
Runtime Adaptation for Actor Systems

Ian Cassar and Adrian Francalanza

CS, ICT, University of Malta, Malta. {icas0005,afra1}@um.edu.mt

Abstract. We study the problem of extending RV techniques in the context of
(asynchronous) actor systems, so as to be able to carry out a degree of system
adaptation at runtime. We propose extensions to specification logics that provide
handles for programming both monitor synchronisations (with individual actors),
as well as the administration of the resp. adaptations once the triggering behaviour
is observed. Since this added functionality allows the specifier to introduce erro-
neous adaptation procedures, we also develop static analysis techniques based on
substructural type systems to assist the construction of correct adaptation scripts.

1 Introduction

Runtime Adaptation (RA) [17, 16] is a technique prevalent to long-running, highly
available software systems, whereby system characteristics (e.g., its structure, local-
ity etc.) are altered dynamically in response to runtime events (e.g., detected hardware
faults or software bugs, changes in system loads), while causing limited disruption to
the execution of the system. Numerous examples can be found in service-oriented ar-
chitectures [21, 15] (e.g., cloud-services, web-services, etc.) for self-configuring, self-
optimising and self-healing purposes; the inherent component-based, decoupled organ-
isation of such systems facilitates the implementation of adaptive actions affecting a
subset of the system while allowing other parts to continue executing normally.

Actor systems [2, 14, 9] consist of independently-executing components called ac-
tors. Every actor is uniquely-identifiable, has its own local memory, and can either
spawn other actors or interacting with them through asynchronous messaging.1 Actors
are often used to build service-oriented systems with limited downtime [3, 14]. Coding
practices such as fail-fast design-patterns [9, 14] already advocate for a degree of RA
for building robust, fault-tolerant systems: through mechanisms such as process linking
and supervision trees, crashed actors are detected by supervisor actors, which respond
through adaptations such as restarting the actors, replacing them with limp-home sur-
rogate actors, or killing further actors that may potentially be affected by the crash.

In this paper, we study ways how RA for actor systems can be extended to respond
to runtime events that go beyond actor crashes. For instance, we would like to observe
sequences of events that allow us to take preemptive action before a crash happens;
alternatively, we would also like to observe positive (liveness) events that allow us to
adapt the system to execute more efficiently (e.g., by switching off unused parts). More
generally, we intend to develop a framework for extending actor-system functionality
through RA, so as to improve aspects such as resilience and resource management.

1 Messages are received in a message buffer called a mailbox, read only by the owning actor.



Incrementor Decrementor

Common Interface

j k

i

(1) {inc, 3, cli}(3) {res, 4} (3) err

(2) {inc, 3, cli}

External View

(2) {inc, 3, cli}

Fig. 1. A server actor implementation offering integer increment and decrement services

We propose to do this by extending existing Runtime Verification (RV) tools such
as [25, 11, 10, 12]. The appeal of such an approach is that RV tools already provide
mechanisms for specifying the behaviour to be observed, together with instrumentation
mechanisms for observing such behaviour. As a proof-of-concept, our study focusses
on one of these actor-based RV tools — detectEr2 [12, 7] — and investigates ways how
violation detections can be replaced by adaptation actions that respond to behaviours
detected, while reusing as many elements as possible from the hosting technology.

Example 1. Fig. 1 depicts a server consisting of a front-end Common Interface actor
with identifier i receiving client requests, a back-end Incrementor actor with identifier
j, handling integer increment requests, and a back-end Decrementor actor k, handing
decrement requests. A client sends service requests to actor i of the form {tag, arg, ret}
where tag selects the type of service, arg carries the service arguments and ret speci-
fies the return address for the result (typically the client actor ID). The interface actor
forwards the request to one of its back-end servers (depending on the tag) whereas the
back-end servers process the requests, sending results (or error messages) to ret. The
tool detectEr allows us to specify safety properties such as (1), explained below:

ϕ
def
= max Y. [i?{inc, x, y}]

(
( [ j.y!{res, x + 1}] Y) & ( [ .y!err] ff)

)
(1)

It is a (recursive, max Y. . . . ) property requiring that, from an external viewpoint, every
increment request received by i, action i?{inc, x, y}, is followed by an answer from j
to the address y carrying x + 1, action j . y!{res, x + 1} (recursing through variable Y).
However, increment requests followed by an error message sent from any actor back to
y, action .y!err, represent a violation, ff. detectEr can synthesise a monitor (a system
of actors) corresponding to (1) and instrument it with a system execution [12].

max Y. [i?{inc, x, y}]
(
( [ j.y!{res, x + 1}] Y) & ( [z .y!err] restr(i) prg(z) Y)

)
(2)

We aim to extend properties such as (1) with adaptation actions to be taken by the
monitor once a violation is detected, as shown in property (2) above. The specifier pre-
sumes that the error (which may arise after a number of correct interactions) is caused
by the interface actor i (as shown in Fig. 1, where an inc request is erroneously for-
warded to the decrementor actor k) — she may, for instance, have prior knowledge
that actor i is a newly-installed, untested component. The monitor thus restarts actor i,

2 An RV tool for long-running reactive (actor) systems written in Erlang [3].



adaptation restr(i), and empties the mailbox of the backend server—which may con-
tain more erroneously forwarded messages—through adaptation prg(z) (the actor to be
purged is determined at runtime, where z is bound to identifier k from the previous
action [z .y!err]). Importantly, note that in the above execution (where k is the actor
sending the error message), actor j is not affected by any adaptation action taken. �

To implement adaptation sequences such as those in Ex. 1, the resp. monitors require
adequate synchronisation control over the asynchronous system being monitored. For
instance, to mitigate effects of erroneous components as soon as detections are made,
the monitor may want to synchronise with the execution of actor i from Fig. 1 each time
a client request is received, temporarily suspending its execution until it determines
that the request is serviced correctly (at which point it is released again). Moreover,
adaptations such as actor restarts and mailbox purging require the resp. actors to be
temporarily suspended for the adaptation implementation to execute correctly.

