
Efficient Run-Time Monitoring of Timing Constraints �
Aloysius K. Mok and Guangtian Liu

Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712
E-mail:fmok,liugtg@cs.utexas.edu

Abstract

A real-time system operates under timing constraints
which it may be unable to meet under some circumstances.
The criticality of a timing constraint determines how a sys-
tem is to react when a timing failure happens. For critical
timing constraints, a timing failure should be detected as
soon as possible. However, early detection of timing fail-
ures requires more resource usage which may be deemed
excessive. While work in real-time system monitoring has
progressed in recent years, the issue of tradeoff between
detection latency and resource overhead has not been ad-
equately considered. This paper presents an approach for
monitoring timing constraints in real-time systems which is
based on a simple and expressive specification method for
defining the timing constraints to be monitored. Efficient
algorithms are developed to catch violations of timing con-
straints at the earliest possible time. These algorithms have
been implemented in a tool called JRTM (Java Run-time
Timing-constraint Monitor) in the language Java. This tool
can be used to specify and monitor timing constraints of
Java applications.

1. Introduction

Real-time systems are systems that operate under timing
constraints, such as responding to an external signal within
a specified deadline or performing some tasks repeatedly
at specific rates. While extensive research efforts have been
devoted to scheduling system resources to guarantee the sat-
isfaction of timing constraints, violations may still occur
owing to unexpected behavior of the external environment
or errors in system specification or implementation. Hence,
it is essential to have a monitoring facility to catch timing
constraint violations at run time and perform appropriate�This work is supported by a grant from the Office of Naval Research
under grant number N00014-94-1-0582.

recovery actions when possible. Another use of a timing
constraint monitor is in debugging the timing behavior of
real-time systems during development.

Typically a timing constraint monitor collects system
timing information at run time and checks them against the
specified timing constraints to be monitored. If a violation
is found, certain predefined actions may be triggered such
as notifying the user of the violation. In general, three goals
need to to be achieved for such a monitoring system:� Transparent monitoring: To reduce the impact of mon-

itoring on the target system (i.e., the system to be mon-
itored), it is usually desirable to separate the monitor
from the target system so that users only need to spec-
ify what to monitor rather than having the system pro-
grammers to insert extra code into the target system
programs.� Bounded violation detection latency: In many real-
time systems, especially hard real-time systems, it is
critical to take proper actions within a certain time
once a violation has occurred. To achieve this goal,
the monitor need to guarantee bounded delays on col-
lecting timing information and checking them against
the constraints.� Minimum monitoring overhead: The monitoring over-
head, if too high, may affect the timing behavior of the
target system if it shares resources with the monitoring
process, and thus may cause timing constraint viola-
tions. To avoid this, the computation overhead of the
monitoring process should be as low as possible, and
the monitoring process should be properly scheduled
or placed so that it will not affect the timing of the tar-
get system processes.

In this paper we shall present an approach for monitoring
timing constraints of real-time systems with explicit con-
sideration of detection latency. Our approach starts with a
specification language based on Real Time Logic (RTL) to

define the timing constraints to be monitored. Efficient al-
gorithms are developed to detect any constraint violationsat
run time. We shall show that the violation detection latency
is bounded and the monitoring overhead is low.

The practicality of our approach is demonstrated by the
implementation of a timing constraint monitor for the Java
language. With the increasing popularity of Java in Inter-
net applications, we can expect more and more real-time,
multimedia applications to be developed in Java in the near
future. Besides the built-in multi-threading feature, work is
going on to provide real-time support for Java [18, 19, 20].
As pointed out in [18, 19, 20], many potential Java applica-
tions have timing constraints associated with them. As such,
we see Java as a good candidate for timing constraint mon-
itoring. We have implemented our monitoring approach
in Java in a package called JRTM (Java Run-time Timing-
constraint Monitor).

