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Motivation

Trust In a Distributed System

I Distribution⇒ inherent parallelism.
I Distribution⇒ no shared memory i.e., message passing.
I Distribution⇒ lack of centralised coordination i.e.,

non-determinism.

Appropriate Calculus?
The piCalculus :

I Captures the characteristic features of our domain of study.
I Well-studied.
I Close connections to linear logic and resources
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Main Problem

What are the control mechanism need to assist consumers
of data?

How do we automate decisions based on trust?

I Static Analysis (not scalable)
I Dynamic Analysis:

I decisions need to be computationally lightweight.

(Full-blown
verification methods do not cut it!)

I decision criteria produced in lightweight fashion.

(Proof-Carrying Code does not cut it!)
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Provenance

Annotated Values

p[a :κa ! v :κv ] ‖ q[a :κ′a ! v′ :κv′ .] ‖ p[a :κ′′a ! v′′ :κv′′ .]

provenance is linear!

κ ::= ε empty provenance

| α; κ sequenced provenace

α ::= rcv(p, κ) recieve action

| snd(p, κ) send action
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Automated:

1. orthogonal to programming (can be abstracted away)

2. ensures provenance annotation standardization.

3. avoids circular reasoning with respect to trust.

Two tiered architecture:

I Computation Layer: describes computation of values and
processes.

I Provenance Tracking Layer: describes the aggregation of
provenance information attached to data
(typically assigned to a trusted middleware)
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(Provenance Tracking) Operational Semantics
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ret Name of return channel on which server returns answer
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Server = q[ srv?(y from ∗).y!〈v〉]

π = snd(q, rcv(q, snd(p, ε))); ∗
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Provenance Correctness

Correctness Intuition

I provenance attached to values records history related to that
value.

I provenance of a value is correct if it describes a partial
history which corresponds to the total history of events.
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Provenance Correctness

Partial Log Extraction

pLog : κ → P(φ)

pLog(ε) = ∅

pLog(rcv(p, κ); κ′) = rcv(p); pLogV(κ′) ∪ pLog(κ)

pLog(snd(p, κ); κ′) = snd(p); pLogV(κ′) ∪ pLog(κ)

pLogV(ε) = ∅

pLogV(rcv(p, κ); κ′) = rcv(p); pLogV(κ′)

pLogV(snd(p, κ); κ′) = snd(p); pLogV(κ′)



Provenance Correctness

Definition

M has correct provenance iff ∀φ ∈ pLog(prov(M)) we have
φ ≤ log(M).

Theorem

M has correct provenance and M −→mon M′ implies M′ has
correct provenance.
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Conclusions

I Designed a provenance based calculus for distributed
computing.

I Proposed a two-tier system for provenance tracking and
usage.

I Defined provenance correctness
I Proved provenance correctness for our provenance tracking

semantics.



Conclusions

Thank You... Questions?
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