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Abstract. Monitorability underpins the technique of Runtime Verifica-
tion because it delineates what properties can be verified at runtime. Al-
though many monitorability definitions exist, few are defined explicitly in
terms of the operational guarantees provided by monitors, i.e., the com-
putational entities carrying out the verification. We view monitorability
as a spectrum, where the fewer guarantees that are required of moni-
tors, the more properties become monitorable. Accordingly, we present
a monitorability hierarchy based on this trade-off. For regular specifica-
tions, we give syntactic characterisations in Hennessy–Milner logic with
recursion for its levels. Finally, we map existing monitorability defini-
tions into our hierarchy. Hence our work gives a unified framework that
makes the operational assumptions and guarantees of each definition ex-
plicit. This provides a rigorous foundation that can inform design choices
and correctness claims for runtime verification tools.

1 Introduction

Runtime Verification (RV) [12] is a lightweight verification technique that checks
for a specification by analysing the current execution exhibited by the system
under scrutiny. Despite its merits, the technique is limited in certain respects:
any sufficiently expressive specification language contains properties that cannot
be monitored at runtime [2,3,19,24,30,39,41]. For instance, the satisfaction of a
safety property (“bad things never happen”) cannot, in general, be determined by
observing the (finite) behaviour of a program up to the current execution point;
its violation, however, can. Monitorability [12,41] concerns itself with the delin-
eation between properties that are monitorable and those that are not. Besides
its importance from a foundational perspective, monitorability is paramount for
a slew of RV tools, such as those described in [9, 17, 23, 40, 42], that synthesise
monitors from specifications expressed in a variety of logics. These monitors
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are executed with the system under scrutiny to produce verdicts concerning the
satisfaction or violation of the specifications from which they were synthesised.

Monitorability is crucial for a principled approach because it disciplines the
construction of RV tools. It should espouse the separation of concerns between
the specification of a correctness property on the one hand, and the method used
to verify it on the other [30]. It defines, either explicitly or implicitly, a notion
of monitor correctness [27, 28, 31, 38], which then guides the automated synthe-
sis of monitors from specifications. It also delimits the monitorable fragment
of the specification logic on which the synthesis is defined: monitors need not
be synthesised for non-monitorable specifications. In some settings, a syntactic
characterisation of monitorable properties can be identified [1, 3, 30], and used
as a core calculus for studying optimisations of the synthesis algorithm. More
broadly, monitorability boundaries may guide the design of hybrid verification
strategies, which combine RV with other verification techniques (see the work
in [2] for an example of this approach).

In spite of its importance, there is no generally accepted notion of monitora-
bility to date. The literature contains a number of definitions, such as the ones
proposed in [3,14,25,30,32,41]. These differ in aspects such as the adopted spec-
ification formalism, e.g., LTL, Street automata, recHML etc., the operational
model, e.g., testers, automata, process calculi etc., and the semantic domain,
e.g., infinite traces, finite and infinite (finfinite) traces or labelled transition sys-
tems. Even after these differences are normalised, many of these definitions are
not in agreement: there are properties that are monitorable according to some
definitions but not monitorable according to others. More alarmingly, as we will
show, frequently cited definitions of monitorability contain serious errors.

This discrepancy between definitions raises the question of which one to adopt
when designing and implementing an RV tool, and what effect this choice has on
the behaviour of the resulting tool. A difficulty in informing this choice is that
few of those definitions make explicit the relationship between the operational
model, i.e., the behaviour of a monitor, and the monitored properties. In other
words, it is not clear what the guarantees provided by the various monitors
mentioned in the literature are, and how they differ from each other.

Example 1. Consider the runtime verification of a system exhibiting (only) three
events over finfinite traces: failure (f), success (s) and recovery (r). One property
we may require is that “failure never occurs and eventually success is reached”,
otherwise expressed in LTL fashion as (G¬f)∧ (F s). According to the definition
of monitorability attributed to Pnueli and Zaks [41] (discussed in Sec. 7), this
property is monitorable. However, it is not monitorable according to others,
including Schneider [44], Viswanathan and Kim [45], and Aceto et al. [3], whose
definition of monitorability coincides with some subset of safety properties. ■

Contributions. To our mind, this state of the art is unsatisfactory for tool con-
struction. More concretely, an RV tool broadly relies on the following ingredients:

1. the input of the tool in terms of the formalism used to describe the specifi-
cation properties;
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Fig. 1. The Monitorability Hierarchy of Regular Properties

2. the executable description of monitors that are the tool’s output and
3. the mapping between the inputs and outputs, i.e., the synthesis function of

monitors from specifications.

Any account on monitorability should, in our view, shed light on those three
aspects, particularly on what it means for the synthesis function and the moni-
tors it produces to be correct. This involves establishing the relationship between
the truth value of a specification, given by a two-valued semantics, and what the
runtime analysis tells us about it, given by the operational behaviour exhibited
by the monitor; ideally, the specification and operational descriptions should
also be described independently of one another, in order to ensure the afore-
mentioned separation of concerns.5 In addition, any account on monitorability
should also be flexible enough to incorporate a variety of relationships between
specification properties and the expected behaviour of monitors. This is essential
for it be of use to the tool implementors, acting as a principled foundation to
guide their design decisions.