1.1. Related Work

Significant work has been done in recent years on mon-
itoring real-time systems [27]. Hardware monitoring ap-
proaches are proposed in [1, 11, 13, 21, 26]. These ap-
proaches use dedicated hardware to detect event occur-
rences by snooping and matching bus signals of target sys-
tems and storing event data for post-processing. These
methods are especially suitable for monitoring hard real-
time systems because they are non-intrusive. In [3, 8, 25],
software monitoring approaches are proposed which insert
event-detection and event-data-collecting code into applica-
tion programs, operating system kernels or monitoring sys-
tems. In [25], a real-time monitor (ARM) for a distributed
real-time operating system (ARTS) is described. Events,
which are generated whenever a process changes state, are
captured by the ARTS kernel and sent to a visualizer on
another machine for displaying and analysis. In [3], a mon-
itoring system is described that monitors events in a dis-
tributed environment. In this system, code for generating
events are inserted into the kernel, system call library, inter-
rupt handlers, shared variable access methods as well as ap-
plication programs. These software monitoring approaches
are intrusive because they all to various degrees interfere
with the run-time behavior of the target systems. Less in-
terference to the target systems can be achieved by systems
which use special hardware for event detection and event
data collection but nevertheless instrument target programs
to trigger events. Examples of this type of hybrid monitor-
ing approach can be seen in [4, 5, 14].

Most of the forementioned research mainly addresses
various problems in event detection and event data collec-
tion. The event data collected during monitoring is usually
used for postmortem analysis for violation of timing con-
straints. Work on run-time detection of timing constraint

violation has received less attention. In [16], an annota-
tion method was introduced which marks the events of in-
terests in Ada programs and uses Real Time Logic (RTL)
formulas to specify the timing constraints to be enforced.
In FLEX [9], certain predefined timing constraints can be
monitored for violation. The work closest to our research is
[2] which presents an event-based model for specifying tim-
ing constraints to be monitored and proposes two methods
for synchronous or asynchronous monitoring of real-time
constraints. A timing constraint satisfiability checking al-
gorithm is also described in that paper. In [22], the model
of [2] is extended to distributed systems and the problem of
detecting timing constraint violations in a distributed envi-
ronment is discussed. It shows that the problem of mini-
mizing the number of messages among processors in order
to detect a violation as early as possible is NP-hard. But for
a sub-class of timing constraints, this problem is in PTime.

Our approach is heavily influenced by the work in [2,
16, 22]. We extend previous work by providing a more ex-
pressive language for timing constraint specification which
allows using future relative event occurrences in the defini-
tion of timing constraints. We have also developed a timing
constraint compilation algorithm which enables more effi-
cient run-time violation detection at the earliest time possi-
ble. We show that the memory cost for monitoring has an
upper bound which can be determined at compile time.

The rest of this paper is organized as follows: Section 2
defines the event model and describes the approach we use
for specifying the timing constraints. Algorithms for tim-
ing constraint compilation and violation detection are dis-
cussed in Section 3 and Section 4, respectively. Section 5
introduces the Java timing constraint monitor that we have
built and discusses several implementation issues. Section
6 is the conclusion.

2. Specifying Timing Constraints

2.1. Event Model

Most real-time monitoring systems work by capturing
the events generated from the target systems. Informally,
eventsrepresent state changes of interests that may occur in
a system. For example, “received a message from process
A”, “start the execution of function foo()” can be defined as
events. We adopt the event model first proposed in [6, 15].
Events are a finite set of names specified by the user and
are generallyrecurrent, i.e., an event may occur multiple
times during a computation. We shall not concern ourselves
with the specific syntactic rules in application programs for
defining the occurrence of events. For our purposes, an
event occurrencedefines a point in time at which an in-
stance of the event happens (i.e., an event occurrence is a

pair consisting of an event name and a time value). The
computation of a real-time system can be viewed as a se-
quence of sets ofevent occurrences.

To capture the relationship between event instances and
their occurrence time during a computation, we introduce
below an uninterpreted function symbol: the @ function
which we call the event occurrence function [6, 15].

Definition 1 For evente and integeri 2 N+, we define
@-function as@(e; i) = occurrence time of the ith instance of event ei is called the occurrence parameter of the @-function.

Example 1 @(e; 4) represents the occurrence time of the4th instance of evente.
We assume that the@-function is monotonic with respect

to the occurrence parameter, i.e.8event e; 8i 2 N+; @(e; i + 1) > @(e; i)
We also define another function, denoted by#(e; t), to

represent the occurrence index of the most recent instance
of evente at timet during a computation.

