
Dynamic Recovering of
Long Running Transactions

Cátia Vaz1,2, Carla Ferreira2,3, and António Ravara4!

1 DEETC, ISEL, Polytechnic Institute of Lisbon, Portugal
2 CITI, FCT, New University of Lisbon, Portugal

3 Dep. of Informatics, FCT, New University of Lisbon, Portugal
4 SQIG, Instituto de Telecomunicações, and

Dep. of Mathematics, IST, Technical University of Lisbon, Portugal

Abstract. Most business applications rely on the notion of long running
transaction as a fundamental building block. This paper presents a calcu-
lus for modelling long running transactions within the framework of the
π-calculus, with support for compensation as a recovery mechanism. The
underlying model of this calculus is the asynchronous polyadic π-calculus,
with transaction scopes and dynamic installation of compensation pro-
cesses. We add to the framework a type system which guarantees that
transactions are unequivocally identified, ensuring that upon a failure
the correct compensation process is invoked. Moreover, the operational
semantics of the calculus ensures both installation and activation of the
compensation of a transaction.

1 Introduction

Long Running Transactions (LRTs) are supported by most modern business
applications. Due to the long running nature of business activities, traditional
ACID transactions [1] are not suitable for them. Usually, LRTs are interactive
and, consequently, cannot be check-pointed, thus cannot be based on locking, as
usual for traditional ACID transactions. Instead, they use compensations, which
are activities programmed to recover partial executions of transactions.

Several business activities specifications have been proposed, such as active
service Corba [2], J2EE [3], WS-CAF [4] and WS-Coordination/Transaction [5],
supporting the notion of LRTs. These transactions are a fundamental concept
in building reliable distributed applications, namely when aggregating Web Ser-
vices. Orchestration and Choreography languages, such as Microsoft XLANG [6]
and its visual environment BizTalk, WS-BPEL [7], WS-CDL [8] and WSCI [8],
support the definition of complex services in terms of interactions among sim-
pler services. However, each specification language has a significative different
interpretation of the notion of LRTs and compensable processes. Furthermore,
this interpretation is often only informally defined by textual descriptions.
! Partially supported by EC through project Sensoria and by FCT, through the Mul-

tiannual Funding Programme.

To proper model, and in particular, to be able to reason and ensure properties
about system specifications supporting LRTs, one needs mathematical tools.
Process calculi are one suitable tool, providing not only a description language,
but a rigorous semantics as well, allowing the proof of relevant properties.

Several approaches use process calculi to rigorously define LRTs. Such ap-
proaches either rely on, and try to model closely, existing standards and tech-
nologies [9–11], or are language and technology independent, focusing on the
main concepts associated to LRTs [12–16]. However, in most of these works the
compensation mechanism is static, and moreover, their settings do not provide
an important property: the guarantee of installation and of activation of a com-
pensation. In Section 7 we present, and compare in detail with, related work.

This paper defines a formal calculus to model dynamic recovering of LRTs,
which is language and technology independent. The calculus focuses on the fol-
lowing main concepts: compensable activities, compensation scope, dynamic in-
stallation of compensations, nesting interruptible processes and failure handlers.
The calculus is built on the framework of π-calculus with a compensable transac-
tion mechanism. Thus, it is an extension of the asynchronous polyadic π-calculus
based on the fact that LRTs can be seen as interactive components, communi-
cating asynchronously, within a distributed system.

One of the main contributions of this work is the dynamic recovery mech-
anism and, in particular, the properties this mechanism enjoys. Since in our
calculus each interaction may have an associated compensation, the recovery
process of a transaction is built incrementally. One of the original ideas of our
calculus is that, when receiving a message (which triggers a certain process), a
compensation may be automatically stored. Therefore the compensation of each
transaction can be dynamically built, that is, the compensation processes that
are executed when a transaction fails can depend on which sub-processes of the
transaction were executed in a particular dynamic run of the process. Since in
an asynchronous model after sending a message there are limited guarantees
about the state of the receiver, namely the receiver may have been aborted after
message receipt, we have chosen not to associate a compensation to the act of
sending a message. Still, compensations can be installed within the execution of
the transaction, without being associated to an interaction. Namely, it is possible
to have “default” compensations within a process, i.e., to associate compensa-
tions to transactional scopes. In case of failure, the stored compensations of a
transaction are automatically activated. The origin of the failure can be internal
or external, and the compensation activation is transparent in the sense that
there is no need to specify it explicitly in the calculus.

Another contribution is the guarantee of transaction soundness, i.e., once
a (internal or external) failure occurs, the correct compensation is activated
and will eventually occur. This is achieved via a type discipline which asserts
that transactions are unequivocally identified. The type system, thus, not only
guarantees type safety, but also transaction soundness.

Proofs of the results presented herein can be found in a technical report [17].

2 Dynamic Compensation Calculus

This paper presents a calculus for modelling long running transactions, with a
compensation mechanism to recover from failures, named as dcπ-calculus. This
mechanism allows to incrementally build the compensations of the transactions
within each interaction. To achieve that, we associate to each input a process that
defines the compensation to be stored upon message reception. As said before,
we have chosen not to associate compensations with the sender of the message,
since in an asynchronous context there are limited guarantees about the state
of the receiver. Moreover, our model also supports the storing of compensations
within a transaction, independently of interactions.

A transaction t [E] encloses a process E within a transaction scope univo-
cally identified by the transaction identifier t. In case of transaction failure, i.e.,
abortion, all stored compensations of the transaction are activated and protected
against external failures. The transaction t [E] is the (unique) target of a failure
signal t, which can be internal or external to the transaction.

