
Comparing Controlled System Synthesis
and Suppression Enforcement

Luca Aceto1,2, Ian Cassar2,3(B), Adrian Francalanza3, and Anna Ingólfsdóttir2

1 Gran Sasso Science Institute, L’Aquila, Italy
2 School of Computer Science, Reykjav́ık University, Reykjav́ık, Iceland
3 Department of Computer Science, University of Malta, Msida, Malta

ian.cassar.10@um.edu.mt

Abstract. Runtime enforcement and control system synthesis are two
verification techniques that automate the process of transforming an
erroneous system into a valid one. As both techniques can modify the
behaviour of a system to prevent erroneous executions, they are both
ideal for ensuring safety. In this paper, we investigate the interplay
between these two techniques and identify control system synthesis as
being the static counterpart to suppression-based runtime enforcement,
in the context of safety properties.

1 Introduction

Our increasing reliance on software systems is inherently raising the demand
for ensuring their reliability and correctness. Several verification techniques help
facilitate this task by automating the process of deducing whether the system
under scrutiny (SuS) satisfies a predefined set of correctness properties. Prop-
erties are either verified pre-deployment (statically), as in the case of model
checking (MC) [7,12], or post-deployment (dynamically), as per runtime verifica-
tion (RV) [11,20,27]. In both cases, any error discovered during the verification
serves as guidance for identifying the invalid parts of the system that require
adjustment.

Other techniques, such as runtime enforcement (RE), additionally attempt
to automatically transform the invalid system into a valid one. Runtime enforce-
ment [5,15,26,28] adopts an intrusive monitoring approach by which every
observable action executed by the SuS is scrutinized and modified as necessary
by a monitor at runtime. Monitors in RE may be described in various ways, such
as: transducers [5,8,32], shields [26] and security automata [17,28,34]. They may
opt to replace the invalid actions by valid ones, or completely suppress them,

This work was partly supported by the projects “TheoFoMon: Theoretical Foundations
for Monitorability” (nr. 163406-051) and “Developing Theoretical Foundations for Run-
time Enforcement” (nr. 184776-051) of the Icelandic Research Fund, by the EU H2020
RISE programme under the Marie Sk!lodowska-Curie grant agreement nr. 778233, and
by the Endeavour Scholarship Scheme (Malta), part-financed by the European Social
Fund (ESF) - Operational Programme II – Cohesion Policy 2014–2020.

c© Springer Nature Switzerland AG 2019
B. Finkbeiner and L. Mariani (Eds.): RV 2019, LNCS 11757, pp. 148–164, 2019.
https://doi.org/10.1007/978-3-030-32079-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32079-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-32079-9_9

Comparing Controlled System Synthesis and Suppression Enforcement 149

thus rendering them immaterial to the environment interacting with the SuS; in
certain cases, monitors can even insert actions that may directly affect the envi-
ronment. Different enforcement strategies are applied depending on the property
that needs to be enforced.

A great deal of effort [4,13,22,23,25] has been made to study the interplay
between static and dynamic techniques, particularly to understand how the two
can be used in unison to minimise their respective weaknesses. It is well estab-
lished that runtime verification is the dynamic counterpart of model checking,
which means that a subset of the properties verifiable using MC can also be ver-
ified dynamically via RV. In fact, multi-pronged verification approaches often
use RV in conjunction with MC. Particularly, MC is used to statically verify
the parts of the SuS which cannot be verified dynamically (e.g., inaccessible
code, performance constraints, etc.), while RV is then used to verify other parts
dynamically in order to minimise the state explosion problem inherent to MC.

It is however unclear as to which technique can be considered as the static
counterpart to runtime enforcement. Identifying such a technique enables the
possibility of adopting a multi-pronged enforcement approach. One possible can-
didate is controlled system synthesis (CSS) [9,14,24,30]: it analyses the state
space of the SuS and reformulates it pre-deployment by removing the system’s
ability to execute erroneous behaviour. As a result, a restricted (yet valid) version
of the SuS is produced; this is known as a controlled system.

The primary aim of both RE and CSS is to force the resulting moni-
tored/controlled system adheres to the respective property − this is known
as soundness in RE and validity in CSS. Further guarantees are also gener-
ally required to ensure minimal disruption to valid systems − this is ensured via
transparency in RE and maximal expressiveness in CSS. As both techniques may
adjust systems by omitting their invalid behaviours, they are ideal for ensuring
safety. These observations, along with other commonalities, hint at the existence
of a relationship between runtime enforcement and controlled system synthesis,
in the context of safety properties.

In this paper we conduct a preliminary investigation on the interplay between
the above mentioned two techniques with the aim of establishing a static coun-
terpart for runtime enforcement. We intend to identify a set of properties that
can be enforced either dynamically, via runtime enforcement, or statically via
controlled system synthesis. In this first attempt, we however limit ourselves to
study this relationship in the context of safety properties. As a vehicle for this
comparison, we choose the recent work on CSS by van Hulst et al. [24], and
compare it to our previous work, presented in [5], on enforcing safety properties
via action suppressions. We chose these two bodies of work as they are accurate
representations of the two techniques. Moreover, they share a number of com-
monalities including their choice of specification language, modelling of systems,
etc. To further simplify our comparison, we formulate both techniques in a core
common setting and show that there are subtle differences between them even in
that scenario. Specifically, we identify a common core within the work presented
in [5,24] by:

150 L. Aceto et al.

– working with respect to the Safe Hennessy Milner Logic with invariance
(sHMLinv), that is, the intersection of the logics used by both works, namely,
the Safe Hennessy Milner Logic with recursion (sHML) in [5] and the Hen-
nessy Milner Logic with invariance and reachability (HMLreach

inv) in [24],
– removing constructs and aspects that are supported by one technique and
not by the other, and by

– taking into account the assumptions considered in both bodies of work.

