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Abstract. We study the correctness of automated synthesis for concurrent mon-
itors. We adapt HML, a subset of the Hennessy-Milner logic with recursion, to
specify safety properties of Erlang programs, and define an automated transla-
tion from HML formulas to Erlang monitors so as to detect formula violations
at runtime. We then formalise monitor correctness for our concurrent setting and
describe a technique that allows us to prove monitor correctness in stages; this
technique is used to prove the correctness of our automated monitor synthesis.
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1 Introduction

Runtime Verification (RV) [3], is a lightweight verification technique for determining
whether the current system run observes a correctness property. Two requirements are
crucial for the adoption of this technique. First, runtime monitor overheads need to be
kept to a minimum so as not to degrade system performance. Second, instrumented
monitors need to form part of the trusted computing base of a system by adhering to
an agreed notion of monitor correctness; amongst other things, this normally includes
a guarantee that runtime checking corresponds (in some sense) to the property being
checked for. Monitor overheads and correctness are occasionally conflicting concerns.
For instance, in order to lower monitoring overheads, engineers increasingly use con-
current monitors [11, 22, 28] so as to exploit better the underlying parallel and dis-
tributed architectures pervasive to today’s computers. However concurrent monitors are
also more susceptible to elusive errors such as non-deterministic monitor behaviour,
deadlocks or livelocks which may, in turn, affect their correctness.

Ensuring monitor correctness is non-trivial. One prominent obstacle is the fact that
system properties are typically specified using one formalism, e.g., a high-level logic,
whereas the respective monitors checking these properties are described using another
formalism, e.g., a programming language—this makes it hard to ascertain the semantic
correspondence between the two descriptions. Automated monitor synthesis can miti-
gate this problem by standardising the translation from the property logic to the monitor
formalism. It also gives more scope for a formal treatment of monitor correctness.

In this work, we investigate the correctness of synthesised monitors in a concur-
rent setting, whereby (i) the system executes concurrently with the synthesised monitor



(ii) the system and the monitor themselves consist of concurrent sub-systems and sub-
monitors. Previous work on correct monitor synthesis[17, 27, 4] abstracts away from
the internal working of a system, representing it as a string of events/states (execu-
tion trace). It also focusses on a logic that is readily amenable to runtime analysis,
namely Linear Temporal Logic (LTL)[8]. Moreover, it expresses synthesis in terms of
abstract or single-threaded monitors—using pseudocode or automata—executing wrt.
such trace. By contrast, we strive towards a more intensional formal definition of online
correctness for synthesised concurrent monitors whereby, for arbitrary property ϕ, the
synthesised monitor Mϕ running concurrently wrt. some system S (denoted as S ‖ Mϕ)
observes the following condition:

S violates ϕ in the current execution iff S ‖ Mϕ detects the violation (1)

The setting described in (1) brings to the fore a number of additional issues:

(i) Apart from the formal semantics of the source logic (used to specify the property
ϕ), we also require a formal semantics for the target languages of both the system
and the monitor executing in parallel, i.e., S ‖ Mϕ. In most cases, the latter may not
always be available.

(ii) A property logic semantics is often defined over systems rather than traces, which
may not lend itself well to the formulation of correctness runtime analysis outlined
in condition (1) above. In the case of concurrent systems, this aspect is accentu-
ated by the fact that systems may behave non-deterministically and typically have
multiple execution paths as a result of different thread interleavings scheduled at
runtime.

(iii) Concurrent monitors may also have multiple execution paths. Condition (1) thus
requires stronger guarantees than those for single-threaded monitors so as to ensure
that all these paths correspond to an appropriate runtime check of system property
being monitored. Stated otherwise, correct concurrent monitors must always detect
violations, irrespective of their runtime interleaving.

(iv) Online monitor correctness needs to ensure that monitor execution cannot be in-
terfered by the system, and viceversa. Whereas adequate monitor instrumentation
typically prevents direct interferences, condition (1) must consider indirect inter-
ferences such as system divergences [25, 18], i.e., infinite internal looping making
the system unresponsive, which may prevent the monitors from progressing.

(v) Ensuring correctness along the lines of condition (1) can be quite onerous because
every execution path of the monitor running concurrently with the monitored sys-
tem, S ‖Mϕ, needs to be analysed so as to ensure consistent detections along every
thread interleaving. Consequently, one needs to devise scalable techniques facili-
tating monitor correctness analysis.

We conduct our study in terms of actor-based [19] concurrent monitors written in
Erlang [7, 2], an industry strength language for constructing fault-tolerant systems; we
also restrict ourselves to the monitoring of systems written in the same language. We
limit ourselves to reactive properties describing system interactions with the environ-
ment and focus on the synthesis of asynchronous monitors, performing runtime analysis
through the Erlang Virtual Machine (EVM)’s tracing mechanism. Despite the typical
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A, B,C ∈ A ::= i[e / q]m | A ‖ B | (ν i)A q, r ∈ MB ::= ε | v : q
e, d ∈ E ::= v | self | e!d | rcv g end | e(d) | spw e | case e of g end | x = e, d | . . .
v, u ∈ V ::= x | i | a | µy.λx.e | {v, . . . , v} | l | exit | . . . l, k ∈ L ::= nil | v : l
p, o ∈ P ::= x | i | a | {p, . . . , p} | nil | p : x | . . . g, f ∈ PL ::= ε | p→ e; g

Fig. 1: Erlang Syntax

drawbacks associated with asynchrony, e.g., late detections, our monitoring setup is in
line with the asynchrony advocated by the actor concurrency model, which facilitates
scalable coding techniques such as fail-fast design patterns [7]. Asynchronous monitor-
ing has also been used in other RV tools, e.g., [9, 12], and has proved to be less intrusive
and easier to instrument than synchronous monitoring setups. It is also tends to be more
feasible when monitoring distributed systems[14, 11]. More importantly, though, we
expect most of the issues investigated to carry over in straightforward fashion to purely
synchronous settings.

As an expository logic for describing reactive properties, we consider an adaptation
of HML [1]—a syntactic subset of the more expressive logic µ-calculus, describing
safety, i.e., monitorable[21], properties. Our choice for this logic was, in part, motivated
by the fact that the full µ-calculus had already been adapted to describe Erlang program
behaviour in [16], albeit for model-checking purposes. Given the usual drawbacks asso-
ciated with full-blown model checking, our work contributes towards an investigation of
lightweight verification techniques for µ-calculus properties of Erlang programs. More
importantly, though, it illustrates well the correctness monitoring issues arising in actual
implementations, as discussed earlier for (1).

The rest of the paper is structured as follows. Sec. 2 discusses the formal seman-
tics of our systems and monitor target language. Sec. 3 discusses reformulations to
the logic facilitating the formulation of monitor correctness, discussed later in Sec. 4.
Sec. 5 describes a synthesis algorithm for the logic and a tool built using the algorithm.
Subsequently, Sec. 6 proves the correctness of this monitor synthesis. Sec. 7 concludes.

2 The Language

We require a formal semantics for both our monitor-synthesis target language, and the
systems we intend to monitor. We partially address this problem by expressing both in
terms of the same language, i.e., Erlang, thus only requiring one semantics. However,
we still need to describe the Erlang tracing semantics we intend to use for our asyn-
chronous monitoring. Although Erlang semantic formalisations exist, e.g., [30, 16, 6],
none describe this tracing mechanism. We therefore define a calculus—following [30,
16]—for modelling the tracing semantics of a (Turing-complete) subset of the Erlang
language (we leave out distribution, process linking and fault-trapping mechanisms).

Figure 1 outlines the language syntax, assuming disjoint denumerable sets of pro-
cess/actor identifiers i, j, h ∈ P, atoms a, b ∈ A, and variables x, y, z ∈ V. An



executing Erlang program is made up of a system of actors, A, composed in parallel,
A ‖ B, where some identifiers are local (scoped) to subsystems of actors, and thus not
known to the environment, e.g., i in a system A ‖ (ν i)B. Individual actors, denoted as
i[e / q]m, are uniquely identified by an identifier, i, and consist of an expression, e, ex-
ecuting wrt. a local mailbox, q (denoted as a list of values). Actor expressions typically
consist of a sequence of variable binding xi = ei, terminated by an expression, efinal:

x1 = e1, . . . , xn = en, efinal

An expression ei in a binding xi = ei, ei+1 is expected to evaluate to a value, v, which
is then bound to xi in the continuation expression ei+1. When instead ei generates an
exception, exit, it aborts subsequent computations1 in ei+k. Apart from bindings, ex-
pressions may also consist of self references (to the actor’s own identifier), self, outputs
to other actors, e1!e2, pattern-matching inputs from the mailbox, rcv g end, or pattern-
matching for case-branchings, case e of g end (where g is a list of expressions guarded
by patterns, pi→ ei), function applications, e1(e2), and actor-spawning, spw e, amongst
others. Values consist of variables, x, process ids, i, recursive functions,2 µy.λx.e , tuples
{v1, . . . , vn} and lists, l, amongst others.

Remark 1. We write λx.e and d, e for µy.λx.e and y = d, e resp. when y < fv(e). In
p→ e, we replace x in p with whenever x < fv(e). We write µy.λ(x1, . . . xn).e for
µy.λx1. . . . λxn.e. We elide mailboxes, i[e], when empty, i[e / ε], or when they do not
change in the transition rules that follow.

Specific to our formalisation, we also subject each individual actor, i[e / q]m, to a
monitoring-modality, m, n ∈ {◦, •, ∗}, where ◦, • and ∗ denote monitored, unmonitored
and tracing actors resp. Modalities play a crucial role in our language semantics, defined
as a labelled transition system over systems, A

γ
−−→ B, where actions γ ∈ Aτ, include

bound output labels, (h̃)i!v, and input labels, i?v and a distinguished internal label, τ. In
line with the reactive properties we consider later, our formalisation only traces system
interactions with the environment (send and receive messages) from monitored actors.
Thus, whereas unmonitored, •, and tracing, ∗, actors have standard input and output
transition rules

SU
m ∈ {•, ∗}

j[i!v / q]m i!v
−−−→ j[v / q]m

RU
m ∈ {•, ∗}

i[e / q]m i?v
−−−→ i[e / q:v]m

actors with a monitored modality, ◦, i.e., actors j and i in rules SM and RM below,
produce a residual message reporting the send and receive interactions ({sd, i, v} and
{rv, i, v} resp.) at the tracer’s mailbox i.e., actor h with modality ∗ in the rules below; this
models closely the tracing mechanism offered by the Erlang Virtual Machine (EVM)
[7]. In our target language, the list of report messages at the tracer’s mailbox constitutes

1 Because of exit exceptions, variable bindings cannot be encoded as function applications.
2 The preceding µy denotes the binder for function self-reference.



the system trace to be used for asynchronous monitoring.

