
Xjenza Online - Journal of The Malta Chamber of Scientists
www.xjenza.org
DOI: 10.7423/XJENZA.2014.2.04

Research paper

Formal Proofs for Broadcast Algorithms

Mandy Zammit1 and Adrian Francalanza1

1University of Malta, Faculty of ICT, Department of Computer Science

Abstract. Standard distributed algorithmic solutions to
recurring distributed problems are commonly specified
and described informally. A proper understanding of
these distributed algorithms that clarifies ambiguities
requires formal descriptions. However, formalisation tends
to yield complex descriptions. We formally study two
broadcast algorithms and present an encoding framework
using a process descriptive language and formalise these
algorithms and their specifications using this framework.
Following these new formal encodings we discuss correct-
ness proofs for the same algorithms.

Keywords Distributed Algorithms – Broadcast Algo-
rithms – Correctness

1 Introduction

Distributed Systems are decentralised systems made up
of autonomous, concurrent, interconnected processes work-
ing towards a common goal (Tel, 1994; Lynch, 1996). Un-
like standalone systems, where if something fails then all
else fails, processes in a distributed system act as units of
failures. This means that distributed systems may undergo
partial-failure (as opposed to total system failure) where
the failure of a process in such a system does not imply
failure of the whole system.

Distributed problems are known recurring situations
which arise when programming distributed systems. Two
well known distributed problems are consensus (agreement
between all processes) and reliable broadcast (reliable inter-
process communication). Standard Distributed Algorithms
are algorithmic solutions to these known recurring dis-
tributed problems. These distributed algorithms are spec-
ified through a number of correctness criteria. Correct-
ness criteria specify the expected (correct) behaviour of
the distributed algorithm that is being specified. For ev-
ery distributed problem specification there may be various
algorithmic solutions, each aimed to observe the behaviour
specified by the correctness criteria.

The current modus operandi of describing distributed al-
gorithms and their specifications is using informal or semi-

formal descriptions. Specifications are normally expressed
in natural language, whilst distributed algorithms are com-
monly expressed using some semi-formal pseudo-code, lack-
ing any type of formal semantics (Tel, 1994; Lynch, 1996;
Guerraoui and Rodrigues, 2006).

There are a number of reasons as to why the status quo
is unsatisfactory. For one, there is a discrepancy between
such potentially ambiguous semi-formal descriptions and
the implementation of such algorithms (in a machine com-
putable language), which is a large source of erroneous be-
haviour in the deployment of the system. Another reason
why informal descriptions and specifications are deficient is
that no formal verification of the algorithms may be done.
Formal analysis is essential because such algorithms are
very easy to get wrong. Given the concurrent nature of
distributed systems, each execution results in a different
execution path: if we want to verify that our algorithm ob-
serves the behaviour specified by the correctness criteria,
then we need to reason on every possible path of execution
of the algorithm, something that can only be done through
proper formal analysis.

As in Francalanza and Hennessy (2007), Kühnrich and
Nestmann (2009), Nestmann et al. (2003) we postulate
that it would be desirable to encode both the algorithm
and its specification in some formal process description lan-
guage and then equate their behaviour using some notion
of equivalence (as in Equation 1).

System = Specification (1)

In this paper we focus on Broadcast Algorithms; a small
subset of Distributed Algorithms. The rest of the pa-
per is structured as follows; Section 2 describes the Dis-
tributed Broadcast problem, and presents two specifica-
tions together with an algorithmic solution for each spec-
ification. Section 3 presents a partial-failure calculus that
is able to encode both specification and implementation of
these algorithms. Section 4 expresses an encoding frame-
work for broadcast algorithms and their specifications. Sec-
tion 5 presents an encoded broadcast algorithm using the
calculus and encoding framework. Finally section 6 dis-
cusses the respective proofs for these broadcast algorithms,
and sections 7 and 8 conclude.

