is marked as “tried”, a branch that has not been attempted
yet is selected, and a rev message is sent to all participant actors. Otherwise,
the decision to commit the branch is taken and the ack message is sent to all
participant actors. In the former case, the selector returns to its initial state,
and terminates otherwise.

The selector monitor participates to the fourth phase. It first gathers all the
outcomes from the guard-checking phase from all the participant monitors in-
volved into the choice. Recall that a rev message is received from any participant
monitor whose revision guard becomes true, while an ack message is received
from any participant monitor whose revision guard does not hold. Then, the
selector monitor computes an outcome to be sent to the selector actor: if all
received messages are ack then an ack message is sent to the selector actor, oth-
erwise the monitor sends a rev message to the selector actor. In both cases, the
selector monitor terminates; a new selector monitor is spawned by the selector
actor if the branch is actually reversed.

Iteration is a simplification of a distributed choice: we just generate a selector
for an iteration but not its monitor. The reason for not having a monitor for
the iterator selector is due to the fact that there is no reversible semantics to be
implemented for the iteration. This does not imply that within the body of an
iteration a reversible step can not be taken (e.g. there can be an inner choice), but
just that iterations are not points at which the computation can be reversed.
The selector (instantiated by the active participant of the iteration, similarly
to choices) just decides whether to iterate or exit the loop. A participant actor
within a loop, after completing an iteration, awaits the decision from the selector
actor and continues accordingly.

6.3 Compiling to Erlang

The code generated for the projections from REGs to Erlang is discussed below.
We focus on the compiled code for the branches constructs, since the compilation
of the other constructs is standard and therefore omitted. Our discussion uses
auxiliary functions for which the code is not reported.

16



1 act_A_cp() ->
2 %Pid = list_to_atom("sel_act_"
3 %++ integer_to_list(cp)),
4 %register("Pid,
5 % spawn(sel_act,[cp])),
6 receive
7 {cp,left} ->
8 mon_A ! {cp, left}
9 %CODE OF LEFT BRANCH

10 ;
11 {cp,right} ->
12 mon_A ! {cp, right}
13 %CODE OF RIGHT BRANCH
14 end,
15 mon_A!{cp, exit, process_info(self())},
16 receive
17 {cp,ack} -> mon_A ! {cp, ack};
18 {cp,rev} ->
19 mon_A ! {cp, rev},
20 act_A_cp()
21 end.

22 mon_A_cp() ->
23 receive
24 {cp, left} ->
25 %CODE FOR LEFT BRANCH MONITOR%
26 receive{cp, exit, Info} ->
27 G = check_guard(Left_guard, Info)
28 end;
29 {cp, right} ->
30 %CODE FOR RIGHT BRANCH MONITOR%
31 receive{cp, exit, Info} ->
32 G = check_guard(Right_guard, Info)
33 end
34 end,
35 Sel_m = get_selector_monitor(cp),
36 case G of
37 true -> Sel_m ! {cp, rev};
38 _ -> Sel_m ! {cp, ack}
39 end,
40 receive
41 {cp, rev} -> mon_A_cp();

42 {cp, ack} -> ok
43 end.

44 sel_act(Attempt,CP) ->
45 Pid = list_to_atom("sel_mon_"
46 ++ integer_to_list(CP)),
47 register(Pid,
48 spawn(sel_mon, [CP, self()])),
49 Sel =
50 case Attempt of
51 [] -> getBranch();
52 [left] -> right;
53 [right] -> left;
54 _ -> throw("panic....") %this case never happens
55 end,
56 P = participants(CP),
57 foreach(fun(X) -> X!{CP, Sel} end, P),
58 receive {CP,Outcome} ->
59 Decision =
60 case {Outcome,Attempt} of
61 {ack,_} -> ack;
62 {rev,[]} -> rev;
63 {_,_} -> ack
64 end
65 end,
66 foreach(fun(X) -> X!{CP, Decision} end, P),
67 case Decision of
68 rev -> sel_act(Attempt ++ [Sel], CP);
69 _ -> end_branch
70 end.

71 sel_mon(CP, SelPid)->
72 MP = participants(CP),
73 MsgList = lists:map(fun(_) ->
74 receive {CP,M} -> M end end, MP),
75 Msg =
76 case lists:member(rev, MsgList) of
77 true -> rev;
78 _ -> ack
79 end,
80 SelPid ! {CP, Msg}.