For these reasons, we take the view that monitorability comes on a spectrum.
There is a trade-off between the guarantees provided by monitors and the prop-
erties that can be monitored with those guarantees. We argue that considering
different requirements gives rise to a hierarchy of monitorability—depicted in
Fig. 1 (middle)—which classifies properties according to what types of guaran-
tees RV can give for them. At one extreme, anything can be monitored if the
only requirement is for monitors to be sound i.e., they should not contradict the
monitored specification. However, monitors that are just sound give no guaran-
tees of ever giving a verdict. More usefully, informatively monitorable properties
enjoy monitors that reach a verdict for some finite execution; arguably, this is
the minimum requirement for making monitoring potentially worthwhile. More
5 In RV, it is commonplace to see the expected monitor behaviour described via an

intermediary n-valued logic semantics [13,14,32] (e.g., mapping finite traces into the
three verdicts called accepting, rejecting and inconclusive). Although convenient in
certain cases, the approach goes against our tenet for the separation of concerns.
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stringent requirements can demand this capability to be invariant over moni-
tor executions, i.e., a monitor never reaches a state where it cannot provide a
verdict; then we speak of persistently informative monitors. Adding complete-
ness requirements of different strengths, such as the requirement that a monitor
should be able to identify all failures and/or satisfactions, yields stronger defini-
tions of monitorability: partial, satisfaction or violation complete, and complete.

In order not to favour a specific operational model, the hierarchy in Fig. 1
(middle) is cast in terms of abstract behavioural requirements for monitors. We
then provide an instantiation that concretises those requirements into an oper-
ational hierarchy, establishing operational counterparts for each type of moni-
torability over regular properties. To this end, we use the operational framework
developed in [3], that uses finite-state monitors and in which partial and com-
plete monitorability were already defined. We show this framework to be, in
a suitable technical sense, maximally general (Thm. 2) for regular properties.
This shows that our work is equally applicable to other operational models for
monitoring regular properties.

In order for a tool to synthesise monitors from specifications, it is useful to
have syntactic characterisations of the properties that are monitorable with the
required guarantees: synthesis can then directly operate on the syntactic frag-
ment. We offer monitorability characterisations as fragments of recHML [6,37]
(a variant of the modal µ-calculus [34]) interpreted over finfinite traces—see
Fig. 1 (right). The logic is expressive enough to capture all regular properties—
the focus of nearly all existing definitions of monitorability—and subsumes more
user-friendly but less expressive specification logics such as LTL. Partial and
complete monitorability already enjoy monitor synthesis functions and neat
syntactic characterisations in recHML [3]; related synthesis functions based
on syntactic characterisations for a branching-time setting [29, 30] have already
been implemented in a tool [8, 9]. Here, we provide the missing syntactic char-
acterisation for informative monitorability, and for a fragment of persistently
informative monitorability.

Finally, we show that the proposed hierarchy accounts for existing notions
of monitorability. See Fig. 1 (left). Safety, co-safety and their union correspond
to partial monitorability and its two components, satisfaction- and violation-
monitorability; Pnueli and Zaks’s definition of monitorability can be interpreted
in two ways, of which one (∃pz) maps to informative monitorability, and the
other (∀pz) to persistently informative monitorability. We also show that the
definitions of monitorability proposed by Falcone et al. [25], contrary to their
claim, do not coincide with safety and co-safety properties. To summarise, our
principal contributions are:

1. A unified operational perspective on existing notions of monitorability, clar-
ifying what operational guarantees each provides, see Thms. 1, 6 and 7;

2. An extension to the syntactic characterisations of monitorable classes from
[3], mapping all but one of these classes to fragments in recHML, which can
be viewed as a target byte-code for higher-level logics, see Thms. 4 and 5.
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2 Preliminaries

Traces. We assume a finite set of actions, a, b, . . . ∈ Act. The metavariables
t, u ∈ Actω range over infinite sequences of actions. Finite traces, denoted as
s, r ∈ Act∗, represent finite prefixes of system runs. Collectively, finite and
infinite traces Act∞ = Actω∪Act∗ are called finfinite traces. We use f, g ∈
Act∞ to range over finfinite traces and F ⊆ Act∞ to range over sets of finfinite
traces. A (finfinite) trace with action a at its head is denoted as af . Similarly,
a (finfinite) trace with a prefix s and continuation f is denoted as sf . We write
s ⪯ f to denote that the finite trace s is a prefix of f , i.e., ∃g such that f = sg.
Properties. A property over finfinite (resp., infinite) traces, denoted by the vari-
able P , is a subset of Act∞ (resp., of Actω). In general, a property refers to a
finfinite property, unless stated otherwise. A finite trace s positively determines
a property P ⊆ Act∞ when sf ∈ P for every continuation f ∈ Act∞; analo-
gously, s negatively determines P when sf /∈ P for every f ∈ Act∞. The same
terms apply similarly when P ⊆ Actω. We call a property regular if it is the
union of a regular property Pfin ⊆ Act∗ and an ω-regular property Pinf ⊆ Actω.

3 A Monitor-Oriented Hierarchy

From a tool-construction perspective, it is important to give concrete, imple-
mentable definitions of monitors; we do so in Sec. 4. To understand the guar-
antees that these monitors will provide, we first discuss the general notion of
monitor and monitoring system. Already in this general setting, we are able to
identify the various requirements that give rise to the hierarchy of monitorabil-
ity, depicted in the middle part of Fig. 1. Sec. 4 will then provide operational
semantics to this hierarchy, in the setting of regular properties.

We consider a monitor to be an entity that analyses finite traces and (at the
very least) identifies a set of finfinite traces that it accepts and a set of finfinite
traces that it rejects. We consider two postulates. Firstly, an acceptance or re-
jection verdict has to be based on a finite prefix of a trace, Def. 1.1: verdicts are
thus given for incomplete traces. Secondly, verdicts must be irrevocable, Def. 1.2.
These postulates make explicit two features shared by most monitorability def-
initions in the literature.

Definition 1. A monitoring system is a triple (M,acc, rej), where M is a
nonempty set of monitors, acc, rej ⊆ M×Act∞, and for every m ∈ M and
f ∈ Act∞:

1.
(

acc(m, f) implies ∃s ·
(
s ⪯ f and acc(m, s)

) )
and

(
rej(m, f) implies ∃s ·(

s ⪯ f and rej(m, s)
) )

;
2.