Definition 2 For evente and timet during a computation,
we define #-function as#(e; t) = � 0 if t < @(e; 1)i if i � 1 ^ @(e; i) � t ^ @(e; i+ 1) > t

[2, 22] extends the @-function to represent occurrence
times of past relative instances. We further extend it to rep-
resent future relative instances.

Definition 3 For evente, integeri 2 N and timet during
a computation, we define relative @-function as@r(e; t; i) = @(e;#(e; t) + i) when#(e; t) + i > 0t is called the reference time andi is called the occurrence
parameter of the relative @-function.

Whenever there is no ambiguity, we shall overload the
@ operator by using it in place of the@r symbol for the
relative @-function.

Example 2 @(e; 4; 1) represents the next occurrence time
of evente at time4. @(e1;@(e2; 4); 0) denotes the occur-
rence time of the most recent instance of evente1 at time@(e2; 4).

2.2. Simple Constraints

With the event occurrences representing points of time
during the execution of real-time systems, we can express
timing constraints as a set of assertions that relate the time
of occurrences of different events to one another. With
the help of the @-function and the relative @-function,
the timing constraints between two event instances can
be expressed as inequalities relating the corresponding @-
functions or relative @-functions. We call such an inequal-
ity as asimple constraint.

Definition 4 A simple constraint is an expression of the
form: T1+D � T2, whereD is an integer constant, andT1,T2 are two time terms which may be an @-function, relative
@-function or0, subject to the following restrictions:� At least one ofT1 andT2 must be @-function.� If @-function is used to representT1 and/orT2, the oc-

currence parameter of the @-function is an arithmetic
expression in the form ofa� i+b, wherei is a variable
anda; b are integer constants witha � 0. The domain
of the variablei isN+.� If T1 is a relative @-function, its reference time must
beT2 and its occurrence parameter must be an integer
constant, and vice versa.

Example 3 The simple constraint@(e1; i) + d � @(e2; i)
with d > 0 specifies the deadline for theith occurrence of
evente2 to bed time units after theith occurrence of evente1. The simple constraint(e1; i)� d � @(e2; i) with d > 0
requires theith occurrence of evente1 be at leastd time
units later than theith occurrence of evente2.

When relative @-functions are involved, we shall use a
shorthand. Consider a typical simple constraint:@(e1; i) +10 � @(e2;@(e1; i); 2). For abbreviation, we shall also
write this constraint as@(e1; i) + 10 � @(e2;%2).
2.3. Timing Constraint Specification

By expressing the timing relationship between two event
instances with simple constraints, we can specify timing
constraints of a real-time system as universally quantified
formulas of simple constraints in disjunctive normal forms.
Existential quantifiers are disallowed for now and their con-
sideration is left for future work. Conjuncts of simple con-
straints in such formulas will be calledconstraint conjunc-
tions.

Example 4 In a database system, a timing rule like@(Start T; i) + 100 > @(Commit T;%1) _@(Start T; i) + 100 > @(Abort T;%1)
asserts that each execution of transactionT , should be fin-
ished, either aborted or committed, within100 time units.

3. Compiling Timing Constraints

3.1. Implicit Constraints

In general, timers are needed to detect violations for sim-
ple constraints, especially if we want to catch violations
as early as possible. For instance, the simple constraint@(e1; 1) + 5 > @(e2; 1) will be violated 5 time units af-
ter the first occurrence of evente1 if the first instance of
evente2 has not occurred by then. But evente2 may never
occur, so the detection of the violation cannot be triggered
by the occurrence of evente2 alone. Furthermore, the de-
tection problem is complicated by the existence ofimplicit
constraints, which are derived from constraint conjunctions.

Definition 5 Given a constraint conjunctionC, anexplicit
constraint ofC is a simple constraint that appears inC.
A simple constraint that is not an explicit constraint but is
logically implied byC is called animplicit constraint ofC.