To our knowledge, no one has yet attempted to identify a static counterpart
to RE, and an insightful comparison of RE and CSS has not yet been conducted.
As part of our main contributions, we thus show that:

(i) The monitored system obtained from instrumenting a suppression monitor
derived from a formula, and the controlled version of the same system (by
the same formula), need not be observationally equivalent, Theorem2.

(ii) In spite of (i) we prove that both of the obtained systems are trace (language)
equivalent, that is, they can execute the same set of traces, Theorem3.

(iii) When restricted to safety properties, controlled system synthesis is the static
counterpart (Definition 3) to runtime enforcement, Theorem4.

Although (i) entails that an external observer can still tell the difference between
these two resultant systems [1], knowing (ii) suffices to deduce (iii) since it is
well known that trace equivalent systems satisfy the exact same set of safety
properties, Theorem1.

Structure of the Paper. Section 2 provides the necessary preliminary material
describing how we model systems as labelled transition systems and properties
via the chosen logic. In Sect. 3 we give an overview of the equalized and simpli-
fied versions of the enforcement model presented in [5] and the controlled system
synthesis rules of [24]. Section 4 then compares the differences and similarities
between the two models, followed by our first contribution which disproves the
observational equivalence of the two techniques. Section 5 then presents our sec-
ond set of contributions consisting of a mapping function that derives enforce-
ment monitors from logic formulas, and the proof that the obtained monitored
and controlled versions of a given system are trace equivalent. This allows us to
establish that controlled system synthesis is the static counterpart to enforce-
ment when it comes to safety properties. Section 6 overviews related work, and
Sect. 7 concludes.

2 Preliminaries

The Model:We assume systems described as labelled transition systems (LTSs),
which are triples 〈Sys,Act∪{τ} ,→〉 defining a set of system states, s, r, q ∈Sys,
a finite set of observable actions, α,β ∈Act, and a distinguished silent action
τ /∈Act, along with a transition relation, −→ ⊆ (Sys×Act∪{τ}×Sys). We let
µ∈Act∪ {τ} and write s µ−−→ r in lieu of (s, µ, r) ∈→. We use s α=⇒ r to denote

Comparing Controlled System Synthesis and Suppression Enforcement 151

Fig. 1. The syntax and semantics for sHML.

weak transitions representing s(τ−→)∗· α−−→ r and refer to r as an α-derivative
of s. Traces t, u ∈ Act∗ range over (finite) sequences of observable actions, and
we write s

t=⇒ r for a sequence of weak transitions s
α1==⇒ . . .

αn==⇒ r where
t = α1, . . . ,αn for some n ≥ 0; when n = 0, t is the empty trace ε and s

ε=⇒ r
means s τ−→*r. For each µ∈Act∪ {τ}, the notation µ̂ stands for ε if µ= τ and
for µ otherwise. We write traces(s) for the set of traces executable from system
state s, that is, t ∈ traces(s) iff s

t=⇒ r for some r. We use the syntax of the
regular fragment of CCS [29] to concisely describe LTSs in our examples. We
also assume the classic notions for trace (language) equivalence and observational
equivalence, that is, weak bisimilarity [29,33].

Definition 1 (Trace Equivalence). Two LTS system states s and r are trace
equivalent iff they produce the same set of traces, i.e., traces(s) = traces(r). +,

Definition 2 (Observational Equivalence). A relation R over a set of sys-
tem states is a weak bisimulation iff whenever (s, r) ∈ R for every action µ, the
following transfer properties are satisfied:

– s
µ−−→ s′ implies there exists a transition r

µ̂=⇒ r′ such that (s′, r′) ∈ R; and
– r

µ−−→ r′ implies there exists a transition s
µ̂=⇒ s′ such that (s′, r′) ∈ R.

Two system states s and r are observationally equivalent, denoted by s ≈ r, iff
there exists a weak bisimulation that relates them. +,

The Logic: The safety logic sHML [6,7] is defined as the set of formulas gener-
ated by the grammar of Fig. 1. It assumes a countably infinite set of logical vari-
ables X,Y ∈LVar and provides the standard constructs of truth, tt, falsehood,
ff, and conjunctions, ϕ∧ψ. As a shorthand, we occasionally denote conjunctions
as

∧
i∈I ϕi, where I is a finite set of indices, and when I = ∅,

∧
i∈∅ ϕi is equivalent

to tt. The logic is also equipped with the necessity (universal) modality, [α]ϕ,
and allows for defining recursive properties using greatest fixpoints, maxX.ϕ,
which bind free occurrences of X in ϕ. We additionally encode the invariance

152 L. Aceto et al.

operator, !ϕ, requiring ϕ to be satisfied by every reachable system state, as the
recursive property, maxX.ϕ ∧

∧
β∈Act[β]X, where X is not free in ϕ.