SM
j[i!v / q]◦ ‖ h[d / r]∗

i!v
−−−→ j[v / q]◦ ‖ h[d / r:{sd, i, v}]∗

RM
i[e / q]◦ ‖ h[d / r]∗

i?v
−−−→ i[e / q:v]◦ ‖ h[d / r:{rv, i, v}]∗

Our LTS semantics assumes well-formed actor systems, whereby every actor iden-
tifier is unique; it is termed to be a tracing semantics because a distinguished tracer
actor, identified by the monitoring modality ∗, receives messages recording external
communication events by monitored actors. Formally, we write A

γ
−−→ B in lieu of

〈A, γ, B〉 ∈−→, the least ternary relation satisfying the rules in Fig. 2. These rules
employ evaluation contexts, denoted as C (described below) specifying which sub-
expressions are active. For instance, an expression is only evaluated when at the top
level variable binding, x =C, e or when the expression denoting the destination of an
output has evaluated to a value, v!C; the other cases are also fairly standard.3 We denote
the application of a context C to an expression e as C[e].

C ::= [−] | C!e | v!C | C(e) | v(C) | caseC of g end | x =C, e | . . .

Communication in actor systems happens in two stages: an actor receives messages,
keeping them in order in its mailbox, and then selectively reads them at a later stage
using pattern matching—rules R1 and R2 describe how mailbox messages are tra-
versed in order to find the first one matching a pattern in the pattern list g, releasing
the respective guarded expression e as a result (see Appendix A). We choose only to
record external communication at tracer processes, i.e., between the system and the
environment, and do not trace internally communication between actors within the sys-
tem, irrespective of their modality (see C); structural equivalence rules, A ≡ B, are
employed to simplify the presentation of our rules—see rule S and the corresponding
structural rules. In P, the side-condition enforces the single-receiver property, inher-
ent to actor systems; for instance, it prevents a transition with an action j!v when actor
j is part of the actor system B. Finally, spawned actors inherit monitorability when
launched by a monitored actor, but are launched as unmonitored otherwise (see S).
The rest of the transition rules are fairly standard; consult [15] for details.

Remark 2. Our tracing semantics sits at higher level of abstraction than that offered by
the EVM [7] because trace entries typically contain more information. For instance,
the EVM records internal communication between monitored actors, as an output trace
entry immediately followed by the corresponding input trace entry; we here describe
sanitised traces whereby consecutive matching trace entries are filtered out.

Example 1 (Non-deterministic behaviour). Our systems exhibit non-deterministic be-
haviour through either internal or external choices [23, 18]. Consider the actor system:

A , (ν j1, j2, h)
(

i[rcv x→ obs!x end / ε]◦ ‖ j1[i!v]◦ ‖ j2[i!u]◦ ‖ h[e / q]∗
)

3 In our formalisation, expressions are not allowed to evaluate under a spawn context, spw [−].
This differs from standard Erlang semantics but allows a lightweight description of function
application spawning; an adjustment in line with Erlang spawning would be straightforward.



SM
j[C[i!v] / q]◦ ‖ h[d / r]∗

i!v
−−→ j[C[v] / q]◦ ‖ h[d /

(
r:{sd, i, v}

)
]∗

RM
fv(v) = ∅

i[e / q]◦ ‖ h[d / r]∗
i?v
−−−→ i[e / q:v]◦ ‖ h[d /

(
r:{rv, i, v}

)
]∗

SU
m ∈ {•, ∗}

j[C[i!v] / q]m i!v
−−→ j[C[v] / q]m

RU
m ∈ {•, ∗} fv(v) = ∅

i[e / q]m i?v
−−−→ i[e / q:v]m

S A
γ
−−→ B

(ν j)A
γ
−−→ (ν j)B

j <
(
obj(γ) ∪ subj(γ)

)

O A
(h̃)i!v
−−−−→ B

(ν j)A
( j,h̃)i!v
−−−−−→ B

i , j, j ∈ subj
(
(h̃)i!v

)

C
j[C[i!v] / q]m ‖ i[e / q]n τ

−→ j[C[v] / q]m ‖ i[e / q:v]n

P A
γ
−−→ A′

A ‖ B
γ
−−→ A′ ‖ B

obj(γ) ∩ fId(B) = ∅ R1
mtch(g, v) = e

i[C[g] / (v : q)]m τ
−→ i[C[e] / q]m

R2
mtch(g, v) = ⊥ i[C[rcv g end] / q]m τ

−→ i[C[e] / r]m

i[C[rcv g end] / (v : q)]m τ
−→ i[C[e] / (v : r)]m

C1
mtch(g, v) = e

i[C[case v of g end]]m τ
−→ i[C[e]]m

C2
mtch(g, v) = ⊥

i[C[case v of g end]]m τ
−→ i[C[exit]]m

A
v , exit

i[C[x = v, e]]m τ
−→ i[C[e{v/x}]]m

E
i[C[x = exit, e]]m τ

−→ i[C[exit]]m

A
i[C[µy.λx.e (v)]]m τ

−→ i[C[e{µy.λx.e/y}{v/x}]]m
S

i[C[self]]m τ
−→ i[C[i]]m

S
(m = ◦ = n) or (n = •)

i[C[spw e] / q]m τ
−→ (ν j)

(
i[C[ j] / q]m ‖ j[e / ε]n) S A ≡ A′

γ
−−→ B′ ≡ B

A
γ
−−→ B

C
A ‖ B ≡ B ‖ A

A
(A ‖ B) ‖ C ≡ A ‖ (B ‖ C)

CP A ≡ B
A ‖ C ≡ B ‖ C

E
i < fId(A)

A‖ (ν i)B ≡ (ν i)
(
B‖A

) S
(ν i)(ν j)A ≡ (ν j)(ν i)A

CS A ≡ B
(νi)A ≡ (νi)B

Fig. 2: Erlang Semantics for Actor Systems



Actors j1, j2 and h are local, thus not visible to the environment. The monitored actor i
may receive value v from actor j1, read it from its mailbox, and then output it to some
environment actor obs, while recording this external output at h’s mailbox (the tracer).

A
τ
−−−→ ·

τ
−−−→ ·

obs!v
−−−−−→ (ν j1, j2, h)

(
i[v / ε]◦ ‖ j1[v] ‖ j2[i!u] ‖ h[e / q : {sd, obs, v}]∗

)
But if actor j2 sends its value to i before j1, we observe a different external behaviour

A
τ
−−−→ ·

τ
−−−→ ·

obs!u
−−−−−→ (ν j1, j2, h)

(
i[u / ε]◦ ‖ j1[i!v] ‖ j2[u] ‖ h[e / q : {sd, obs, u}]∗

)
i.e., A outputs u instead of v to obs (accordingly monitor h would hold the entry
{sd, obs, u} instead); these behaviours amounts to an internal choice.

External choice results when A receives different external inputs: we can derive

A
i?v1
−−−→ B1, but also A

i?v2
−−−→ B2. Subsequently, B1 can only produce the external output

B1
τ
−−→
∗ obs!v1
−−−−−→ whereas from B2 can only produce B2

τ
−−→
∗ obs!v2
−−−−−→. Note that, in the first

case, h’s mailbox is appended by entries {rv, i, v1} : {sd, obs, v1} whereas, in the second
case, it is appended by {rv, i, v2} : {sd, obs, v2}. �

3 The Logic

To specify reactive properties of the systems we consider an adaptation of SafeHML[1]
(HML) , a sub-logic of the Hennessy-Milner Logic (HML) with recursion.4 It assumes
a denumerable set of formula variables, X,Y ∈ LV, and is defined by the grammar:

ϕ, ψ ∈ HML ::= ff | ϕ∧ψ | [α]ϕ | X | max(X, ϕ)

The formulas for falsity, ff, conjunction, ϕ∧ψ, and action necessity, [α]ϕ, are inherited
from HML[18], whereas variables X and the recursion construct max(X, ϕ) are used to
define maximal fixpoints; as expected, max(X, ϕ) is a binder for the free variables X
in ϕ, inducing standard notions of open and closed formulas. We only depart from the
logic of [1] by limiting formulas to basic actions α, β ∈ BA, including just input, i?v,
and unbound outputs, i!v, so as to keep our technical development manageable.

Remark 3. The handling of bounded output actions, (h̃)i!v, is well understood [24] and
does not pose problems to monitoring, apart from making action pattern matching cum-
bersome; it also complicates instrumentation (see Sec. 4 and 5). Silent τ labels can also
be monitored using minor adaptations; they however increase substantially the size of
the traces recorded, unnecessarily cluttering the tracing semantics of Section 2.

The semantics of our logic is defined for closed formulas, using the operation ϕ{ψ/X},
which substitutes free occurrences of X in ϕ with ψ without introducing any variable
capture. It is specified as the satisfaction relation of Def. 1 (adapted from [1]). In what
follows, we write weak transitions A ===⇒ B and A

α
==⇒ B, for A

τ
−→
∗

B and A
τ
−→
∗

·
α
−→

·
τ
−→
∗

B resp. We let s, t ∈ (BA)∗ range over lists of basic actions and write sequences
of weak actions A

α1
=⇒ · · ·

αn
=⇒ B, where s = α1, . . . , αn, as A

s
==⇒ B (or as A

s
==⇒ when B

is unimportant).
4 HML with recursion has been shown to be equally expressive to the µ-calculus[20].



Definition 1 (Satisfiability). A relation R ∈ A× HML is a satisfaction relation iff:

(A, ff) ∈ R never

(A, ϕ∧ψ) ∈ R implies (A, ϕ) ∈ R and (A, ψ) ∈ R

(A, [α]ϕ) ∈ R implies (B, ϕ) ∈ R whenever A
α

==⇒ B

(A,max(X, ϕ)) ∈ R implies (A, ϕ{max(X, ϕ)/X}) ∈ R

Satisfiability, |=s, is the largest satisfaction relation; we write A |=s ϕ for (A, ϕ) ∈ sat.5

Example 2 (Satisfiability). Consider the safety formula

ϕsafe , max(X, [α][α][β]ff∧ [α]X ) (2)

stating that a satisfying actor system cannot perform a sequence of two external actions
α followed by the action β (through the subformula [α][α][β]ff), and that this needs to
hold after every α action (through [α]X); effectively the formula states that sequences
of α-actions greater than two cannot be followed by a β-action.

A system A1 exhibiting (just) the behaviour A1
αβ

==⇒ satisfies ϕsafe, as would a system

A2 with just the (infinite) behaviour A2
α

=⇒ A2. System A3 with a trace A3
ααβ

===⇒ does not

satisfy ϕsafe. However, if at runtime, A3 exhibits the alternate behaviour A3
β

=⇒ (through
an internal choice) we would not be able to detect the fact that A3 6|=s ϕsafe. �

Since actors may violate a property along one execution but satisfy it along another,
the inverse of |=s, i.e., A 6|=s ϕ, is too coarse to be used for a definition of monitor
correctness along the lines of (1) discussed earlier. We thus define a violation relation,
Def. 2, characterising actors violating a property along a specific execution trace.

Definition 2 (Violation). The violation relation, denoted as |=v, is the least relation of
the form (A × BA∗ × HML) satisfying the following rules:6

A, s |=v ff always

A, s |=v ϕ∧ψ if A, s |=v ϕ or A, s |=v ψ

A, αs |=v [α]ϕ if A
α

==⇒ B and B, s |=v ϕ

A, s |=v max(X, ϕ) if A, s |=v ϕ{max(X, ϕ)/X}

Example 3 (Violation). Recall the safety formula ϕsafe defined in (2). Actor A3, from
Ex. 2, together with the witness violating trace ααβ violate ϕsafe, i.e., (A3, ααβ) |=v ϕsafe.
However, A3 together with trace β do not violate ϕsafe, i.e., (A3, β) 6|=v ϕsafe. Def. 2 relates
a violating trace with an actor only when that trace leads the actor to a violation: if A3
cannot perform the trace αααβ, by Def. 2, we have (A3, αααβ) 6|=v ϕsafe, even though
the trace is prohibited by ϕsafe. A violating trace may also lead a system to a violation
before its end, e.g., (A3, ααβα) |=v ϕsafe according to Def. 2. �

5 It follows from standard fixed-point theory that the implications of satisfaction relation are
bi-implications for Satisfiability.