Correspondence to: Mandy Zammit (mandy.zammit.08@um.edu.mt)

© 2014 Xjenza Online

www.xjenza.org
10.7423/XJENZA.2014.2.04
mailto:mandy.zammit.08@um.edu.mt

Formal Proofs for Broadcast Algorithms 22

2 Distributed Broadcast Problem

Broadcast is used by an entity to disseminate messages
to a number of other entities including itself. Broadcast
algorithms are a fundamental building block in the pro-
gramming of distributed systems. There are a number of
different broadcast specifications, each differing in the re-
liability requirements that it guarantees. We explore two
different broadcast specifications and two algorithmic solu-
tions; each one aimed at satisfying one of the broadcast
specification as expressed in (Guerraoui and Rodrigues,
2006); the algorithms assume perfect failure detectors and
are also taken from (Guerraoui and Rodrigues, 2006).

Terminology: Broadcast is the term used to describe
the transition of a message by an entity (broadcaster) to
all other entities (including itself) in a given network. This
transmitted message is then said to be received by the
other individual entities in the network. However its receipt
is only permanently confirmed once it is delivered to some
higher level of abstraction. A correct process is one which
does not to fail during execution, whilst a faulty process
may fail at any point in time during the execution of an
algorithm.

2.1 Best-Effort Broadcast

The Best-Effort broadcast is a simple broadcast specifi-
cation with a weak form of reliability, whereby if the broad-
caster of a message fails at any point during execution, then
no entities are expected to deliver the message. The set of
correctness criteria that embody the best-effort broadcast
specification are:

� Validity: (liveness) For any two processes pi and pj .
If pi and pj are correct, then every message broadcast
by pi is eventually delivered by pj .

� No Duplication: (safety) No message is delivered
more than once.

� No Creation: (safety) If a message m is delivered by
some process pj , then m was previously broadcast by
some process pi.

A liveness property asserts that some ”good” behaviour
eventually happens, whereas a safety property asserts that
nothing wrong should happen during execution.

Algorithm 1 Best Effort Broadcast (adapted from Guer-
raoui and Rodrigues (2006)

1: while 〈 bebBroadcast — m〉 do
2: for pi ∈

∏
do trigger 〈 pp2pSend — pi, m〉;

3: end for
4: end while
5:

6: while 〈 pp2pDeliver — pi, m〉 do
7: trigger 〈 bebDeliver — pi, m〉;
8: end while

Algorithm 1 depicts an algorithmic solution to the Best-
Effort Specification presented by Guerraoui and Rodrigues
(2006). Lines 1 to 4 express the broadcast of a message,
whilst lines 6 to 8 describe delivery of a message.

Algorithm 2 (Lazy) Regular Reliable Broadcast (adapted
from Guerraoui and Rodrigues (2006))

1: while 〈 Init 〉 do
2: delivered := ∅; correct :=

∏
;

3: for pi ∈
∏

do from[pi] := ∅;
4: end for
5: end while
6:

7: while 〈 rbBroadcast — m〉 do
8: trigger 〈 bebBroadcast — [Data, self, m] 〉;
9: end while

10:

11: while 〈 bebDeliver — pi, [Data, sm, m] 〉 do
12: if m /∈ delivered then
13: delivered := delivered ∪{m};
14: trigger 〈 rbDeliver — sm,m〉;
15: from[pi] := from[pi] ∪{(sm,m)};
16: if pi /∈ correct then
17: trigger 〈 bebBroadcast — [Data, sm, m] 〉;
18: end if
19: end if
20: end while
21:

22: while 〈 crash — pi 〉 do
23: correct := correct \{pi};
24: for (sm,m) ∈ from[pi] do
25: trigger 〈 bebBroadcast — [Data, sm, m] 〉;
26: end for
27: end while
28:

2.2 Regular Reliable Broadcast

The Regular Reliable broadcast specification has a
stronger form of reliability than the Best-Effort broadcast,
whereby it requires that, if at least one correct process de-
livers a broadcast message then all other correct entities
in the network must deliver the same message. This spec-
ification shares the same three correctness criteria of the
best-effort broadcast specification, with the addition of a
new liveness property:

� Agreement: (liveness) If a message m is delivered by
some correct process pi, then m is eventually delivered
by every correct process pj .

Algorithm 2 is an algorithmic solution presented in Guer-
raoui and Rodrigues (2006) satisfying this specification.
Lines 1 to 5 initialise the setting for this algorithm. Broad-
cast of a message is defined from line 7 to 9, while lines 11
to 15 express delivery of a message, introducing checks for
no duplication. Lines 16 to 18 and 22 to 27 re-instantiate
a broadcast if the sender of a message is detected to be
faulty.

