
A Formal Model of Provenance in
Distributed Systems

Issam Souilah2 Adrian Francalanza1 Vladimiro Sassone2

1Department of Computer Science
ICT, University of Malta

2DSSE, ECS
Southampton University

San Francisco, USA. February 2009

Outline

Motivation

Proposed solution

Provenance Correctness

Conclusion

Motivation

Trust In a Distributed System

I Distribution⇒ inherent parallelism.
I Distribution⇒ no shared memory i.e., message passing.
I Distribution⇒ lack of centralised coordination i.e.,

non-determinism.

Appropriate Calculus?
The piCalculus :

I Captures the characteristic features of our domain of study.
I Well-studied.
I Close connections to linear logic and resources
I . . .

Motivation

Trust In a Distributed System

I Distribution⇒ inherent parallelism.

I Distribution⇒ no shared memory i.e., message passing.
I Distribution⇒ lack of centralised coordination i.e.,

non-determinism.

Appropriate Calculus?
The piCalculus :

I Captures the characteristic features of our domain of study.
I Well-studied.
I Close connections to linear logic and resources
I . . .

Motivation

Trust In a Distributed System

I Distribution⇒ inherent parallelism.
I Distribution⇒ no shared memory i.e., message passing.

I Distribution⇒ lack of centralised coordination i.e.,
non-determinism.

Appropriate Calculus?
The piCalculus :

I Captures the characteristic features of our domain of study.
I Well-studied.
I Close connections to linear logic and resources
I . . .

Motivation

Trust In a Distributed System

I Distribution⇒ inherent parallelism.
I Distribution⇒ no shared memory i.e., message passing.
I Distribution⇒ lack of centralised coordination i.e.,

non-determinism.

Appropriate Calculus?
The piCalculus :

I Captures the characteristic features of our domain of study.
I Well-studied.
I Close connections to linear logic and resources
I . . .

Motivation

Trust In a Distributed System

I Distribution⇒ inherent parallelism.
I Distribution⇒ no shared memory i.e., message passing.
I Distribution⇒ lack of centralised coordination i.e.,

non-determinism.

Appropriate Calculus?
The piCalculus :

I Captures the characteristic features of our domain of study.
I Well-studied.
I Close connections to linear logic and resources
I . . .

Motivation

Trust In a Distributed System

I Distribution⇒ inherent parallelism.
I Distribution⇒ no shared memory i.e., message passing.
I Distribution⇒ lack of centralised coordination i.e.,

non-determinism.

Appropriate Calculus?
The piCalculus :
I Captures the characteristic features of our domain of study.

I Well-studied.
I Close connections to linear logic and resources
I . . .

Motivation

Trust In a Distributed System

I Distribution⇒ inherent parallelism.
I Distribution⇒ no shared memory i.e., message passing.
I Distribution⇒ lack of centralised coordination i.e.,

non-determinism.

Appropriate Calculus?
The piCalculus :
I Captures the characteristic features of our domain of study.
I Well-studied.

I Close connections to linear logic and resources
I . . .

Motivation

Trust In a Distributed System

I Distribution⇒ inherent parallelism.
I Distribution⇒ no shared memory i.e., message passing.
I Distribution⇒ lack of centralised coordination i.e.,

non-determinism.

Appropriate Calculus?
The piCalculus :
I Captures the characteristic features of our domain of study.
I Well-studied.
I Close connections to linear logic and resources
I . . .

piCalculus Primer

Names

a, b , . . . ∈ N

I denote points of interaction (rendez-vous channels). . .
I . . . and values which are transmitted during communication.

piCalculus Primer

Names

a, b , . . . ∈ N

I denote points of interaction (rendez-vous channels). . .

I . . . and values which are transmitted during communication.

piCalculus Primer

Names

a, b , . . . ∈ N

I denote points of interaction (rendez-vous channels). . .
I . . . and values which are transmitted during communication.

piCalculus Primer

Processes

P ‖ Q ‖ R

︸ ︷︷ ︸
react on a

piCalculus Primer

Processes

a!b ‖ Q ‖ R

︸ ︷︷ ︸
react on a

piCalculus Primer

Processes

a!b ‖ a?x.c!x ‖ R

︸ ︷︷ ︸
react on a

piCalculus Primer

Processes

a!b ‖ a?x.c!x ‖ R

︸ ︷︷ ︸
react on a

piCalculus Primer

Processes

a!b ‖ a?x.x!c ‖ R

︸ ︷︷ ︸
react on a

piCalculus Primer

Processes

a!b ‖ a?x.x!c ‖ R

︸ ︷︷ ︸
react on a

piCalculus Primer

Processes

b!c ‖ R

︸ ︷︷ ︸
react on a

piCalculus Primer

Processes

b!c ‖ b?y.R ′

︸ ︷︷ ︸
react on a

piCalculus Extension: Distribution!