6 We write A, s |=v ϕ in lieu of (A, s, ϕ) ∈ |=v. It also follows from standard fixed-point theory
that the constraints of the violation relation are bi-implications.



Despite the technical discrepancies between the two definitions, e.g., maximal ver-
sus minimal fixpoints, a different model semantics etc., we show that Def. 2 corre-
sponds, in some sense, to the dual of Def. 1.

Theorem 1 (Correspondence). ∃s.(A, s) |=v ϕ iff A 6|=s ϕ

Proof. For the if case we prove the contrapositive, i.e., that ∀s.A, s 6|=v ϕ implies A |=s ϕ
by co-inductively showing that R = {(A, ϕ) | ∀s.A, s 6|=v ϕ} is a satisfaction relation. For
the only-if case we prove ∃s.A, s |=v ϕ implies A 6|=s ϕ by rule induction on A, s |=v ϕ.
See [15] for details.

4 Correctness

Specifying online monitor correctness is complicated by the fact that, in general, we
have limited control over the behaviour of the systems being monitored. For starters, a
system that does not satisfy a property may still exhibit runtime behaviour that does not
violate it, as discussed earlier in the case of system A3 of Ex. 2 and Ex. 3. We deal with
system non-determinism by only requiring monitor detection when the system performs
a violating execution: this can be expressed through the violation relation of Def. 2.

At runtime, a system may also interfere with the execution of monitors. Appropriate
instrumentation can limit system effects on the monitors. In our asynchronous actor
setting, direct interferences from the system to the monitors can be precluded by (i)
locating the monitors at process identifiers not known to the system (ii) preventing the
monitors from communicating these identifiers to the system. These measures inhibit
the system’s ability to send messages to the monitors.

A system may also interfere with monitor executions indirectly by diverging, i.e.,
infinite internal computation (τ-transitions) without external actions. This can prevent
the monitors from executing and thus postpone indefinitely violation detections [25].
In our case, divergence is handled, in part, by the EVM itself, which guarantees fair
executions for concurrent actors [7]. In settings where fair executions may be assumed,
it suffices to require a weaker property from monitors, reminiscent of the condition in
fair/should-testing[26]. Def. 3 states that, for an arbitrary basic action α, an actor system
A satisfies the predicate should-α if, for any sequence of internal actions, there always
exists an execution that can produce the action α; in the case of monitors, the external
should-action is set to a reserved violation-detection action, e.g., fail!.

Definition 3 (Should-α). A ⇓α
def
= A ==⇒ B implies B

α
==⇒

We limit monitoring to monitorable systems, where all actors are subject to a mon-
itorable modality.

A ≡ (ν h̃)
(
i[e / q]m ‖ B

)
implies m = ◦

This guarantees that (i) they can be composed with a tracer actor (ii) all the basic actions
produced by the system are recorded as trace entries at the tracer’s mailbox.7 Monitor

7 Due to asynchronous communication, even scoped actors can produce visible actions by send-
ing messages to environment actors.



correctness is defined for (unmonitored) basic systems, satisfying the condition:

A ≡ (ν h̃)
(
i[e / q]m ‖ B

)
implies m = •

which are instrumented to execute in parallel with the monitor. Our instrumentation is
defined through the operation d−e, Def. 4, converting basic systems to monitorable ones
using trace/2 and set on spawn Erlang commands [7]; see Lemma 1. Importantly,
instrumentation does not affect the visible behaviour of a basic system; see Lemma 2.

Definition 4 (Instrumentation). d−e :: A→ A is defined inductively as:

di[e / q]me
def
= i[e / q]◦ dB ‖ Ce

def
= dBe ‖ dCe d(ν i)Be def

= (ν i)dBe

Lemma 1. If A is a basic system then dAe is monitorable.

Lemma 2. For all basic actors A:

A
γ
−−−→ B iff


(ν i)

(
dAe ‖ i[e / q]∗

) j!v
−−−−→ (ν i)

(
dBe ‖ i[e / q : {sd, j, v}]∗

)
if γ = j!v

(ν i)
(
dAe ‖ i[e / q]∗

) j?v
−−−−→ (ν i)

(
dBe ‖ i[e / q : {rv, j, v}]∗

)
if γ = j?v

(ν i)
(
dAe ‖ i[e / q]∗

) τ
−−−→ (ν i)

(
dBe ‖ i[e / q]∗

)
if γ = τ

We are now in a position to state monitor correctness, for some predefined violation-
detection monitor action fail!, Def. 5. We restrict our definition to expressions e located
at a fresh scoped location i (not used by the system, i.e., i < fId(A)) with an empty
mailbox, ε; expression e may then spawn concurrent submonitors while executing. The
definition can be extended to generic concurrent monitors, i.e., multiple expressions, in
straightforward fashion.

Definition 5 (Correctness). e ∈ E is a correct monitor for ϕ ∈ HML iff for any
basic actors A ∈ A, i < fId(A), and execution traces s ∈

(
A∗ \ {fail!}

)
:

(ν i)
(
dAe ‖ i[e / ε]∗

) s
==⇒ B implies

(
A, s |=v ϕ iff B ⇓fail!

)
Def. 5 states that e correctly monitors property ϕ whenever, for any trace of envi-

ronment interactions, s, of a monitored system, (ν i)
(
dAe ‖ i[e / ε]∗

)
, yielding system B,

if s leads A to a violation of ϕ, then system B should always detect it, and viceversa.

5 Automated Monitor Synthesis

We define a translation from HML formulas to Erlang monitors that asynchronously
analyse a system and flag an alert whenever they detect violations by the current sys-
tem execution (for the respective HML formula). This translation describes the core
algorithm for a tool automating monitor synthesis from HML formulas [29].

Despite its relative simplicity, the HML provides opportunities to perform con-
current monitoring. The most obvious case is the translation of conjunction formulas,
ϕ1∧ϕ2, whereby the resulting code needs to check both sub-formulas ϕ1 and ϕ2 so as to



ensure that neither is violated.8 A translation in terms of two concurrent (sub)monitors,
each analysing different parts of the trace so as to ensure the observation of its respec-
tive sub-formula, constitutes a natural synthesis of the conjunction formula in our tar-
get language: it adheres to recommended Erlang practices advocating for concurrency
wherever possible [7], but also allows us to benefit from the advantages of concurrent
monitors discussed in the Introduction.

Example 4 (Conjunction Formulas). Consider the two HML formulas

ϕno dup ans , [αcall]
(
max(X, [βans] [βans] ff ∧ [βans] [αcall] X)

)
ϕreact ans , max(Y, [βans] ff ∧ [αcall] [βans] Y )

Formula ϕno dup ans requires that call actions αcall are at most serviced by a single answer
action βans, whereas formula ϕreact ans requires that answer actions are only produced in
response to call actions. Although one can rephrase the conjunction of the two formulas
as a formula without a top-level conjunction, it is more straightforward to use two con-
current monitors executing in parallel (one for each sub-formula in ϕno dup ans∧ϕreact ans).
There are also other reasons why it would be beneficial to keep the sub-formulas sepa-
rate: for instance, keeping the formulas disentangled improves maintainability and sep-
aration of concerns when subformulas originate from distinct specifying parties. �

Multiple conjunctions also arise indirectly when used under fix-point operators.
When synthesising concurrent monitors analysing separate branches of such recursive
properties, it is important to generate monitors that can dynamic spawn further sub-
monitors themselves as required at runtime, so as to keep the monitoring overheads to
a minimum.

Example 5 (Conjunctions and Fixpoints). Recall ϕsafe, from (2) in Ex. 2. Semantically,
the formula represents the infinite-depth tree with an infinite number of conjunctions,
depicted in Fig. 3(a). Although in practice, we cannot generate an infinite number of
concurrent monitors, ϕsafe will translate into possibly more than two concurrent moni-
tors executing in parallel. �

Our monitor synthesis, ~−�m :: HML → E , takes a closed, guarded9 HML
formula and returns an Erlang function that is then parameterised by a map (encoded as
a list of tuples) from formula variables to other synthesised monitors of the same form.
The map encodes the variable bindings introduced by the construct max(X, ϕ); it is used
for lazy recursive unrolling of formulas so as to minimize monitoring overhead. For in-
stance, when synthesising formula ϕsafe from Ex. 2, the algorithm initially spawns only
two concurrent submonitors, one checking for the subformula [α][α][β]ff, and another
one checking for the formula [α]X, as is depicted in Fig. 3(b). Whenever the rightmost
submonitor in Fig. 3(b) observes the action α and reaches X, it unfolds X and spawns an
additonal submonitor as depicted in Fig. 3(c), thereby increasing the monitor overheads
incrementally.

8 Since conjunctions are found in many monitoring logics, the concepts discussed here extend
directly to other RV settings.

9 In guarded HML formulas, variables appear only as a sub-formula of a necessity formula.
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Definition 6 (Synthesis). ~−�m is defined on the structure of the HML formula:

~ff�m def
= λxenv.fail!

~ϕ∧ψ�m def
=

λxenv. ypid1 = spw
(
~ϕ�m(xenv)

)
, ypid2 = spw

(
~ψ�m(xenv)

)
,

fork(ypid1, ypid2)

~[α]ϕ�m def
= λxenv.rcv

(
tr(α) → ~ϕ�m(xenv); → stop

)
end

~max(X, ϕ)�m def
= λxenv. ymon = ~ϕ�m, ymon({′X′, ymon} : xenv)

~X�m def
= λxenv. ymon = lookUp(′X′, xenv), ymon(xenv)

Auxiliary Function definitions and meta-operators:

fork
def
= µyrec.λ(xpid1, xpid2).rcv z→

(
xpid1!z, xpid2!z

)
end, yrec(xpid1, xpid2)

lookUp
def
=


µyrec.λ(xvar, xmap).case xmap of ({xvar, zmon} : ) → zmon

: ztl → yrec(xvar, ztl)
nil → exit

end

In Def. 6, the monitor for the formula ff immediately reports a violation to some
supervisor actor identified as fail, handling the violation. Conjunction, ϕ1∧ϕ2, trans-
lates into spawning the respective monitors for ϕ1 and ϕ2 and subsequently forwarding
any trace messages to these spawned monitors through the auxiliary function fork. The
translated monitor for [α]ϕ behaves as the monitor translation for ϕ once it receives a
trace message encoding the occurrence of action α, using the function:

tr(i?v) def
= {rv, i, v} tr(i!v) def

= {sd, i, v}

Importantly, the monitor for [α]ϕ terminates if the trace message does not correspond
to α. The translations of max(X, ϕ) and X are best understood together. The monitor for
max(X, ϕ) behaves like that for ϕ, under the extended map where X is mapped to the
monitor for ϕ, effectively modelling the formula unrolling ϕ{max(X, ϕ)/X} from Def. 2.
The monitor for X retrieves the respective monitor translation bound to X in the map
using function lookUp, and behaves like this monitor. Closed formulas guarantee that
map entries are always found by lookUp, whereas guarded formulas guarantee that
formula variables, X, are guarded by necessity conditions, [α]ϕ — this implements the
lazy recursive unrolling of formulas and prevents infinite bound-variable expansions.