The calculus allows for nested transactions and failure handling in a nested
way. While the abortion of a transaction is silent to its parent, it causes the abor-
tion of all proper subtransactions and the activation of compensations installed
either by the transaction or by all of its subtransactions.

The syntax of our language relies on: a countable set of channel names N ,
ranged over by a, b, c, d, a1, b1, c1, d1, . . .; a countable set of transaction identi-
fiers T , ranged over by p, q, r, s, t, u, p1, q1, r1, s1, t1, u1, . . .; and natural numbers,
ranged over by i, j, k, i1, j1, k1, The sets N and T are disjoint and identifiers
x, y, v, w, x1, y1, v1, w1, . . . are used to refer to elements of both sets when there
is no need to distinguish them. The tuple x̃ denotes a sequence x1 · · ·xn of such
identifiers, for some n ≥ 0, and {x̃} denotes the set of elements of that sequence.

Definition 1. The grammar in Figure 1 defines the syntax of processes.

Apart from the standard (asynchronous) π-calculus processes (inaction, out-
put, parallel composition, scope restriction), we introduce: (1) the transaction
scope t [E] that behaves as process E until it receives on t a failure signal (which
activates the stored compensations of E — see ahead); (2) the failure signal t
that sends a message of failure to a transaction identified by t; (3) the stored
compensation {P}, which has no activity until a failure occurs, becoming then
the process P ; (4) the protected block 〈P 〉 that behaves as P and cannot be in-
terrupted even if it occurs in the scope of a failing transaction. Furthermore, in
process a(x̃)%Q.P we associate with an input on a a compensation process Q.
When an input action occurs, the associated compensation process is stored and
becomes part of the recovery process of the transaction. As an example, consider
the transactions:

C
def= r

[
a(y)%0.(y〈〉 | (z()%(d(c).0).Q + v()%0.r))

]

B
def= q

[
{r} | (ν x) (x〈〉 | (x()%d〈w〉.a〈z〉+ x()%0.a〈v〉))

]
.

Let us assume that transaction B sends message z through channel a, after
performing an internal choice through channel x . This choice also implies the

P, Q ::= Compensable Processes (P)
0 (Inaction)

| t (Failure)
| a 〈ṽ〉 (Output)
|

P
i∈I ai(x̃i)%Qi.Pi (Input guarded choice)

| !a(x̃)%Q.P (Input guarded replication)
| (P | Q) (Parallel composition)
| (ν x) P (Restriction)
| 〈P 〉 (Protected block)
| t [E] (Transaction scope)

E, F ::= P Execution Processes (EP)
| {P} (Stored compensation)
| (E | F) (Parallel composition)
| (ν x) E (Restriction)

Fig. 1: The syntax of processes.

installation of compensation d〈w〉. After receiving the message, transaction C
must check it and decide how to proceed. Thus, since B sent message z , C installs
compensation d(c).0 and proceeds as Q{z/y}. Therefore, both transactions will
evolve respectively to:

C ′ def= r
[
{d(c).0} | Q{z/y}

]
B′ def= q

[
{r} | {d〈w〉}

]
.

Moreover, our model gives the possibility to specify stored processes {P},
such as {r} in transaction C ′, which are stored as compensations within a trans-
action, independently of interactions. In fact, this feature allows the definition
of “default” compensations of a transaction, i.e., compensations associated to
a transaction scope, which will be always activated upon a failure. To model
the storing of compensations, we distinguish between compensable processes
(P,Q, ...) and execution processes (E,F, ...), where the last ones allow the spec-
ification of stored compensations ({P}). We refer to both as processes whenever
there is no need to distinguish them.

The level of granularity of the dynamic installation of compensations in our
model is very flexible. The system designer can choose from defining a compen-
sation process for each input action, to defining a unique compensation for each
sequential process of inputs. The latter case can be achieved by associating the
inaction process as a compensation to all input prefixes of the sequence except
for one, which will be the overall compensation of the sequential process.

Notice that there is no causality information about installed compensations,
i.e., all installed compensations are executed in parallel. This design choice was
influenced by the fact that in practice compensations typically use forward recov-
ery [18]. Also, on the occurrence of a transaction failure, its stored compensations
will be activated and placed within a protected block. This block ensures that
compensations cannot be interrupted while subprocess of a failing transaction.
However, a transaction inside a protected block can fail, when it explicitly re-

ceives a failure message. Similarly to stored compensations, protected blocks can
also be defined independently of the occurrence of failures. This feature would
allow to have protected blocks by “default”.

Consider the previous transactions B′, C ′ and the failure message q . Suppose
that P = q |B′ |C ′. Then, P will evolve to a process P ′ = 〈r〉 |〈 d 〈w〉〉 |C ′, i.e.,
the stored compensations of B′ have been activated and placed within protected
blocks. Notice that the evolution of process P ′ will also imply the failure of
transaction C ′ and the activation of its respective compensation process.

In the following, we omit the sum symbol if the indexing set is singular;
term Πi∈IEi abbreviates the parallel composition of the processes Ei with i ∈ I,
where I is a finite set of indexes; term (ν x̃) E abbreviates (ν x1) · · · (ν xn)E, for
some n ≥ 1; and as usual, the operator ν binds tighter than the operator |. We
also abbreviate a(x)%0, a() and a 〈〉 with a(x), a and a, respectively.

3 Example

In this section we describe an ordering system. We can think of it as a web shop
that accepts orders from clients. Whenever a client submits an order, the system
must take care of payment and order packing. We model the system as depicted
in Figure 2, which for simplicity only considers one client and one order.