From Processes to Systems

P ‖ Q ‖ R

piCalculus Extension: Distribution!

From Processes to Systems

p, q, r , . . . ∈ TP

p[P] ‖ q[Q] ‖ p[R]

piCalculus Extension: Distribution!

From Processes to Systems

p[a?x.P] ‖ q[a!v1] ‖ r[R]

piCalculus Extension: Distribution!

From Processes to Systems

p[a?x.P] ‖ q[a!v1] ‖ r[R]

︸ ︷︷ ︸
across units of trust

piCalculus Extension: Distribution!

From Processes to Systems

p[a?x.P] ‖ q[a!v1] ‖ r[a!v2]

︸ ︷︷ ︸
Market of values!

piCalculus Extension: Distribution!

From Processes to Systems

communication︷ ︸︸ ︷
p[a?x.P] ‖ q[a!v1] ‖ r[a!v2]

︸ ︷︷ ︸
Market of values!

piCalculus Extension: Distribution!

From Processes to Systems

communication︷ ︸︸ ︷
p[a?x.P] ‖ q[a!v1] ‖ r[a!v2]

︸ ︷︷ ︸
Market of values!

Main Problem

What are the control mechanism need to assist consumers
of data?

How do we automate decisions based on trust?

I Static Analysis (not scalable)
I Dynamic Analysis:

I decisions need to be computationally lightweight.

(Full-blown
verification methods do not cut it!)

I decision criteria produced in lightweight fashion.

(Proof-Carrying Code does not cut it!)

Main Problem

What are the control mechanism need to assist consumers
of data?

How do we automate decisions based on trust?

I Static Analysis (not scalable)

I Dynamic Analysis:
I decisions need to be computationally lightweight.

(Full-blown
verification methods do not cut it!)

I decision criteria produced in lightweight fashion.

(Proof-Carrying Code does not cut it!)

Main Problem

What are the control mechanism need to assist consumers
of data?

How do we automate decisions based on trust?

I Static Analysis (not scalable)
I Dynamic Analysis:

I decisions need to be computationally lightweight.

(Full-blown
verification methods do not cut it!)

I decision criteria produced in lightweight fashion.

(Proof-Carrying Code does not cut it!)

Main Problem

What are the control mechanism need to assist consumers
of data?

How do we automate decisions based on trust?

I Static Analysis (not scalable)
I Dynamic Analysis:

I decisions need to be computationally lightweight. (Full-blown
verification methods do not cut it!)

I decision criteria produced in lightweight fashion.

(Proof-Carrying Code does not cut it!)

Main Problem

What are the control mechanism need to assist consumers
of data?

How do we automate decisions based on trust?

I Static Analysis (not scalable)
I Dynamic Analysis:

I decisions need to be computationally lightweight. (Full-blown
verification methods do not cut it!)

I decision criteria produced in lightweight fashion.
(Proof-Carrying Code does not cut it!)

Outline

Motivation

Proposed solution

Provenance Correctness

Conclusion

Provenance

Annotated Values

v :

κ ::= ε empty provenance

| α; κ sequenced provenace

α ::= rcv(p, κ) recieve action

| snd(p, κ) send action

Provenance

Annotated Values

v : κ

κ ::= ε empty provenance

| α; κ sequenced provenace

α ::= rcv(p, κ) recieve action

| snd(p, κ) send action

Provenance

Annotated Values

v : κ

κ ::= ε empty provenance

| α; κ sequenced provenace

α ::= rcv(p, κ) recieve action

| snd(p, κ) send action

Provenance

Annotated Values

p[a!v]

κ ::= ε empty provenance

| α; κ sequenced provenace

α ::= rcv(p, κ) recieve action

| snd(p, κ) send action

Provenance

Annotated Values

p[a :κa ! v :κv]

κ ::= ε empty provenance

| α; κ sequenced provenace

α ::= rcv(p, κ) recieve action

| snd(p, κ) send action

Provenance

Annotated Values

p[a :κa ! v :κv] ‖ q[a :κ′a ! v′ :κv′ .] ‖ p[a :κ′′a ! v′′ :κv′′ .]

provenance is linear!

κ ::= ε empty provenance

| α; κ sequenced provenace

α ::= rcv(p, κ) recieve action

| snd(p, κ) send action

Provenance Tracking

Automated:

1. orthogonal to programming (can be abstracted away)

2. ensures provenance annotation standardization.

3. avoids circular reasoning with respect to trust.

Two tiered architecture:

I Computation Layer: describes computation of values and
processes.

I Provenance Tracking Layer: describes the aggregation of
provenance information attached to data
(typically assigned to a trusted middleware)

Provenance Tracking

Automated:

1. orthogonal to programming (can be abstracted away)

2. ensures provenance annotation standardization.