Mon def
= λxfrm.zpid = spw

(
~xfrm�

m(nil)
)
, mLoop(zpid)

mLoop def
= µyrec.λxpid.rcv zmsg→

(
xpid!zmsg

)
end, yrec(xpid)

Monitor instrumentation, performed through the function Mon (defined above), spawns
the synthesised function initialised to the empty map, nil, and then acts as a message
forwarder to the spawned process, through the function mLoop (defined above), for any
trace messages it receives through the tracing semantics discussed in Sec. 2.



We have constructed a tool [29] that implements the monitor synthesis of Def. 6:
given an HML formula it generates a monitor that can be instrumented with minimal
changes to the system code, as discussed earlier in Sec. 4. The performance of our
synthesised monitor was evaluated through a simulated server that launches individual
workers to handle a series of requests from individual clients; we also injected faults
making certain workers non-deterministically behave erratically. We synthesised mon-
itors to check that each worker observes the no-duplicate-reply property from Ex. 4:

ϕwrkr , [wrk?req]
(
max(X, [clnt!rply] [clnt!rply] ff ∧ [clnt!rply] [wrk?req] X)

)
and calculated the overheads incurred for varying number of client requests (i.e., con-
current workers); we also compared this with the performance a monitor that checks for
property violations in sequential fashion. Tests were carried out on an Intel Core i7 pro-
cessor with 8GB of RAM, running Microsoft Windows 8 and EVM version R15B02.
The result, summarised in the table below, show that our synthesised concurrent moni-
toring yields acceptable overheads that are consistently lower than those of a sequential
monitor. We conjecture that this discrepancy can be increased further when monitoring
for recursive properties with longer chains of necessity formulas.

Unmonitored Sequential Concurrent
No of. Reqs. Time(µs) Time (µs) Ovhd(%) Time(µs) Ovhd.(%) Improv.(%)

250 117.813 121.667 3.27 118.293 0.40 2.86
350 185.232 202.500 9.32 194.793 5.16 4.16
450 237.606 248.333 4.51 242.380 2.01 2.51
550 286.461 319.167 11.42 308.853 7.82 3.60
650 345.543 372.232 7.72 354.333 2.54 5.18

6 Proving Correctness

The preliminary results obtained in Sec. 5 advocate for the feasibility of using concur-
rent monitors. We however still need to show that the monitors synthesised are correct.
Def. 5 allows us to state one of the main results of the paper, Theorem 2.

Theorem 2 (Correctness). For all ϕ ∈ HML, Mon(ϕ) is a correct monitor for ϕ.

Proving Theorem 2 directly can be an arduous task: for any HML formula, it re-
quires reasoning about all the possible execution paths of any monitored system in
parallel with the instrumented monitor. We propose a formal technique for alleviating
the task of ascertaining the monitor correctness of Def. 5 by teasing apart three separate
(weaker) monitor-conditions: they are referred to as Violation Detectability, Detection
Preservation and Monitor Separability. These conditions are important properties in
their own right— for instance, Detection Preservation requires the monitor to behave
deterministically wrt. violation detections. Moreover, the three conditions pose advan-
tages to the checking of monitor correctness: since these conditions are independent to
one another, they can be checked in parallel by distinct analysing entities; alternatively,
the conditions that are inexpensive to check may be carried out before the more expen-
sive ones, thus acting as vetting phases that abort early and keep the analysis cost to a



minimum. More importantly though, the three conditions together imply our original
monitor-correctness criteria.

The first sub-property is Violation Detectability, Lemma 3, guaranteeing that every
violating trace s of formula ϕ is detectable by the respective synthesised monitor,10 (the
only-if case) and that there are no false detections (the if case). This property is easier
to verify than Theorem 2 since it requires us to consider the execution of the monitor in
isolation and, more importantly, requires us to verify the existence of an execution path
that detects the violation; concurrent monitors typically have multiple execution paths.

Lemma 3 (Violation Detectability). For basic A ∈ A and i < fId(A), A
s

=⇒ implies:

A, s |=v ϕ iff i[Mon(ϕ) / tr(s)]∗
fail!

===⇒

Detection Preservation (Lemma 4), the second sub-property, is not concerned with
relating detections to actual violations. Instead it guarantees that if a monitor can po-
tentially detect a violation, further reductions do not exclude the possibility of this de-
tection. In the case where monitors always have a finite reduction wrt. their mailbox
contents (as it turns out to be the case for monitors synthesised by Def. 6) this condition
guarantees that the monitor will deterministically detect violations.

Lemma 4 (Detection Preservation). For all ϕ ∈ HML, q ∈ V∗(
i[Mon(ϕ) / q]∗

fail!
===⇒ and i[Mon(ϕ) / q]∗ ==⇒ B

)
implies B

fail!
===⇒

The third sub-property is Separability, Lemma 5, which implies that the behaviour of
a (monitored) system is independent of the monitor and, dually, the behaviour of the
monitor depends, at most, on the trace generated by the system.

Lemma 5 (Monitor Separability). For all basic A ∈ A, i < fId(A), ϕ ∈ HML, and
s ∈ A∗ \ {fail!},

(ν i)
(
dAe ‖ i[Mon(ϕ)]∗

) s
==⇒ B implies ∃B′, B′′s.t.

B ≡ (ν i)
(
B′ ‖ B′′

)
and A

s
=⇒ A′ s.t. B′ = dA′e and i[Mon(ϕ) / tr(s)]∗ ==⇒ B′′

These three properties suffice to show monitor correctness.

Theorem 2 (Correctness). For all ϕ ∈ HML, Mon(ϕ) is a correct monitor for ϕ.

Proof. According to Def. 5 we have to show:

(ν i)
(
dAe ‖ i[Mon(ϕ)]∗

) s
==⇒ B implies

(
A, s |=v ϕ iff B ⇓fail!

)
For the only-if case, we assume

(ν i)
(
A ‖ i[Mon(ϕ)]∗

) s
==⇒ B (3)

A, s |=v ϕ (4)

10 We elevate tr to basic action sequences s in pointwise fashion, tr(s), where tr(ε) = ε.



To show B ⇓fail!, by Def. 3 we also assume B ==⇒ B′, for arbitrary B′, and then be

required to prove that B′
fail!
==⇒. From (3), B ==⇒ B′ and Lemma 5 we know

∃B′′, B′′′s.t. B′ ≡ (ν i)
(
B′′ ‖ B′′′

)
(5)

A
s

==⇒ A′ for some A′ where dA′e = B′′ (6)
i[Mon(ϕ) / tr(s)]∗ ===⇒ B′′′ (7)

From (6), (4) and Lemma 3 we obtain i[Mon(ϕ) / tr(s)]∗
fail!
==⇒ , and from (7) and

Lemma 4 we get B′′′
fail!
==⇒. Hence, by (5), and standard transition rules for parallel

composition and scoping (see Sec. A) we can reconstruct B′
fail!

===⇒, as required.
For the if case we assume:

(ν i)
(
dAe ‖ i[Mon(ϕ)]∗

) s
==⇒ B (8)

B ⇓fail! (9)

and have to prove A, s |=v ϕ. From (9) we know B
fail!

===⇒. Together with (8) this implies

∃B′ s.t. (ν i)
(
dAe ‖ i[Mon(ϕ)]∗

) s
==⇒ B′

fail!
−−−→ (10)

From Lemma 5 and (10) we obtain

∃B′′, B′′′s.t. B′ = (ν i)
(
B′′ ‖ B′′′

)
(11)

A
s

==⇒ A′ for some A′ where dA′e = B′′ (12)
i[Mon(ϕ) / tr(s)]∗ ==⇒ B′′′ (13)

From (10), (11) and the freshness of fail! to A we deduce that B′′′
fail!
−−→, and subsequently,

by (13), we get imtr[Mon(ϕ) / tr(s)]
fail!
==⇒. Therefore, by (12) and Lemma 3 we obtain

A, s |=v ϕ, as required. ut

7 Conclusion

We have studied a more intensional notion of correctness for monitor synthesis in a con-
current online setting; we worked close to the actual implementation level of abstraction
so as to enhance our confidence in the correctness of our instrumented monitors. More
precisely, we have identified a number of additional issues raised when proving mon-
itor correctness in this concurrent setting, illustrating them through a case study that
builds a tool [29] automating monitor synthesis from a reactive property logic (HML)
to asynchronous monitors in a concurrent language (Erlang). The specific contributions
of the paper, in order of importance, are:

1. A novel formal definition of monitor correctness, Def. 5, dealing with issues such
as system non-determinism and system interference.



2. A proof technique teasing apart aspects of the monitor correctness definition, Lem. 3,
Lem. 4 and Lem. 5, allowing us to prove correctness in stages. We subsequently ap-
ply this technique to prove the correctness of our tool, Thm. 2.

3. An alternative violation characterisation of the logic, HML, that is more amenable
to runtime analysis and reasoning about monitor correctness, together with a proof
of correspondence for this reformulation, Thm. 1.

4. An extension of a formalisation for Erlang describing its tracing semantics, Sec. 2.
5. A formal monitor synthesis definition from HML formulas to Erlang code, Def. 6.

Related Work: The aforementioned work, [17, 27, 4], discusses monitor synthesis from
a different logic, namely LTL, to either pseudocode, automata or Büchi automata; none
of this work considers online concurrent monitoring, circumventing issues associated
with concurrency and system interference. There is considerable work on runtime mon-
itoring of web services, e.g., [13, 5] verifying the correctness of reactive (communica-
tion) properties, similar to those expressed through HML; to the best of our knowl-
edge, none of this work tackles correct monitor synthesis from a specified logic. In [9],
Colombo et al. develop an Erlang RV tool using the EVM tracing mechanism but do
not consider the issue of correct monitor generation. Fredlund [16] adapted a variant of
HML to specify correctness properties in Erlang, albeit for model checking purposes.
There is also work relating HML formulas with tests, namely [1]. Our monitors differ
from tests, as in [1], in a number of ways: (i) they are defined in terms of concurrent ac-
tors, as opposed to sequential CCS processes; (ii) they analyse systems asynchronously,
acting on traces, whereas tests interact with the system directly, forcing certain system
behaviour; (iii) they are expected to always detect violations when they occur whereas
tests are only required to have one possible execution that detects violations.

Future Work: The monitoring semantics of Section 2 can be used as a basis to formally
prove existing Erlang monitoring tools such as [9, 10]. HML can also be extended to
handle limited, monitorable forms of liveness properties (often termed co-safety prop-
erties [21]). It is also worth exploring mechanisms for synchronous monitoring, as op-
posed to asynchronous variant studied in this paper. Erlang also facilitates monitor dis-
tribution which can be used to lower monitoring overheads [11]. Distributed monitoring
can also be used to increase the expressivity of our tool so as to handle correctness prop-
erties for distributed programs. The latter extension, however, poses a departure from
our setting because the unique trace described by our framework would be replaced by
separate independent traces at each location, where the lack of a total ordering of events
may prohibit the detection of certain violations [14].
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A The Language Semantics

Mailbox reading—defined by the rules R1 and R2 in Fig. 2—includes pattern-matching
functionality, allowing the actor to selectively choose which messages to read first from
its mailbox whenever the first pattern p→ e from the pattern list g is matched, returning
eσ, where σ substitutes free variables in e for value binding resulting from the pattern
match; when no pattern is matched, mailbox reading blocks - see Definition 7.