The problem with these algorithmic representations is
that they are expressed using some pseudo-code which has
no formal semantics. Secondly the main source of compli-
cation is the analysis of the interleaving of all the processes,
which is not portrayed in these representations. It is also
difficult to relate formally the specifications to the actual

10.7423/XJENZA.2014.2.04 www.xjenza.org

10.7423/XJENZA.2014.2.04
www.xjenza.org

Formal Proofs for Broadcast Algorithms 23

code in a formal language. What’s more, there exists an
implicit problem: we expect that these specifications hold
over all possible participants in a broadcast network.

3 A Partial-Failure Calculus
The partial-failure calculus presented in Francalanza

and Hennessy (2007) formalises the characteristics of dis-
tributed systems in terms of concurrent process, indepen-
dently failing locations, inter-process communication and
failure detection.

Figure 1 defines the syntax of an extended version of
the partial-failure calculus. It has two syntactic categories;
namely Processes and Systems. Processes may contain nil
which is the simplest construct of the language and rep-
resents termination. Input (a?~x) and output (a!~v) terms
allow vector values ~v to be inputted (when matching the
pattern of ~x) or outputted on channel a. Processes may be
composed of other processes running concurrently (P | Q).
Visibility of channels may be localised to a subset of pro-
cesses through channel scoping (ν a)P . Such scoping disal-
lows any extenral communication interference on channel
a. Two processes may preempt each other if they are com-
posed by choice (P + Q). That is, if a part of P executes
first, then any execution from Q is preempted, and vice-
versa. Processes may contain a matching construct which
test for the identity of value vectors ~v1 and ~v2 and proceeds
to P or Q accordingly. Action renaming P [a/b] allows the
renaming of (input and output) actions. Failure-detection
is carried out using the failure detector construct (susp l.P).
This is a guarding construct which tests for the liveness of
location l and releases process P once it correctly suspects
that l has failed. We extend these constructs with pro-
cesses which may contain the zero construct, which guards
process P , releasing it once it detects that no more failures
may be induced in the network. This construct is novel to
our setting and is only used as a specification construct,
i.e., to describe correctness criteria. Systems are made up
of processes residing at some arbitrary location l (l|[P |]).
They may also be composed of other systems executing in
parallel (S | T), may contain scoped channels ((ν a)S), or
renamed channel names (S[a/b]).

Notations: A series of parallel processes P1 | . . . | Pn is
denoted by

∏n
i=1 Pi, whilst a series of choices P1+· · ·+Pn is

denoted by
∑n
i=1 Pi . We denote the scoping of more than

one channel in P by (ν ñ)P , where ñ is the set of channel
names that are to be scoped. On the other hand when
more than one action renaming is needed on a process, we
denote it as [α1/β1, . . . , αn/βn].

The operational semantics of the language is defined in
terms of configurations of the form

〈L, n〉 . S

where 〈L, n〉 represents the distributed network state and S
is the distributed system. L is a liveset, which is defined as
a set of locations {l1, . . . , ln} ∈ Loc which are alive (Fran-
calanza and Hennessy, 2007). A special type of location,
the immortal location denoted by ? is assumed to be in-
cluded in every liveset L. On the other hand n represents

a bounded number of possible dynamic location failures in
the network. Intuitively 〈L, n〉 . S denotes the system S
with its components (or processes) running on locations L,
subject to n possible location failures from L. Computation
is define by transitions between tuples of configurations as
follows

〈L, n〉 . S
α−→ 〈L′, n′〉 . S′

where α is an action defined as

α ∈ Act ::= a?~v Input

| a!~v Output

| τ Internal

Weak actions
α̂

=⇒ denote either

τ−→
∗ α−→

∗ τ−→
∗
if α ∈ {a?~v, a!~v}

or
τ−→
∗
if α = τ

and may also be used to transition between tuples.
The semantic rules of this calculus are given in Figure