3. avoids circular reasoning with respect to trust.

Two tiered architecture:

I Computation Layer: describes computation of values and
processes.

I Provenance Tracking Layer: describes the aggregation of
provenance information attached to data
(typically assigned to a trusted middleware)

Provenance Tracking

Automated:

1. orthogonal to programming (can be abstracted away)

2. ensures provenance annotation standardization.

3. avoids circular reasoning with respect to trust.

Two tiered architecture:

I Computation Layer: describes computation of values and
processes.

I Provenance Tracking Layer: describes the aggregation of
provenance information attached to data
(typically assigned to a trusted middleware)

Provenance Tracking

Automated:

1. orthogonal to programming (can be abstracted away)

2. ensures provenance annotation standardization.

3. avoids circular reasoning with respect to trust.

Two tiered architecture:

I Computation Layer: describes computation of values and
processes.

I Provenance Tracking Layer: describes the aggregation of
provenance information attached to data
(typically assigned to a trusted middleware)

Provenance Tracking

Automated:

1. orthogonal to programming (can be abstracted away)

2. ensures provenance annotation standardization.

3. avoids circular reasoning with respect to trust.

Two tiered architecture:

I Computation Layer: describes computation of values and
processes.

I Provenance Tracking Layer: describes the aggregation of
provenance information attached to data
(typically assigned to a trusted middleware)

Provenance Tracking

Automated:

1. orthogonal to programming (can be abstracted away)

2. ensures provenance annotation standardization.

3. avoids circular reasoning with respect to trust.

Two tiered architecture:
I Computation Layer: describes computation of values and

processes.

I Provenance Tracking Layer: describes the aggregation of
provenance information attached to data
(typically assigned to a trusted middleware)

Provenance Tracking

Automated:

1. orthogonal to programming (can be abstracted away)

2. ensures provenance annotation standardization.

3. avoids circular reasoning with respect to trust.

Two tiered architecture:
I Computation Layer: describes computation of values and

processes.
I Provenance Tracking Layer: describes the aggregation of

provenance information attached to data
(typically assigned to a trusted middleware)

Provenance Tracking Semantics

Operational Semantics

p[a!v] ‖ Q −→ a〈v〉 ‖ Q

Provenance Tracking Semantics

Operational Semantics

p[a!v] ‖ Q −→ a〈v〉 ‖ Q

︸︷︷︸
loose immediate provenance information!

Provenance Tracking Semantics

(Provenance Tracking) Operational Semantics

p[a :κa!v :κv] ‖ Q −→ a〈v :snd(p, κa); κv〉 ‖ Q

︸ ︷︷ ︸
provenance aggregation

Provenance Usage

Not-Automated!

I program with it to control non-derminism. . .
I . . . using intuitive programming idioms/constructs

Operational Semantics

a〈v〉 ‖ q[a?(x).Q] −→ q[Q{v/x}]

if

Provenance Usage

Not-Automated!
I program with it to control non-derminism. . .

I . . . using intuitive programming idioms/constructs

Operational Semantics

a〈v〉 ‖ q[a?(x).Q] −→ q[Q{v/x}]

if

Provenance Usage

Not-Automated!
I program with it to control non-derminism. . .
I . . . using intuitive programming idioms/constructs

Operational Semantics

a〈v〉 ‖ q[a?(x).Q] −→ q[Q{v/x}]

if

Provenance Usage

Not-Automated!
I program with it to control non-derminism. . .
I . . . using intuitive programming idioms/constructs

Operational Semantics

a〈v〉 ‖ q[a?(x).Q] −→ q[Q{v/x}]

if

Provenance Usage

Not-Automated!
I program with it to control non-derminism. . .
I . . . using intuitive programming idioms/constructs

Operational Semantics

a〈v:κv〉 ‖ q[a :κa?(x from π).Q] −→ q[Q{v/x}] if κv |= π︸︷︷︸
provenance pattern matching

Provenance Usage

Not-Automated!
I program with it to control non-derminism. . .
I . . . using intuitive programming idioms/constructs

Operational Semantics

a〈v:κv〉 ‖ q[a:κa?(x from π).Q] −→ q[Q{v: rcv(q, κa); κv/x}] if κv |= π︸ ︷︷ ︸
provenance aggregation

Provenance Usage Example

Client/Server

srv Name of server

ret Name of return channel on which server returns answer

Client = p[srv!〈ret〉] ‖ p[ret?(x from π).P]

Server = q[srv?(y from ∗).y!〈v〉]

π = snd(q, rcv(q, snd(p, ε))); ∗

Provenance Usage Example

Client/Server

srv Name of server

ret Name of return channel on which server returns answer

Client = p[srv!〈ret〉] ‖ p[ret?(x from π).P]

Server = q[srv?(y from ∗).y!〈v〉]