Definition 7 (Pattern Matching). We define mtch : PL × V → E⊥ and vmtch :
P × V→ S⊥ as follows:

mtch(g, v) def
=


eσ if g = p→ e : f , vmtch(p, v) = σ

d if g = p→ e : f , vmtch(p, v) = ⊥,mtch( f , v) = d
⊥ otherwise

vmtch(p, v) def
=



∅ if p = v (whenever p is a, i or nil)
{v/x} if p = x⊎n

i=1 σi if p = {p1, . . . , pn}, v = {v1, . . . , vn} where vmtch(pi, vi) = σi

σ ] {l/x} if p = o : x, v = u : l where vmtch(o, u) = σ

⊥ otherwise

σ1 ] σ2
def
=


σ1 ∪ σ2 if dom(σ1) ∩ dom(σ2) = ∅

σ1 ∪ σ2 if ∀v ∈ dom(σ1) ∩ dom(σ2).σ1(v) = σ2(v)
⊥ if σ1 = ⊥ or σ2 = ⊥

⊥ otherwise

This differs from pattern matching in case branching, described by the rules C1 and
C2 in Fig. 2: similar to the mailbox read construct, it matches a values to the first ap-
propriate pattern in the pattern list, launching the respective guarded expression with the
appropriate variable bindings resulting from the pattern match; if, however, no match is
found it generates an exception, exit, which aborts subsequent computation, E.



B Monitor Properties

In this section we detail the proofs of the individual sub-properties identified in Sec. 6.
To simplify the technical development, we assume the following convention. The tracer,
which is also where the synthesised monitor is places in the instrumentation of Def. 5
is located the process identifier imtr. Also sequences of process identifiers are denoted
as h̃: for instance, the system (ν j1) . . . (ν jn)A is denoted as (ν j̃)A when the scoped
identifiers are not important.

Violation Detection The first sub-property we consider is Lemma 3, Violation De-
tection. One of the main Lemmas used in the proof, namely Lemma 9, relies on an
encoding of formula substitutions, θ :: LV⇀ HML, partial maps from formula vari-
ables to (possibly open) formulas, to lists of tuples containing a string representation of
the variable and the respective monitor translation of the formula as defined in Def. 6.
Formula substitutions are denoted as lists of individual substitutions, {ϕ1/X1} . . . {ϕn/Xn}

where every Xi is distinct, and empty substitutions are denoted as ε.

Definition 8 (Formula Substitution Encoding).

enc(θ) def
=

nil when θ = ε

{′X′, ~ϕ�m} : enc(θ′) if θ = {max(X, ϕ)/X}θ′

We can show that our monitor lookup function of Def. 6 models variable substi-
tution, Lemma 6. We can also show that different representations of the same formula
substitution do not affect the outcome of the execution of lookUp on the respective en-
coding, which justifies the abuse of notation in subsequent proofs that assume a single
possible representation of a formula substitution.

Lemma 6. If θ(X) = ϕ then i[lookUp(′X′, enc(θ)) / q]m ===⇒ i[~ϕ�m / q]m

Proof. By induction on the number of mappings {ϕ1/X1} . . . {ϕn/Xn} in θ. ut

Lemma 7. If θ(X) = ϕ then i[lookUp(′X′, enc(θ′)) / q]m ===⇒ i[~ϕ�m / q]m whenever
θ and θ′ denote the same substitution.

Proof. By induction on the number of mappings {ϕ1/X1} . . . {ϕn/Xn} in θ. ut

In one direction, Lemma 3 relies on Lemma 9 in order to establish the correspon-
dence between violations and the possibility of detections; this lemma, in turn, uses
Lemma 8 which relates possible detections by monitors synthesised from subformulas
to possible detections by monitors synthesised from conjunctions using these subfor-
mulas.

Lemma 8. For an arbitrary θ, (ν i)
(
imtr[mLoop( j1) / tr(s)]∗ ‖ i[~ϕ1�

m(enc(θ))]•
) fail!

==⇒

implies (ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ1∧ϕ2�

m(enc(θ))]•
) fail!

==⇒ for any ϕ2 ∈ HML.



Proof. By Def. 6 we know that we can derive the sequence of reductions

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ1∧ϕ2�

m(enc(θ))]•
)

==⇒

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ (ν j, h)

(
i[fork( j, h)]• ‖ j[~ϕ1�

m(enc(θ))]• ‖ h[~ϕ2�
m(enc(θ))]•

))
We then prove by induction on the structure of s that

(ν i)
(
imtr[mLoop(i) / tr(s)]• ‖ i[~ϕ1�

m(enc(θ)) / q]•
) fail!

==⇒ implies

(ν i)
(

imtr[mLoop(i) / tr(s)]∗ ‖
(ν j, h)

(
i[fork( j, h)]• ‖ j[~ϕ1�

m(enc(θ)) / q]• ‖ h[~ϕ2�
m(enc(θ)) / q]•

) ) fail!
==⇒

See [15] for details.

Lemma 9. If A, s |=v ϕθ and lenv = enc(θ) then

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(lenv)]•

) fail!
===⇒ .

Proof. Proof by rule induction on A, s |=v ϕθ:

A, s |=v ffθ: Using Def. 6 for the definition of ~ff�m and the rule A (and P and S),
we have

(ν i)(imtr[mLoop(i) / tr(s)]∗ ‖ i[~ff�m(lenv)]•) ==⇒ (ν i)(imtr[mLoop(i) / tr(s)]∗ ‖ i[fail!]•)

The result follows trivially, since the process i can transition with a fail! action in a
single step using the rule SU.

A, s |=v (ϕ1∧ϕ2)θ because A, s |=v ϕ1θ: By A, s |=v ϕ1θ and I.H. we have

(ν i)(imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ1�
m(lenv)]•)

fail!
==⇒

The result thus follows from Lem. 8, which allows us to conclude that

(ν i)(imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ1∧ϕ2�
m(lenv)]•)

fail!
==⇒

A, s |=v (ϕ1∧ϕ2)θ because A, s |=v ϕ2θ: Analogous.
A, s |=v ([α]ϕ)θ because s = αt, A

α
==⇒ B and B, t |=v ϕθ: Using the rule A S and

Def. 6 for the property [α]ϕ we derive (14), by executing mLoop— see Def. 6
— we obtain (15), and then by rule R1 we derive (16) below.

(ν i)
(
imtr[mLoop(i) / tr(αt)]∗ ‖ i[~ϕ�m(lenv)]•

) τ
−−−→ (14)

(ν i)
(
imtr[mLoop(i) / tr(αt)]∗ ‖ i[rcv (tr(α)→ ~ϕ�m(lenv) ; → ok) end]•

)
==⇒ (15)

(ν i)
(
imtr[mLoop(i) / tr(t)]∗ ‖ i[rcv (tr(α)→ ~ϕ�m(lenv) ; → ok) end / tr(α)]•

) τ
−−−→

(16)

(ν i)
(
imtr[mLoop(i) / tr(t)]∗ ‖ i[~ϕ�m(lenv)]•

)
By B, t |=v ϕθ and I.H. we obtain

(ν i)
(
imtr[mLoop(i) / tr(t)]∗ ‖ i[~ϕ�m(lenv)]•

) fail!
==⇒

and, thus, the result follows by (14), (15) and (16).



A, s |=v (max(X, ϕ))θ because A, s |=v ϕ{max(X, ϕ)/X}θ: By Def. 6 and A for process i,
we derive

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~max(X, ϕ)�m(lenv)]•

)
==⇒

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m({′X′, ~ϕ�m} : lenv)]•

)
(17)

Assuming the appropriate α-conversion for X in max(X, ϕ), we note that from lenv =

enc(θ) and Def. 8 we obtain

enc({max(X, ϕ)/X}θ) = {′X′, ~ϕ�m} : lenv (18)

By A, s |=v ϕ{max(X, ϕ)/X}ρ, (18) and I.H. we obtain

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m({′X′, ~ϕ�m} : lenv)]•

) fail!
==⇒ (19)

The result follows from (17) and (19). ut

In the other direction, Lemma 3 relies on Lemma 13, which establishes a correspon-
dence between violation detections and actual violations, as formalised in Def. 2.

Lemma 13 relies on a technical result, Lemma 12 which allows us to recover a
violating reduction sequence for a subformula ϕ1 or ϕ2 from that of the synthesised
monitor of a conjuction formula ϕ1∧ϕ2. Lemma 12 relies on Lemma 10.

Lemma 10. For some l ≤ n:

(ν j, h)
(
i
[
fork( j, h) / qfrk

]•
‖ j[~ϕ1�

m(lenv) / q]• ‖ h[~ϕ2�
m(lenv) / r]•

)
(

τ
−−−→)n fail!

−−→

implies (ν j)
(
imtr[mLoop( j) / qfrk]∗ ‖ j[~ϕ1�

m(lenv) / q]•
)
(

τ
−−−→)l fail!

−−→

or (ν h)
(
imtr[mLoop(h) / qfrk]∗ ‖ h[~ϕ2�

m(lenv) / r]•
)
(

τ
−−−→)l fail!

−−→

Proof. By induction on the structure of the mailbox qfrk at actor i. See [15] for details.
ut

Lemma 12 uses another technical result, Lemma 11, stating that silent actions are, in
some sense, preserved when actor-mailbox contents of a free actor are increased; note
that the lemma only applies for cases where the mailbox at this free actor decreases
in size or remains unaffected by the τ-action, specified through the sublist condition
q′ ≤ q.

Lemma 11 (Mailbox Increase). (ν h̃)(i[e / q]m ‖ A)
τ
−−−→ (ν j̃)(i[e′ / q′]m ‖ B) where

i < h̃ and q′ ≤ q implies (ν h̃)(i[e / q : v]m ‖ A)
τ
−−−→ (ν j̃)(i[e′ / q′ : v]m ‖ B)

Proof. By rule induction on (ν h̃)(i[e / q]m ‖ A)
τ
−−−→ (ν j̃)(i[e′ / q′]m ‖ B). ut

Equipped with Lemma 10 and Lemma 11, we are in a position to prove Lemma 12.



Lemma 12. For some l ≤ n

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ (ν j, h)

(
i
[
fork( j, h) / tr(t)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

))
(

τ
−−−→)k fail!

−−→

implies (ν i)
(
imtr[mLoop(i) / tr(ts)]∗ ‖ i[~ϕ1�

m(lenv)]•
)
(

τ
−−−→)l fail!

−−→

or (ν i)
(
imtr[mLoop(i) / tr(ts)]∗ ‖ i[~ϕ2�

m(lenv)]•
)
(

τ
−−−→)l fail!