(
acc(m, s) implies ∀f ·acc(m, sf)

)
and

(
rej(m, s) implies ∀f ·rej(m, sf)

)
. ■

Remark 1. Finite automata do not satisfy the requirements of Def. 1 since their
judgement can be revoked. Standard Büchi automata are not good candidates
either, since they need to read the entire infinite trace to accept or reject. ■
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We define a notion of maximal monitoring system for a collection of proper-
ties; for each property P in that set, such a system must contain a monitor that
reaches a verdict for all traces that have some prefix that determines P .

Definition 2. A monitoring system (M,acc, rej) is maximal for a collection of
properties C ⊆ 2Act∞ if for every P ∈ C there is a monitor mP ∈M such that

(i) acc(mP , f) iff trace f has a prefix that positively determines P ;
(ii) rej(mP , f) iff trace f has a prefix that negatively determines P . ■

In Sec. 4, we present an instance of such a maximal monitoring system for
regular properties. This shows that, for regular properties at least, the maximal-
ity of a monitoring system is a reasonable requirement. Unless otherwise stated,
we assume a fixed maximal monitoring system (M,acc, rej) throughout the rest
of the paper. For m ∈ M to monitor for a property P , it needs to satisfy some
requirements. The most important such requirement is soundness.

Definition 3 (Soundness). Monitor m is sound for property P if for all f :

– acc(m, f) implies f ∈ P , and
– rej(m, f) implies f /∈ P . ■

Lemma 1. If m is sound for P and acc(m, s) (resp., rej(m, s)), then s positively
(resp., negatively) determines P .

Lemma 2. For every P ⊆ Act∞: (i) mP is sound for P ; and (ii) if m is a
sound monitor for P and acc(m, f) (resp., rej(m, f)), then it is also the case
that acc(mP , f) (resp., rej(mP , f)).

The dual requirement to soundness, i.e., completeness, entails that the moni-
tor detects all violating and satisfying traces. Unfortunately, this is only possible
for trivial properties in the finfinite6 domain—see Prop. 1. Instead, monitors may
be required to accept all satisfying traces, or reject all violating traces.

Definition 4 (Completeness). Monitor m is satisfaction-complete for P if
f∈P implies acc(m, f) and violation-complete for P if f /∈P implies rej(m, f).
It is complete for P if it is both satisfaction- and violation-complete for P and
partially-complete if it is either satisfaction- or violation-complete. ■

Proposition 1. If m is sound and complete for P then P=Act∞ or P=∅.

Proof. If ε ∈ P , then acc(m, ε), so from Def. 1, ∀f ∈ Act∞. acc(m, f). Due to
the soundness of m, P = Act∞. Similarly, P = ∅ when ε /∈ P .

We define monitorability in terms of the guarantees that the monitors are ex-
pected to give. Soundness is not negotiable. Given the consequences of requiring
completeness, as evidenced by Prop. 1, we consider weaker forms of completeness.
The weaker the completeness guarantee, the more properties can be monitored.
6 In the infinite domain more properties are completely monitorable, see Sec. 8.
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Definition 5 (Complete Monitorability). Property P is completely mon-
itorable when there exists a monitor that is sound and complete for P . It is
monitorable for satisfactions (resp., violations) when there exists a monitor m
that is sound and satisfaction (resp., and violation) complete for P . It is partially
(-complete) monitorable when it is monitorable for satisfactions or violations.

A class of properties C ⊆ 2Act∞ is satisfaction, violation, partially, or com-
pletely monitorable, when every property P∈C is, respectively, satisfaction, viola-
tion, partially or completely monitorable. We denote the class of all satisfaction,
violation, partially, and completely monitorable properties by maximal monitor-
ing systems as SCmp, VCmp, PCmp, and Cmp, respectively. ■

Since even partial monitorability, the weakest form in Def. 5, renders a sub-
stantial number of properties unmonitorable [3], one may consider even weaker
forms of completeness that only flag a subset of satisfying (or violating) traces.
Sound denotes monitorability without completeness requirements. Arguably, how-
ever, the weakest guarantee for a sound monitor of a property P to be of use is
the one that pledges to flag at least one trace. One may then further strengthen
this requirement and demand that this guarantee is invariant throughout the
analysis of a monitor: for every prefix observed the monitor is still able to flag
at least once (possibly after observing more actions).

Definition 6 (Informative Monitors7). Monitor m is satisfaction- (resp.,
violation-) informative if ∃f · acc(m, f) (resp., rej(m, f)). It is satisfaction-
(resp., violation-) persistently informative if ∀s∃f ·acc(m, sf) (resp., rej(m, sf)).
We simply say that m is informative (resp., persistently informative) when we
do not distinguish between satisfactions or violations. ■

Definition 7 (Informative Monitorability). We say that property P is
informatively (resp., persistently informatively) monitorable if there is an in-
formative (resp., a persistently informative) monitor that is sound for P . A
class of properties C⊆2Act∞ is informatively (resp., persistently informatively)
monitorable, when all its properties are informatively (resp., persistently infor-
matively) monitorable. The class of all informatively (resp., persistently infor-
matively) monitorable properties by maximal monitoring systems is denoted as
ICmp (resp., PICmp). A property P is persistently informatively monitorable for
satisfaction (resp., for violation) if there is a satisfaction- (resp., violation-) per-
sistently informative monitor that is sound for P . We revisit this definition in
Sec. 4. ■

Example 2. The property “f never occurs and eventually s is reached” (Exam-
ple 1) is not partially monitorable but is persistently informatively monitorable.