The code for the participant actor (lines 1-21) is parametrised with respect to
cp, the value of the control point2 univocally identifying the point of branch in
the REG. The commented lines 2-5 are generated only for the code of the active
participant which spawns the selector actor of the branch CP. Note that the
process is registered under a unique name sel_act_cp (which is an atom). This
snippet is actually a template which would be filled up with the code generated
for the participant communications respectively on the left and on the right
branches (i.e. the commented lines 9 and 13).

The Erlang process spawned by a participant actor implementing the selector
actor executes the function on lines 44-70. This function takes two parameters:
the Attempt representing the branches chosen so far and the control point CP

identifying the choice. The former parameter is a list of atoms left and right;
note that the empty list is passed initially when the process is spawned and
that (in our case) the size of this list should never exceed 1. As discussed above,
the selector chooses a branch (lines 49-55) and communicates its decision to
the participants of the branch (lines 56-57, where participants is computed
at compile time, from the global graph script, and returns the participants of a
branch given its control point). Finally, the selector enters the fourth phase of

2 Note that the value cp is statically determined by the compiler.
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Section 6.1, waiting for the message from its monitor, and decides accordingly
how to continue the execution of the choreographed choice.

As in the case of the participant actor, the snippet of the participant monitor
(lines 22-43) does not make explicit the code for the monitoring of the left and
right branches (commented lines 25 and 30). The auxiliary function check_guard

returns the evaluation of the guard for the state provided by the participant (lines
26-28 and 31-33). The function get_selector_monitor retrieves the PID of the
selector monitor from the control point value CP.

The selector monitor, spawned by the selector process, is registered with the
name sel_mon_cp (lines 45-48) where cp is the second actual CP when invoking
sel_act. Note that the invocation to get_selector_monitor on line 35 returns
the atom sel_mon_cp. The snippet for the selector monitor uses the auxiliary
function participants returning the list of participant actors involved in the
branch cp. The outcome Msg is computed on lines 73-79 and sent to the selec-
tor on line 80. The selector monitor awaits a message from all the participant
monitors involved in the branch (lines 73-74), and then it decides the message
to communicate to the selector actor. If at least one of the messages received is
rev, then the final message is rev, otherwise the final message is ack.

7 Conclusions

We have presented a methodology to automate the process of adding recovery
strategies to message passing systems specified via a global protocol. In partic-
ular, our model abstracts from (1) the definition of formal behavioural models
encompassing failures, (2) the specification of the relevant properties of adapta-
tion and recovery strategy, (3) the automatic generation of monitoring, recovery,
and adaptation logic in target languages of interest.

In line with the principles advocated by our model, we then have presented a
minimally-intrusive extension to global graph choreographies [28] for expressing
reversible computation. We showed how these descriptions could be realised into
executable actor-based Erlang programs that compartmentalise the reversion
logic as Erlang monitors, minimally tainting the application logic.

Related Work. The closest work to ours is [33, 40, 19]. In [33] a reversible se-
mantics for a subset of Erlang is given. The goal of [33] is a debugger based on
a fully reversible semantics. To achieve this, they modify the Erlang semantics
in order to keep track of the computational history and build an ad-hoc inter-
preter for it. Our goal is different since we focus on controlled reversibility [31].
Our framework automates the derivation of rollback points (namely the exact
point at which the execution has to revert) from the recovery logic. Also, the
use of monitors avoids any changes to Erlang’s run-time support. Choreogra-
phies are used in [40] to devise an algorithm that optimises Erlang’s recovery
policies. More precisely, global views specify dependencies from which a global
recovery tables are derived. Such tables tell which are the safe rollback points.
The framework then exploits the supervision mechanism of Erlang to pair par-
ticipants with a monitor. In case of failure, the monitor restarts the actor to
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a consistent rollback point. One could combine our approach with the recovery
mechanism of [40] so as to generalise our reversible semantics to harness fault
tolerance. This is not a trivial task, because the fault-tolerance mechanism of [40]
needs to follow a specific protocol, making it unclear whether participants can
be automatically derived. In [19] actors are extended with checkpoints primi-
tives, which the programmer has to specify in order to rollback the execution.
In order to reach globally-consistent checkpoints severe conditions have to be
met. Thanks to the correctness-by-design principle induced by global views, our
approach automatically deals with checkpoints, relieving this burden from the
programmer.