Formulas in sHML are interpreted over the system powerset domain where
S∈P(Sys). The semantic definition of Fig. 1, [[ϕ, ρ]], is given for both open and
closed formulas. It employs a valuation from logical variables to sets of states,
ρ ∈ (LVar → P(Sys)), which permits an inductive definition on the struc-
ture of the formulas; ρ′ = ρ[X 0→ S] denotes a valuation where ρ′(X)=S and
ρ′(Y)= ρ(Y) for all other Y 1= X. We assume closed formulas, i.e., without free
logical variables, and write [[ϕ]] in lieu of [[ϕ, ρ]] since the interpretation of a closed
formula ϕ is independent of the valuation ρ. A system (state) s satisfies formula
ϕ whenever s∈ [[ϕ]].

It is a well known fact that trace equivalent systems satisfy the same set of
safety properties. As the (recursion-free) subset of sHML characterises regular
safety properties [21], this means that systems sharing the same traces also
satisfy the same sHML formulas.

Theorem 1. Let s and r be system states in an LTS. Then traces(s) = traces(r)
iff s and r satisfy exactly the same sHML formulas. +,

Example 1. Consider two systems (a good system, sg, and a bad one, sb) imple-
menting a server that repeatedly accepts requests and answers them in response,
and that only terminates upon accepting a close request. Whereas sg outputs
a single answer (ans) for every request (req), sb occasionally produces multiple
answers for a given request (see the underlined branch in the description of sb
below). Both systems terminate with cls.

sg = recx.
(
req.ans.x+ cls.nil

)

sb = recx.
(
req.(ans.x + ans.(ans.x+ cls.nil)) + cls.nil

)

We can specify that a request followed by two consecutive answers indicates
invalid behaviour via the sHML formula ϕ0.

ϕ0
def= ! [ans][ans]ff
def= maxX.[ans][ans]ff∧

∧
α∈Act [α]X

where Act
def= {ans, req, cls}. It defines an invariant property requiring that

at every reachable state, whenever the system produces an answer following a
request, it cannot produce a subsequent answer, i.e., [ans]ff. Using the semantics
in Fig. 1, one can check that sg∈[[ϕ0]], whereas sb 1∈[[ϕ0]] since it exhibits the
violating trace sb

req−−→ · ans−−−→ · ans−−−→ . . ., amongst others. +,

3 Controlled System Synthesis and Suppression
Enforcement

We present the simplified models for suppression enforcement and controlled
system synthesis adapted from [5] and [24] respectively. Both models describe

Comparing Controlled System Synthesis and Suppression Enforcement 153

ϕ,ψ ∈ sHMLinv ::= tt | ff | ϕ ∧ ψ | [α]ϕ | ! ϕ

Fig. 2. The syntax for sHMLinv.

the composite behaviour attained by the respective techniques. In suppres-
sion enforcement, the composite behaviour describes the observable behaviour
obtained when the monitor and the SuS interact at runtime, while in controlled
system synthesis, it describes the structure of the resulting controlled system
obtained statically prior to deployment.

To enable our comparison between both approaches, we standardise the log-
ics used in both works and restrict ourselves to sHMLinv, defined in Fig. 2.
sHMLinv is a strict subset of sHML which results from the intersection of
sHML, used for suppression enforcement in [5], and HMLreach

inv , used for con-
trolled system synthesis in [24].

Although the work on CSS in [24] assumes that systems do not perform
internal τ actions and that output labels may be associated to system states,
the work on RE assumes the converse. We therefore equalise the system models
by working with respect to LTSs that do not associate labels to states, and do
not perform τ actions. We however assume that the resulting monitored and
controlled systems may still perform τ actions.

Since we do not focus on state-based properties, the removal of state labels
is not a major limitation as we are only forgoing additional state information
from the SuS. Although the removal of τ actions requires the SuS to be fully
observable, this does not impose significant drawbacks as the work on CSS can
easily be extended to allow such actions.

Despite the fact that controlled system synthesis differentiates between sys-
tem actions that can be removed (controllable) and those which cannot (uncon-
trollable), the work on enforcement does not. This is also not a major limitation
since enforcement models can easily be adapted to make such a distinction. How-
ever, in our first attempt at a comparison, we opt to simplify the models as much
as possible, and so to enable our comparison we assume that every system action
is controllable and can be removed and suppressed by the respective techniques.

Finally, since we do not liberally introduce constructs that are not present
in the original models of [5,24], the simplified models are just restricted versions
of the original ones. Hence, the results proven with respect to these simplified
models should either apply to the original ones or extend easily to the more
general setting.

3.1 A Model for Suppression Enforcement

We use a simplified version of the operational model of enforcement presented in
[5], which uses the transducers m,n ∈ Trn defined in Fig. 3. Transducers define
transformation pairs, ⁅β, µ⁆, consisting of: the specifying action β that determines
whether or not the transformation should be applied to a system action α, and

154 L. Aceto et al.

Fig. 3. A model for transducers.

the transformation action µ that specifies whether the matched action α should
be suppressed into a τ action, or be left intact. A transformation pair thus acts
as a function that takes as input a system action α and transforms it into µ
whenever α is equal to specifying action β. As a shorthand, we sometimes write
⁅β⁆ in lieu of ⁅β,β⁆ to signify that actions equal to β will remain unmodified.

The transition rules in Fig. 3 yield a LTS with labels of the form α!µ. Intu-
itively, a transition m

α!µ−−−→ n denotes the fact that the transducer in state m
transforms the visible action α (produced by the system) into action µ and tran-
sitions into state n. In this sense, the transducer action α!α denotes the identity
transformation, while α!τ encodes the suppression transformation of action α.
The key transition rule is eTrn. It states that the transformation-prefix trans-
ducer ⁅α, µ⁆.m can transform action α into µ, as long as the specifying action α
is the same as the action performed by the system. In this case, the transformed
action is µ, and the transducer state that is reached is m.