OrderTransaction
def
= (ν info) (Client | Bank) | Shop | Warehouse

Client
def
= (ν u) u

ˆ
(ν ctl ,msg) (ord〈ctl ,msg〉|

ctl(s).(ctl〈u〉 | (ν x) (x | (x.s + x.info(q).q + x.(msg(done) | info(q)))))
˜

Shop
def
= ! ord(ctl ,msg).

(ν s) s
ˆ
ctl〈s〉 | ctl(u)%u.(ν bOk , pOk) (Charge | Pack | bOk .pOk .msg〈done〉)

˜

Charge
def
= (ν r) r

ˆ
{s} | (ν ctl ,msg) (op〈ctl ,msg〉|

ctl(q)%q.ctl〈r〉 | msg(x).(x | (valid%msg(refunded).bOk + invalid .r)))
˜

Pack
def
= (ν p) p

ˆ
{s} | (ν ctl ,msg) (pkg〈ctl ,msg〉|

ctl(t)%t.ctl〈p〉 | msg(x).(x | (packed%msg(unpacked).pOk + unavail .p)))
˜

Bank
def
= ! op(ctl ,msg).(ν q) q

ˆ
ctl〈q〉 | ctl(r)%r.

(info〈q〉 | (ν x) (x | (x%msg〈refunded〉.msg〈valid〉+ x.msg〈invalid〉)))
˜

Warehouse
def
= ! pkg(ctl ,msg).(ν t) t

ˆ
ctl〈t〉|

ctl(p)%p.(νy)(y | (y%msg〈unpacked〉.msg〈packed〉+ y.msg〈unavail〉))
˜

Fig. 2: Ordering system example.

In this example all transaction identifiers are restricted and access to them
by other transactions is given through scope extrusion. Thus, if we had different

clients, we would be able to ensure transaction context separation and proper
cancellation. Note also that transactions are started with a three-way handshake.
Client starts to send two private names, ctl for control and msg for other mes-
sages, and waits that the receiver sends a transaction identifier through ctl . The
receiver receives the private names, starts a new transaction, sends its identifier
through ctl and waits that the client sends also its transaction identifier.

In this scenario, the client submits an order to the shop and waits for or-
der confirmation. The shop receives the message and starts two transactions,
charging the client and packing the order. The payment is done by the bank,
therefore the shop sends a message to the bank and it starts a new transaction.
Similarly, the shop sends a message to the warehouse and a new packing trans-
action starts. Notice that the client may cancel either the shop transaction or
the bank transaction. In both cases, the system stops and compensation trans-
actions are executed. If charging and packing are successfully accomplished, the
shop sends a message to the client and terminates the transaction.

The compensations are incrementally built. For example, when the bank
starts to interact with the shop, it installs the compensation r and, when it
validates the payment, it installs the compensation msg〈refunded〉. Whenever
a failure occurs, the first compensation ensures that the charge subtransaction
is cancelled and the second one informs that the client is being refunded. It is
interesting to note that if the bank fails before charging validation, only the first
compensation is executed. This is an important feature of dynamic installation
mechanism.

In this example, there are also “default” compensations of transactions,
namely in the subtransactions charge and pack. For instance, when the shop
receives the client order, it starts the subtransaction charge. This subtransac-
tion, by default, installs the compensation s. This compensation ensures that
the shop transaction is cancelled if charge fails.

As noted before, the client can cancel both shop transaction and bank trans-
action. If the client cancels the bank transaction, we must ensure that shop
knows about it. Therefore, the compensation r installed by the bank cancels the
charge subtransaction. Thus, it is ensured that the client does not get the goods
for free. A possible execution of a successful transaction and an execution where
the client cancels the transaction can be seen in Appendix A.

In this example we have also nested transactions. The shop transaction in-
cludes two inner transactions, the charging transaction and the packing transac-
tion. If the shop transaction fails, then both inner transactions will also fail and,
most important, we do not need to explicitly model it. Nesting also allows us to
separate different inner transactions and restrict the action of external agents.
In the example, the bank can only interrupt the inner transaction identified by
r and, although we choose not to, the shop could try another payment method
without failing.

Finally, we highlight the importance of keeping installed compensations after
the end of a transaction. Suppose that the bank transaction ends successfully,
but that the warehouse fails the packing. We must be able to compensate the

Scope extension laws

(ν x)0 ≡ 0
(ν z) (ν w) E ≡ (ν w) (ν z) E

〈(ν x) P 〉 ≡ (ν x) 〈P 〉

E | (ν z) F ≡ (ν z) (E | F) if z /∈ fn(E)
t [(ν y) E] ≡ (ν y) t [E] if t %= y

Protected block, stored and termination laws

〈〈P 〉〉 ≡ 〈P 〉 〈P | Q〉 ≡ 〈P 〉 | 〈Q〉 {〈P 〉} ≡ {P} 〈0〉 ≡ 0 {0} ≡ 0

Fig. 3: Structural congruence relation.

charging transaction, i.e., we must refund the client. In the next Section, we will
discuss how our calculus supports this behaviour.

4 Operational Semantics

We define an operational semantics by means of a reduction relation on execution
processes, making use of a structural congruence relation, following the usual
approach of Milner et al. [19].

As for bindings, in processes a(x̃)%Q.P , !a(x̃)%Q.P , and (ν x̃) E, the occur-
rences of names and transaction identifiers of x̃ are bound in the subprocesses P ,
Q and E. Furthermore, we use the standard notions of free names of processes
and of α-equivalence. We write bn(E) (respectively fn(E)) for the set of names
that are bound (respectively free) in a process E.