The property requiring that “r only appears a finite number of times” is not
informatively monitorable. For if it were, the respective sound informative mon-
itor m should at least accept or reject one trace. If it accepts a trace f , by Def. 1,
it must accept some prefix s ⪯ f . Again, by Def. 1, all continuations, including
7 These are not related to the informative prefixes from [35] or to persistence from [43].
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φ,ψ ∈ recHML ::= tt | ff | φ∨ψ | φ∧ψ
| ⟨a⟩φ | [a]φ | minX.φ | maxX.φ | X

Jtt, σK def
= Act∞ Jff, σK def

= ∅Jφ1∨φ2, σK def
= Jφ1, σK ∪ Jφ2, σK Jφ1∧φ2, σK def

= Jφ1, σK ∩ Jφ2, σKJ[a]φ, σK def
= {f | f = ag implies g ∈ Jφ, σK} J⟨a⟩φ, σK def

= {af | f ∈ Jφ, σK}JminX.φ, σK def
=

∩
{F | Jφ, σ[X 7→ F]K ⊆ F }JmaxX.φ, σK def

=
∪

{F | F ⊆ Jφ, σ[X 7→ F]K } JX,σK def
= σ(X)

Fig. 2. recHML Syntax and (finfinite) Linear-Time Semantics

srω, must be accepted by m. This makes it unsound, which is a contradiction.
Similarly, if m rejects some f , it must reject some finite s ⪯ f that necessarily
contains a finite number of r actions, making it unsound. ■

Theorem 1 (Monitorability Hierarchy). The monitorability classes given
in Defs. 5 and 7 form the inclusion hierarchy depicted in Fig. 1.

Proof. The hardest inclusion to show from Fig. 1 is PCmp = SCmp∪VCmp ⊆
PICmp. Pick a property P ∈ VCmp. Let s ∈ Act∗. If ∃f · sf /∈ P then by
Def. 4 we have rej(mP , sf). Otherwise, ∀f · sf ∈ P , meaning that s positively
determines P , and by Def. 2 we have acc(mP , sf). By Def. 6, we deduce that
mP is persistently informative since ∀s∃f · acc(mP , sf) or rej(mP , sf). Thus,
by Def. 7, it follows that P ∈ PICmp. The case for P ∈ SCmp is dual.

4 An Instantiation for Regular Properties

We provide a concrete maximal monitoring system for regular properties. This
monitoring system gives an operational interpretation to the levels of the moni-
torability hierarchy, and enables us to find syntactic characterisations for them in
recHML [3,37]. Since this logic is a reformulation of the modal µ-calculus [34],
it is expressive enough to describe all regular properties and to embed specifi-
cation formalisms such as LTL, (ω-)regular expressions, Büchi automata, and
Street automata, used in the state of the art on monitorability.

The Logic. The syntax of recHML is defined by the grammar in Fig. 2, which
assumes a countable set of logical variables X,Y ∈ LVar. Apart from the stan-
dard constructs for truth, falsehood, conjunction and disjunction, the logic is
equipped with existential (⟨a⟩φ) and universal ([a]φ) modal operators, and two
recursion operators expressing least and greatest fixpoints (resp., minX.φ and
maxX.φ). The semantics is given by the function J−K defined in Fig. 2. It maps
a (possibly open) formula to a set of (finfinite) traces [3] by induction on the
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formula structure, using valuations that map logical variables to sets of traces,
σ : LVar → P(Act∞), where σ(X) is the set of traces assumed to satisfy X. An
existential modality ⟨a⟩φ denotes all traces with a prefix action a and a contin-
uation that satisfies φ, whereas a universal modality [a]φ denotes all traces that
are either not prefixed by a or are of the form ag for some g that satisfies φ. The
sets of traces satisfying the least and greatest fixpoint formulae, minX.φ and
maxX.φ, are the least and the greatest fixpoints, respectively, of the function
induced by the formula φ. For closed formulae, we use JφK in lieu of Jφ, σK (for
some σ). Formulae are generally assumed to be closed and guarded [36]. In the
discussions we occasionally treat formulae, φ, as the properties they denote, JφK.

LTL [20] is the specification logic of choice for many RV approaches. As a
consequence, it is also the logic used by a number of studies in monitorability
(e.g., see [13,14,32]). Our choice of logic, recHML, is not limiting in this regard.

Example 3. The characteristic LTL operators can be encoded in recHML as:

Xφ def
=

∨
a∈Act ⟨a⟩φ φUψ def

=minY.
(
ψ ∨ (φ∧X Y )

)
Fφ def

= ttUφ
φRψ def

=maxY.
(
(ψ ∧φ )∨ (ψ ∧X Y )

)
Gφ def

=ff Rφ

In examples, atomic propositions a and ¬a resp., denote ⟨a⟩tt and [a]ff. ■

recHML allows us to consider monitorable properties that may be misses
by previous approaches. For instance, it is well known that logics such as the
modal µ-calculus (and variants such as recHML) can describe properties that
are not expressible in popular specification languages like LTL [46].

Example 4. Recall the system discussed in Example 1 where Act = {f, s, r}.
Consider the property requiring that “success (s) occurs on every even position”.
Although this is not expressible in LTL [46], it can be expressed in recHML as:

φeven = maxX.
(∨

a∈{f,s,r}⟨a⟩⟨s⟩X
)

The weaker property “success (s) occurs on every even position until the execu-
tion ends” still cannot be expressed in LTL, but can be expressed in recHML:

φevenW = maxX.
(∧

a∈{f,s,r}[a] ([s]X ∧ [f]ff ∧ [r]ff)
)

■

For better readability and familiarity, we use LTL for the examples that can
be encoded accordingly. Note that since we operate in the finfinite domain, X
should be read as a strong next operator, in line with Example 3.