Adequate synchronisation procedures are generally hard to infer and automate from
specification scripts such as (2) of Ex. 1 (e.g., an early suspension of actor i’s execution
— before it communicates with one of its backend actors — stalls the entire system)
and is exacerbated by findings in prior work [7], concluding that actor synchronisa-
tions carry substantial overheads and should thus be kept to a minimum. In our work,
we thus extend the specification language to include explicit de/synchronisation com-
mands, thereby transferring synchronisation responsibility to the specifier of the adap-
tation property. This allows for fine-tuned synchronisations carrying low overheads,
but also permits the specifier to introduce synchronisation errors herself (e.g., applying
synchronous adaptations to actors that are not yet synchronised).

Therefore, in this paper we also develop a type system that analyses specification
scripts with adaptations and de/synchronisation commands and identifies errors prior to
deployment. We also prove that the type system is—in some sense—sound, accepting
scripts are free from certain monitor runtime errors. Since static analyses typically ap-
proximate computation, the type system may reject otherwise valid specification scripts;
in such cases, the specifier may use the type system as a tool assisting script develop-
ment, directing her to the parts that may potentially lead to errors.

In what follows, Sec. 2 presents the logic used by detectEr and Sec. 3 and Sec. 4
extend this with synchronisation directives and adaptation mechanisms. Sec. 5 presents
our type system. This is accompanied in Sec. 6 by an extended runtime semantics for
monitors carrying dynamic checks corresponding to the type disciplines of Sec. 5; we
prove type system soundness wrt. this runtime semantics. Sec. 7 concludes.

2 The Logic

Following [12, 7], detectEr (safety) properties are expressed using the logic sHML [1],
a syntactic subset of the modal µ-calculus [18]. The syntax is defined in Fig. 2 and as-
sumes two distinct denumerable sets of term variables, x, y, . . . ∈ Var (to quantify over
values) and formula variables X,Y, . . . ∈ LVar (to define recursive logical formulas). It
is parametrised by boolean expressions, b, c ∈ Bool equipped with a decidable evalua-
tion function, b ⇓ c where c ∈ {true, false}, and a set of action patterns e ∈ Pat that may



Syntax

ϕ, ψ ∈ Frm ::= tt | ff | ϕ&ψ | [e]ϕ | X | max X. ϕ | if b thenϕ else ψ

Semantics

ϕ1 &ϕ2 ≡ ϕ2 &ϕ1 ϕ1 & (ϕ2 &ϕ3) ≡ (ϕ1 &ϕ2) &ϕ3 tt &ϕ ≡ ϕ ff &ϕ ≡ ff

rIdem1
ff

α
−−→ ff

rIdem2
tt

α
−−→ tt

rTru
b ⇓ true

if b thenϕ elseψ
τ
−→ ϕ

rFls
b ⇓ false

if b thenϕ elseψ
τ
−→ ψ

rStr
ϕ ≡ ϕ′

γ
−−→ ψ′ ≡ ψ

ϕ
γ
−−→ ψ

rCn1
ϕ

α
−−→ ϕ′ ψ

α
−−→ ψ′

ϕ&ψ
α
−−→ ϕ′ &ψ′

rCn2
ϕ

τ
−→ ϕ′

ϕ&ψ
τ
−→ ϕ′ &ψ

rCn3
ψ

τ
−→ ψ′

ϕ&ψ
τ
−→ ϕ&ψ′

rMax
max X. ϕ

τ
−→ ϕ[max X. ϕ/X]

rNc1
mtch(e, α) = σ

[e]ϕ
α
−−→ ϕσ

rNc2
mtch(e, α) = ⊥

[e]ϕ
α
−−→ tt

Fig. 2. The Logic and its Derivative Semantics

contain term variables. Formulas include truth and falsehood, tt and ff, conjunctions,
ϕ&ψ, modal necessities, [e]ϕ, maximal fixpoints (for recursive properties), max X. ϕ,
and conditionals to reason about data, if b thenϕ elseψ. Free term variables in a sub-
formula ϕ of a necessity formula, [e]ϕ are bound by the variables used in the pattern e;
similarly max X. ϕ is a binder for X in ϕ. We work up-to alpha-conversion of formulas.

A derivative semantics [24] for the closed and guarded logic formulas is given as a
Labelled Transition System (LTS), defined by the transition rules in Fig. 2. It models the
monitoring for violations of the resp. (safety) property, and assumes a set of (visible)
actions α, β ∈ Act and a distinguished silent action, τ (we let γ range over Act ∪ {τ}).
Visible actions represent system operations and contain values v, u ∈ Val, that range
over either actor identifiers, i, j, h ∈ Pid, or generic data such as integers, d ∈ Data. The
semantics also assumes a partial function match(e, α) matching action patterns, e, with
visible actions, α; when a match is successful, the function returns a substitution from
the term variable found in the pattern to the corresponding values of the matched action,
σ :: Var ⇀ Val. We work up-to structural equivalence of formulas ϕ ≡ ψ; see rules in
Fig. 2 for commutativity, associativity etc.

In Fig. 2, formulas tt and ff are idempotent wrt. external transitions and interpreted
as final states (verdicts). Conditional formulas silently branch to the resp. subformula
depending on the evaluation of the boolean expression (rTru and rFls) whereas rule
rMax silently unfolds a recursive formula. Necessity formulas, [e]ϕ, transition only with
a visible action, α: if the action matches the pattern, mtch(e, α) = σ, it transitions to the
necessity subformula where the variables bound by the matched pattern are substituted
with the resp. matched values obtained from the action, ϕσ; otherwise, the necessity
formula transitions to tt in case of a mismatch (rNc2) — see [7] for details. The rules for



conjunction formulas model the parallel execution of subformulas as described in [12]:
subformulas are allowed to perform independent silent transitions (rCn2 and rCn3)
but transition together for external actions, depending on their individual transitions
(rCn1). Finally, rStr allows us to abstract over structurally equivalent formulas. We
write ϕ

γ
=⇒ ψ in lieu of ϕ(

τ
−−→)∗

γ
−−→ (

τ
−−→)∗ψ. We let t ∈ Act∗ range over lists of visible

actions and write ϕ
t

=⇒ ψ to denote ϕ
α1

==⇒ . . .
αn

==⇒ ψ where t = α1 . . . αn.