The remaining rules eSel and eRec respectively define the standard selec-
tion and recursion operations. A sum of transducers

∑
i∈I mi can reduce via

eSel to some nj over some action α!µ, whenever there exists a transducer mj

in the summation that reduces to nj over the same action. Rule eRec enables
a recursion transducer recx.m to reduce to some n when its unfolded instance
m{recx.m/x} reduces to n as well. We encode the identity monitor, id, and
the suppression monitor, sup, as recx.

∑
β∈Act ⁅β⁆.x and recx.

∑
β∈Act ⁅β, τ ⁆.x

respectively, i.e., as recursive monitors respectively defining an identity and sup-
pression transformation for every possible action β ∈ Act that can be performed
by the system.

Figure 3 also describes an instrumentation relation, which composes the
behaviour of the SuS s with the transformations of a transducer monitor m

Comparing Controlled System Synthesis and Suppression Enforcement 155

Fig. 4. The runtime execution graph of the monitored system.

that agrees with the (observable) actions Act of s. The term m[s] thus denotes
the resulting monitored system whose behaviour is defined in terms of Act∪ {τ}
from the system’s LTS. Concretely, rule iTrn states that when a system s transi-
tions with an observable action α to s′ and the transducer m can transform this
action into µ and transition to n, the instrumented system m[s] transitions with
action µ to n[s′]. Rule iDef is analogous to standard monitor instrumentation
rules for premature termination of the transducer [2,18,19,21], and accounts for
underspecification of transformations. Thus, if a system s transitions with an
observable action α to s′, and the transducer m does not specify how to trans-
form it (m 1α−→), the system is still allowed to transition while the transducer
defaults to acting like the identity monitor, id, from that point onwards.

Example 2. Consider the suppression transducer ms below:

ms
def= recx.(⁅ans⁆.m′

s) + ⁅req⁆.x+ ⁅cls⁆.x

m′
s

def= (⁅ans, τ ⁆.sup+ ⁅req⁆.x+ ⁅cls⁆.x)

where sup recursively suppresses every action β ∈ Act that can be performed by
the system from that point onwards. When instrumented with system sb from
Example 1, the monitor prevents the monitored system ms[sb] from answering
twice in a row by suppressing the second answer and every subsequent visible
action:

ms[sb]
req.ans====⇒ · τ−→ sup[sb].

When equipped with this dynamic action suppression mechanism, the result-
ing monitored system ms[sb] never violates formula ϕ0 at runtime − this is
illustrated by the runtime execution graph in Fig. 4. +,

We now formalise what we mean by a “static counterpart to suppression enforce-
ment”.

Definition 3 (Static Counterpart). A static verification technique S is the
static counterpart for suppression enforcement (in the context of safety proper-
ties) when, for every LTS 〈Sys,Act,→〉, formula ϕ∈ sHMLinv and s ∈ Sys,
there exists a transducer m so that m[s] ∈ [[ϕ]] iff S(s) ∈ [[ϕ]] (where S(s) is a
statically reformulated version of s obtained from applying S). +,

156 L. Aceto et al.

Fig. 5. The controlled system synthesis.

3.2 Synthesising Controlled Systems

Figure 5 presents a synthesis function that takes a system 〈Sys,Act,→〉 and a
formula ϕ and constructs a controlled version of the system that satisfies the
formula. The new system is synthesised in two stages. In the first stage, a new
transition relation 0−→⊆ (Sys × sHML) × Act × (Sys × sHML) is constructed
over the state-formula product space, (Sys× sHML). Intuitively, this transition
relation associates a sHML formula to the initial system state and defines how
this changes when the system transitions to other subsequent states. The com-
posite behaviour of the formula and the system is statically computed using the
first five rules in Fig. 5.

cBool always adds a transition when the formula is b∈
{
tt,ff

}
. Rules cNec1

and cNec2 add a transition from [α]ϕ to ϕ when s has a transition over α, and
to tt if it reduces over β 1= α. cAnd adds a transition for conjunct formulas,
ϕ∧ψ, when both formulas can reduce independently to some ϕ′ and ψ′, with the
formula of the end state of the new transition being min(ϕ′∧ψ′). Finally, cMax
adds a fixpoint maxX.ϕ transition to min(ψ), when its unfolding can reduce
to ψ. In both cAnd and cMax, min(ϕ) stands for a minimal logically equiva-
lent formula of ϕ. This is an oversimplification of the minimisation techniques
used in [24] to avoid synthesising an infinite LTS due to invariant formulas and
conjunctions, see [24] for more details.

Example 3. Formulas ϕ′∧tt, ϕ′∧ff and ϕ∧ψ∧ψ are logically equivalent to (and
can thus be minimized into) ϕ′, ff and ϕ∧ψ respectively. +,

Comparing Controlled System Synthesis and Suppression Enforcement 157

Fig. 6. The LTS obtained from controlling sb via ϕ0.