Example 5 Given constraint conjunction@(e1; i) + 1000 � @(e2; i) ^ @(e2; i)� 999 � @(e3; i)
we can get an implicit constraint@(e1; i) + 1 � @(e3; i),
whose related explicit constraints are@(e1; i) + 1000 �@(e2; i) and@(e2; i) � 999 � @(e3; i). Suppose theith
instance of evente1 happens at time1. If none of theith in-
stances of evente2 and e3 have occurred by time2, then
at time 2 this implicit constraint is violated but none of
the explicit ones are. Hence, checking this implicit con-
straint will enable us to catch a violation early. Note, how-
ever, not all implicit constraints are violated before the re-
lated explicit ones. For instance, the implicit constraint@(e1; i) + 1999 � @(e3; i), which is derived from the ex-
plicit constraint conjunction@(e1; i) + 1000 � @(e2; i) ^ @(e2; i) + 999 � @(e3; i)
cannot be violated before both of the two related explicit
constraints.

Definition 6 Given a set of simple constraintsS, a con-
straintc in S is said to beunnecessary if there exists a sub-
setSc ofS, Sc = fci j ci 2 S; ci 6= c; i = 1; : : : ; k; k � 1g
such that at any timet during a computation, if conjunct^ki=1ci is satisfied at timet, then so isc, and ifc is violated
at timet, then so iŝ ki=1ci. Any simple constraint inS that
is not unnecessary is called anecessary constraint ofS.

Definition 7 Given constraint conjunctionC, letSC be the
set consisting of all explicit and implicit constraints ofC.
SupposeS is a subset ofSC andC 0 is the conjuction of all
the simple constraints inS. We callS a useful constraint
set ofC if and only if at any timet during a computation, ifC0 is satisfied, then so isC, and ifC is violated, then so isC0.

0 @(e1,i) @(e3,@(e1,i),1)
10 5

@(e2,i+1)

-6

9
@(e3,@(e2,i+1),1)

Figure 1. A Constraint Graph

3.2. Constraint Graph

As shown in Figure 1 where vertices denote the terms in
simple constraints, we can represent a simple constraint as
a weighted, directed edge and a constraint conjunction as a
weighted directed graph, to be called theconstraint graph
of the constraint conjunction. The constraint graph in Fig-
ure 1 represents the following constraint conjunction:@(e1; i)� 6 � @(e2; i+ 1) ^ @(e1; i) + 5 � @(e3;%1)^ @(e2; i+ 1) + 9 � @(e3;%1) ^ @(e1; i) � 10
Notice a specialzerovertex is introduced to represent con-
straints like@(e1; i) � 10. We shall call those vertices
representing @-function terms, such as@(e; i), absolute
vertices and we call those vertices representing relative @-
function terms, such as@(e;%4), relative vertices. Fur-
thermore, thoserelativevertices whose corresponding rel-
ative @-function terms represent future event occurrences
(e.g.@(e;%2)) are calledfuture relativevertices. Likewise,
the vertices for@(e;%0) and@(e;%�3) arepast relative
vertices because they refer to past event instances. Notice
that according to our constraint definition, eachrelativever-
tex should have anabsolutevertex as itsreferencevertex.
Obviously, each path in a constraint graph with at least one
intermediate vertex represents an implicit constraint of the
corresponding constraint conjunction. We call a cycle in a
constraint graph with negative weight anegative cycle. The
following theorem regarding negative cycles is immediate:

Theorem 1 1 If a negative cycle exists in a constraint
graph, then the corresponding constraint conjunction is un-
satisfiable.

3.3. Compiling Constraint Graphs

In [2] Chodrow et al described a satisfiability check-
ing algorithm which instantiates a constraint graph at each
check point and searches for negative cycles on the instan-
tiated graph by using the Floyd-Warshall algorithm. If a

1See [17] for proof of all theorems and corollaries.

negative cycle is found, then the corresponding instanti-
ated constraint conjunction is unsatisfiable and a violation
is detected. This means at each check pointO(n3) time is
needed in worst case for each instantiated constraint graph,
wheren is the number of vertices in the instantiated con-
straint graph. However, if we can resolve most, if not all,
of the shortest paths of an instantiated constraint graph at
compile time, the computation needed at each check point
can be greatly reduced. In fact, in our algorithm onlyO(n)
time is needed in the worst case at each check point.

Since a path between any two vertices in a constraint
graphG represents either an explicit or implicit constraint,
we define a path inG to be necessaryif its correspond-
ing constraintcp is necessary for the constraint setS =fcpg[fc j c is the constraint corresponding to edgee in G,8e inGg. Similarly, a path isunnecessaryif its correspond-
ing constraint is unnecessary inSc.
Theorem 2 Given a constraint graphG = (V;E), 8u; v 2V , let l be the length of the shortest path fromu to v. If

edgeu l! v 2 E, then any longer paths fromu to v are
unnecessary.