−−→

Proof. Proof by induction on the structure of s.

s = ε: From the structure of mLoop, we know that after the function application, the
actor imtr[mLoop(i)]∗ is stuck. Thus we conclude that it must be the case that

(ν j, h)
(

i
[
fork( j, h) / tr(t)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)
(

τ
−−−→)k fail!

−−→

where k = n or k = n−1. In either case, the required result follows from Lemma 10.
s = αs′: We have two subcases:

– If

(ν j, h)
(

i
[
fork( j, h) / tr(t)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)
(

τ
−−−→)k fail!

−−→

for some k ≤ n then, by Lemma 10 we obtain

(ν j)
(
imtr[mLoop( j) / tr(t)]∗ ‖ j[~ϕ1�

m(lenv)]•
)
(

τ
−−−→)l fail!

−−→

or (ν h)
(
imtr[mLoop(h) / tr(t)]∗ ‖ h[~ϕ2�

m(lenv)]•
)
(

τ
−−−→)l fail!

−−→

for some l ≤ k. By Lemma 11 we thus obtain

(ν j)
(
imtr[mLoop( j) / tr(ts)]∗ ‖ j[~ϕ1�

m(lenv)]•
)
(

τ
−−−→)l fail!

−−→

or (ν h)
(
imtr[mLoop(h) / tr(ts)]∗ ‖ h[~ϕ2�

m(lenv)]•
)
(

τ
−−−→)l fail!

−−→

as required.
– Otherwise, it must be the case that

(ν i)

 imtr[mLoop(i) / tr(s)]∗

‖ (ν j, h)
(

i
[
fork( j, h) / tr(t)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)  (
τ
−−−→)k (20)

(ν i)
(

imtr[mLoop(i) / tr(s′)]∗

‖ (ν j, h)
(
i
[
efork / q : tr(α)

]•
‖ A

) ) (
τ
−−−→)n−k fail!

−−→ (21)

For some k = 3 + k1 where

(ν j, h)
(

i
[
fork( j, h) / tr(t)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)
(

τ
−−−→)k1

(ν j, h)
(
i
[
efork / q

]•
‖ A

) (22)



By (22) and Lemma 11 we obtain

(ν j, h)
(

i
[
fork( j, h) / tr(t) : tr(α)

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)
(

τ
−−−→)k1

(ν j, h)
(
i
[
efork / q : tr(α)

]•
‖ A

)
and by (21) we can construct the sequence of transitions:

(ν i)

 imtr[mLoop(i) / tr(s′)]∗

‖ (ν j, h)
(

i
[
fork( j, h) / tr(t) :α

]•
‖ j[~ϕ1�

m(lenv)]• ‖ h[~ϕ2�
m(lenv)]•

)  (
τ
−−−→)n−3 fail!

−−→

Thus, by I.H. we obtain, for some l ≤ n − 3

(ν i)
(
imtr[mLoop(i) / tr(tαs′)]∗ ‖ i[~ϕ1�

m(lenv)]•
)
(

τ
−−−→)l fail!

−−→

or (ν i)
(
imtr[mLoop(i) / tr(tαs′)]∗ ‖ i[~ϕ2�

m(lenv)]•
)
(

τ
−−−→)l fail!

−−→

The result follows since s = αs′. ut

Equipped with Lemma 12, we can now prove Lemma 13.

Lemma 13. If A
s

==⇒, lenv = enc(θ) and (ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(lenv)]•

) fail!
==⇒

then A, s |=v ϕθ, whenever fv(ϕ) ⊆ dom(θ).

Proof. By strong induction on (ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(lenv)]•

)
(
τ
−−→)n fail!

−−→.

n = 0: By inspection of the definition for mLoop, and by case analysis of ~ϕ�m(lenv)
from Def. 6, it can never be the case that

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(lenv)]•

) fail!
−−→

Thus the result holds trivially.
n = k + 1: We proceed by case analysis on ϕ.

ϕ = ff: The result holds immediately for any A and s by Def. 2.
ϕ = [α]ψ: By Def. 6, we know that

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~[α]ψ�m(lenv)]•

)
(

τ
−−−→)k1 (23)

(ν i)
(
imtr[mLoop(i) / tr(s2)]∗ ‖ i[~[α]ψ�m(lenv) / tr(s1)]•

) τ
−−−→ (24)

(ν i)


imtr[mLoop(i) / tr(s2)]∗ ‖

i
[
rcv

(
tr(α)→ ~ψ�m(lenv) ;
→ ok

)
end / tr(s1)

]•  (
τ
−−→)k2

fail!
−−→ (25)

where k + 1 = k1 + k2 + 1 and s = s1s2 (26)



From the analysis of the code in (25), the only way for the action fail! to be
triggered is by choosing the guarded branch tr(α)→ ~ϕ�m(lenv) in actor i. This
means that (25) can be decomposed into the following reduction sequences.

(ν i)


imtr[mLoop(i) / tr(s2)]∗ ‖

i
[
rcv

(
tr(α)→ ~ψ�m(lenv) ;
→ ok

)
end / tr(s1)

]•  (
τ
−−→)k3 (27)

(ν i)


imtr[mLoop(i) / tr(s4)]∗ ‖

i
[
rcv

(
tr(α)→ ~ψ�m(lenv) ;
→ ok

)
end / tr(s1s3)

]•  τ
−−−→ (28)

(ν i)
(

imtr[mLoop(i) / tr(s4)]∗ ‖
i
[
~ψ�m(lenv) / tr(s5)

]• )
(

τ
−−−→)k4

fail!
−−→ (29)

where k2 = k3 + k4 + 1 and s1s3 = αs5 and s2 = s3s4 (30)

By (26) and (30) we derive

s = αt where t = s5s4 (31)

From the definition of mLoop we can derive

(ν i)
(
imtr[mLoop(i) / tr(t)]∗ ‖ i[~ψ�m(lenv)]•

)
(

τ
−−−→)k5

(ν i)
(
imtr[mLoop(i) / tr(s4)]∗ ‖ i

[
~ψ�m(lenv) / tr(s5)

]•) (32)

where k5 ≤ k1 + k3. From (31) we can split A
s

==⇒ as A
α

==⇒ A′
t

==⇒ and from
(32), (29), the fact that k5 + k4 < k + 1 = n from (26) and (30), and I.H. we
obtain

A′, t |=v ψθ (33)

From (33), A
α

==⇒ A′ and Def. 2 we thus conclude A, s |=v
(
[α]ψ

)
θ.

ϕ = ϕ1∧ϕ2 From Def. 6, we can decompose the transition sequence as follows

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ1∧ϕ2�

m(lenv)]•
)
(
τ
−−→)k1 (34)

(ν i)
(
imtr[mLoop(i) / tr(s2)]∗ ‖ i[~ϕ1∧ϕ2�

m(lenv) / tr(s1)]•
) τ
−−−→ (35)

(ν i)


imtr[mLoop(i) / tr(s2)]∗

‖ i

y1 = spw
(
~ϕ1�

m(lenv)
)
,

y2 = spw
(
~ϕ2�

m(lenv)
)
,

fork(y1, y2)
/ tr(s1)


•

 (
τ
−−→)k2 (36)

(ν i)


imtr[mLoop(i) / tr(s4)]∗

‖ i

y1 = spw
(
~ϕ1�

m(lenv)
)
,

y2 = spw
(
~ϕ2�

m(lenv)
)
,

fork(y1, y2)
/ tr(s1s3)


•

 (
τ
−−→)2 (37)



(ν i)


imtr[mLoop(i) / tr(s4)]∗

‖ (ν j)

 i
[
y2 = spw

(
~ϕ2�

m(lenv)
)
,

fork( j, y2) / tr(s1s3)
]•

‖ j[~ϕ1�
m(lenv)]•


 (

τ
−−−→)k3

fail!
−−→ (38)

where k + 1 = k1 + 1 + k2 + 2 + k3, s = s1s2 and s2 = s3s4 (39)

From (38) we can deduce that there are two possible transition sequences how
action fail! was reached:
1. If fail! was reached because

j[~ϕ1�
m(lenv)]•(

τ
−−−→)k4

fail!
−−→

on its own, for some k4 ≤ k3 then, by P and S we deduce

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ j[~ϕ1�

m(lenv)]•
)
(

τ
−−−→)k4

fail!
−−→

From (39) we know that k4 < k + 1 = n, and by the premise A
s

==⇒ and I.H.
we obtain A, s |=v ϕ1θ. By Def. 2 we then obtain A, s |=v

(
ϕ1∧ϕ2

)
θ

2. Alternatively, (38) can be decomposed further as

(ν i)


imtr[mLoop(i) / tr(s4)]∗

‖ (ν j)

 i
[
y2 = spw

(
~ϕ2�

m(lenv)
)
,

fork( j, y2) / tr(s1s3)
]•

‖ j[~ϕ1�
m(lenv)]•


 (

τ
−−−→)k4 (40)

(ν i)


imtr[mLoop(i) / tr(s6)]∗

‖ (ν j)

 i
[
y2 = spw

(
~ϕ2�

m(lenv)
)
,

fork( j, y2) / tr(s1s3s5)
]•

‖ j[~ϕ1�
m(lenv)]•


 (

τ
−−→)2 (41)

(ν i)


imtr[mLoop(i) / tr(s6)]∗

‖ (ν j, h)

 i
[
fork( j, h) / tr(s1s3s5)

]•
‖ j[~ϕ1�

m(lenv)]•

‖ h[~ϕ2�
m(lenv)]•


 (

τ
−−−→)k5

fail!
−−→ (42)

wherek3 = k4 + 2 + k5 and s4 = s5s6 (43)

From (42) and Lemma 12 we know that either

(ν i)
(
imtr[mLoop(i) / tr(s1s3s5s6)]∗ ‖ i[~ϕ1�

m(lenv)]•
)
(

τ
−−−→)k6

fail!
−−→

or (ν i)
(
imtr[mLoop(i) / tr(s1s3s5s6)]∗ ‖ i[~ϕ2�

m(lenv)]•
)
(

τ
−−−→)k6

fail!
−−→

where k6 ≤ k5

From (39) and (43) we know that s = s1s3s5s6 and that k6 < k + 1 = n.
By I.H., we obtain either A, s |=v ϕ1θ or A, s |=v ϕ2θ, and in either case, by
Def. 2 we deduce A, s |=v

(
ϕ1∧ϕ2

)
θ.



ϕ = X By Def. 6, we can deconstruct (ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~X�m(lenv)]•

)
(
τ
−−→

)k+1 fail!
−−→ as

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~X�m(lenv)]•

)
==⇒

τ
−−→ (44)

(ν i)
(
imtr[mLoop(i) / tr(s2)]∗ ‖ i[y = lookUp(′X′, lenv), y(lenv) / tr(s1)]•

)
==⇒

τ
−−→

(45)

(ν i)
(
imtr[mLoop(i) / tr(s4)]∗ ‖ i[y = v, y(lenv) / tr(s1s3)]•

)
==⇒

τ
−−→ (46)

(ν i)
(
imtr[mLoop(i) / tr(s6)]∗ ‖ i[v(lenv) / tr(s1s3s5)]•

)
==⇒

fail!
−−−→ (47)

where s = s1s2, s2 = s3s4 and s4 = s5s6

Since X ∈ dom(θ), we know that

θ(X) = ψ (48)

for some ψ. By the assumption lenv = enc(θ) and Lemma 6 we obtain that
v = ~ψ�m. Hence, by (44), (45), (46) and (47) we can reconstruct

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ψ�m(lenv)]•

)
(
τ
−−→)k1

(ν i)
(
imtr[mLoop(i) / tr(s6)]∗ ‖ i[~ψ�m(lenv) / tr(s1s3s5)]•

)
(
τ
−−→)k2

fail!
−−−→

(49)

where k1 + k2 < k + 1 = n. By (49) and I.H. we obtain A, s |=v ψ, which is the
result required, since by (48) we know that Xθ = ψ.