Definition 2. Structural congruence ≡ is the smallest congruence relation on
execution processes satisfying the α-conversion law, the abelian monoid laws for
parallel and inaction, and the laws in Figure 3.

The scope laws are standard. The law 〈〈P 〉〉 = 〈P 〉 reflects the intended
semantics of a protected block being already protected. The law 〈P | Q〉 = 〈P 〉 |
〈Q〉 flattens nested protected blocks. The law {〈P 〉} = {P} reflects a feature
of the calculus, namely a stored block cannot be executed until its extraction
into a protected block, which occurs within a failure. The termination laws are
straightforward.

The dynamic behaviour of processes is defined by a reduction relation in
which we must take into account some aspects of the transaction scope be-
haviour. For instance, when we send a message through the transaction identifier,
the transaction should fail and all its stored compensations should be activated.
Therefore, we have to extract the stored compensations and place them in a
protected block. To extract stored compensations of a transaction scope, we use
the function extr which is defined as follows.

Definition 3. Function extr : EP &−→ P for extracting stored compensations, is
inductively defined in Figure 4.

With the definition of extr, we can always write a process extr(E) with the
form expressed in the following lemma.

extr(0) = 0
extr(t) = 0

extr(a 〈ṽ〉) = 0
extr(

P
i∈I ai(x̃i)%Qi.Pi) = 0
extr(!a(x̃)%Q.P) = 0

extr({P}) = 〈P 〉
extr(〈P 〉) = 〈P 〉
extr(t [E]) = extr(E)

extr(E | F) = extr(E) | extr(F)
extr((ν x) E) = (ν x) extr(E)

Fig. 4: Extraction function.

C[[•]] ::= • | (ν x) C[[•]] | C[[•]] | E | 〈C[[•]]〉 | t [C[[•]]]
D[[•, •]] ::= C[[•]] | C[[•]]

Fig. 5: Execution contexts and double execution contexts.

Lemma 1. Let E be an execution process. Then extr(E) is structurally congru-
ent to a process of the form (ν ỹ) Πi∈I〈Pi〉.

Interactions can happen in different execution contexts. Since all our interac-
tions are binary, we also introduce double contexts, i.e., two execution contexts
that can interact. The grammar in Figure 5 generates execution and double
execution contexts.

Definition 4. The grammar in Figure 5 inductively defines execution contexts,
denoted by C[[•]], and double execution contexts, denoted by D[[•, •]].

Applying a double execution context D[[•, •]] with two holes • to two processes
E and F produces the process obtained by replacing the left hole with E and
the right hole with F , i.e., D[[E,F]].

Definition 5. The reduction relation → is the least relation satisfying the rules
of Figure 6.

Some rules of the reduction relation deserve an explanation. The rule R-
cong allows reduction to happen inside arbitrary execution contexts. Rules R-
com and R-rep allow communication in a double execution context, i.e. within
two execution contexts, while storing the associated compensations in the re-
spective execution contexts. As usual, arities of names must be respected within
communications. We ensure this with a type system, presented in the next Sec-
tion. Transaction failures are modelled by rules R-recover-in, used when the
failure message is internal to the transaction, and R-recover-out, otherwise.
Moreover, in rule R-recover-out the transaction and failure message can oc-
cur in different execution contexts. Note also that in rules R-recover-in and
R-recover-out, when we have a protected block within the transaction, it will
not be interrupted by the definition of extr.

Our semantics allows to compensate a completed transaction since our com-
pensations are not discarded. This design choice was influenced by an expected
feature of compensation handlers: the possibility to compensate transactions
partially executed or completed transactions, where by completed transaction

(R-com)
D does not bind a a = aj for some j ∈ I

D[[a 〈ṽ〉 , Σ
i∈I

ai(x̃i)%Qi.Pi]] → D[[0, {Qj{ṽ/x̃j}} | Pj{ṽ/x̃j}]]

(R-cong)
E → E′

C[[E]] → C[[E′]]

(R-rep)
D does not bind a

D[[a〈ṽ〉, !a(x̃)%Q.P]] → D[[0, {Q{ṽ/x̃}} | P{ṽ/x̃}|!a(x̃)%Q.P]]

(R-recover-in)
C does not bind t

t
ˆ
C[[t]]

˜
→ extr(C[[0]])

(R-struct)
E′ ≡ E E → F F ≡ F ′

E′ → F ′

(R-recover-out)
D does not bind t

D[[t, t [E]]] → D[[0, extr(E)]]

Fig. 6: Reduction rules.

we mean a transaction with no more active inputs, excluding transaction identi-
fiers. This feature would not have problems of scalability in a real system, since
it could be associated to our calculus a distributed garbage collection [20] to
remove compensations of transactions no longer reachable.

In Appendix A we provide partial reductions for two executions of the ex-
ample described in Section 3.

5 Uniqueness of Transaction Identifiers

To guarantee transaction soundness, i.e., upon a transaction failure the correct
compensation is activated, we define a (simple) type system, adding some condi-
tions and rules to the basic type system of the π-calculus [21]. The defined type
system will provide transaction soundness by (statically) verifying that transac-
tions are unequivocally identified, i.e., that transactions identifiers are unique in
a process.