1: transitions resulting in an unchanged network have this
network omitted from the left tuple. Rule In, Out, and
Com describe inter-process communication across a net-
work. We note that we require l, the location where the
communication is occurring to be alive. Rule Halt de-
scribes the failure of a location whereas, rule Susp describes
the detection of a failed location. Rule Zero (a novel addi-
tion to the semantics of the calculus) triggers only when no
more failures may be induced in the network. The remain-
ing rules are fairly standard (see Francalanza and Hennessy
(2007) for further details). The transition semantics of the
partial-failure calculus induces the usual definition of weak
bisimulation equivalence defined as follows

Definition 1 (Weak bisimulation equivalence). Denoted
as ≈, is the largest relation over configurations such that if
〈L1, n1〉 . S1 ≈ 〈L2, n2〉 . S2 then

� 〈L1, n1〉.S1
α−→ 〈L′1, n′1〉.S′1 implies 〈L2, n2〉.S2

α̂
=⇒

〈L′2, n′2〉 . S′2 such that 〈L′1, n′1〉 . S′1 ≈ 〈L′2, n′2〉 . S′2
� 〈L2, n2〉.S2

α−→ 〈L′2, n′2〉.S′2 implies 〈L1, n1〉.S1
α̂

=⇒
〈L′1, n′1〉 . S′1 such that 〈L′1, n′1〉 . S′1 ≈ 〈L′2, n′2〉 . S′2

�

4 Encoding Framework using the
Partial-Failure Calculus

The Partial-failure calculus is expressive enough to en-
code both the broadcast specifications and algorithms in
Section 2. We adhere to the following conventions.

4.1 Encoding Algorithms

� Independently failing participants Participants in
broadcast algorithms are autonomous and can fail in-
dependently at any given point in time during execu-
tion. We encode this characteristic as code running
on dedicated locations ln|[Pn|], where Pn denotes the
code of participant n. Location ln is a unit of failure,

10.7423/XJENZA.2014.2.04 www.xjenza.org

10.7423/XJENZA.2014.2.04
www.xjenza.org

Formal Proofs for Broadcast Algorithms 24

Processes

P,Q ∈ Proc ::= nil (Inert) | a?~x.P (Input)
| a!~v (Output) | (ν a)P (Channel Scoping)
| P | Q (Parallel Composition) | P +Q (Choice)
| if ~v1 = ~v2 thenP else Q (Matching) | P [α/β] (Rename)
| susp l.P (Failure Detector) | zero.P (Zero)

Systems

S, T ∈ Sys ::= l|[P |] (Located Processes) | S | T (Parallel Composition)
| (ν a)S (Channel Scoping) | S[α/β] (Rename)

Transition Rules

Assuming l ∈ L, n ≥ 0

In

〈L, n〉 . l|[a?(~x).P |] a?~v−→ l|[P{~v/~x}|]

Out

〈L, n〉 . l|[a!(~v).nil|] a!~v−→ l|[nil|]

Susp

〈L, n〉 . l|[susp k.P |] τ−→ l|[P |]
k /∈ L

Halt

〈L, n+ 1〉 . S
τ−→ 〈L \ l, n〉 . S

Fork

〈L, n〉 . l|[P | Q|] τ−→ l|[P |] | l|[Q|]

New

〈L, n〉 . l|[(ν a)P |] τ−→ (ν a)l|[P |]

RenP

〈L, n〉 . l|[(P)ρ|] τ−→ (l|[P |])ρ

Eq

〈L, n〉 . l|[if v=v thenP else Q|] τ−→ l|[P |]

Neq

〈L, n〉 . l|[if v1 =v2 thenP else Q|] τ−→ l|[Q|]
v1 6= v2

Zero

〈L, 0〉 . l|[zero.P |] τ−→ 〈L, 0〉 . l|[P |]

Sum

〈L, n〉 . l|[Pi|]
α−→ l|[P |]

〈L, n〉 . l|[
∑
i∈I

Pi|]
α−→ l|[P |]

Ren

〈L, n〉 . S
α−→ 〈L, n〉 . S′

〈L, n〉 . (S)ρ
(α)ρ−→ 〈L, n〉 . (S′)ρ

ρ = [a/b]

Rest

〈L, n〉 . S
α−→ 〈L′, n′〉 . S′

〈L, n〉 . (ν a)S
α−→ 〈L′, n′〉 . (ν a)S′

Chanα ∈ fc ((ν a)S)

Par

〈L, n〉 . S
α−→ 〈L′, n′〉 . S′

〈L, n〉 . S | T α−→ 〈L′, n′〉 . S′ | T

Com

〈L, n〉 . S
a?~v−→ S′ 〈L, n〉 . T

a!~v−→ T ′

〈L, n〉 . S | T τ−→ S′ | T ′

Figure 1: Partial-Failure Calculus (dPC)

whereby it can be marked as a dead location (by being
removed from the liveset L) during execution ceasing
execution of code residing on it.