π = snd(q, rcv(q, snd(p, ε))); ∗

Provenance Usage Example

Client/Server

srv Name of server

ret Name of return channel on which server returns answer

Client = p[srv!〈ret〉] ‖ p[ret?(x from π).P]

Server = q[srv?(y from ∗).y!〈v〉]

π = snd(q, rcv(q, snd(p, ε))); ∗

Provenance Usage Example

Client/Server

srv Name of server

ret Name of return channel on which server returns answer

Client = p[srv!〈ret〉] ‖ p[ret?(x from π).P]

Server = q[srv?(y from ∗).y!〈v〉]

π = snd(q, rcv(q, snd(p, ε))); ∗

Provenance Usage Example

Client/Server

srv Name of server

ret Name of return channel on which server returns answer

Client = p[srv :κ1srv !〈 ret :ε〉] ‖ p[ret :ε ?(x from π).P]

Server = q[srv :κ2srv ?(y from ∗).y!〈v :κv〉]

π = snd(q, rcv(q, snd(p, ε))); ∗

Provenance Usage Example

Client/Server

srv Name of server

ret Name of return channel on which server returns answer

Client = p[srv :κ1srv !〈 ret :ε〉] ‖ p[ret :ε ?(x from π).P]

Server = q[srv :κ2srv ?(y from ∗).y!〈v :κv〉]

π = snd(q, rcv(q, snd(p, ε))); ∗

Provenance Usage Example

Client/Server

srv Name of server

ret Name of return channel on which server returns answer

Client = p[srv :κ1srv !〈 ret :ε〉] ‖ p[ret :ε ?(x from π).P]

Server = q[srv :κ2srv ?(y from ∗).y!〈v :κv〉]

π = snd(q, rcv(q, snd(p, ε))); ∗

Outline

Motivation

Proposed solution

Provenance Correctness

Conclusion

Provenance Correctness

Correctness Intuition

I provenance attached to values records history related to that
value.

I provenance of a value is correct if it describes a partial
history which corresponds to the total history of events.

Provenance Correctness

History represented by Logs

φ ::= ∅ | ρ; φ logs

ρ ::= rcv(p) | snd(p) log actions

Sub-Log Comparison

cmp1
∅ ≤ φ

cmp2
φ ≤ φ′

ρ; φ ≤ ρ; φ′
cmp3

φ ≤ φ′

φ ≤ ρ; φ′

Provenance Correctness

History represented by Logs

φ ::= ∅ | ρ; φ logs

ρ ::= rcv(p) | snd(p) log actions

Sub-Log Comparison

cmp1
∅ ≤ φ

cmp2
φ ≤ φ′

ρ; φ ≤ ρ; φ′
cmp3

φ ≤ φ′

φ ≤ ρ; φ′

Provenance Correctness

Monitored Systems

φ . p[a :κa!v :κv] ‖ Q −→mon snd(p); φ . a〈v :snd(p, κa); κv〉 ‖ Q

Erasure Function:

| − | : MS→ S

Lemma
M −→mon M′ implies |M| −→ |M′|

Provenance Correctness

Monitored Systems

φ . p[a :κa!v :κv] ‖ Q −→mon snd(p); φ . a〈v :snd(p, κa); κv〉 ‖ Q

Erasure Function:

| − | : MS→ S

Lemma
M −→mon M′ implies |M| −→ |M′|

Provenance Correctness

Monitored Systems

φ . p[a :κa!v :κv] ‖ Q −→mon snd(p); φ . a〈v :snd(p, κa); κv〉 ‖ Q

Erasure Function:

| − | : MS→ S

Lemma
M −→mon M′ implies |M| −→ |M′|

Provenance Correctness

Partial Log Extraction

pLog : κ → P(φ)

pLog(ε) = ∅

pLog(rcv(p, κ); κ′) = rcv(p); pLogV(κ′) ∪ pLog(κ)

pLog(snd(p, κ); κ′) = snd(p); pLogV(κ′) ∪ pLog(κ)

pLogV(ε) = ∅

pLogV(rcv(p, κ); κ′) = rcv(p); pLogV(κ′)

pLogV(snd(p, κ); κ′) = snd(p); pLogV(κ′)

Provenance Correctness

Definition

M has correct provenance iff ∀φ ∈ pLog(prov(M)) we have
φ ≤ log(M).

Theorem

M has correct provenance and M −→mon M′ implies M′ has
correct provenance.

Outline

Motivation

Proposed solution

Provenance Correctness

Conclusion

Conclusions

I Designed a provenance based calculus for distributed
computing.

I Proposed a two-tier system for provenance tracking and
usage.

I Defined provenance correctness
I Proved provenance correctness for our provenance tracking

semantics.

Conclusions

Thank You... Questions?

	Motivation
	Proposed solution
	Provenance Correctness
	Conclusion