Firstly, it is necessary to identify the set of transaction identifiers that occur
in a process E, denoted by ti(E). Namely, in each t[E], the displayed occurrence
of t is a transaction identifier, which should be unique, i.e., a given process cannot
have two transaction scopes with the same identifier. Consequently, we must
ensure for example that in the case of the input guarded replication !a(x̃)%Q.P ,
the transaction identifiers cannot occur free. This leads to the definition of the
set of free transaction identifiers of a process E, denoted by fti(E) and defined
as fti(E) = ti(E) \ bn(E).

Types distinguish between transaction identifiers and channels.

Definition 6. The grammar in Figure 7 defines the syntax of types.

Let Γ be a partial function from channel names to channel types and from
transaction identifiers to transaction types. We write T̃ for a tuple T1, . . . , Tn of
types and ṽ : T̃ for a sequence v1 : T1, . . . , vn : Tn of labelled types. The comma
in Γ, x : T denotes disjoint union.

T ::= Types
tr transaction types

| ch(T1, . . . , Tn), n ≥ 0 channel types

Γ ::= ∅ | Γ, x : T Type environments

Fig. 7: The syntax of types.

(T-nil)
Γ) 0

(T-par)
Γ) E Γ) F fti(E) ∩ fti(F) = ∅

Γ) E | F

(T-res)
Γ, x : T) E

Γ) (ν x) E

(T-inp)

∀i∈I(Γ (ai) = chi(T̃i) Γ,x̃i : T̃i)Pi | Qi {x̃i} ∩ (fti(Pi) ∪ fti(Qi)) = ∅)
Γ)

X

i∈I

ai(x̃i)%Qi.Pi

(T-rep)

Γ (a) = ch(T̃) Γ, x̃ : T̃)P | Q fti(P) = ∅ = fti(Q)

Γ) !a(x̃)%Q.P

(T-out)

Γ, a : ch(T̃), ṽ : T̃) a 〈ṽ〉

(T-stored)
Γ) P

Γ) {P}

(T-block)
Γ) P

Γ) 〈P 〉

(T-trans-id)
Γ, t : tr) t

(T-scope)
Γ) E Γ (t) = tr t /∈ fti(E)

Γ) t [E]

Fig. 8: Type system.

Definition 7. The rules in Figure 8 inductively define the type system.

Due to the requirement for uniqueness of transaction identifiers, we must also
ensure that the identifier of a transaction cannot be defined by instantiation.
The identifier must be defined within the transaction definition, where it is
decided if it is public, i.e., all processes know this identifier and can cancel the
transaction, or protected, i.e., the transaction can only be cancelled by itself or
by other processes with permission, that can be given for instance through scope
extrusion. This feature is assured in the type rules T-inp and T-rep.

This type system is consistent with the operational semantics and ensures
that transactions are unequivocally identified.

Theorem 1 (Subject Reduction). Let Γ)E and E → E′. Then Γ)E′.

To state the uniqueness property of the transaction identifiers, we need first
to define the predicate unq(E), which verifies if the transaction identifiers of a
process are unique.

Definition 8. The predicate unq(E) on processes is inductively defined in Fig-
ure 9.

unq(0)
unq(t 〈〉)

unq(a 〈ṽ〉)
unq(

P
i∈I ai(x̃i)%Qi.Pi) if unq(Pi) and unq(Qi) and fti(Pi) ∩ fti(Qi)=∅, for all i∈I
unq(!a(ṽ)%Q.P) if fti(P) = ∅ and fti(Q) = ∅

unq(〈P 〉) if unq(P)
unq({P}) if unq(P)

unq(E | F) if unq(E) and unq(F) and fti(E) ∩ fti(F) = ∅
unq((ν x) E) if unq(E)

unq(t[E]) if unq(E) and t /∈ fti(E)

Fig. 9: Uniqueness predicate.

We are now in a position to show that transaction identifiers are unique in
well-typed processes.

Theorem 2 (Soundness). Let Γ)E. Then unq(E) holds.

Notice that our type system also assures type safety, that is, each name
respects arity: if the name w has arity n then each occurrence of a 〈x1, . . . , xk〉
and a(x1, . . . , xk) is well-formed only if k = n. Processes not satisfying this are
errors. Let →∗ denote the reflexive and transitive closure of →.

Definition 9 (Error processes).
Error = {E | (E →∗ D[[aj〈ṽ〉, Σ

i∈I
ai(x̃i)%Qi.Pi]] and |ṽ| *= |x̃j |) or

(E →∗ D[[a〈ṽ〉, !a(x̃)%Q.P]] and |ṽ| *= |x̃|)}

Theorem 3 (Type Safety). Let Γ)E. Then E /∈ Error.

6 Properties of the Recovery Mechanism

In this section we formally state the main distinctive features of the proposed
calculus: the assurance of both installation and activation of process compensa-
tions. In the proposed calculus the compensations of a transaction are defined
dynamically, i.e., since compensations are associated to input prefixes, they are
incrementally installed within the execution of the transaction. Therefore, the
compensation processes that are executed after a transaction failure can depend
on which subprocesses of the transaction were executed until that moment. Even
more, compensations can also be associated to transaction scopes, allowing the
existence of “default” compensations.

As mentioned before, a transaction may fail in two different ways: the failure
can be raised by internal or external messages. In both cases, stored compensa-
tions are activated. As an example, consider the following transaction:

E
def= t [{Q1} | a(x)%Q2.b(y)%Q3.R | c 〈z〉]

If transaction t fails before receiving a message through name a, the process Q1

will be its compensation process. Alternatively, if a transaction failure occurs
immediately after receiving a message through the name a, the process Q1 | Q2

will be its compensation process.
The following propositions assert that installed compensations of a transac-

tion are automatically activated whenever a failure occurs.