� Network initialisation An output action on some
channel cn will denote the initialisation of the network,
where process Pn would be chosen as the designated
broadcaster. c channels are not localised to the net-
work, since initialisation of the network is expected
to be triggered from the environment outside the net-
work.

� Broadcast Broadcast in the algorithms that we study
happens over perfect point-to-point links. We use the

constructs of receiving (b?x) and sending (b!m) mes-
sages over channels to encode perfect point-to-point
links. Channels may in general have multiple senders
and receivers, but we choose to restrict channels to
be used in a linear fashion, where only one process
may send messages on the channel, and only one other
process may receive messages from the same channel.
More precisely the channel bmn is the channel used by
process Pn to send messages to Pm. Dually the channel
bnm is used by process Pm to send messages to Pn. This
linear usage is further ensured by the use of scoping to
localise these channels to the network which is using

10.7423/XJENZA.2014.2.04 www.xjenza.org

10.7423/XJENZA.2014.2.04
www.xjenza.org

Formal Proofs for Broadcast Algorithms 25

them. Broadcast is thus encoded as the output of a
message over the encoded perfect point-to-point links,
discussed previously. Dually the receipt of a broad-
casted message is encoded as the input action over the
same perfect point-to-point links.

� Deliver Delivery of a message by some participant
Pn will be encoded as the output of the message over
some channel dn which is not scoped. The reason why
the channel dn is not scoped is because delivery of a
message is the process of passing the received message
to another entity external to the broadcast algorithm.

� Failure Detection Failure detection is immediately
expressed using the suspect (susp l.P) construct of the
partial-failure calculus that we use for our encoding.

4.2 Encoding Specifications

In Francalanza and Hennessy (2007), Francalanza and
Hennessy propose the decomposition of specification dur-
ing the encoding process, i.e., instead of encoding all the
properties of the specification as one process, they use dedi-
cated wrapper code or testing harnesses for each correctness
criteria of the specification. These dedicated harnesses are
able to wrap a system and stop any interaction between for-
eign entities and the network. A harness will then induce
a network broadcast and observe the behaviour of the al-
gorithm whilst determining if its behaviour conforms with
the behaviour expected by the correctness criteria which is
being tested for. This means that now to verify our algo-
rithms we will have a number of equations (one for each
correctness criteria in the specification) as follows

(ν ñ)(System | Harness1) ≈ SimpleSpecification
...

(ν ñ)(System | Harnessn) ≈ SimpleSpecification

The structure of the SimpleSpecification will be deter-
mined on the type of property which is being tested for.
If the criteria being tested for is a safety property, the
respective simple specification would entail an inert (nil)
process, whilst if testing for a liveness property the simple
specification would consists of an output on channel OK.
Since a safety property asserts that nothing bad happens,
we construct harnesses which wrap and observe systems,
triggering a signal on channel nok whenever violations are
detected. Stated otherwise, if a safety property is satis-
fied no output on nok is generated. Conversely, harnesses
wrapping systems and testing for liveness properties, out-
put OK signals when the expected behaviour is observed.
The following set of characteristics are prevalent to the en-
coding of testing harnesses.

� Reliable code It is required that wrapper code testing
for a property in a distributed algorithm is reliable,
that is, it should never fail unlike the participants in
the distributed algorithm. Any wrapper code will thus
be located at the immortal location ?.