Corollary 2.1 Positive cycles are unnecessary paths.

Theorem 3 Given a constraint conjunctionC, let G =(V;E) be its corresponding constraint graph andG0 =(V;E0) be the constraint graph where8u; v 2 V; u 6= v,
edgeu w! v 2 E0 if and only ifw is the length of the short-
est path fromu to v in G. Then the constraint setS, which
consists of all the constraints represented by edges inG0, is
a useful constraint set ofC.

According to Theorem 3, the shortest paths between ver-
tex pairs inG consist of a useful constraint set ofC. How-
ever, not all of these shortest paths represent necessary con-
straints. Theorem 4 and its corollaries will be used to help
decide whether such a shortest path corresponds to a neces-
sary constraint.

Theorem 4 Consider constraint graphG = (V;E).8u; v; w 2 V , (u; v); (v; w) 2 E, let tu; tv; tw be the
time points denoted by verticesu; v; w in a computation
and letd1; d2 be the weights on edges(u; v) and (v; w).
If tv is always no later than the earliest violation detec-
tion time of the implicit constraint corresponding to the pathp = u! v ! w, thenp is unnecessary.

Corollary 4.1 Consider a constraint graphG = (V;E).8v 2 V , if v is a relative vertex, then any path starting fromv or ending atv that has at least one intermediate vertex is
unnecessary.

Corollary 4.2 Consider a constraint graphG = (V;E).8 path p of G such thatp has at least one intermediate
vertex, if the weight on the first edge along the pathp is
negative, thenp is unnecessary.

Corollary 4.3 Consider a constraint graphG = (V;E).8 path p of G such thatp has at least one intermediate
vertex, if the weight on the first edge along the pathp is
non-negative but not bigger than the length ofp, thenp is
unnecessary.

With Theorem 3 and Theorem 4, we can compile a con-
straint graph by first searching the shortest paths between
all pairs of vertices in the graph to eliminate those unnec-
essary paths identified in Theorem 3, and then checking
the remaining shortest paths to eliminate those unnecessary
constraints which can be identified by Theorem 4 and its
corollaries. Moreover, if a negative cycle is found during
the compilation, we can conclude that the constraint con-
junction is unsatisfiable from Theorem 1 . Algorithm 1 de-
scribes this compilation procedure. The Floyd-Warshall al-
gorithm is used here.

This compilation algorithm can eliminate most of the un-
necessary paths in the compiled constraint graph. However,
some vertices in the compiled constraint graph may become
the same vertex in some of its instantiated graphs, i.e., they
all represent the occurrence of the same event instance in an
instantiated constraint graph. We call these verticesequiv-
alentvertices. In some instantiated constraint graphs, these
equivalentvertices may give rise to additional necessary
paths that are not discovered by our compilation algorithm.
As discussed in Section 4, some of these additional neces-
sary paths can be resolved at compile time while others can
be determined at run time at a cost ofO(n) time, wheren is
the number of vertices in the instantiated constraint graph.

4. Monitoring Timing Constraints

4.1. Detecting Violation of a Constraint

We make the following observations regarding the viola-
tion time of a simple constraint:

Theorem 5 Consider a constraint graphG = (V;E).8u; v 2 V such that(u; v) 2 E, let tu; tv be the time points
denoted by verticesu; v in a computation and letd be the
weight on edge(u; v). Supposet is the earliest violation
detection time for the constraint represented by(u; v), then

a. t � tu + d if d � 0;

b. t = tu if d < 0.

By exploiting Theorem 5, we given a violation
detection algorithm for a simple constraintc =(T1 + d � T2) in Algorithm 2, where we usec:T1; c:d; c:T2 to denote T1; d and T2, respectively.