The Monitors. We consider the operational monitoring system of [3, 30], sum-
marised in Fig. 3 (symmetric rules for binary operators are omitted). The full sys-
tem is given in [3]. Monitors are states of a transition system where m+n denotes
an (external) choice and m⊙n denotes a composite monitor where ⊙ ∈ {⊕,⊗}.
There are three distinct verdict states, yes, no, and end, although only the first
two are relevant to monitorability.
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m,n ∈ Mon ::= v | a.m | m+ n | m⊗n | m⊕n | recx.m | x
v, u ∈ Verd ::= end | no | yes

mAct
a.m

a−→ m
mVer

v
a−→ v

mRec
m[recx.m/x] a−→ n

recx.m a−→ n

mSelL m
a−→ m′

m+ n
a−→ m′

mPar m
a−→ m′ n

a−→ n′

m⊙n a−→ m′⊙n′

mTauL m
τ−−→ m′

m⊙n τ−−→ m′⊙n
mVrE

end⊙end τ−−→ end
mVrC1

yes⊗m τ−−→ m

mVrC2
no⊗m τ−−→ no

mVrD1
no⊕m τ−−→ m

mVrD2
yes⊕m τ−−→ yes

Fig. 3. Monitor Syntax and Labelled-Transition Semantics

This semantics gives an operational account of how a monitor in state m
incrementally analyses a sequence of actions s = a1 . . . ak to reach a new state
n; the monitor m accepts (resp., rejects) a trace f , acc(m, f) (resp., rej(m, f)),
when it can transition to the verdict state yes (resp., no) while analysing a prefix
s ⪯ f (i.e., s denotes an incomplete trace). Since verdicts are irrevocable (rule
mVer in Fig. 3), it is not hard to see that this operational framework satisfies the
conditions for a monitoring system of Def. 1. The monitoring system of Fig. 3 is
also maximal for regular properties, according to Def. 2. This concrete instance
thus demonstrates the realisability of the abstract definitions in Sec. 3.

Theorem 2. For all φ∈recHML, there is a monitor m∈Mon that is sound for
φ and accepts all finite traces that positively determine φ and rejects all finite
traces that negatively determine φ.

As a corollary of Thm. 2, from Lem. 1 we deduce that for any arbitrary
monitoring system (M,acc, rej), if m ∈ M is sound for some φ ∈ recHML,
then there is a monitor n ∈ Mon from Fig. 3 that accepts (resp., rejects) all
traces f that m accepts (resp., rejects). In the sequel, we thus assume that the
fixed monitoring system is (Mon,acc, rej) of Fig. 3, as it subsumes all others.

5 A Syntactic Characterisation of Monitorability

We present syntactic characterizations for the various monitorability classes as
fragments of recHML.

Partial Monitorability, syntactically. In [3], Aceto et al. identify a maximal par-
tially monitorable syntactic fragment of recHML.
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Theorem 3 (Partially-Complete Monitorability [3]). Consider the syn-
tactic fragments:

φ,ψ ∈ sHML ::= tt | ff | [a]φ | φ∧ψ | maxX.φ | X and
φ,ψ ∈ cHML ::= tt | ff | ⟨a⟩φ | φ∨ψ | minX.φ | X.

The fragment sHML is monitorable for violation whereas cHML is monitorable
for satisfaction. Furthermore, if φ ∈ recHML is monitorable for satisfaction
(resp., for violation) by some m∈Mon, it is expressible in cHML(resp., sHML),
i.e., ∃ψ∈cHML (resp., ψ∈sHML), such that JφK=JψK.

As a corollary of Thm. 3 we obtain maximality: any φ ∈ recHML that is
monitorable for satisfaction (resp., for violation) can also be expressed as some
ψ ∈ cHML (resp., ψ ∈ sHML) where JφK = JψK. For this fragment, the following
automated synthesis function, which is readily implementable, is given in [3].

m(ff)
def
= no m(φ1∧φ2)

def
= m(φ1)⊗m(φ2) m(maxX.φ)

def
= recx.m(φ)

m(tt)
def
= yes m(φ1∨φ2)

def
= m(φ1)⊕m(φ2) m(minX.φ)

def
= recx.m(φ)

m([a]φ)
def
= a.m(φ) +

∑
b∈Act\{a} b.yes m(X)

def
= x

m(⟨a⟩φ) def
= a.m(φ) +

∑
b∈Act\{a} b.no

Informative Monitorability, syntactically. We proceed to identify syntactic frag-
ments of recHML that correspond to informative monitorability.

Definition 8. The informative fragment is iHML = siHML ∪ ciHML where

siHML = {φ1 ∧ φ2 ∈ recHML | φ1 ∈ sHML and ff appears in φ1},
ciHML = {φ1 ∨ φ2 ∈ recHML | φ1 ∈ cHML and tt appears in φ1} ■

Theorem 4. For φ ∈ recHML, φ is informatively monitorable if and only if
there is some ψ ∈ iHML, such that JψK = JφK.

The maximality results of Thms. 3 and 4 permits tool constructions to
concentrate on the syntactic fragments identified when synthesising monitors.
Thms. 3 and 4 also serve as a lightweight (syntactic) check to determine when
a property is monitorable (according to the monitorability classes in Fig. 1).

Example 5. The property φevenW from Example 4 is monitorable for violation;
this can be easily determined since it is expressible in sHML. By contrast, φeven
from Example 4 cannot be expressed in either sHML or cHML. In fact, it is
not partially-complete monitorable: it cannot be satisfaction complete because
the trace (rs)ω ∈ JφevenK but no prefix can be accepted since they all violate the
property; it cannot be violation complete either, since the trace ϵ ̸∈ JφevenK but
is can be extended by (rs)ω which makes (persistent) rejection verdicts unsound.
The property G¬f ∧ F s from Example 2 (expressed here in LTL) is a siHML
property, as G¬f can be written in sHML as maxX.[f]ff∧[s]X∧[r]X. In contrast,
FG¬r cannot be written in iHMLsince it is not informatively monitorable. ■
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Remark 2. In siHML and ciHML, φ1 describes an informative part of the for-
mula, that is, a formula with at least one path to tt (or ff), which indicates that
the corresponding finite trace determines the property. Monitor synthesis from
these fragments can use this part of the formula to synthesize a monitor that
detects the finite traces that satisfy (violate) φ1. The value of the synthesised
monitor then depends on φ1. It is therefore important to have techniques to
extract some φ1 that will retain as much monitoring information as possible.
This extraction is outside the scope of this paper and left as future work. ■

Persistently Informative Monitorability, syntactically. We also give a syntactic
characterization of the recHML properties that are persistently informatively
monitorable for satisfaction or violation. As the requirements for persistently
informative monitors are subtler than for informative monitors, the fragments
we present are more involved than those for informative monitorability.