Example 2. Recall property ϕ from (1) of Ex. 1. Using the semantics of Fig. 2, we can
express an execution leading to a violation detection for the action sequence below as:

ϕ
i?{inc,5,h}

========⇒
(
( [ j.h!{res, 5 + 1}]ϕ) & ( [ .h!err] ff)

)
(using rules rMax and rNc1, where mtch(i?{inc, x, y}, i?{inc, 5, h}) = {x 7→ 5, y 7→ h})

j.h!{res,6}
=========⇒ ϕ

i?{inc,3,h′}
=========⇒

(
( [ j.h′!{res, 3 + 1}]ϕ) & ( [ .h′!err] ff)

) k .h′!err
=======⇒ ff �

The derivative semantics corresponds to the violation semantics of [12]: actor A with
trace t violates ϕ, assertion (A, t) �v ϕ, iff ϕ transitions to ff along t and A can generate t.

Theorem 1 (Semantic Correspondence). (A, t) �v ϕ iff (ϕ
t

=⇒ ff and A
t

=⇒)

3 Designing Runtime Adaptation Mechanisms

(Erlang) actor systems, such as those monitored for by detectEr, provide natural units
of adaptations in terms of the individual actors themselves. We identify two classes of
adaptation actions, namely asynchronous adaptations, aA(w), and synchronous adapta-
tions, sA(w): they both take a list of actor references as argument — w, r ∈

(
Pid∪Var

)∗.
In particular, whereas asynchronous adaptations may be administered on the resp. ac-
tors while they are executing, the synchronous ones require the adaptees’ execution
to be suspended for the adaptation to function correctly. Examples of asynchronous
adaptations include actor (i.e., process [3]) killing and actor linking/unlinking; both ex-
amples are native (and atomic) commands offered by the host language [3]. We have
implemented additional adaptation actions that require a more complex sequence of
operations, such as a purge action (it empties the messages contained in the actor’s
mailbox), and a restart action (it restarts the actor execution, emptying its mailbox and
refreshing its internal state, while preserving its unique identifier); these constitute ex-
amples of synchronous adaptations that require the suspension of the resp. actor.

Synchronous adaptations require a mechanism for gradually suspending the actor
executions of interest while a property is being monitored for, so that actors are in the
required status when the adaptation is administered. There are many ways how one can
program incremental synchronisations between the system and the monitor. We chose
to piggyback on the specification scripts presented in Sec. 2 and extend necessity for-
mulas with a synchronisation modality, [e] ρ ϕ, where ρ ranges over either b (blocking),
stating that the subject of the action (i.e., an actor) is suspended if the action is matched
by pattern e, or a (asynchronous), stating that the action subject is allowed to continue



executing asynchronously when the pattern e is matched. We recall that if the necessity
formula [e]ϕ mismatches with a trace action, its observation terminates (see rNc2 in
Fig. 2); in our case this would also mean that the synchronous adaptation contained in
the continuation, ϕ (for which we have been incrementally blocking actor executions)
are never administered. In such cases, we provide a mechanism for releasing the actors
blocked thus far: necessity formulas are further extended with a list of actor references,
r, that denote the (blocked) actors to be released in case the necessity pattern e mis-
matches, [e] ρr ϕ. Since adaptations in a script may be followed by further observations,
we also require a similar release mechanism for adaptation actions, aA(w)r and sA(w)r ,
where the actor list r is unblocked after the adaptation is administered to the actors w.

Remark 1. Although minimally intrusive, the expressivity of our mechanism for incre-
mental synchronisation relies on what system actions can be observed (i.e., the level
of abstraction the system is monitored at). For instance, recall the system depicted in
Fig. 1. If monitored from an external viewpoint, the communications sent from the in-
terface actor, i, to the backend actors, j and h, are not visible (according to [12], they
are seen as internal τ-actions). However, for observations required by properties such
as (2), we would need to block actor i only after it sends a message to either of the
backend actors—otherwise the entire system blocks. This requires observing the sys-
tem at a lower level of abstraction, where certain τ-actions are converted into visible
ones e.g., the instrumentation used by detectEr allows us to observe internal actions
such as function calls or internal messages sent between actors as discussed for Fig. 1.
See [7] for more examples of this.

Example 3. The script extensions discussed in this section allow us to augment the
adaptation script outlined in (2) from Ex. 1 as follows:

ϕ′
def
= max Y. [i?{inc, x, y}] a

ε

[tau(i, , {inc, x, y})] b
ε

(
( [ j.y!{res, x + 1}] a

ε Y) &
( [z .y!err] b

i restr(i)ε prg(z)i,z Y)

)
(3)

After asynchronously observing action i ?{inc, v, h} (for some v, h pattern matched to x
and y resp.), the monitor synchronously listens (modality b) for an internal communica-
tion action from i to some actor with this data, {inc, v, h}, action [tau(i, , {inc, x, y})] b

ε .
If this action is observed, the subject of the action, i.e., actor i, is blocked. If the subse-
quent action observed is an error reply, z .h!err (from an actor bound to z at runtime),
we block actor z (again, note modality b) and start the synchronous adaptation actions,
restr(i)ε and prg(z)i;z. Note that the last adaptation action releases the two blocked ac-
tors i and z before recursing; similarly the necessity formula for the error reply releases
the blocked actor i if the resp. action is not matched, [z .y!err] b

i . �

4 A Formal Model for Runtime Adaptation

Fig. 3 describes a semantics for the extended logic with adaptations discussed in Sec. 3.
Apart from the extended necessity and the asynchronous/synchronous adaptation for-
mulas, it uses two additional constructs, blk(r)ϕ and rel(r)ϕ; these are not meant to
be part of the specification scripts but are used as part of the runtime syntax. Since the