Instead of defining a rule for fixpoints, the authors of [24] define a syn-
thesis rule directly for invariance stating that when (s, ϕ) α0−−→ (s′, ϕ′), then
(s, !ϕ) α0−−→ (s′, min(! ϕ∧ϕ′)). We, however, opted to generalize this rule to fix-
points to simplify our comparison, while still limiting ourselves to sHMLinv for-
mulas. This is possible since by encoding ! ϕ as maxX.ϕ ∧

∧
β∈Act[β]X, we get

that (s, maxX.ϕ ∧
∧

β∈Act[β]X) α0−−→ (s′, min((maxX.ϕ ∧
∧

β∈Act[β]X)∧ϕ′))
when (s, ϕ) α0−−→ (s′, ϕ′) where min((maxX.ϕ ∧

∧
β∈Act[β]X)∧ϕ′) is the encoded

version of min(! ϕ∧ϕ′).
The second stage of the synthesis involves using rule cTr to remove invalid

transitions that lead to violating states; this yields the required transition func-
tion for the controlled system. This rule relies on the synthesizability test rules
to tell whether a controlled state, (s,ϕ), is valid or not. Intuitively, the test
rules fail whenever the current formula ϕ is semantically equivalent to ff, e.g.,
formulas maxX.([α]X∧ff) and ϕ∧ff both fail the synthesizability test rules as
they are equivalent to ff. Concretely, the test is vacuously satisfied by truth, tt,
logical variables, X, and guarded formulas, [α]ϕ, as none of them are logically
equivalent to ff. Conjunct formulas, ψ1∧ψ2, pass the test when both ψ1 and ψ2

pass independently. A fixpoint, maxX.ϕ′, is synthesisable if ϕ′ passes the test.
Transitions that lead to a state that fails the test are therefore removed, and

transitions outgoing from failing states become redundant as they are unreach-
able. The resulting transition function is then used to construct the controlled
LTS 〈(Sys × sHMLinv),Act,→〉.

Example 4. From ϕ0 and sb of Example 1 we can synthesise a controlled sys-
tem in two stages. In the first stage we compose them together using the
composition rules of Fig. 5. We start by generating the composite transition
(sb, ϕ0)

req0−−→ (s1b, ϕ0) via rules cMax and cNec since sb
req−−→ s1b, and keep

on apply the respective rules to the rest of sb’s transitions until we obtain the
LTS of Fig. 6. The (grey) ans transition leading to the test failing state, (sb, ff)1↓,
is then removed in the second stage along with its outgoing (grey) transitions,
therefore generating the required (black) controlled system. +,

158 L. Aceto et al.

4 Discussion and Comparison

We reiterate that controlled system synthesis is a static technique, while suppres-
sion enforcement is a dynamic one. Being a dynamic technique, the monitor and
the system in suppression enforcement still remain two separate entities, and the
instrumentation between them is merely a way for the monitor to interact with
the system. In general, the monitor cannot affect the execution of the system
itself, but rather modifies its observable trace of actions, such as its inputs and
outputs. By contrast, when a controlled system is synthesised, an existing sys-
tem is paired up with a formula and statically reconstructed into a new (valid)
system that is incapable of executing the erroneous behaviour.

By removing invalid transitions entirely, controlled system synthesis is more
ideal to guarantee the property compliance of the internal (less observable)
behaviour of a system. For example, this can be useful to ensure that the system
does not use a shared resource before locking it. By contrast, the invalid actions
are still executed by the system in suppression enforcement, but their effect is
rendered invisible to any external observer. This makes suppression enforcement
more suitable to ensure that the external (observable) behaviour of the system
complies with a desired property. For instance, one can ensure that the system
does not perform an output that is innocuous to the system itself, but may be
providing harmful information to the external environment.

One way of assessing the difference between these two techniques is to use
observational equivalence as a yardstick, thus:

∀ϕ ∈ sHML, s ∈ Sys,∃m ∈ Trn ·m[s] ≈ (s, ϕ). (1)

We show by means of a counter example that (1) is in fact false and as a result
prove Theorem2.

Theorem 2 (Non Observational Equivalence). There exist an sHMLinv

formula ϕ, an LTS 〈Sys,Act,→〉 and a system state s∈Sys such that for every
monitor m∈Trn, m[s]1≈(s, ϕ). +,

Proof Sketch. Recall the controlled LTS with initial state (sb, ϕ0) obtained in
Example 4. To prove Theorem2 we must show that for every action suppression
monitor m (that can only apply suppression and identity transformations), one
cannot find a weak bisimulation relation R so that (m[sb], (sb, ϕ0)) ∈ R. An
elegant way of showing this claim, is by playing the weak bisimulation games [7]
starting from the pair (m[sb], (sb, ϕ0)), for every possible m. The game is played
between two players, namely, the attacker and the defender. The attacker wins
the game by finding a sequence of moves from the monitored state m[sb] (or
the controlled state (sb, ϕ0)), which the defender cannot counter, i.e., the move
sequence cannot be performed by the controlled state (sb, ϕ0) (resp. monitored
state m[sb]). Note that the attacker is allowed to play a transition from either
the current monitored state or the controlled state at each round of the game.
A winning strategy for the attacker entails that the composite systems are not
observationally equivalent.

Comparing Controlled System Synthesis and Suppression Enforcement 159

We start playing the game from the initial pair (m[sb], (sb, ϕ0)) for every
monitor m. Pick any monitor that suppresses any action other than a second
consecutive ans, such as m0

def= ⁅req, τ ⁆.m′
0. In this case, it is easy to deduce

that the defender always loses the game, that is, if the attacker attacks with
(sb, ϕ0)

req−−→ (s1b, ϕ0) the defender is defenceless sincem0[sb] 1req==⇒. This remains
true regardless of the “depth” at which the suppression of the first req transition
occurs.