Algorithm 1: Compile Constraint Graph
Input: V : the vertex vector of a constraint graphG;Dist : distance metrics of the constraint graphG;
Output: Dist is updated such thatDist(u; v) =1 if there is no
necessary path fromu to v; otherwiseDist(u; v) is the length of
the necessary path fromu to v.
COMPILE(V , Dist)
(1) for i = 0 to V:size()� 1
(2) Dist(i; i) = 0;
(3) for k = 0 to V:size()� 1
(4) if d(k; k) < 0 then
(5) NEGATIVECYCLEHANDLER();
(6) return
(7) else
(8) for i = 0 to V:size()� 1
(9) for j = 0 to V:size()� 1
(10) Dist(i; j) min(Dist(i; j);Dist(i; k) +Dist(k; j));
(11) for i = 0 to V:size()� 1
(12) if V (i) is a relative vertexthen
(13) for j = 0 to V:size()� 1
(14) if V (j) is not the reference vertex ofV (i) then
(15) Dist(i; j) 1;
(16) else
(17) for j = 0 to V:size()� 1
(18) if V (j) is a relative vertexthen
(19) if V (i) is not the reference vertex ofV (j) then
(20) Dist(i; j) 1;
(21) else
(22) for k = 0 to V:size()� 1
(23) if k 6= i and k 6= j andDist(i; j) 6= 1

andDist(i; k) 6= 1 andDist(k; j) 6= 1
andDist(i; j) = Dist(i; k) + Dist(k; j)
and (Dist(i; k) < 0 or Dist(i; k) �Dist(i; j)) then

(24) Dist(i; j) 1;
(25) break
(26) return

Algorithm 2: Check the Satisfiability of a Constraint
Input: c: the constraint to be checked
Output: none
CHECK(c)
(1) if c:T1 is known
(2) if c:T2 is known
(3) if c:T1 + c:d < c:T2
(4) CONSTRAINTV IOLATIONHANDLER(c)
(5) else ifc:d � 0
(6) Set deadline timer for the event instance correspond-

ing toc:T2 with deadline atc:T1 + c:d
(7) else
(8) CONSTRAINTV IOLATIONHANDLER(c)
(9) else ifc:T2 is knownand c:d < 0
(10) Set delay timer for the event instance corresponding toc:T1 with timeout atc:T2 � c:d
(11) return

4.2. Detecting Violation of a Constraint Conjunc-
tion

According to our discussion in Section 3, all necessary
constraints in a useful constraint set of a constraint conjunc-
tion need to be checked in order to catch any violation as
early as possible. As we mentioned in Section 3.3, we ex-
pect most of the necessary paths in the compiled constraint
graph to be identified after the compilation. However, some
implicit necessary constraints may remain unidentified for
some instantiated constraint conjunctions owing to the pres-
ence ofequivalent vertices. Two vertices areequivalentif
the time terms they represent are instantiated to the same
value. There are two cases regarding equivalent vertices:

a. Some vertices may be merged when the time terms they
represent are unified by the instantiation of the occur-
rence parameter to certain values. Figure 2(a) and 2(b)
show such an example. Verticesv1 andv2 in the con-
straint graph of Figure 2(a) become one vertexv in
the instantiated constraint graph of Figure 2(b) wheni = 1. This reduces the length of the shortest path
length fromu tow to 2 from the previous value5.

b. Somerelative vertices may merge with other vertices
into one vertex at run time. For example, verticesv1
andv3 in Figure 2(a) become vertexv0 in the instan-
tiated constraint graph of Figure 2(c) wheni = 2 and#(e2;@(e1; 2)) = 1. This reduces the length of the
shortest path fromu tow to 3 from the previous5.

The equivalent vertices of case (a) can be identified at com-
pile time by solving for the variable values that unify the
time terms of the vertices. For a constraint graph ofn ver-
tices, there can be at mostn(n�1)2 such variable values, each
of which corresponds to an instantiated constraint graph.
We can run our compilation algorithm on these instantiated
constraint graphs to identify the necessary paths. We call
this approachstatic instantiation. Using static instantiation,
we do not have to worry about the equivalence of case (a)
during the run-time monitoring. The trade-off is increased
space complexity, from the previous worst case ofO(n2) toO(n4). An alternative is to defer this second compilation to
run time when we check the satisfiability of the instantiated
constraint graphs. This means that we incur an extraO(n3)
time complexity in the worst case when checking certain in-
stantiated constraint graphs. There are at mostn(n�1)2 such
instantiated graphs for a constraint conjunction. We call this
alternative approachdynamic instantiation.