ϕ = max(X, ψ) By Def. 6, we can deconstruct

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~max(X, ψ)�m(lenv)]•

)
(
τ
−−→)k+1 fail!

−−→

as follows:

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~max(X, ψ)�m(lenv)]•

)
(
τ
−−→)k1

τ
−−→

(ν i)
(
imtr[mLoop(i) / tr(s2)]∗ ‖ i[~ψ�m({′X′, ψ} : lenv) / tr(s1)]•

)
(
τ
−−→)k2

fail!
−−→

from which we can reconstruct the transition sequence

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ψ�m({′X′, ψ} : lenv)]•

)
(
τ
−−→)k1+k2

fail!
−−→ (50)

By the assumption lenv = Γ(θ) we deduce that {′X′, ψ} : lenv = enc({max(X, ψ)/}θ)
and, since k1 + k2 < k + 1 = n, we can use (50), A

s
==⇒ and I.H. to obtain

A, s |=v ψ{max(X, ψ)/X}θ. By Def. 2 we then conclude A, s |=v max(X, ψ)θ. ut

We are now in a position to prove Lemma 3; we recall that the lemma was stated
wrt. closed HML formulas.



Lemma 3 (Violation Detection). Whenever A
s

==⇒ then :

A, s |=v ϕ iff imtr[Mon(ϕ) / tr(s)]∗
fail!

===⇒

Proof. For the only-if case, we assume A
s

==⇒ and A, s |=v ϕ and are required to prove

imtr[Mon(ϕ) / tr(s)]∗
fail!

===⇒. We recall from Sec. 5 that Mon was defined as

λxfrm.zpid = spw
(
~xfrm�

m(nil)
)
, mLoop(zpid). (51)

and as a result we can deduce (using rules such as A, S and P) that

imtr[Mon(ϕ) / tr(s)]∗ ===⇒ (ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(nil)]•

)
(52)

Assumption A, s |=v ϕ can be rewritten as A, s |=v ϕθ for θ = ε, and thus, by Def. 8 we
know nil = enc(θ). By Lemma 9 we obtain

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(nil)]•

) fail!
===⇒ (53)

and the result thus follows from (52) and (53).

For the if case, we assume A
s

==⇒ and imtr[Mon(ϕ) / tr(s)]∗
fail!

===⇒ and are required to
prove A, s |=v ϕ.

Since ϕ is closed, we can assume the empty list of substitutions θ = ε where, by
default, fv(ϕ) ⊆ dom(θ) and, by Def. 8, nil = enc(θ). By (51) we can decompose the

transition sequence imtr[Mon(ϕ) / tr(s)]∗
fail!

===⇒ as

imtr[Mon(ϕ) / tr(s)]∗(
τ
−−−→)3

(ν i)
(
imtr[mLoop(i) / tr(s)]∗ ‖ i[~ϕ�m(nil)]•

) fail!
==⇒ (54)

The result, i.e., A, s |=v ϕ, follows from (54) and Lemma 13. ut

Detection Preservation In order to prove Lemma 4, we are able to require a stronger
guarantee, i.e., confluence under weak transitions (Lemma 16) for the concurrent mon-
itors described in Def. 6. Lemma 16 relies heavily on Lemma 15.

Definition 9 (Confluence modulo Inputs with Identical Recipients).

cnf(A) def
= A

γ1
−→ A′ and A

γ2
−→ A′′ implies


γ1 = i?v1, γ2 = i?v2 or;
γ1 = γ2, A′ = A′′ or;

A′
γ2
−→ A′′′, A′′

γ1
−→ A′′′ for some A′′′

Before we embark on showing that our synthesised monitors (Def. 6) remain con-
fluent after a sequence of silent transitions, Lemma 15 and Lemma 16, we find it con-
venient to prove a technical result, Lemma 14, identifying the possible structures a
monitor can be in after an arbitrary number of silent actions; the lemma also establishes
that the only possible external action that a synthesised monitors can perform is the
fail action: this property helps us reason about the possible interactions that concurrent
monitors may engage in when proving Lemma 15.



Lemma 14 (Monitor Reductions and Structure). For all ϕ ∈ HML, q ∈ (V)∗ and
θ :: LV⇀ HML if i[~ϕ�m(enc(θ)) / q]•(

τ
−−→)nA then

1. A
α
−−−→ B implies α = fail! and;

2. A has the form i[~ϕ�m(enc(θ)) / q]• or, depending on ϕ:
ϕ = ff: A ≡ i[fail! / q]• or A ≡ i[fail / q]•

ϕ = [α]ψ: A ≡ i[rcv (tr(α)→ ~ψ�m(enc(θ)) ; → ok) end / q]• or(
A ≡ B where i[~ψ�m(enc(θ)) / r]•(

τ
−−→)kB for some k < n and q = tr(α) : r

)
or
A ≡ i[ok / r]• where q = u : r

ϕ = ϕ1∧ϕ2: A ≡ i
[

y1 = spw
(
~ϕ1�

m(enc(θ))
)
,

y2 = spw
(
~ϕ2�

m(enc(θ))
)
, fork(y1, y2) / q

]•
or
A ≡ (ν j1)

(
i[e / q]• ‖ (ν h̃1)( j1[e1 / q1]• ‖ B)

)
where

– e is y1 = j1, y2 = spw
(
~ϕ2�

m(enc(θ))
)
, fork(y1, y2) or

y2 = spw (~ϕ2�
m(enc(θ))) , fork( j1, y2)

– j1[~ϕ1�
m(enc(θ))]• (

τ
−−→)k (ν h̃1)( j1[e1 / q1]• ‖ B) for some k < n

or

A ≡ (ν j1, j2)
(

i[y2 = j2, fork( j1, y2) / q]•

‖ (ν h̃1)( j1[e1 / q1]• ‖ B) ‖ (ν h̃2)( j2[e2 / q2]• ‖ C)

)
where

– j1[~ϕ1�
m(enc(θ))]• (

τ
−−→)k (ν h̃1)( j1[e1 / q1]• ‖ B) for some k < n

– j2[~ϕ2�
m(enc(θ))]• (

τ
−−→)l (ν h̃2)( j2[e2 / q2]• ‖ C) for some l < n

or
A ≡ (ν j1, j2)

(
i[e / r]• ‖ (ν h̃1)( j1[e1 / q′1]• ‖ B) ‖ (ν h̃2)( j2[e2 / q′2]• ‖ C)

)
where

– e is either fork( j1, j2) or
(
rcv z→ j1!z, j2!z end, fork( j1, j2)

)
or j1!u, i2!u, fork( j1, j2) or j2!u, fork( j1, j2)

– j1[~ϕ1�
m(enc(θ)) / q1]• (

τ
−−→)k (ν h̃1)( j1[e1 / q′1]• ‖ B) for k < n, q1 < q

– j2[~ϕ2�
m(enc(θ)) / q2]• (

τ
−−→)l (ν h̃2)( j2[e2 / q′2]• ‖ C) for l < n, q2 < q

ϕ = X: A ≡ i[y = lookUp(′X′, enc(θ′)), y(enc(θ)) / q]• where θ′ < θ or

A ≡ i

y =


case enc(θ′) of {′X′, zmon} : → zmon;

: ztl→ lookUp(′X′, ztl);
nil→ exit;

end

 , y(enc(θ)) / q


•

where θ′ < θ
or
A ≡ B where

– i[y = ~ψ�m, y(enc(θ)) / q]• (
τ
−−→)k B

– θ(X) = ψ

or A ≡ i[y = exit, y(enc(θ)) / q]• or A ≡ i[exit / q]•

ϕ = max(X, ψ): A ≡ B where i[~ψ�m({′X′, ~ψ�m} : enc(θ)) / q]•(
τ
−−→)kB

for k < n.



Proof. The proof is by strong induction on i[~ϕ�m(lenv) / q]•(
τ
−−→)nA. The inductive case

involved a long and tedious list of case analysis exhausting all possibilities. See [15] for
details.

Lemma 15 (Translation Confluence). For all ϕ ∈ HML, q ∈ (V)∗ and θ :: LV⇀ HML,
i[~ϕ�m(enc(θ)) / q]• ===⇒ A implies cnf(A).

Proof. Proof by strong induction on i[~ϕ�m(enc(θ)) / q]•(
τ
−−→)nA.

n = 0: The only possible τ-action that can be performed by i[~ϕ�m(enc(θ)) / q]• is that
for the function application of the monitor definition, i.e.,

i[~ϕ�m(enc(θ)) / q]•
τ
−−−→ i[e / q]• for some e. (55)

Apart from that i[~ϕ�m(enc(θ)) / q]• can also only perform input action at i, i.e.,

i[~ϕ�m(enc(θ)) / q]•
i?v
−−−−→ i[~ϕ�m(enc(θ)) / q : v]•

On the one hand, we can derive i[e / q]•
i?v
−−−−→ i[e / q : v]•.Moreover, from (55) and

Lemma 11 we can deduce i[~ϕ�m(enc(θ)) / q : v]•
τ
−−−→ i[e / q : v]• which allows

us to close the confluence diamond.
n = k + 1: We proceed by case analysis on the property ϕ, using Lemma 14 to infer the

possible structures of the resulting process. Again, most involving cases are those
for conjunction translations, as they generate more than one concurrent actor; we
discuss one of these below:
ϕ = ϕ1∧ϕ2: By Lemma 14, A can have any of 4 general structures, one of which is

A ≡ (ν j1, j2)
(

i[ j2!u, fork( j1, j2) / q]•
‖ (ν h̃1)( j1[e1 / q′1]• ‖ B)
‖ (ν h̃2)( j2[e2 / q′2]• ‖ C)

)
(56)

where

j1[~ϕ1�
m(lenv) / q1]• (

τ
−−→)k (ν h̃1)( j1[e1 / q′1]• ‖ B) for k < n, q1 < q (57)

j2[~ϕ2�
m(lenv) / q2]• (

τ
−−→)l (ν h̃2)( j2[e2 / q′2]• ‖ C) for l < n, q2 < q (58)

By Lemma 14, (57) and (58) we also infer that the only external action that can
be performed by the processes (ν h̃1)( j1[e1 / q′1]• ‖ B) and (ν h̃2)( j2[e2 / q′2]• ‖
C) is fail!. Moreover by (57) and (58) we can also show that

fId
(
(ν h̃1)( j1[e1 / q′1]• ‖ B)

)
= { j1} fId

(
(ν h̃2)( j2[e2 / q′2]• ‖ C)

)
= { j2}

Thus these two subactors cannot communicate with each other or send mes-
sages to the actor at i. This also means that the remaining possible actions that



A can perform are:

A
τ
−−−→ (ν j1, j2)