� Initiators A harness commences testing by sending
the start message on channel ci to process Pi, the des-
ignated broadcaster. This mimics the initiation of a
broadcast from an outside environment and allows the

rrbnk ,


l0|[nil|] k = 0

(ν ñ)

 rrbnk−1
| lk|[PBEB

n
k [ck/c′k, dk/d

′
k]|]

| lk|[PRRBk|]

 k > 0

where 0 ≤ k ≤ n

Best-Effort Broadcast related Processes

PBEB
n
k , BBEB

n
k | DBEB

n
k

BBEB
n
k , ck?~x.

n∏
j=1

bjk!~x

DBEB
n
k ,

n∑
j=1

(
bkj ?~x.dk!~x

)

Regular Reliable Broadcast related Processes

PRRBk , BRRBk | DRRBk

BRRBk , ck?~x.c′k!(k, ~x)

DRRBk , d
′
k?(s, ~m).(dk!~m | susp ls.ck!(s, ~m))

ñ = {b1k, . . . , bkk} ∪ {bk1 , . . . , bkk} ∪ {c′k} ∪ {d′k}

Figure 2: Inductive Formal Encoding of (Lazy) Regular Reli-
able Broadcast

harness to induce the network and test for a specific
correctness criteria accordingly.

� Testing Mechanism The observation of message de-
liveries is modeled by the input on channels d1 . . . dn
where n is the number of participants in the network
under test. After consuming these deliveries (pro-
duced by participants in the network), each testing
harness will execute specific code that acts upon the
observed delivery behaviour.

5 Encoding Regular Reliable
Broadcast

We present the formal encoding of the regular reliable
broadcast algorithm, (which uses the Best Effort Broad-
cast) and the formal encoding of two testing harnesses;
one testing for the No Duplication (safety) property and
another testing for the Agreement (liveness) property in
this same algorithm. The other properties follow the same
pattern.

Broadcast specifications quantify over all possible partic-
ipants in a network, requiring us to provide a proof for every
instance of participants. We therefore present an inductive
formal encoding for the regular reliable broadcast, which
will enable us to construct inductive proofs that cover all

10.7423/XJENZA.2014.2.04 www.xjenza.org

10.7423/XJENZA.2014.2.04
www.xjenza.org

Formal Proofs for Broadcast Algorithms 26

ndi,~mn [−] , (ν ñ)(? |[I ~mi | Tn|] | [−])

where 0 ≤ i ≤ n

I ~mi ,

{
nil i = 0

ci!~m i > 0
(Initiator)

Tn ,

{
nil n = 0

Tn−1 | T
′

n n > 0
(Testers)

T
′

n , dn?~x.dn?~y.nok!

ñ = {d1, . . . , dn} ∪ {c1, . . . , cn}

Figure 3: Formal Encoding of No Duplication Harness

cases of participant numbers.
Figure 2 denotes the formal encoding rrbnk of the Regu-

lar Reliable Broadcast Algorithm (Algorithm 2), whereby
rrbnk stands for the network of n ultimate participants, but
k actual participants yet in the network. Participants are
added inductively in this network until k becomes equal to
n. Recall from Algorithm 2, that Regular Reliable Broad-
cast uses the Best-Effort Broadcast, thus Participants in
rrbnk are made up of Best-Effort related code PBEB

n
k and

Regular Reliable related code PRRB
n
k .

Best-Effort related code PBEB
n
k contains broadcast and

delivery threads; BBEB
n
k and DBEB

n
k respectively. The

broadcast thread BBEB
n
k corresponds to lines 1 to 3 in Algo-

rithm 1 and is only instantiated if there is an input action
on the channel ck. Once instantiated it will broadcast the
message to all other entities in the network. The deliv-
ery thread DBEB

n
k on the other hand corresponds to lines

6 to 8 in Algorithm 1, whereby it allows the receipt of one
broadcast message.

Regular Reliable related code PRRB
n
k contain broadcast

BRRB
n
k and delivery DRRB

n
k threads as well. The broadcast

thread BRRB
n
k corresponds to lines 7 to 9 in Algorithm 2,

where once a message is received by some Pi over channel
ci it is forwarded to the Best-Effort broadcast underneath.
The deliver thread DRRB

n
k corresponds to lines 11 to 20 and

22 to 27 in Algorithm 2, where if a delivery is received from
the Best-Effort broadcast underneath (over channel d

′

k),
the delivery thread delivers (over channel dk) and releases
the code which tests for the liveness of the owner of the
received message, and starts a new broadcast with the same
message if the process is suspected to have failed.