Proposition 1. Let E = t
[
C[[t]]

]
be a typable process, and C a context that

does not bind t. If E → E′ by applying the R-recover-in rule with respect to
the subterm t, then E′ = extr(C[[0]]).

Proposition 2. Let E = D[[t [F] , t]] be a typable process, and D a context that
does not bind t. If E → E′ by applying the R-recover-out rule to the subterms
t [F] and t, then E′ = D[[extr(F),0]].

Consider the previous transaction E and the following:

F
def= p

[
a 〈v〉 | b 〈z〉 | c(w)%S1.P1

]

In order to exemplify the dynamic definition of the compensation processes of
both transactions, we will consider a particular execution of E | F .

Whenever an interaction occurs, we must ensure that the associated com-
pensation process is installed. Since an input can occur in two situations, input
guarded choice and input guarded replication, in the following theorems we state
that in both cases the compensations are installed. Initially, the compensation
processes of transaction E and F are Q1 and 0, respectively. Suppose that a
message is sent through a and E receives it. Then, in transaction E a new
compensation process is installed, and its compensation becomes Q1 | Q2. If
transaction E receives a message of transaction F through b, the compensation
process of E will be appended with process Q3, i.e., it will become Q1 |Q2 |Q3.

Proposition 3. Let E = D[[aj 〈ỹ〉 ,
∑

i∈I ai(x̃i)%Qi.Ri]] be a typable process. If
E → E′ by applying the R-com rule to the subterms

∑
i∈I ai(x̃i)%Qi.Ri and

aj 〈ỹ〉, then E′ = D[[0, Rj{ỹ/x̃j} | {Qj{ỹ/x̃j}}]].

Proposition 4. Let E = D[[a 〈ỹ〉 , !a(x̃)%Q.R]] be a typable process. If E → E′

by applying the R-rep rule to the subterms !a(x̃)%Q.R and a 〈ỹ〉, then E′ =
D[[0, !a(x̃)%Q.R | R{ỹ/x̃} | {Q{ỹ/x̃}}]].

7 Related Work

There are other approaches that use process calculi toward the formalization of
LRTs and their compensation mechanisms. In this section we briefly compare
our calculus dcπ with them and in Table 1 we present a succinct comparison.

Bocchi et al. introduced πt-calculus [9], which is inspired by BizTalk, and
consists of an extension of asynchronous polyadic π-calculus [22] with the no-
tion of transactions. However, the compensation of each transaction is statically

defined, i.e., the compensations are not incrementally built. In our calculus, we
have included a dynamic recovery mechanism.

The cJoin calculus [14] is an extension of Join calculus [23] with primitives for
representing transactions. As in πt-calculus, the compensation mechanism of this
calculus is statically defined. In contrast to our calculus, completed transactions
cannot be compensated, i.e., after a transaction completes, compensations are
discarded. Therefore, in cJoin, only running transactions can be compensated
whenever interrupted.

Butler and Ferreira [10] propose the StAC language, which is inspired by
BPBeans. The language includes the notion of compensation pair, similar to
the sagas concept defined by Gargia-Molina and Salem [24]. In StAC, a LRT is
seen as a composition of one or more sub-transactions, where each of them has
an associated compensation. In contrast to our calculus, StAC is flow compo-
sition based and includes explicit operators for running or discarding installed
compensations. As well, compensating CSP [12], denoted by cCSP, and Sagas
calculi [13] are also composition flow based, namely they adopt a centralized co-
ordination mechanism. They have similar operators but different compensation
policies. However these three approaches are conceptually different from ours,
as they are flow based and do not provide mobility.

Laneve and Zavattaro define a calculus named webπ [15] which is an exten-
sion of asynchronous polyadic π-calculus with a timed transaction construct.
An untimed version of webπ, known as webπ∞ was proposed by Mazzara and
Lanese [16]. Although our calculus shares some syntax similarities with both
calculi, we have followed different principles. Namely, in both calculi the nested
transactions are flattened. Thus these calculi do not provide nested failure be-
cause the failure of a transaction does not cause the abortion of proper sub-
transactions. This is a substantial difference with respect to our calculus, since it
implies that the internal transaction cancelling must be explicitly programmed
within the specification. Another difference is that in these calculi completed
transactions cannot be compensated. As in πt-calculus the compensation mech-
anism is statically defined. Furthermore, they assume that transactions are un-
equivocally identified, whereas in our approach a type system ensures this feature
in order to guarantee transaction soundness.

Guidi et al. [11] propose an extension of SOCK [25], which is inspired by
WSDL and BPEL. This calculus includes explicit primitives for dynamic han-
dler installation, such as fault and compensation handlers and automatic failure
notification. They assert correctness properties for their calculus, namely the ex-
pected behaviour of a scope, the correct termination upon a failure, the correct
behaviour of communications and guarantee of fault activation. Our approach
is different in the sense that both installation and activation of compensations
are transparent to the user, i.e., they occur implicitly within interactions. Thus,
making the syntax clear and simpler. Similar to webπ∞, they only assume that
transactions are unequivocally identified, lacking support to formally ensuring
this feature. Another difference is that in our calculus we use a type discipline

Table 1: Comparison of compensation mechanisms of interaction based calculi.

Asynchronous Compensation Compensation Completed Nested
Calculi calculus construction installation transactions failure

πt-calc. yes static implicitly not compensablea yes
cJoin yes static implicitly not compensable yes
Webπ yes static implicitly not compensable no
Webπ∞ yes static implicitly not compensable no
SOCK no dynamic explicitlyb compensable yes
dcπ-calc. yes dynamicc implicitly compensable yes
a Except if is an inner transaction of a failing transaction.
b With explicit primitives and recurring to prioritization.
c Also supports static compensation constructions.

to ensure soundness and the installation and activation of transaction compen-
sations.