Definition 9. We define eHML, the explicit fragment of recHML:

φ ∈ eHML ::= tt | ff | minX.φ | maxX.φ | X

| φ∨ψ | φ∧ψ |
∨

α∈Act

⟨α⟩φα |
∧

α∈Act

[α]φα. ■

Example 6. Formula [f][s]ff is not explicit, but, assuming that Act = {f, s, r}, it
can be rewritten as the explicit formula [f]([s]ff ∧ [f]tt ∧ [r]tt) ∧ [s]tt ∧ [r]tt. ■

Roughly, the following definition captures whether tt and ff are reachable
from subformulae (where the binding of a variable is reachable from the variable).

Definition 10. Given a closed sHML (resp., cHML) formula φ, we define for
a subformula ψ that it can refute (resp., verify) in 0 unfoldings, when ff (resp.,
tt) appears in ψ, and that it can refute (resp., verify) in k + 1 unfoldings, when
it can refute (resp., verify) in k unfoldings, or X appears in ψ and ψ is in the
scope of a subformula maxX.ψ′ (resp., minX.ψ′) that can refute (resp., verify)
in k unfoldings. We simply say that ψ can refute (resp., verify) when it can refute
(resp., verify) in k unfoldings, for some k ≥ 0. ■
Example 7. For formula maxX.[s]X ∧ [f]ff∧ [r]ff, subformula [s]X ∧ [f]ff∧ [r]ff can
refute in 0 unfoldings. In contrast, [s]X cannot refute in 0 unfoldings, but it can
refute in 1, because X appears in it and maxX.[s]X ∧ [f]ff ∧ [r]ff can refute in 0
unfoldings. Therefore, all subformulae of maxX.[s]X ∧ [f]ff ∧ [r]ff can refute. ■

We now define the fragments of recHML corresponding to recHML proper-
ties that are persistently informatively monitorable for satisfaction or violation.

Definition 11. We define the fragment pHML = spHML ∪ cpHML where:

spHML =

{
φ1 ∧ φ2 ∈ recHML

∣∣∣ φ1 ∈ sHML ∩ eHML and every
subformula of φ1 can refute

}
cpHML =

{
φ1 ∨ φ2 ∈ recHML

∣∣∣ φ1 ∈ cHML ∩ eHML and every
subformula of φ1 can verify

}
■
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Theorem 5. For φ ∈ recHML, φ is persistently informatively monitorable for
violation (resp., for satisfaction) if and only if there is some ψ ∈ spHML (resp.,
ψ ∈ cpHML), such that JψK = JφK.
Remark 3. To the best of our efforts, a syntactic characterisation of persistently
informative monitorability would involve pairs of equivalent formulae with parts
from sHML and cHML that together become, in some sense, explicit. We leave
such a characterization as future work. ■

6 Safety and Co-safety

The classic (and perhaps the most intuitive) definition of monitorability consists
of (some variation of) safety properties [3, 7, 25, 32, 44, 45]. There are, however,
subtleties associated with how exactly safety properties are defined—particularly
over the finfinite domain—and how decidable they need to be to qualify as truly
monitorable. For example, Kim and Viswanathan [45] argued that only recur-
sively enumerable safety properties are monitorable (they restrict themselves
to infinite, rather than finfinite traces). By and large, however, most works on
monitorability restrict themselves to regular properties, as we do in Sec. 4.

We adopt the definition of safety that is intuitive for the context of RV: a
property can be considered monitorable if its failures can be identified by a finite
prefix. This is equivalent to Falcone et al.’s definition of safety properties[25,
Def. 4] and, when restricted to infinite traces, to other work such as [7, 16,32].

Definition 12 (Safety). A property P ⊆ Act∞ is a safety property if every
f /∈ P has a prefix that determines P negatively. The class of safety properties
is denoted as Safe in Fig. 1. ■

Pnueli and Zaks, and Falcone et al. (among others) argue that it makes sense
to monitor both for violation and satisfaction. Hence, if safety is monitorable for
violations, then the dual class, co-safety (a.k.a. guarantee [25], reachability [15]),
is monitorable for satisfaction. That is, every trace that satisfies a co-safety
property can be positively determined by a finite prefix.

Definition 13 (Co-safety). A property P ⊆ Act∞ is a co-safety property
if every f ∈ P has prefix that determines P positively. The class of co-safety
properties is denoted as CoSafe, also represented in Fig. 1. ■

Example 8. “Eventually s is reached”, i.e., F s, is a co-safety property whereas
“f never occurs”, i.e., G¬f, is a safety property. The property “s occurs infinitely
often”, i.e., G F s, is neither safety nor co-safety. The property only holds over
infinite traces so it cannot be positively determined by a finite trace. Dually,
there is no finite trace that determines that there cannot be an infinite number
of s occurrences in a continuation of the trace. Similarly, φeven from Example 4
is neither a safety nor a co-safety property, but φevenW is a safety property. ■
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Safety and Co-safety, operationally. It should come as no surprise that safety
and co-safety coincide with an equally natural operational definition. Here, we es-
tablish the correspondence with the denotational definition of safety (co-safety),
completing three correspondences amongst the monitorability classes of Fig. 1.

Theorem 6. VCmp = Safe and SCmp = CoSafe.