Figure 3 denotes the formal encoding of the No Duplica-
tion testing harness. This Harness ndi,~mn tests for the No
Duplication property in the Regular Reliable Broadcast al-
gorithm, and follows the conventions outlined in Section
4. Broadcast initiation is done through process I ~mi , which

Ai,~mn [−] , (ν ñ)(? |[I ~mi | Tn | Tn0 |] | [−])

where 0 < i ≤ n

I ~mi , ci!~m (Initiator)

Tn0 , zero.(OK! +

n∑
j=1

dj?~x.(dj !~x | ok0!))

Tn ,

{
T
′

1 n = 1

Tn−1[OK/okn−1] | T
′

n n > 1
(Testers)

T
′

n , okn−1?.((dn?~x.OK!) + (susp ln.OK!))

ñ = {d1, . . . , dn} ∪ {ok0, . . . , okn−1} ∪ {c1, . . . , cn}

Figure 4: Formal Encoding of Agreement Harness

disseminates a message on channel ci. The testers in this
harness T

′

n, then wait for a delivery on channel dn, and
trigger a nok if a second delivery is observed.

Figure 4 presents the formal encoding of the testing har-
ness that tests for the Agreement property in the Regu-
lar Reliable broadcast algorithm. The testing harness Ai,~mn
which tests for n processes in a network, induces the broad-
cast network with message ~m by designating participant Pi
as the broadcaster. I ~mi is the initiation code of the harness
which induces the broadcast network by outputting mes-
sage ~m on channel ci. Tn0 is the code used to initialise
testing. The zero construct is used in this harness defi-
nition to restrain testing to commence only when no more
failures may be induced in the network. The reason for this
is that we need to identify which processes are correct, that
is, which were guaranteed not to fail during execution. Tn0
then either outputs an OK if no participant had delivered,
or if it manages to observe a delivery from any participant,
it commences the other testers by outputting an ok0. Each
tester Tn where n > 0 then waits for an okn−1, that is,
an ok signal from the Tester n − 1. When this okn−1 is
received, the tester checks if the participant it is testing for
Pn is alive, if it is not it promptly outputs on okn, but if
Pn is still alive then the tester outputs on okn only if the
participant is ready to deliver the broadcasted message.

6 Stating and Proving Correctness

We have till now presented formal encoding for the in-
formal broadcast specifications and informal algorithmic
broadcast implementation discussed in Section 2. This
constitutes the main contribution of the paper. Using the
Harnesses and Algorithms (formally) defined in section 5,
together with the bisimulation equivalence of the partial-
failure calculus (in which the harnesses and algorithms are
expressed), we can formulate our correctness criteria in the

10.7423/XJENZA.2014.2.04 www.xjenza.org

10.7423/XJENZA.2014.2.04
www.xjenza.org

Formal Proofs for Broadcast Algorithms 27

following form:

∀n Harness(n)[System(n)] ≈ SimpleSpec

where SimpleSpec is nil in the case for safety properties
and OK! in the case of a liveness property. For instance to
verify no duplication we are required to prove

∀n ndi,~mn [rrbnn] ≈ nil

whilst to verify agreement we are required to prove

∀n Ai,~mn [rrbnn] ≈ OK!

These are formal statements with an unambiguous
semantics expressed as an equivalence amongst two sys-
tems within our calculus. Bisimulation equivalence comes
equipped with an elegant (coinductive) proof technique
whereby we only need to exhibit a relation that includes
the afore mentioned pair and observes the transfer prop-
erty of definition 1.

However these witness relations can be quite large and
unwieldy to construct. Moreover, for each correctness cri-
teria we need to exhibit an infinite number of relations, one
for every instance of the broadcast network with a specific
number of participants.

Francalanza and Hennessy (2007) propose the decom-
position of correctness proofs into two phases; the failure
free phase (or basic correctness phase) and the correctness
preservation phase (or fault-tolerance phase). The first
phase tests the algorithm under no failures, and equates
its behaviour to a SimpleSpec

〈L, 0〉 . (ν õ)(Sys(n) | Harness(n)) ≈ SimpleSpec(n)

The second phase equates the behaviour of the system un-
der failures to the system in a failure free environment

〈L, n〉 . (ν õ)(Sys(n) | Harness(n))

≈
〈L, 0〉 . (ν õ)(Sys(n) | Harness(n))

We adopt this technique in our Correctness proofs to
alleviate the cumbersome witness bisimulations.