Other works [41, 37, 38] have investigated the use of monitors to steer re-
versibility in concurrent systems. In [41] a monitored reversible process algebra
is presented where each agent is paired with a monitor. But, unlike our approach,
the monitor tells the agent what to do both in the forward and in the reverse
way. In [37, 38] the authors investigate the use of monitors to steer reversibility
in message oriented systems. Here monitors are used as memories storing in-
formation about the forward execution of the monitored participants, and this
information is then used to reconstruct previous states. As in our approach,
in [38] participants and their monitors are derived from a global specification
as well. We diverge from [37, 38] in several aspects. Firstly, our monitors do not
store any information about the forward computation. Secondly, all the mon-
itors coordinate amongst each other to decide whether to revert a particular
computation or not. The coordination mechanism of our monitors is automat-
ically derived. Moreover in our approach reversibility is triggered at run-time
when certain conditions (specified at design-time in the recovery logic) are met.

Conclusions. We have presented a method to automatically derive reversible
computation as Erlang actors. A key aspect of our approach is the ability to
express, from a global point of view, when a reverse distributed computation
has to take place and not how. Starting from a global specification of the sys-
tem, branches can be decorated with conditions that at run-time will enable
the coordinated undoing of a certain branch. Another novelty of our approach
is the use of monitors to enact reversibility. We leave as future work the mea-
surement of the overhead of our approach on the normal forward semantics of
the actors, in terms of messages and memory consumption. Another research
direction is to integrate our recovery logic with existing monitoring frameworks
for Erlang. In [10, 11], Cassar et al. developed the monitoring tool adaptEr3 for
synthesising adaptation monitors for actor systems developed in Erlang. Spec-
ifications in adaptEr are defined using a version of Safe Hennessy Milner Logic
with recursion (sHML) that is extended with data binding, if statements for in-
specting data, adaptations and synchronisation actions. We will investigate the
idea of extending this logic with reversibility capabilities, and then to synthesise
monitors directly from this logic formulae.

3 The tool adaptEr is open-source and downloadable from
https://bitbucket.org/casian/adapter.
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Several works have shown that reversible debuggers can be built on top of
reversible semantics [17, 32, 26]. In line with these works, our ultimate goal would
also be to build a (reversible) debugger for Erlang systems. One idea could be
to integrate our automatic synthesis of reversible code with commercial sys-
tems which are able to monitor and aggregate several information (events) of a
message passing system. One of such candidate is WombatAOM4. Such an inte-
gration will allow our reversion guards to predicate on real runtime information.
On a different topic, REGs could also be used to enhance Continuous Inte-
grations [36] scenarios, by proposing a formalism to express workflows imbued
with reversible behaviour to support automatic tests generation and flakiness
detection.
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17. F. de Vries and J. A. Pérez. Reversible session-based concurrency in Haskell.
In M. H. Palka and M. O. Myreen, editors, Trends in Functional Programming -
19th International Symposium, TFP 2018, Gothenburg, Sweden, June 11-13, 2018,
Revised Selected Papers, volume 11457 of LNCS, pages 20–45. Springer, 2019.

18. P. Deniélou and N. Yoshida. Multiparty session types meet communicating au-
tomata. In ESOP 2012, 2012.

19. J. Field and C. A. Varela. Transactors: a programming model for maintaining
globally consistent distributed state in unreliable environments. In POPL 2005.
ACM, 2005.

20. A. Francalanza. A Theory of Monitors - (Extended Abstract). In FoSSaCS, volume
9634 of LNCS, pages 145–161. Springer, 2016.

21. A. Francalanza. Consistently-Detecting Monitors. In 28th International Conference
on Concurrency Theory, CONCUR 2017, September 5-8, volume 85 of LIPIcs,
pages 8:1–8:19. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

22. A. Francalanza, L. Aceto, and A. Ingolfsdottir. Monitorability for the Hennessy–
Milner logic with recursion. Formal Methods in System Design, pages 1–30, 2017.

23. A. Francalanza, C. A. Mezzina, and E. Tuosto. Reversible choreographies via
monitoring in Erlang. In S. Bonomi and E. Rivière, editors, Distributed Applica-
tions and Interoperable Systems DAIS 2018, volume 10853 of LNCS, pages 75–92.
Springer, 2018.
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