On the one hand, using the same game characterisation, one can also deduce
that by picking a monitor that fails to suppress the second consecutive ans action,
such as m1

def= ⁅req⁆.⁅ans⁆.⁅ans⁆.m′
1, also prevents the defender from winning. If

the attacker plays with m1[sb]
req.ans.ans=======⇒ m′

1[sb], the defender loses since it can
only counter the first two transitions, i.e., (sb, ϕ0)

req.ans====⇒ 1ans==⇒. Again, this holds
regardless of the “depth” of the first such failed suppression.

On the other hand, any monitor that actually suppresses the second consecu-
tive ans action, such as ms from Example 2, still negates a win for the defender.
In this case, the attacker can play (sb, ϕ0)

req.ans====⇒ (s2b, ϕ0∧[ans]ff) to which
the defender may reply either with ms[sb]

req.ans====⇒ ms[sb] or ms[sb]
req.ans====⇒

m′
s[s2b]. In the former option, the attacker can subsequently play req in the

monitored system, to which the defender cannot reply via the controlled sys-
tem, i.e., ms[sb]

req−−→ ms[s1b] but (s2b, ϕ0∧[ans]ff) 1req−−→. In the latter case,
the attacker can now play m′

s[s2b]
τ−→ sup[sb], which can only be coun-

tered by an inaction on behalf of the defender, i.e., the controlled system
remains in state (s2b, ϕ0∧[ans]ff). However, the attacker can subsequently play
(s2b, ϕ0∧[ans]ff)

cls−−→ (nil, ϕ0) which is indefensible since sup[sb] 1cls==⇒. As in the
previous cases, the above reasoning applies.

These cases therefore suffice to deduce that for every possible monitor the
attacker always manages to win the game, and hence we conclude that Theorem2
holds as required. +,

This result is important since it proves that powerful external observers,
such as the ones presented by Abramsky in [1], can still distinguish between the
resulting monitored and controlled systems.

5 Establishing a Static Counterpart to Enforcement

Despite not being observationally equivalent, Examples 2 and 4 provide the intu-
ition that there still exists some level of correspondence between these two tech-
niques. In fact, from the monitored execution graph of Fig. 4 and the controlled
LTS in Fig. 6 one can notice that they both execute the same set of traces, and
are therefore trace equivalent. Hence, since trace equivalent systems satisfy the
same set of safety properties (Theorem1), it suffices to conclude that the con-
trolled LTS is statically achieving the same result obtained dynamically by the
monitored one, and that it is therefore its static counterpart.

In what follows, we prove that this observation (i.e., trace equivalence) also
applies in the general case.

160 L. Aceto et al.

Theorem 3 (Trace Equivalence). For every LTS 〈Sys,Act,→〉, formula
ϕ ∈ sHMLinv and s∈Sys, there exists a monitor m such that traces(m[s]) =
traces((s, ϕ)). +,

To be able to prove this result, we first define a function that maps sHMLinv

formulas to enforcement transducers. We reduce the complexity of this mapping
by defining it over the normalised sHML formulas instead.

Definition 4 (sHML normal form). The set of normalised sHML formulas
is defined as:

ϕ,ψ ∈ sHMLnf ::= tt | ff |
∧

i∈I [αi]ϕi | X | maxX.ϕ .

In addition, a normalised sHML formula ϕ must satisfy the following conditions:

1. In each subformula of ϕ of the form
∧

i∈I [αi]ϕi, the αi’s are pairwise differ-
ent, i.e., ∀i, j ∈ I · if i 1= j then αi 1= αj.

2. For every maxX.ϕ we have X ∈ fv(ϕ).
3. Every logical variable is guarded by a modal necessity. +,

In previous work, [3,5] we proved that despite being a syntactic subset of
sHML, sHMLnf is semantically equivalent to sHML. Hence, since sHMLinv is
a (strict) subset of sHML, for every sHMLinv formula we can always find an
equivalent sHMLnf formula. This means that by defining our mapping function
in terms of sHMLnf, we can still map every formula in sHMLinv to the respective
monitor.

We proceed to define our mapping function over normalised sHML formulas.

Definition 5. Recall the definitions of id and sup from Fig. 3. We define our
mapping !− " : sHMLnf 0→Trn inductively as:

!X " def= x ! tt " def= id !ff " def= sup !maxX.ϕ " def= recx.!ϕ "

!
∧

i∈ I

[⁅pi, ci⁆]ϕi "
def=

∑

i∈I

mi where mi
def=

{
⁅αi,αi⁆.!ϕi " if ϕi 1=ff

⁅αi, τ ⁆.!ff " otherwise
+,

The function is compositional. It assumes a bijective mapping between fix-
point variables and monitor recursion variables and converts logical variables
X accordingly, whereas maximal fixpoints, maxX.ϕ, are converted into the cor-
responding recursive monitor. The function also converts truth and falsehood
formulas, tt and ff, into the identity monitor id and the suppression monitor
sup respectively. Normalized conjunctions,

∧
i∈ I [αi]ϕi, are mapped into a sum-

mation of monitors,
∑

i∈I mi, where every branch mi can be either prefixed by
an identity transformation when ϕi 1= ff, or by a suppression transformation
otherwise. Notice that the requirement that, ϕi 1= ff, is in some sense analogous
to the synthesisability test applied by the CSS rule cTr of Fig. 5 to retain the
valid transitions only. In this mapping function, this requirement is essential to
ensure that only the valid actions remain unsuppressed by the resulting monitor.