Proof. We treat the case for safety, as the case for co-safety is similar. If P is a
safety property, then for every f ∈ Act∞ \ P , there is some finite prefix s of f
that negatively determines P . Therefore, mP is sound (Lem. 2) and violation-
complete (Def. 2) for P . The other direction follows from the fact that whenever
P ⊆ Act∞ is monitorable for violation, every f ∈ Act∞ \ P has a finite prefix
that negatively determines it.

Aceto et al. [3] already show the correspondence between violation (dually,
satisfaction) monitorability over finfinite traces and properties expressible in
sHML (dually, cHML). As a corollary of Thm. 6, we obtain a syntactic char-
acterisation for the Safe and CoSafe monitorability classes; see Fig. 1.

Remark 4. Falcone et al. [25, Def. 17, Thm. 3] propose definitions of monitorabil-
ity over finfinite traces that are claimed to coincide with the classes Safe, CoSafe
and their union. However, this claim is incorrect. The properties, “the trace is
finite” and G F s from Example 8 are neither safety nor co-safety properties. On
the other hand, they are monitorable according to the alternative monitorabil-
ity definition given in [25, Def. 17]. If the results claimed in [25, Thm. 3] held
true, this would contradict the fact that those properties are neither safety nor
co-safety properties. See [4] for further details. ■

7 Pnueli and Zaks

The work on monitorability due to Pnueli and Zaks [41] is often cited by the RV
community [12]. The often overlooked particularity of their definitions is that
they only define monitorability of a property with respect to a (finite) sequence.

Definition 14 ([41]). Property P is s-monitorable, where s ∈ Act∗, if there
is some r ∈ Act∗ such that P is positively or negatively determined by sr. ■

Example 9. The property
(
f ∧ F r

)
∨
(
F G s

)
is s-monitorable for any finite trace

that begins with f, i.e., fs, since it is determined by the extension fsr. It is not
s-monitorable for finite traces that begin with an action other than f. ■

Monitorability over properties—rather than over property–sequence pairs—
can then be defined by either quantifying universally or existentially over finite
traces: a property is monitorable either if it is s-monitorable for all s, or for
some s. We address both definitions, which we call ∀pz- and ∃pz-monitorability
respectively. ∀pz-monitorability is the more standard interpretation: it appears
for example in [13, 25] where it is attributed to Pnueli and Zaks. However, the
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original intent seems to align more with ∃pz-monitorability: in [41], Pnueli and
Zaks refer to a property as non-monitorable if it is not monitorable for any
sequence. This interpretation coincides with weak monitorability used in [18].

Definition 15 (∀pz-monitorability). A property P is (universally Pnueli–
Zaks) ∀pz-monitorable if it is s-monitorable for all finite traces s. The class of
all ∀pz-monitorable properties is denoted ∀PZ. ■

Definition 16 (∃pz-monitorability). A property is (existentially Pnueli–
Zaks) ∃pz-monitorable if it is s-monitorable for some finite trace s, i.e., if it
is ε-monitorable. The class of ∃pz-monitorable properties is written ∃PZ. ■

The apparently innocuous choice between existential and universal quantifi-
cation leads to different monitorability classes ∀PZ and ∃PZ.

Example 10. Consider the property “Either s occurs before f, or r happens in-
finitely often”, expressed in LTL fashion as

(
(¬f)U s

)
∨
(
G F r

)
. This property is

∃pz-monitorable because the trace s positively determines the property. How-
ever, it is not ∀pz-monitorable because no extension of the trace f positively or
negatively determines that property. Indeed, all extensions of f violate the first
disjunct and, as we argued in Example 8, there is no finite trace that determines
the second conjunct positively or negatively. Property φeven from Example 4 is
∀pz-monitorable: any prefix of the form a0s . . . ans or a0s . . . an (including ϵ),
where n ≥ 0 and every ai ∈ {s, f, r}, can be extended to a prefix that negatively
determines it (e.g., by extending it with ff). ■

From Defs. 15 and 16, it follows immediately that ∀PZ ⊂ ∃PZ.

Proposition 2. All properties in Safe ∪ CoSafe are ∀pz-monitorable.

Proof. Let P ∈ Safe and pick a finite trace s. If there is an f such that sf /∈ P
then, by Def. 12, there exists r ⪯ sf that negatively determines P , meaning that
s has an extension that negatively determines P . Alternatively, if there is no f
such that sf /∈ P , s itself positively determines P . Hence P is s-monitorable, for
every s, according to Def. 14. The case for P ∈ CoSafe is dual.

Pnueli and Zaks, operationally. ∃pz-monitorability coincides with informative
monitorability: ∃pz-monitorable properties are those for which some monitor
can reach a verdict on some finite trace. For similar reasons, ∀pz-monitorability
coincides with persistently informative monitorability. See Fig. 1.

Theorem 7. ∃PZ = ICmp and ∀PZ = PICmp.

Proof. Since the proofs of the two claims are analogous, we simply outline the
one for ∀PZ = PICmp. Let P ∈ ∀PZ and pick a finite trace s ∈ Act∗. By Lem. 2,
mP is sound for P . By Def. 6 we need to show that there exists an f such that
acc(mP , sf) or rej(mP , sf). From Defs. 14 and 15 we know that there is a finite
r such that sr positively or negatively determines P . By Def. 2 we know that
acc(mP , sr) or rej(mP , sr). Thus P ∈ PICmp, which is the required result.
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Conversely, assume P ∈ PICmp, and pick some s ∈ Act∗. By Defs. 14 and 15,
we need to show that there is an extension of s that positively or negatively
determines P . From Defs. 6 and 7, there exists some f such that acc(mP , sf)
or rej(mP , sf). By Def. 1, there is a finite extension of s, say sr, that is a prefix
of sf such that acc(mP , sr) or rej(mP , sr). By Def. 2, we know that sr either
positively or negatively determines P . Thus P ∈ ∀PZ.