(
i[u, fork( j1, j2) / q]•

‖ (ν h̃1)( j1[e1 / q′1]• ‖ B)
‖ (ν h̃2)( j2[e2 / q′2 : u]• ‖ C)

)
(59)

A
τ
−−−→ (ν j1, j2)

(
i[ j2!u, fork( j1, j2) / q]•

‖ (ν h̃′1)( j1[e′1 / q′′1 ]• ‖ B′)
‖ (ν h̃2)( j2[e2 / q′2]• ‖ C)

)
because

(ν h̃1)( j1[e1 / q′1]• ‖ B)
τ
−−−→ (ν h̃′1 )( j1[e′1 / q′′1 ]• ‖ B′)

(60)

A
τ
−−−→ (ν j1, j2)

(
i[ j2!u, fork( j1, j2) / q]•

‖ (ν h̃1)( j1[e1 / q′1]• ‖ B)
‖ (ν h̃′2)( j2[e′2 / q′′2 ]• ‖ C′)

)
because

(ν h̃2)( j2[e2 / q′2]• ‖ C)
τ
−−−→ (ν h̃′2 )( j2[e′2 / q′′2 ]• ‖ C′)

(61)

A
i?v
−−−→ (ν j1, j2)


i[ j2!u, fork( j1, j2) / q : v]•

‖ (ν h̃1)( j1[e1 / q′1]• ‖ B)
‖ (ν h̃2)( j2[e2 / q′2]• ‖ C)

 (62)

We consider actions (59) and (61) and leave the other combinations for the
interested reader. From (61) and Lemma 11 we derive

(ν h̃2)( j2[e2 / q′2 : u]• ‖ C)
τ
−−−→ (ν h̃′2 )( j2[e′2 / q′′2 : u]• ‖ C′)

and by P and S we obtain

(ν j1, j2)
(

i[u, fork( j1, j2) / q]•
‖ (ν h̃1)( j1[e1 / q′1]• ‖ B)
‖ (ν h̃2)( j2[e2 / q′2 : u]• ‖ C)

)
τ
−−−→

(ν j1, j2)
(

i[u, fork( j1, j2) / q]•
‖ (ν h̃1)( j1[e1 / q′1]• ‖ B)
‖ (ν h̃′2)( j2[e′2 / q′′2 : u]• ‖ C′)

)
(63)

Using C, S, P and S we can derive

(ν j1, j2)
(

i[ j2!u, fork( j1, j2) / q]•
‖ (ν h̃1)( j1[e1 / q′1]• ‖ B)
‖ (ν h̃′2)( j2[e′2 / q′′2 ]• ‖ C′)

)
τ
−−−→

(ν j1, j2)
(

i[u, fork( j1, j2) / q]•
‖ (ν h̃1)( j1[e1 / q′1]• ‖ B)
‖ (ν h̃′2)( j2[e′2 / q′′2 : u]• ‖ C′)

)
(64)

thus we close the confluence diamond by (63) and (64). ut



Lemma 16 (Weak Confluence). For all ϕ ∈ HML, q ∈ V∗

imtr[Mon(ϕ) / q]∗ ===⇒ A implies cnf(A)

Proof. By strong induction on n, the number of reductions imtr[Mon(ϕ) / q]∗ (
τ
−−−→)n A.

n = 0 We know A = imtr[Mon(ϕ) / q]∗. It is confluent because it can perform either
of two actions, namely a τ-action for the function application (see A in Fig. 2),
or else an external input at imtr, (see RU in Fig. 2). The matching moves can be
constructed by RU on the one hand, and by Lemma 11 on the other, analogously
to the base case of Lemma 15.

n = k + 1 By performing a similar analysis to that of Lemma 14, but for imtr[Mon(ϕ) /
q]∗, we can determine that this actor can only weakly transition to either of the
following forms:
(i) A = imtr[M = spw (~ϕ�m(nil)), mLoop(M) / q]∗

(ii) A ≡ (ν i)
(
imtr[mLoop(i) / q]∗ ‖ B

)
where i[~ϕ�m(lenv) / r]• =⇒ B for some

r.
(iii) A ≡ (ν i)

(
imtr[rcv z→ i!z end, mLoop(i) / q]∗ ‖ B

)
where

i[~ϕ�m(lenv) / r]• =⇒ B for some r.
(iv) A ≡ (ν i)

(
imtr[i!v, mLoop(i) / q]∗ ‖ B

)
where i[~ϕ�m(lenv) / r]• =⇒ B for

some r.
(v) A ≡ (ν i)

(
imtr[v, mLoop(i) / q]∗ ‖ B

)
where i[~ϕ�m(lenv) / r]• =⇒ B for

some r.
We here focus on the 4th case of monitor structure; the other cases are analogous.
From i[~ϕ�m(lenv) / r]• =⇒ B and Lemma 14 we know that

B
γ
−−−→ implies γ = fail! or γ = τ

B ≡ (ν h̃)
(
i[e / r]• ‖ C

)
where fId(B) = i

This means that (ν i)
(
imtr[i!v, mLoop(i) / q]∗ ‖ B

)
can only exhibit the following

actions:

(ν i)
(
imtr[i!v, mLoop(i) / q]∗ ‖ B

) imtr?u
−−−−−→

(ν i)
(
imtr[i!v, mLoop(i) / q : u]∗ ‖ B

) (65)

(ν i)
(
imtr[i!v, mLoop(i) / q]∗ ‖ B

) τ
−−→

(ν i)
(
imtr[v, mLoop(i) / q]∗ ‖ (ν h̃)

(
i[e / r : v]• ‖ C

)) (66)

(ν i)
(
imtr[i!v, mLoop(i) / q]∗ ‖ B

) τ
−−→ (ν i)

(
imtr[i!v, mLoop(i) / q]∗ ‖ C

)
(67)

Most pairs of action can be commuted easily by P and S as they concern distinct
elements of the actor system. The only non-trivial case is the pair of actions (66)
and (67), which can be commuted using Lemma 11, in analogous fashion to the
proof for the base case. ut

Lemma 16 allows us to prove Lemma 17, and subsequently Lemma 18; the latter
Lemma implies Detection Preservation, Lemma 4, used by Theorem 2.



Lemma 17. For all ϕ ∈ HML, q ∈ V∗

imtr[Mon(ϕ) / q]∗ ===⇒ A, A
fail!

===⇒ and A
τ
−−→ B implies B

fail!
===⇒

Proof. From imtr[Mon(ϕ) / q]∗ ===⇒ A and Lemma 16 we know that cnf(A). The proof

is by induction on A(
τ
−−→)n·

fail!
−−−→.

n = 0: We have A
fail!
−−−→ A′ (for some A′). By A

τ
−−→ B and cnf(A) we obtain B

fail!
−−−→ B′

for some B′ where A′
τ
−−→ B′.

n = k + 1: We have A
τ
−−→ A′(

τ
−−→)k·

fail!
−−−→ (for some A′). By A

τ
−−→ A′, A

τ
−−→ B and

cnf(A) we either know that B = A′, in which case the result follows immediately,
or else obtain

B
τ
−−→ A′′ (68)

A′
τ
−−→ A′′ for some A′′ (69)

In such a case, by A
τ
−−→ A′ and imtr[Mon(ϕ) / q]∗ ===⇒ A we deduce that

imtr[Mon(ϕ) / q]∗ ===⇒ A′,

and subsequently, by (69), A′(
τ
−−→)k·

fail!
−−−→ and I.H. we obtain A′′

fail!
===⇒; the required

result then follows from (68). ut

Lemma 18 (Detection Confluence). For all ϕ ∈ HML, q ∈ V∗

imtr[Mon(ϕ) / q]∗ ===⇒ A, A
fail!

===⇒ and A ===⇒ B implies B
fail!

===⇒

Proof. By induction on A(
τ
−−→)nB and Lemma 17. ut

Lemma 4 (Detection Preservation). For all ϕ ∈ HML, q ∈ V∗

imtr[Mon(ϕ) / q]∗
fail!

===⇒ and imtr[Mon(ϕ) / q]∗ ===⇒ B implies B
fail!

===⇒

Proof. Immediate, from Lem. 18, for the special case where imtr[Mon(ϕ) / q]∗ ===⇒

imtr[Mon(ϕ) / q]∗. ut

Monitor Separability With the body of supporting lemmata proved thus far, the proof
for Lemma 5 turns out to be relatively straightforward. In particular, we make use of
Lemma 2, relating the behaviour of a monitored system to the same system when un-
monitored, Lemma 11 delineating behaviour preservation after extending mailbox con-
tents at specific actors, and Lemma 14, so as to reason about the structure and generic
behaviour of synthesised monitors.



Lemma 5 (Monitor Separability). For all basic actors ϕ ∈ HML, A ∈ A where
imtr is fresh to A, and s ∈ A∗ \ {fail!},

(ν imtr)
(
dAe ‖ imtr[Mon(ϕ)]∗

) s
=⇒ B implies ∃B′, B′′s.t.


B ≡ (ν imtr)

(
B′ ‖ B′′

)
A

s
==⇒ A′ s.t. B′ = dA′e

imtr[Mon(ϕ) / tr(s)]∗ ==⇒ B′′

Proof. By induction on n in (ν imtr)
(
dAe ‖ imtr[Mon(ϕ)]∗

)
(

γk
−−→ )nB, the length of the

sequence of actions:

n = 0: We know that s = ε and A = (ν imtr)
(
dAe ‖ imtr[Mon(ϕ)]∗

)
. Thus the conditions

hold trivially.
n = k + 1: We have (ν imtr)

(
dAe ‖ imtr[Mon(ϕ)]∗

)
(

γk
−−→ )kC

γ
−−→ B. By I.H. we know

that

C ≡ (ν imtr)
(
C′ ‖ C′′

)
(70)

A
t

==⇒ A′′ s.t. C′ = dA′′e (71)
imtr[Mon(ϕ) / tr(t)]∗ ==⇒ C′′ (72)
γ = τ implies t = s and γ = α implies tα = s (73)

and by (72) and Lemma 14 we know that

C′′ ≡ (ν h̃)
(
imtr[e / q]∗ ‖ C′′′

)
(74)

fId(C′′) = {imtr} (75)

We proceed by considering the two possible subcases for the structure of γ:
γ = α: By (73) we know that s = tα. By (75) and (74), it must be the case that

C ≡ (ν imtr)
(
C′ ‖ C′′

) α
−−→ B happens because

for some B′ C′
α
−−→ B′ (76)

B ≡ (ν imtr)
(
B′ ‖ (ν h̃)

(
imtr[e / q : tr(α)]∗ ‖ C′′′

))
(77)

By (76), (71) and Lemma 2 we know that ∃A′ such that dA′e = B′ and that
A′′

α
−−→ A′. Thus by (71) and s = tα we obtain

A
s

==⇒ A′ s.t. B′ = dA′e

By (72), (74) and repeated applications of Lemma 11 we also know that

imtr[Mon(ϕ) / tr(t) : tr(α)]∗ = imtr[Mon(ϕ) / tr(s)]∗ ==⇒

(ν h̃)
(
imtr[e / q : tr(α)]∗ ‖ C′′′

)
= B′′

The result then follows from (77).
γ = τ: Analogous to the other case, where we also have the case that the reduction

is instigated by C′′, in which case the results follows immediately. ut