Extended Logic Syntax with Adaptations and Synchronisations

ϕ, ψ ∈ Frm ::= . . . | [e] ρw ϕ | aA(r)wϕ | sA(r)wϕ | blk(r)ϕ | rel(r)ϕ

Monitor Transition Rules

rNc1
mtch(e, α) = σ subj(α) = i

[e] b
r ϕ

α
−−→ blk(i) (ϕσ)

rNc2
mtch(e, α) = σ

[e] a
r ϕ

α
−−→ ϕσ

rNc3
mtch(e, α) = ⊥

[e] ρr ϕ
α
−−→ rel(r) tt

rAdA
aA(w)rϕ

a(w)
−−−−→ rel(r)ϕ

rAdS
sA(w)rϕ

s(w)
−−−−→ rel(r)ϕ

rRel
rel(r)ϕ

r(r)
−−−→ ϕ

rBlk
blk(r)ϕ

b(r)
−−−→ ϕ

rCn4
ϕ

µ
−−→ ϕ′

ϕ&ψ
µ
−−→ ϕ′ &ψ

System Transition Rules

sNew
s

τ
−→ s, i :◦

sAct
subj(α) = i ids(α) ⊆ dom(s)

s, i :◦
α
−−→ s, i :◦

sAdA
w ⊆ dom(s)

s
a(w)
−−−−→ s

sBlk
s,w :◦

b(w)
−−−−→ s,w :•

sRel
s,w :•

r(w)
−−−→ s,w :◦

sAdS
s,w :•

s(w)
−−−−→ s,w :•

Instrumentation Transition Rules

iAda
ϕ

µ
−−→ ϕ′ s

µ
−−→ s′

s . ϕ
τ
−→ s′ . ϕ′

iTrm
ϕ 6

µ
−−→ s

α
−−→ s′ ϕ 6

α
−−→ ϕ 6

τ
−→

s . ϕ
α
−−→ s′ . tt

iAct
ϕ 6

µ
−−→ s

α
−−→ s′ ϕ

α
−−→ ϕ′

s . ϕ
α
−−→ s′ . ϕ′

iSys s
τ
−→ s

s . ϕ
τ
−→ s′ . ϕ

iMon
ϕ

τ
−→ ϕ′

s . ϕ
τ
−→ s . ϕ′

Fig. 3. A Runtime Semantics for Instrumented Properties with Adaptations

extended logic affects the system being monitored through adaptations and synchroni-
sations, the operational semantics is given in terms of configurations, s . ϕ. In addition
to closed formulas, configurations include the monitored system represented abstractly
as a partial map, s :: Pid⇀ {•, ◦}, describing whether an actor (through its unique iden-
tifier) is currently blocked (suspended), •, or executing, ◦. We occasionally write w : •
to denote the list of mappings i1 :•, . . . , in :• where w = i1, . . . , in (similarly for w :◦).

To describe adaptation interactions between the monitor and the system, the LTS
semantics of Fig. 3 employs four additional labels, ranged over by the variable µ. These
include the asynchronous and synchronous adaptation labels, a(w) and s(w), to denote
resp. that an asynchronous and synchronous action affecting actors w has been executed.
They also include a blocking action, b(w), and an unblocking (release) action, r(w),
affecting the execution of actors with identifiers in the list w.



The semantics is defined in terms of three LTSs: one for logical formulas (monitors),
one for systems, and one for configurations, which is based on the other two LTSs. The
LTS semantics for formulas extends the rules in Fig. 2 with the exception of those for the
necessity formulas, which are replaced by rules rNc1, rNc2 and rNc3. Whereas rNc2
follows the same format as that of rNc1 from Fig. 2, the rule for synchronous necessity
formulas, rNc1, transitions into a blocking construct, blk(i)ϕ, for the subject of the
action, i, in case a pattern match is successful. In case of mismatch, rNc3 transitions
the necessity formula to a release construct, rel(r)ϕ, with the specified release list of
actors, r. Asynchronous and synchronous adaptation formulas transition with the resp.
labels to a release construct as well (rules rAdA and rAdS), as do block and release
constructs (rules rRel and rBlk). Finally, rule rCn4 allows monitor actions affecting
the system, µ, to be carried out under a conjunction formula, independent of the other
branch; we elide the obvious symmetric rule rCn5.

The system transition rules allow further actor spawning (sNew) but restrict actions
to those whose subject is currently active, i.e., unblocked i : ◦ (sAct). Whereas asyn-
chronous adaptations can be applied to any actor list, irrespective of their status (sAdA),
synchronous ones require the adaptees to be blocked (sAdS). Finally rules sBlk and
sRel model the resp. actor status transitioning from active to blocked (and viceversa).

The instrumentation rules for configurations describe how system (visible) actions,
α, affect the monitors and, dually, how the monitor adaptation and synchronisation ac-
tions, µ, affect the system. For instance, if the monitor instigates action µ and the system
allows it, they both transition together as a silent move (iAda). Dually, if the system gen-
erates action α and the monitor can observe it, they also transition in unison (iAct); if
the monitor cannot observe this action (iTrm), it terminates as formula tt. Note that
both rules iAct and iTrm require the monitor not to be in a position to perform an
adaptation/synchronisation action, i.e., premise ϕ 6

µ
−−→; this gives precedence to monitor

actions over system ones in our instrumentation. Rules iSys and iMon allow systems
and monitors to transition independently wrt. τ-actions.

Example 4. Recall the adaptation formula ϕ′ defined in (3) of Ex. 3. For the system
s = (i :◦, j :◦, k :◦, h :◦) we can model the runtime execution with adaptations:

s . ϕ′
i?{inc,1,h}

========⇒ ·
tau(i,k,{inc,1,h})

=============⇒ s . blk(i)
(
[ j.h!{res, 2}] a

ε ϕ
′ &

[z .h!err] b
i restr(i)ε prg(z)i,z ϕ

′

)
(4)

τ
−−→

(
( j, h, k) :◦, i :•

)
.
(
[ j.h!{res, 2}] a

ε ϕ
′ & [z .h!err] b

i restr(i)εprg(z)i,zϕ
′
)

(5)
k .h!err
−−−−−−−→

(
( j, h, k) :◦, i :•

)
. blk(k) restr(i)ε prg(k)i,k ϕ

′ (6)
τ
−−→

(
( j, h) :◦, i :•, k :•

)
. restr(i)ε prg(k)i,k ϕ

′ (7)
τ

=⇒
(
( j, h) :◦, i :•, k :•

)
. rel(i, k)ϕ′

τ
−−→ s . ϕ′ (8)

In particular, the synchronous pattern-matches in (4) and (6) yield the runtime actor
blocking constructs, that are applied (incrementally) in (5) and (7). This allows the syn-
chronous adaptations in (8) to proceed, followed by the unblocking of the resp. actors.
Erroneous blocking directives result in stuck synchronous adaptations (see sAdS). For
instance, if we change the first blocking necessity in ϕ′ of (3) to an asynchronous one,