8 Conclusion

In this paper we have proposed a calculus for reasoning about long running trans-
actions, language and technology independent. We have built our calculus on the
framework of asynchronous polyadic π-calculus. One of our main contributions
is the recovery mechanism, which is based on compensations and supports the
specification of both dynamic and static compensations. This is a first effort
to further study the expressiveness of different policies, namelly dynamic ver-
sus static. Another contribution is a type discipline that ensures both calculus
soundness and safety. Finally, we have defined a compensation semantics that
ensures both installation and activation of transaction compensations.

The expressiveness of our calculus was demonstrated with a case study. It
was shown that is possible to model deeply connected transactions in a com-
prehensive way. Notice that in the case study the overall effect of the execution
of compensations is equivalent to the non execution of the transactions (in the
sense that every received request is later cancelled). However, in a more complex
scenario, it is hard to assert such behaviour. Thus, one of our future research
directions is to study compensation soundness given a notion of transaction
equivalence.

References

1. Gray, J.: The transaction concept: Virtues and limitations (invited paper). In:
VLDB, IEEE Computer Society (1981) 144–154

2. OMG: Additional Structuring Mechanisms for the OTS Specification 1.0. (Septem-
ber 2002)

3. Sun Microsystems: J2EE Activity Service for Extended Transactions. (March 2004)
4. OASIS: Web Services Composite Application Framework (WS-CAF). (2005)

5. Microsoft, IBM, BEA: WS-Coordination/WS-Transaction Specification. (2005)
6. Thatte, S.: XLANG: Web services for business process design. Technical report,

Microsoft Corporation (2001)
7. OASIS: Web Services Business Process Execution Language Version 2.0. (April

2007)
8. Kavantzas, N., Olsson, G., Michkinsky, J., Chapman, M.: Web services choreogra-

phy description language. Technical report, Oracle Corporation (2003)
9. Bocchi, L., Laneve, C., Zavattaro, G.: A calculus for long-running transactions.

In Najm, E., Nestmann, U., Stevens, P., eds.: FMOODS. Volume 2884 of LNCS.,
Springer (2003) 124–138

10. Butler, M.J., Ferreira, C.: An operational semantics for StAC, a language for mod-
elling long-running business transactions. In Nicola, R.D., Ferrari, G.L., Meredith,
G., eds.: COORDINATION. Volume 2949 of LNCS., Springer (2004) 87–104

11. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: On the interplay between fault
handling and request-response service invocations. In: 8th International Conference
on Application of Concurrency to System Design, IEEE Computer Society (2008)
190–199

12. Butler, M.J., Hoare, C.A.R., Ferreira, C.: A trace semantics for long-running
transactions. In Abdallah, A.E., Jones, C.B., Sanders, J.W., eds.: 25 Years Com-
municating Sequential Processes. Volume 3525 of LNCS., Springer (2004) 133–150

13. Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for compensa-
tions in flow composition languages. In Palsberg, J., Abadi, M., eds.: POPL, ACM
(2005) 209–220

14. Bruni, R., Melgratti, H.C., Montanari, U.: Nested commits for mobile calculi:
Extending join. In Lévy, J.J., Mayr, E.W., Mitchell, J.C., eds.: IFIP TCS, Kluwer
(2004) 563–576

15. Laneve, C., Zavattaro, G.: Foundations of web transactions. In Sassone, V., ed.:
FoSSaCS. Volume 3441 of LNCS., Springer (2005) 282–298

16. Mazzara, M., Lanese, I.: Towards a unifying theory for web services composition.
In Bravetti, M., Núñez, M., Zavattaro, G., eds.: WS-FM. Volume 4184 of LNCS.,
Springer (2006) 257–272

17. Vaz, C., Ferreira, C., Ravara, A.: Dynamic recovering of long running transactions.
Technical report, CITI http://pwp.net.ipl.pt/cc.isel/cvaz/dcpi.pdf.

18. JBoss: Web Service Transactions Programmers Guide. (April 2007)
19. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I and II. Inf.

Comput. 100(1) (1992) 1–77
20. Veiga, L., Ferreira, P.: Asynchronous complete distributed garbage collection. In:

IPDPS, IEEE Computer Society (2005)
21. Vasconcelos, V.T., Honda, K.: Principal typing-schemes in a polyadic π-calculus.

In: 4th CONCUR. Volume 715 of LNCS., Springer (August 1993) 524–538
22. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cam-

bridge University Press (2001)
23. Fournet, C., Gonthier, G.: The reflexive cham and the join-calculus. In: POPL.

(1996) 372–385
24. Garcia-Molina, H., Salem, K.: Sagas. In Dayal, U., Traiger, I.L., eds.: SIGMOD

Conference, ACM Press (1987) 249–259
25. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: : A calculus for service

oriented computing. In Dan, A., Lamersdorf, W., eds.: ICSOC. Volume 4294 of
LNCS., Springer (2006) 327–338

A Example Executions

In this section we provide two possible executions for the OrderTransaction
example presented in Section 3. We also sketch the reduction path for both
executions.

A successfully execution is depicted in Figure 10, where the implicit creation
of Charge and Pack subtransactions is denoted with the keyword create. Note
also that in Figure 10, the inner executions of each transaction are omitted.

Fig. 10: An execution of the OrderTransaction successfully completed.