When relative vertices are involved, however, there is no
way we can determine the equivalence of vertices in case (b)
until the reference event instances occur at run time. This
means we need to search for additional necessary paths at
run time when a relative vertex becomes equivalent to some

10

-5 -8

8

(b)

@(e3,1)

@(e2,@(e1,1),2)

@(e1,1)

@(e2,2)

u

w

v3

v

@(e1,i)

@(e3,i)

@(e2,2i)
@(e2,@(e1,i),2)

10 8

-8-5

(a)

@(e2,i+1)

u

v1 v2
v3

w

10 8

-5 -8

(c)

@(e3,2)

@(e2,3) @(e2,4)

@(e1,2)

v2v’

u

w

Figure 2. Equivalent vertices

other vertices in an instantiated constraint graph. The fol-
lowing theorem helps us identify the new necessary paths in
such cases.

Theorem 6 Consider a compiled constraint graphG =(V;E), v; vr ; ve 2 V , wherevr is a relative vertex,v isvr ’s reference vertex. Suppose at timet in a computation,vr and ve become equivalent, i.e., they both represent the
occurrence of the same event instance in the instantiated
constraint graphG0. Then any new shortest pathp in G0
resulting from this equivalence is unnecessary unlessvr is
a future relative vertex andp’s source or destination isv.

When a relative vertex becomes equivalent with other
vertices in an instantiated constraint graph, Theorem 6 tells
us to search for new necessary paths only when a future rel-
ative vertex is involved. In updating those paths to and from
the reference vertex, at mostO(n) time is needed. This up-
date algorithm is given below:

Algorithm 3: Update Paths
Description: Update necessary paths in an instantiated constraint
graph when a future relative vertex becomes equivalent withan-
other vertex
Input: G : the compiled constraint graph;Gi : the instantiated constraint graph ofG;u : the future relative vertex inG;v : the reference vertex ofu in Gi;w : the equivalent vertex ofu in G
Output: updated instantiated constraint graph
UPDATEPATH(G;Gi; u; v;w)
(1) y the vertex representingu andw in Gi;
(2) if edge(u; v) exists inG
(3) foreachvertexx in Gi
(4) if Gi:dist(x;y) +G:dist(u; v) < Gi:dist(x;v)
(5) Gi:dist(x;v) Gi:dist(x;y) +G:dist(u; v)
(6) if edge(v; u) exists inG
(7) foreachvertexx in Gi
(8) if G:dist(v; u) +Gi:dist(y; x) < Gi:dist(v;x)
(9) Gi:dist(v;x) G:dist(v;u) +Gi:dist(y; x)
(10) return

Now we can check satisfiability of a constraint conjunc-
tion at run time by checking the constraints corresponding
to edges in the updated instantiated constraint graph at their
corresponding check points, using Algorithm 2. If a con-
straint is violated, the corresponding instantiated constraint
conjunction is violated. If all these constraints are satisfied,
then the corresponding instantiated constraint conjunction
is satisfied. The skeleton of the satisfiability checking al-
gorithm for a constraint graph is described in Algorithm 4.

Algorithm 4: Check Satisfiability of a Constraint Graph
Description: Check the satisfiability of an instantiated constraint
graph at the occurrence of an event instance(e; k)
Input: G : the compiled constraint graph;Gi : the instantiated constraint graph ofG;v : an absolute vertex inG corresponding to(e; k);vi : the corresponding vertex ofv in Gi
Output: none
CHECKCONSTRAINTGRAPH(G;Gi; v; vi)
(1) foreach future relative vertexu referencingv in G
(2) if vertexw of G is equivalent withu in Gi
(3) UPDATEPATH(G;Gi; u; vi; w)
(4) foreachadjacent vertexx of vi in Gi
(5) if edge(x; vi) exists inGi and (x corresponds a relative

vertex inG or Gi:distance(x;vi) newly updated)
(6) CHECKCONSTRAINT(constraint(x;vi))
(7) if constraint(x; vi) is violated
(8) return
(9) if edge(vi; x) exists inGi
(10) CHECKCONSTRAINT(constraint(vi; x))
(11) if constraint(vi; x) is violated
(12) return
(13) return

If the static instantiation approach is adopted, the worst
case computation complexity of this checking algorithm isO(n). If we use dynamic instantiation, then the worst-case
time complexity of our checking algorithm becomesO(n3)
which is incurred by the need to search for additional nec-
essary paths as a result of equivalent vertices (case (a)).