[tau(i, , {inc, x, y})] a
ε , it yields the execution below (ϕ′′ is the erroneous formula):

s . ϕ′′
i?{inc,1,h}

========⇒ ·
tau(i,k,{inc,1,h})

=============⇒ ·
k .h!err

=======⇒
(
(i, j, h) :◦, k :•

)
. restr(i)ε prg(k)i,k ϕ

′′

The final configuration is stuck because the synchronous adaptation on i cannot be
carried out since i is not blocked. A similar situation is reached if a blocked actor is
released prematurely. For instance, if we erroneously change the release list of the
necessity subformula [ j.y!{res, x + 1}] a

ε Y from ε to i, this releases i upon mismatch,
interfering with adaptation actions along the other branch of the conjunction. �

The semantics of Fig. 3 allows us to formalise configurations in an erroneous state,
i.e., when a monitor wants to apply synchronous adaptations that the system prohibits.

Definition 1. error(s . ϕ) def
= ϕ

s(w)
−−−−→ and s 6

s(w)
−−−−→ for some w ∈ dom(s)

5 Static Type Checking

Synchronisation errors in adaptation-scripts, such as those outlined in Ex. 4 can be hard
to detect by the specifier. We therefore develop a type system with the aim of assisting
script construction, by filtering out the errors defined in Def. 1. It relies on the type
structure defined in Fig. 4 where values are partitioned into either generic data, dat, or
actor identifiers; identifiers are further divided into unrestricted, uid, and linear, lid. The
type system is substructural [22], using linear types to statically track how the actor
identifiers used for adaptations are blocked and released by the parallel branches (i.e.,
conjunctions) of the resp. script. In fact, type checking (internally) uses a sub-category
for linear identifier types, lbid, to denote a blocked linear identifier. Type checking works
on typed scripts, where the syntax of Fig. 3 is extended so that the binding variables used
in action patterns are annotated by the types dat, uid or lid.

Example 5. The adaptation-script (4) of Ex. 3 would be annotated as follows:

ϕ′
def
= max Y. [i?{inc, x :dat, y :uid}] a

ε

[tau(i, , {inc, x, y})] b
ε

(
( [ j.y!{res, x + 1}] a

ε Y) &
( [z : lid .y!err] b

i restr(i)ε prg(z)i,z Y)

)
(9)

In (9) above, pattern variables x, y and z are associated to types dat, uid and lid resp. �

Our type system for (typed) adaptation-scripts is defined as the least relation satis-
fying the rules in Fig. 4. Type judgements take the form Σ;Γ `ϕ where

– Value environments, Γ ∈ Env :: (Pid ∪ Var) ⇀ Typ, map identifiers or variables to
types — we let meta-variable l ∈ (Pid ∪ Var) range over identifiers and variables;

– Formula environments, Σ ∈ LVar⇀ Env, map formula variables to value environ-
ments — they are used to analyse recursive formulas (see rules tMax and tVar).

We sometimes write Γ ` ϕ in place of ∅;Γ ` ϕ. The rules in Fig. 4 assume standard
environment extensions, (Γ, Γ′), and use environment splitting, Γ1 + Γ2, to distribute
linearly mappings amongst two environment (see rules sU and sL in Fig. 4 — we elide



Type Structure and Type Environment Splitting

T,U ∈ Typ ::= dat (generic) | uid (unrestricted) | lid (linear) | lbid (blocked)

sE
∅ + ∅ = ∅

sU
Γ1 + Γ2 = Γ3 T ∈ {dat, uid}

(Γ1, l :T) + (Γ2, l :T) = (Γ3, l :T)
sL

Γ1 + Γ2 = Γ3 T ∈ {lid, lbid}
(Γ1, l :T) + Γ2 = (Γ3, l :T)

Adaptation-Script Typing Rules

tNcA
Σ; (Γ, bnd(e))`ϕ Σ;Γ ` rel(r) tt

Σ;Γ ` [e] a
r ϕ

tFls
Σ;Γ ` ff

tTru
Σ;Γ ` tt

tNcB
subj(e)= l Σ; (Γ, bnd(e))`blk(l)ϕ Σ;Γ ` rel(r) tt

Σ;Γ ` [e] b
r ϕ

tIf
Σ;Γ `ϕ Σ;Γ `ψ

Σ;Γ ` if b thenϕ elseψ

tBlk
Γ = Γ′,w : lid Σ; (Γ′,w : lbid)`ϕ

Σ;Γ `blk(w)ϕ
tRel

Γ = Γ′,w : lbid Σ; (Γ′,w : lid)`ϕ
Σ;Γ ` rel(w)ϕ

tAdA
Γ = Γ′,w : lid Σ;Γ ` rel(r)ϕ

Σ;Γ `aA(w)r ϕ
tAdS

Γ = Γ′,w : lbid Σ;Γ ` rel(r)ϕ
Σ;Γ `sA(w)r ϕ

tCn1
excl(ϕ, ψ) = ⊥ Σ;Γ1 `ϕ Σ;Γ2 `ψ

Σ; (Γ1 + Γ2)`ϕ&ψ
tMax

(Σ, X 7→ Γ);Γ `ϕ
Σ;Γ `max X. ϕ

tCn2
excl(ϕ, ψ) = 〈rϕ, rψ〉 Σ; eff(Γ, rψ)`ϕ Σ; eff(Γ, rϕ)`ψ

Σ;Γ `ϕ&ψ
tVar

Σ(X) ⊆ Γ
Σ;Γ `X

Fig. 4. A Type System for Adaptation sHML scripts

the symmetric rule sR). Similar to before, we write w :T to denote the list of mappings
l1 :T, . . . , ln :T where w = l1, . . . , ln. In addition to subj(e), the typing rules use another
auxiliary function on patterns that extracts a map of type bindings, bnd(e). For instance,
from Ex. 5, we have bnd(i?{inc, x :dat, y :uid}) = x :dat, y :uid.