8 Monitorability in other settings

We have shown how classical definitions of monitorability fit into our hierarchy
and provided the corresponding operational interpretations and syntactic char-
acterisations, focussing on regular finfinite properties over a finite alphabet and
monitors with irrevocable verdicts. Here we discuss how different parameters,
both within our setting and beyond, affect what is monitorable.
Monitorability with respect to the Alphabet. The monitorability of a property
can depend on Act. For instance, if Act has at least two elements {a, b, . . .},
property {aω}, which can be represented as max X.⟨a⟩X, is s-monitorable for
every sequence s, as s can be extended to sb, which negatively determines the
property. On the other hand, assume that Act = {a}. In this case, {aω} is
neither ∃pz- nor ∀pz-monitorable. Indeed, no string s = ak, k ≥ 0, determines
{aω} positively or negatively as s does not satisfy it but its extension aω does. On
the other hand, when restricted to infinite traces, {aω} is again ∃pz-monitorable.

So far, we only considered finite alphabets; how an infinite alphabet, which
may encode integer data for example, affects monitorability is left as future work.
Monitoring with Revocable Verdicts. Early on, we postulated that verdicts are
irrevocable. Although this is a typical (implicit) assumption in most work on
monitorability, some authors have considered monitors that give revocable judge-
ments when an irrevocable one is not appropriate. This approach is taken by
Bauer et al. when they define a finite-trace semantics for LTL, called RV-
LTL [13]. Falcone et al. [25] also have a definition of monitorability based on
this idea (in addition to those discussed in Remark 4). It uses the four-valued
domain {yes, no, yesc, noc} (c for currently). Finite traces that do not determine
a property yield a (revocable) verdict yesc or noc that indicates whether the
trace observed so far satisfies the property; yes and no are still irrevocable. This
definition allows all finfinite properties to be monitored since it does not require
verdicts to be irrevocable.

This type of monitoring does not give any guarantees beyond soundness:
there are properties that are monitorable according to this definition for which
no sound monitor ever reaches an irrevocable verdict: F G s for the system from
Example 1 has no sound informative monitor, yet can be monitored according to
Falcone et al.’s four-valued monitoring. This type of monitorability is complete,
in the sense of providing at least a revocable verdict for all traces.
Monitorability in the Infinite and Finite. Bauer et al. use ∀pz-monitorability
in their study of runtime verification for LTL [14] and attribute it to Pnueli
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and Zaks. However, unlike Falcone et al., Pnueli and Zaks [41] and ourselves,
they focus on properties over infinite traces. There are some striking differences
that arise if there is no risk of an execution ending. Aceto et al. show that,
unlike in the finfinite domain, a set of non-trivial properties becomes completely
monitorable: HML [33] (a.k.a. modal logic) is both satisfaction- and violation-
monitorable over infinite traces [3]. Furthermore, some properties, like {aω} over
Act = {a}, that were not ∃pz- or ∀pz-monitorable on the finfinite domain, are
∃pz- or even ∀pz-monitorable on the infinite domain. The full analysis of how
the hierarchy in Fig. 1 changes for the infinite domain is left for future work.

Havelund and Peled recently presented a related classification of infinitary
properties [32]. Their classification consists of safety and co-safety properties,
(there called AFS and AFR), and properties that are not positively or not nega-
tively determined by any sequence (NFS and NFR) and properties where some,
but not all prefixes have an extention that determines the property positively,
and their negations (SFS and SFR). They show that several of their classes con-
tain both ∀pz-monitorable and non-∀pz-monitorable properties. In contrast, in
our classification, ∀pz-monitorability is not orthogonal to other types of moni-
torability; rather, it is part of a spectrum that reflects the trade-offs between the
strengths of the guarantees a monitor can provide and the specifications that
can be monitored with these guarantees.

Barringer et al. [11] consider monitoring of properties over finite traces. In
this domain, all properties are monitorable if, as is the case in [11], the end of a
trace is observable; in this setting the question of monitorability is less relevant.

Monitoring Non-Regular Properties. Although we have focussed on the mon-
itorability of regular properties, the monitorability hierarchy of Sec. 3 is not
restricted to this setting. Indeed, although non-regular properties require richer
monitors, for example monitors with a stack or registers, the same concerns of
soundness and degress of completeness remain relevant. Barringer et al. con-
sider a specification logic that allows for context-free properties [11]. In [26],
Ferrier et al. consider monitors with registers (i.e., infinite state monitors) to
verify safety properties that are not regular. Characterising (e.g., syntactically)
the different classes of monitorability for non-regular properties is left as future
work.

Beyond Monitorability. Stream-based monitoring systems such as [21, 22] are
more concerned with producing (revocable) aggregate outputs and transforming
traces to satisfy properties, employing more powerful monitors than the ones
considered here (e.g., transducers). Instead of monitorability, enforceability [5,25]
is a criterion that is better suited for these settings.

9 Conclusion

We have proposed a unified, operational view on monitorability. This allows
us to clearly state the implicit operational guarantees of existing definitions
of monitorability. For instance, recall Example 1 from the introduction: since
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(G¬f)∧(F s) is ∃pz- and ∀pz-monitorable but it is neither a safety nor a co-safety
property, we know there is a monitor which can recognise some violations and
satisfactions of this property, but there is no monitor that can recognise all sat-
isfactions or all violations. Although we focussed on regular, finfinite properties,
the definitions of monitorability in Sec. 3, and, more fundamentally, the method-
ology that systematically puts the relationship between monitor behaviour and
specification centre stage, are equally applicable to other settings.

The emphasis our approach places on the explicit guarantees provided by
the different types of monitorability should clarify the role of monitorability
in the design of RV tools which, depending on the setting, may have different
requirements. Indeed, a monitor that checks that the output of a module does not
violate the preconditions of the next module had better be violation-complete;
on the other hand, it is probably sufficient that a monitor be informative when
it is used as a light-weight, best-effort part of a hybrid verification strategy.
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