Comparing Controlled System Synthesis and Suppression Enforcement 161

Example 5. Recall formula ϕ0 from Example 1 which can be normalised as:

ϕ0
def= maxX.([ans]([ans]ff∧[req]X∧[cls]X))∧[req]X∧[cls]X.

Using the mapping function defined in Definition 5, we generate monitor

!ϕ0 " = recx.(⁅ans⁆.(⁅ans, τ ⁆.sup+ ⁅req⁆.x+ ⁅cls⁆.x)) + ⁅req⁆.x+ ⁅cls⁆.x

which is identical to ms from Example 2. +,
With this mapping function in hand, we are able to prove Theorem3 as a

corollary of Proposition 1.

Proposition 1. For every LTS 〈Sys,Act,→〉, sHMLnf formula ϕ, s ∈ Sys
and trace t, when !ϕ " = m then t ∈ traces(m[s]) iff t ∈ traces((s, ϕ)). +,
Proof Sketch. The if and only-if cases are proven separately and both proofs are
conducted by induction on the length of trace t and by case analysis of ϕ. +,

Having concluded the proof of Theorem3 and knowing Theorem1, we can
finally obtain our main result with respect to Definition 3.

Theorem 4. Controlled system synthesis is the static counterpart of suppres-
sion enforcement in the context of safety properties. +,

6 Related Work

Several works comparing formal verification techniques can be found in the lit-
erature. In [24] van Hulst et al. explore the relationship between their work on
controlled system synthesis and the synthesis problem in Ramadge and Won-
ham’s Supervisory Control Theory (SCT) [31]. The aim in SCT is to generate a
supervisor controller from the SuS and its specification (e.g., a formal property).
If successfully generated, the synchronous product of the SuS and the controller
is computed to obtain a supervised system. To enable the investigation, van
Hulst et al. developed language-based notations akin to that used in [31], and
proved that Ramadge and Wonham’s work can be expressed using their theory.

Ehlers et al. in [14] establish a connection between SCT and reactive synthesis
− a formal method that attempts to automatically derive a valid reactive system
from a given specification. To form this connection, the authors first equalise
both fields by using a simplified version of the standard supervisory control
problem and focus on a class of reactive synthesis problems that adhere to the
requirements imposed by SCT. They then show that the supervisory control
synthesis problem can be reduced to a reactive synthesis problem.

Basile et al. in [10] explore the gap between SCT and coordination of services,
which describe how control and data exchanges are coordinated in distributed
systems. This was achieved via a new notion of controllability that allows one
to reduce the classical SCT synthesis algorithms to produce orchestrations and
choreographies describing the coordination of services as contract automata.

Falcone et al. made a brief, comparison between runtime enforcement and
SCT in [16] in the context of K-step opacity, but established no formal results
that relate these two techniques.

162 L. Aceto et al.

7 Conclusion

We have presented a novel comparison between suppression enforcement and
controlled system synthesis − two verification techniques that automate system
correction for erroneous systems. Using a counter-example we have proven that
those techniques are different modulo observational equivalence, Theorem2. An
Abramsky-type external observer [1] can therefore tell the difference between
a monitored and controlled system resulting from the same formula and SuS.
However, we were still able to conclude that controlled system synthesis is the
static counterpart to suppression enforcement in the context of safety, as defined
by Definition 3. This required developing a function that maps logic formulas
to suppression monitors, Definition 5, and proving inductively that for every
system and formula, one can obtain a monitored and a controlled system that
execute the same set of traces at runtime, Theorem3. As trace equivalent systems
satisfy the same safety properties, this result was enough to reach our conclusion,
Theorem4. To our knowledge this is the first formal comparison to be made
between these two techniques.

Future Work. Having established a connection between suppression enforce-
ment and control system synthesis with respect to safety properties, it is worth
expanding this work at least along two directions and explore how:

(i) runtime enforcement and controlled system synthesis are related with respect
to properties other than those representing safety, and how

(ii) suppression enforcement relates to other verification techniques such as
supervisory control theory, reactive synthesis, etc.

Exploring (i) may entail looking into other work on enforcement and controlled
system synthesis that explores a wider set of properties. It might be worth inves-
tigating how other enforcement transformations, such as action replacements and
insertions, can be used to widen the set of enforceable properties, and how this
relates to controlled system synthesis. The connection established by van Hulst
et al. in [24] between control system synthesis and supervisory control, along
with the other relationships reviewed in Sect. 6, may be a starting point for
conducting our future investigations on (ii).

References

1. Abramsky, S.: Observation equivalence as a testing equivalence. Theoret. Comput.
Sci. 53, 225–241 (1987). https://doi.org/10.1016/0304-3975(87)90065-X

2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: A framework for param-
eterized monitorability. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS,
vol. 10803, pp. 203–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89366-2 11

3. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.:
Determinizing monitors for HML with recursion. arXiv preprint (2016)

https://doi.org/10.1016/0304-3975(87)90065-X
https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-89366-2_11

Comparing Controlled System Synthesis and Suppression Enforcement 163

4. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Adven-
tures in monitorability: from branching to linear time and back again. Proc. ACM
Program. Lang. 3(POPL), 52:1–52:29 (2019). https://doi.org/10.1145/3290365.
http://doi.acm.org/10.1145/3290365

5. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On runtime enforcement via
suppressions. In: 29th International Conference on Concurrency Theory, CONCUR
2018, Beijing, China, 4–7 September 2018, pp. 34:1–34:17 (2018). https://doi.org/
10.4230/LIPIcs.CONCUR.2018.34

6. Aceto, L., Ingólfsdóttir, A.: Testing Hennessy-Milner logic with recursion. In:
Thomas, W. (ed.) FoSSaCS 1999. LNCS, vol. 1578, pp. 41–55. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-49019-1 4

7. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, New York (2007)

8. Alur, R., Černý, P.: Streaming transducers for algorithmic verification of single-
pass list-processing programs. In: Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 599–610. ACM
(2011)

9. Arnold, A., Walukiewicz, I.: Nondeterministic controllers of nondeterministic pro-
cesses. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and Automata. Texts in
Logic and Games, vol. 2, pp. 29–52. Amsterdam University Press, Amsterdam
(2008)

10. Basile, D., ter Beek, M.H., Pugliese, R.: Bridging the gap between supervisory
control and coordination of services: synthesis of orchestrations and choreographies.
In: Riis Nielson, H., Tuosto, E. (eds.) COORDINATION 2019. LNCS, vol. 11533,
pp. 129–147. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22397-7 8

11. Cassar, I., Francalanza, A., Aceto, L., Ingólfsdóttir, A.: A survey of runtime mon-
itoring instrumentation techniques. In: PrePost 2017, pp. 15–28 (2017)

12. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

13. Desai, A., Dreossi, T., Seshia, S.A.: Combining model checking and runtime ver-
ification for safe robotics. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol.
10548, pp. 172–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67531-2 11

14. Ehlers, R., Lafortune, S., Tripakis, S., Vardi, M.Y.: Bridging the gap between
supervisory control and reactive synthesis: case of full observation and centralized
control. In: WODES, pp. 222–227. International Federation of Automatic Control
(2014)

15. Erlingsson, U., Schneider, F.B.: SASI enforcement of security policies: a retrospec-
tive. In: Proceedings of the 1999 Workshop on New Security Paradigms, NSPW
1999, pp. 87–95. ACM, New York (1999)

16. Falcone, Y., Marchand, H.: Runtime enforcement of k-step opacity. In: 52nd IEEE
Conference on Decision and Control, pp. 7271–7278, December 2013. https://doi.
org/10.1109/CDC.2013.6761043

17. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at
runtime? Int. J. Softw. Tools Technol. Transfer 14(3), 349 (2012)

18. Francalanza, A.: A theory of monitors. In: Jacobs, B., Löding, C. (eds.) FoSSaCS
2016. LNCS, vol. 9634, pp. 145–161. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49630-5 9

https://doi.org/10.1145/3290365
http://doi.acm.org/10.1145/3290365
https://doi.org/10.4230/LIPIcs.CONCUR.2018.34
https://doi.org/10.4230/LIPIcs.CONCUR.2018.34
https://doi.org/10.1007/3-540-49019-1_4
https://doi.org/10.1007/978-3-030-22397-7_8
https://doi.org/10.1007/978-3-319-67531-2_11
https://doi.org/10.1007/978-3-319-67531-2_11
https://doi.org/10.1109/CDC.2013.6761043
https://doi.org/10.1109/CDC.2013.6761043
https://doi.org/10.1007/978-3-662-49630-5_9
https://doi.org/10.1007/978-3-662-49630-5_9

164 L. Aceto et al.

19. Francalanza, A.: Consistently-detecting monitors. In: 28th International Confer-
ence on Concurrency Theory (CONCUR 2017). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 85, pp. 8:1–8:19. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl (2017)

20. Francalanza, A., et al.: A foundation for runtime monitoring. In: Lahiri, S., Reger,
G. (eds.) RV 2017. LNCS, vol. 10548, pp. 8–29. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-67531-2 2

21. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: Monitorability for the Hennessy-
Milner logic with recursion. Formal Methods Syst. Des. 51(1), 87–116 (2017)

22. Havelund, K., Pressburger, T.: Model checking Java programs using Java
PathFinder. Int. J. Softw. Tools Technol. Transfer 2(4), 366–381 (2000). https://
doi.org/10.1007/s100090050043

23. Havelund, K., Roşu, G.: An overview of the runtime verification tool Java PathEx-
plorer. Formal Methods Syst. Des. 24(2), 189–215 (2004)

24. van Hulst, A.C., Reniers, M.A., Fokkink, W.J.: Maximally permissive controlled
system synthesis for non-determinism and modal logic. Discrete Event Dyn. Syst.
27(1), 109–142 (2017)

25. Kejstová, K., Ročkai, P., Barnat, J.: From model checking to runtime verification
and back. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 225–240.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 14

26. Könighofer, B., et al.: Shield synthesis. Formal Methods Syst. Des. 51(2), 332–361
(2017)

27. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009)

28. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Secur. 4(1), 2–16 (2005)

29. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Inf. Comput.
100(1), 1–40 (1992)

30. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 1989, pp. 179–190. ACM, New York (1989). https://doi.org/10.
1145/75277.75293. http://doi.acm.org/10.1145/75277.75293

31. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25(1), 206–230 (1987)

32. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, New
York (2009)

33. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press, New York (2011)

34. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. (TIS-
SEC) 3(1), 30–50 (2000)

https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/978-3-319-67531-2_14
https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/75277.75293
http://doi.acm.org/10.1145/75277.75293