The typing rules for asynchronous and blocking necessities are similar: tNcA ex-
tends the environment Γ with the bindings introduced by the pattern e to check that
the continuation formula typechecks, Σ; (Γ, bnd(e))`ϕ; it also checks that the resultant
actor releases (in case of action mismatch) also typecheck, Σ;Γ ` rel(r) tt. Rule tNcB
performs similar checks, but the continuation formula typechecking is prefixed by the
blocking of the subject of the pattern, Σ; (Γ, bnd(e))`blk(l)ϕ. Typing for actor blocking
and releasing changes the respective bindings from lid to lbid (and vice-versa) to type-
check the continuations, rules tBlk and tRel. Typechecking asynchronous adaptations
requires the adaptees to be linearly typed, rule tAdA, whereas synchronous adaptations
require adaptees to be linearly blocked, rule tAdS; in both cases, they consider the resp.
released actors when typechecking the continuations, Σ;Γ ` rel(r)ϕ.



We have two rules for typechecking conjunction formulas. Since conjunction sub-
formulas may be executing in parallel (recall rules rCn1, rCn2, rCn3 and rCn4 from
Fig. 2 and Fig. 3) rule tCn1, typechecks each subformula wrt. a split value environ-
ment, Γ1 + Γ2, as is standard in linear type systems. Unfortunately, this turns out to be
too coarse of an analysis and rejects useful adaptation-scripts such as (9) from Ex. 5.

Example 6. The conjunction formula used in (9) from Ex. 5 has the form:

( [ j.y!{res, x + 1}] a
ε Y) & ( [z : lid .y!err] b

i restr(i)ε prg(z)i,z Y)

where the subformulas are necessity formulas with mutually exclusive patterns i.e., there
is no action satisfying both patterns j.y!{res, x + 1} and z : lid .y!err. In such cases,
a conjunction formula operates more like an external choice construct rather than a
parallel composition [20], where only one branch continues monitoring. �

In order to refine our analysis, we define an approximating function excl(ϕ, ψ) that
syntactically analyses subformulas to determine whether they are mutually exclusive or
not. When this can be determined statically, it means that only one branch will continue,
whereas the other will terminate, releasing the actors specified by the resp. necessity
formulas (recall rNc3 from 3). Accordingly, excl(ϕ, ψ) denotes that mutual exclusion
can be determined by returning a tuple consisting of two release sets, 〈rϕ, rψ〉 containing
the actors released by the resp. subformulas when an action is mismatched. Rule tCn2
then typechecks each subformula wrt. the entire environment Γ, adjusted to take into
consideration the actors release by the other (defunct) branch, e.g., Σ; eff(Γ, rψ) ` ϕ.
When this cannot be determined, i.e., excl(ϕ, ψ) = ⊥, rule tCn1 is used.

The rest of the typing rules are standard. E.g., rule tIf approximates the analysis of
the boolean condition and requires typechecking to hold for both branches.

Example 7. We can typecheck (9) wrt. Γ = i : lid, j : uid. The typesystem also rejects
erroneous scripts discussed earlier. E.g., for any environment, we cannot typecheck
the erroneous script ϕ′′ from Ex. 4 — with the necessary type annotations as in (9).
Similarly, we cannot typecheck the script below (mentioned earlier in Ex. 4).

ϕ′′′
def
= max Y. [i?{inc, x :dat, y :uid}] a

ε

[tau(i, , {inc, x, y})] b
ε

(
( [ j.y!{res, x + 1}] a

i Y) &
( [z : lid .y!err] b

i restr(i)ε prg(z)i,z Y)

)
ϕ′′′ differs from (9) only wrt. the necessity subformula [ j.y!{res, x + 1}] a

i Y , which re-
leases i when it mismatches an action. As discussed in Ex. 4, this results in a premature
release of actor i, which interferes with the synchronous adaptation restr(i)ε along the
other branch. However, rule tCn2 detects this interference. �

6 Dynamic Analysis of Typed Scripts

The typed adaptation-scripts of Sec. 5 need to execute wrt. the systems described in
Sec. 4. Crucially, however, we cannot expect that a monitored system observes the type
discipline assumed by the script. This, in turn, may create type incompatibilities that
need to be detected and handled at runtime by the monitor.



Example 8. Recall the typed script (9) from Ex. 5. There are two classes of type incom-
patibilities that may arise during runtime monitoring:

– When listening for a pattern, e.g., i?{inc, x : dat, y : uid}, the system may generate
the action i?{inc, 5, 6}; matching the two would incorrectly map the identifier vari-
able y (of type uid) to the data value 6; we call this a type mismatch incompatibility.

– When listening for pattern z : lid . y!err, the system may generate a matching
action i . h!err mapping variable z to i. Aliasing z with i violates the linearity
assumption associated with z, lid, which assumes it to be distinct from any other
identifier mentioned in the script [22]; we call this an aliasing incompatibility.

A system that is typed wrt. the same type environment that (9) is typechecked with (e.g.,
Γ = i : lid, j :uid from Ex. 7) would not generate any of the incompatibilities above. �

In the absence of system typing, our monitors need to perform dynamic type checks
(at runtime) and abort monitoring as soon as a type incompatibility is detected: any
violations to the type discipline assumed by the script potentially renders unsafe any
adaptations specified, and should thus not be administered on the system. In order to
perform dynamic type checks, the operational semantics of typed scripts is defined wrt.
the type environment with which they are typechecked — together with the type anno-
tations included for binding (value) variables in the necessity patterns, it captures the
(type) assumptions the script makes on the system being monitored.

Example 9. The execution of the typed script (9) would use the type environment Γ =

i : lid, j :uid from Ex. 5 to determine that an action such as i?{inc, 5, i} cannot be matched
with pattern i?{inc, x :dat, y :uid}, as this would lead to a type mismatch between y :uid
and the resulting map to i : lid (note the mismatching types). Conversely, matching pat-
tern i?{inc, x : dat, y : uid} with action i?{inc, 5, h} would not only constitute a valid
match, but also allow monitoring to extend the assumed knowledge of the system from
Γ to Γ′ = (Γ, h :uid), where h is associated to the type of the matched pattern variable y.
The extended environment Γ′ would then allow the monitor to detect a type mismatch
between pattern z : lid .h!err and action h .h!err. Importantly however, it also allows
the monitor to also detect an aliasing violation between the same pattern and action
i .h!err — variable z cannot be mapped to i, since i ∈ dom(Γ′). It would however
allow z : lid .h!err to be matched to action k .h!err, which would (again) extend the
current type environment to (Γ′, k : lid) using the script type association z : lid. �

Although safe, the mechanism discussed in Ex. 9 turns out to be rather restrictive
for recursive properties (using maximal fixpoints). Note that, by alpha-conversion, the
variable bindings made by a necessity formula under a fixpoint formula is different for
every unfolding of that fixpoint formula: e.g., unfolding script (9) twice yields

[i?{inc, x :dat, y :uid}] a
ε

(
. . . [z : lid .y!err] b

i . . .