Furthermore, in order to address the problem of ex-
hibiting witness bisimulations for every possible number
of participants, we can adopt an inductive proof approach,
whereby we show that the correctness property holds for
the base case (one participant) and then the inductive case
(k + 1 participants assuming that the property holds for
k participants). In (Zammit, 2013) we show how this can
be done for a subset of these properties, using a technique
called mocking. We however leave the construction of the
full proofs for every broadcast property for future work.

7 Related Work

Kühnrich and Nestmann (2009) use a similar process de-
scription language but make use of imperfect failure detec-
tors (Chandra and Toueg, 1996) to encode an algorithmic

solution to Distributed Consensus. They point out that
the technique of decomposing fault-tolerance proofs (Fran-
calanza and Hennessy, 2007) is not quit helpful in the con-
text of imperfect failure detectors. Nestmann et al. in
(Nestmann et al., 2003) verify the Distributed Consensus
algorithm developed by (Chandra and Toueg, 1996). To
encode their algorithm they use a process calculi as well,
but opt to represent reachable states in the consensus algo-
rithm as a message matrix. This ”global-view matrix-like
representation of reachable states” contains history of mes-
sages that have been sent until now in the algorithm, and
would help in the formal global reasoning about the contri-
bution of processes to individual rounds of the algorithm.

8 Conclusion and Future Work
This paper presents the following contributions:

1. a formal description for the Best-Effort and Reliable
Broadcast specification.

2. a formal description of an algorithmic implementation
solving Regular Reliable Broadcast.

3. an outline of how to alleviate the burden of proving
equivalences presented in Section 6.

As future work we intend to complete the correctness
proofs and extend this encoding and proofing technique to
other broadcast algorithms with different forms of reliabil-
ity requirements.

Acknowledgment
The research work disclosed in this publication is par-

tially funded by the Strategic Educational Pathways Schol-
arship Scheme (Malta). The scholarship is part-financed by
the European Union – European Social Fund

References

Chandra, T. D. and Toueg, S. (1996). Unreliable failure
detectors for reliable distributed systems. J. ACM
43(2), 225–267.

Francalanza, A. and Hennessy, M. (2007). A fault tolerance
bisimulation proof for consesus. In R. D. Nicola (Ed.),
Esop 2007.

Guerraoui, R. and Rodrigues, L. (2006). Introduction to
reliable distributed programming. Secaucus, NJ, USA:
Springer-Verlag New York, Inc.

Kühnrich, M. and Nestmann, U. (2009). On process-
algebraic proof methods for fault tolerant distributed
systems. (pp. 198–212). FMOODS ’09/FORTE ’09.
Lisboa, Portugal: Springer-Verlag.

Lynch, N. A. (1996). Distributed algorithms. The Morgan
Kaufmann Series in Data Management Systems Se-
ries. Morgan Kaufmann Publishers.

Nestmann, U., Fuzzati, R. and Merro, M. (2003). Modeling
consensus in a process calculus. In In concur: 14th
international conference on concurrency theory. lncs
(pp. 393–407). Springer-Verlag.

Tel, G. (1994). Introduction to distributed algorithms. New
York, NY, USA: Cambridge University Press.

10.7423/XJENZA.2014.2.04 www.xjenza.org

10.7423/XJENZA.2014.2.04
www.xjenza.org

Formal Proofs for Broadcast Algorithms 28

Zammit, M. (2013). Inductive basic correctness reasoning
in formal fault-tolerance proofs for distributed algo-
rithms (Master’s thesis, University of Malta, Malta).

10.7423/XJENZA.2014.2.04 www.xjenza.org

10.7423/XJENZA.2014.2.04
www.xjenza.org

	Introduction
	Distributed Broadcast Problem
	Best-Effort Broadcast
	Regular Reliable Broadcast

	A Partial-Failure Calculus
	Encoding Framework using the Partial-Failure Calculus
	Encoding Algorithms
	Encoding Specifications

	Encoding Regular Reliable Broadcast
	Stating and Proving Correctness
	Related Work
	Conclusion and Future Work