Transactions Client and Shop start by performing a handshake, where they
exchange transaction identifiers. Then, Charge and Pack are started and they
perform also handshakes with Bank and Warehouse transactions, respectively.
These two handshakes can be interleaved as depicted in Figure 10.

Let OrderTransaction1 denote the resulting process after the mentioned
handshakes. We are able to

OrderTransaction −→∗ OrderTransaction1,

by applying successively the operational semantics rules presented in Section 4,
with

OrderTransaction1
def= (ν t , p, ctl3 ,msg3) ((ν info, r , q , ctl2 ,msg2)

((ν s, u, ctl1 ,msg1) (Client1 | Shop1) | Bank1) | Warehouse1)

Client1
def= u

[
(ν x) (x | (x.s + x.info(q).q + x.(msg1 (done) | info(q))))

]

Shop1
def=

s
[
{u} | (ν bOk , pOk) (Charge1 | Pack1 | bOk .pOk .msg1 〈done〉)

]
| Shop

Charge1
def= r

[
{s} | {q}|

msg2 (x).(x | (valid%msg2 (refunded).bOk + invalid .r))
]

Bank1
def= q

[
{r} | info〈q〉|

(ν x) (x | (x%msg2 〈refunded〉.msg2 〈valid〉+ x.msg2 〈invalid〉))
]
| Bank

Pack1
def= p

[
{s} | {t}|

msg3 (x).(x | (packed%msg3 (unpacked).pOk + unavail .p))
]

Warehouse1
def= t

[
{p} | (νy)(y|

(y%msg3 〈unpacked〉.msg3 〈packed〉+ y.msg3 〈unavail〉))
]
| Warehouse.

Names have been changed by α-conversions because of the scope extrusion within
the handshakes. Note also that there are already installed compensations, e.g.,
Charge has installed {s} and {q} as compensations. If a failure occurs, these
compensations ensure that other transactions are notified. For Charge, both
Shop and Bank should be notified about its failure.

Since this is a successful execution, the Bank and the Warehouse confirm
transaction success to the Shop and the Client is notified by the Shop, as de-
picted in Figure 10. Thus, let OrderTransaction2 denote the final process since

OrderTransaction1 −→∗ OrderTransaction2,

by applying successively the operational semantics rules presented in Section 4,
with

OrderTransaction2
def= (ν t , p, ctl3 ,msg3) ((ν info, r , q , ctl2 ,msg2)

((ν s, u, ctl1 ,msg1) (Client2 | Shop2) | Bank2) | Warehouse2)

Client2
def= u

[
0
]

Shop2
def= s

[
{u} | (ν bOk , pOk) (Charge2 | Pack2)

]
| Shop

Charge2
def= r

[
{s} | {q} | {msg2 (refunded)}

]

Pack2
def= p

[
{s} | {t} | {msg3 (unpacked)}

]

Bank2
def= q

[
{r} | ({msg2 〈refunded〉}

]
| Bank

Warehouse2
def= t

[
{p} | {msg3 〈unpacked〉}

]
| Warehouse.

In spite of OrderTransaction2 not being congruent with the inaction process
0, note that it is not reducible. Moreover, there are none active inputs (excluding
transaction identifiers) inside any of the transaction scopes. Thus, we may say
that transactions are completed.

An example of an execution where the client cancels the transaction can be
seen in Figure 11, where the keyword cancel denotes the implicit cancelling of
subtransactions.

As in the previous execution, this one starts by performing the handshakes.
After that the Bank and the Warehouse notify the Shop by confirming the
transaction. Let OrderTransaction3 denote the resulting process just before the
client cancels the Shop transaction. Thus,

OrderTransaction −→∗ OrderTransaction3

by applying successively the operational semantics rules presented in Section 4,
with

OrderTransaction3
def= (ν t , p, ctl3 ,msg3) ((ν info, r , q , ctl2 ,msg2)

((ν s, u, ctl1 ,msg1) (Client3 | Shop3) | Bank3) | Warehouse3)

Client3
def= u

[
s
]

Shop3
def=

s
[
{u} | (ν bOk , pOk) (Charge3 | Pack3 | bOk .pOk .msg1 〈done〉)

]
| Shop

Charge3
def= r

[
{s} | {q} | {msg2 (refunded)} | bOk

]

Bank3
def= q

[
{r} | info〈q〉 |{ msg2 〈refunded〉}

]
| Bank

Pack3
def= p

[
{s} | {t} | {msg3 (unpacked)} | pOk

]

Warehouse3
def= t

[
{p} | {msg3 〈unpacked〉}

]
| Warehouse.

Fig. 11: An execution of the OrderTransaction with compensated transactions.

Note that all compensations are installed and that, after the client cancels
the Shop transaction, compensations start to be activated. E.g., by applying the
operational semantics rules presented in Section 4,

OrderTransaction3 −→∗ OrderTransaction4

where

OrderTransaction4
def= (ν t , p, ctl3 ,msg3) ((ν info, r , q , ctl2 ,msg2)

((ν s, u, ctl1 ,msg1) (Client4 | Shop4) | Bank3) | Warehouse3)

Client4
def= u

[
0
]

Shop4
def= 〈u | (ν bOk , pOk) (Charge3 | Pack3)〉 | Shop

Charge4
def= 〈s | q | msg2 (refunded)〉

Pack4
def= 〈s | t | msg3 (unpacked)〉.

the compensations of transaction Shop and subtransactions Charge and Pack
are activated. Then the compensations of the Bank and of the Warehouse are
also activated and, by applying the operational semantics rules presented in
Section 4, we are able to see the compensations taking effect.