(
[i?{inc, x′ :dat, y′ :uid}] a

ε

(. . . [z′ : lid .y!err] b
i . . . ϕ′)

))
where the outer bindings x, y, z are distinct from the inner bindings x′, y′, z′. More im-
portantly, however, the scope of these bindings extends until the next fixpoint unfolding,
and are not used again beyond that point, e.g., x, y, z above are not used beyond the resp.



rMax
〈Γ, ∆, max X. ϕ〉

τ
−→ 〈Γ, ∆, ϕ[

(
clr(X)max X. ϕ

)
/X]〉

rClr
〈Γ, ∆, clr(X)ϕ〉

τ
−→ 〈Γ,

{
i :κ

∣∣∣ i :κ ∈ ∆ ∧ X < κ
}
, ϕ〉

rNc1

mtch(e, α) = σ subj(α) = i Γ′ = bnd(e)σ
|lin(Γ′)| = |lin(bnd(e))| dom(∆) ∩ dom(Γ′) = ∅

〈Γ, ∆, [eκ] b
w ϕ〉

α
−−→ 〈

(
Γ, Γ′

)
,
(
∆ ∪

{
i :κ

∣∣∣ Γ′(i)= lid
})
, blk(i)ϕσ〉

rNc2
mtch(e, α) =σ Γ′ = bnd(e)σ |lin(Γ′)| = |lin(bnd(e))| dom(∆) ∩ dom(Γ′)=∅

〈Γ, ∆, [eκ] a
w ϕ〉

α
−−→ 〈

(
Γ, Γ′

)
,
(
∆ ∪

{
i :κ

∣∣∣ Γ′(i)= lid
})
, ϕσ〉

rCn1
〈Γ, ∆, ϕ〉

α
−−→〈Γ′, ∆′, ϕ′〉 〈Γ, ∆, ψ〉

α
−−→〈Γ′′, ∆′′, ψ′〉 dom(∆)=

(
dom(∆′)∩dom(∆′′)

)
〈Γ, ∆, ϕ&ψ〉

α
−−→ 〈(Γ′, Γ′′), ∆′∪∆′′, ϕ′ &ψ′〉

Fig. 5. Dynamically Typed Adaptation-Script Rules (main rules)

adaptations of the first unfolding. Thus, one possible method for allowing a finer dy-
namic analysis for adaptation-scripts, esp. relating to linearity and aliasing violations, is
to employ a mechanism that keeps track of which bindings are still in use. In the exam-
ple above, this would allow us to bind k twice — once with z during the first iteration,
and another time with z′ — safe in the knowledge that by the time the second binding
occurs (z′), the first binding (z) is not in use anymore, i.e., there is no aliasing.

To implement this mechanism, our formalisation uses three additional components.
First, the operational semantics for adaptation-scripts uses an extra environment, ∆ ∈
Pid ⇀ P(LVar), keeping track of the recursion variables under which an identifier
binding is introduced by associating that identifier to a set of formula variables, κ ∈
P(LVar). Environment ∆ keeps track of the linear identifiers that are currently in use.
Second, to facilitate updates to environment ∆, the patterns in necessity formulas are
decorated by sets of formula variables, denoting their resp. recursion scope: e.g., for-
mula max X. [e] ρr . . .max Y. [e′] ρ

′

w ff is decorated3 as max X. [e{X}]
ρ
r . . .max Y. [e′

{X,Y}]
ρ′

w ff.
Third, the runtime syntax uses an additional construct, clr(X)ϕ, when unfolding a recur-
sive formula: the new runtime construct demarcates the end of an unfolding and, upon
execution, removes all identifier entries in ∆with X in their resp. set of formula variables
so as to record that they are not in use anymore.

Fig. 5 describes the main transition rules for typed adaptation-scripts, defined over
triples 〈Γ, ∆, ϕ〉. Together with the system and instrumentation rules of Fig. 3 (adapted
to triples 〈Γ, ∆, ϕ〉), they form the complete operational semantics. By contrast to the
rule in Fig. 2, rMax in Fig. 5 unfolds a recursive formula to one prefixed by a clear con-
struct, clr(X)max X. ϕ. Rule rClr removes all entries in ∆ containing X. The new version
of rNc1 in Fig. 5 implicitly checks for type mismatch incompatibilities by requiring that

3 Decoration is easily performed through a linear scan of the script.



the environment extension,
(
Γ, Γ′

)
, is still a map — conflicting entries e.g., i : uid, i : lid

would violate this condition. It also checks that the new bindings, dom(Γ′) are distinct
from the linear identifiers currently in use, dom(∆), as these constitute aliasing incom-
patibilities, and that pattern matching does not introduce aliasing for linear variables
itself, i.e., |lin(Γ′)| = |lin(bnd(e))|. Finally, it transitions by updating ∆ accordingly. Rule
rNc2 is analogous. Rule rCn1 performs similar checks e.g., it ensures that linear alias-
ing introduced along separate branches do not overlap, dom(∆) =

(
dom(∆′)∩dom(∆′′)

)
.

If any of the conditions for rNc1, rNc2 and rCn1 are not satisfied, the adaptation-script
blocks and is terminated in an instrumented setup using rule iTrm from Fig. 3, i.e., it
aborts as soon as type incompatibilities are detected.

Using a straightforward extension of Def. 1, we prove type soundness wrt. the dy-
namic semantics of typed adaptation-scripts: configurations with typed scripts (and ini-
tial ∆) never transition to an erroneous configuration (for any trace t).

Theorem 2 (Type Soudness). Whenever Γ `ϕ then, for initial ∆init = {i :∅ | Γ(i)= lid}:

s . 〈Γ, ∆init, ϕ〉
t

=⇒ s′ . 〈Γ′, ∆′, ϕ′〉 implies ¬error(s′ . 〈Γ′, ∆′, ϕ′〉)

7 Conclusion

We have designed language extensions for an RV tool monitoring actor systems, cf.
Sec. 3. These extensions weave synchronisation and adaptation directives over be-
havioural specifications expressed in the tool logic. We then formalised the resp. be-
haviour of these new constructs (Fig. 3 and Fig. 5). Through the formalisation, we also
identified execution errors that may be introduced by the synchronisation and adapta-
tion directives. Subsequently, we defined a type system for assisting the construction
of such adaptation-scripts, Sec. 5, and proved soundness properties for it, Thm. 2. We
conjecture that our techniques and methodologies are generic enough to be applied, at
least in part, to other RA extensions of existing RV logics and tools.

Related Work: Perhaps the closest work to ours is [26], where an extension to the logic
LTL called A-LTL is developed so as to describe properties of self-adaptive systems. In
[13] the authors also implement an RV tool that checks for these adaptation properties
at runtime. A crucial difference between this work and ours is that in [26, 13] systems
are assumed to be self-adaptive already; by contrast, we take (normal) systems and
introduce degrees of adaptation through monitoring. We also spend substantial effort
contending with the specific issue of partial monitor synchronisation in the context of
inherently asynchronous (actor) systems.

In [4], the authors explore an interplay between static and dynamic typechecking in
a message passing setting through monitoring. This framework of synthesising moni-
tors from (session) types is further extended in [8] to carry out degrees of adaptations
for security purposes. No type checking is carried out on the synthesised monitors in
either of these works. Runtime Adaptation through monitoring are also explored in [23,
19] for C programs to attain “failure-oblivious computing” that can adapt to errors such
as null-dereferencing through a technique called reverse shepherding. Again, no static
analysis is performed on the monitors themselves. Finally, in [6, 5], the authors extend



Aspect-J with dependent advices, and subsequently perform static analysis on these RV
scripts (using typestates) in order to determine optimisations in monitor instrumenta-
tions. However, the static analysis does not consider aspects relating to monitor safety.

References
1. L. Aceto and A. Ingólfsdóttir. Testing hennessy-milner logic with recursion. In FoSSaCS,

volume 1578 of LNCS, pages 41–55. Springer, 1999.
2. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,

Cambridge, MA, USA, 1986.
3. J. Armstrong. Programming Erlang. The Pragmatic Bookshelf, 2007.
4. L. Bocchi, T.-C. Chen, R. Demangeon, K. Honda, and N. Yoshida. Monitoring networks

through multiparty session types. In FORTE, volume 7892 of LNCS, pages 50–65, 2013.
5. E. Bodden. Efficient hybrid typestate analysis by determining continuation-equivalent states.

ICSE, pages 5–14. ACM, 2010.
6. E. Bodden and P. Lam. Clara: Partially evaluating runtime monitors at compile time. In RV,

volume 6418 of LNCS, pages 74–88. Springer, 2010.
7. I. Cassar and A. Francalanza. On synchronous and asynchronous monitor instrumentation

for actor-based systems. In FOCLASA, volume 175, pages 54–68, 2014.
8. I. Castellani, M. Dezani-Ciancaglini, and J. A. Pérez. Self-adaptation and secure information

flow in multiparty structured commun.: A unified perspective. In BEAT, pages 9–18, 2014.
9. F. Cesarini and S. Thompson. ERLANG Programming. O’Reilly, 1st edition, 2009.

10. C. Colombo, A. Francalanza, and R. Gatt. Elarva: A monitoring tool for erlang. In RV,
volume 7186 of LNCS, pages 370–374. Springer, 2011.

11. Y. Falcone, M. Jaber, T.-H. Nguyen, M. Bozga, and S. Bensalem. Runtime verification of
component-based systems. In SEFM, volume 7041 of LNCS, pages 204–220. Springer, 2011.

12. A. Francalanza and A. Seychell. Synthesising Correct concurrent Runtime Monitors. Formal
Methods in System Design (FMSD), pages 1–36, 2014.

13. H. Goldsby, B. Cheng, and J. Zhang. AMOEBA-RT: Run-time verification of adaptive soft-
ware. In MSE, volume 5002 of LNCS, pages 212–224. Springer, 2008.

14. P. Haller and F. Sommers. Actors in Scala. Artima Inc., USA, 2012.
15. F. Irmert, T. Fischer, and K. Meyer-Wegener. Runtime adaptation in a service-oriented com-

ponent model. SEAMS, pages 97–104. ACM, 2008.
16. M. A. Kalareh. Evolving Software Systems for Self-Adaptation. PhD thesis, University of

Waterloo, Ontario, Canada, 2012.
17. S. Kell. A survey of pract. software adaptation techniques. J. UCS, 14:2110–2157, 2008.
18. D. Kozen. Results on the propositional µ-calculus. TCS, 27:333–354, 1983.
19. F. Long, S. Sidiroglou-Douskos, and M. Rinard. Automatic runtime error repair and con-

tainment via recovery shepherding. SIGPLAN Not., 49:227–238.
20. R. Milner. Communication and concurrency. Prentice-Hall, Inc., 1989.
21. P. Oreizy, N. Medvidovic, and R. N. Taylor. Runtime software adaptation: Framework, ap-

proaches, and styles. ICSE Companion, pages 899–910. ACM, 2008.
22. B. C. Pierce, editor. Advanced Topics in Types and Prog. Languages. MIT Press, 2005.
23. M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and W. Beebee. Enhancing Availability

& Security through Failure-oblivious Computing. OSDI, pages 303–316. USENIX, 2004.
24. G. Roşu and K. Havelund. Rewriting-based techniques for runtime verification. Automated

Software Eng., 12:151–197, 2005.
25. K. Sen, A. Vardhan, G. Agha, and G. Roşu. Efficient decentralized monitoring of safety in

distributed systems. ICSE, pages 418–427, 2004.
26. J. Zhang and B. H. Cheng. Using temporal logic to specify adaptive program semantics. JSS,

79:1361 – 1369, 2006.