Specification
Compiler

Developers

Compiled
Specification

Timing
Specification

Event
Augumentation

Event
Augumentation

Event
Occurrence

Action
Trigger

Event Action
TriggerOccurrence

Java
Application

Java
Application

Violation
Report

Users

. . .

. . .

. . .

Runtime
Monitor

Figure 3. The interaction between JRTM and Java applications

4.3. Memory Requirements

We need to maintain an event occurrence log for each
event involved in the checking algorithm and yet we should
not allow the log to grow unbounded so as to render moni-
toring impractical to implement. Hence, it is important for
us to know thenecessary lengthof an event log, i.e., the
minimum number of occurrences we need to record in such
a log so that no violation will be missed. As we have proven
in [17], an upper bound for the necessary length can be de-
termined for each event log at compile time.

Since timers are used in our constraint checking algo-
rithm in Section 4.1, the careful reader may also be con-
cerned about the number of outstanding timers during the
monitoring. Similar to the necessary event log length, it
turns out that we can also determine at compile time an up-
per bound for the number of outstanding timers [17].

5. JRTM — A Java Run-time Timing-
constraint Monitor

Java is a popular object-oriented programming language
introduced by Sun Microsystems in May, 1995. Java has
been claimed to be architecture independent and portable
over the Internet because any Java program can be compiled
into a standard byte-code format which can run on any plat-
form with a Java interpreter that implements the Java Vir-
tual Machine. The built-in multi-threading support in the
language makes it a candidate for implementing real-time
and/or multimedia applications. Unfortunately, the current
Java Virtual Machine does not lend itself to the implemen-

tation of deterministic behavior very well. It is thus im-
portant to incorporate timing violation detection in the Java
run-time environment.

Since many anticipated Java applications are distributed
systems and have either soft or hard real-time requirements,
we have implemented a Java run-time timing constraint
monitor (JRTM) based on the monitoring approach pre-
sented in this paper. JRTM provides a simple but expressive
language for specifying timing constraints to be monitored.
The run-time monitor can catch any violations of the speci-
fied timing constraints with a low overhead.

5.1. System Model

The interaction between the JRTM and Java applications
is shown in Figure 3. In this model, we assume that Java
applications may run on different processors, whose clocks
are synchronized within a maximum deviation�. All occur-
rences of events of interests are sent to the monitor for viola-
tion detection. In addition, we assume that the communica-
tion between target processes and the monitoring process is
reliable and the communication delay has an upper bound.

The timing constraints of the Java application are ex-
pressed by the specification method as described in Sec-
tion 2. These specifications are compiled by the Timing
Constraint Specification Compiler, using the compilation
algorithm in Section 3. Necessary constraints and event
log length are automatically derived by the compiler. The
compiled specification is loaded into the monitor at run
time. Because there is no general event triggering mech-
anism implemented in Java, we provide an event class that
has a triggering method. Java programmers can insert the

event triggering method calls in their Java programs where
event instances are supposed to occur. At run time, when
these event triggering methods are executed, the applica-
tions send the event instance occurrence timestamps along
with the event names to the monitor. The monitor keeps
these event occurrence messages in a sorted queue with the
earliest event message at the head of the queue. The event
message at the head is processed at an appropriate time to
check the related constraints. Once a violation of the spec-
ification is found, users are notified and some predefined
exception triggering messages may be sent to applications
to invoke recovery actions.

The monitor can run on either the same machine with
a target process or on a stand-alone monitoring machine.
Since the run-time monitor and the specification compiler
are both written in Java, this toolset can be used on all ma-
chines which support Java. The monitor can be run as an
applet inside a web page. A standalone version is also avail-
able to run outside of web browsers.

5.2. Event Class

To monitor the timing constraints on event occurrences,
the monitor needs to know the occurrence time of event in-
stances on the target systems. Since Java does not have a
mechanism that generates and reports event occurrence in-
formation to the monitor, we provide a simple event class
for this purpose. The interface of our event class is:

class RTEvent {
public void static init();
public RTEvent(String ename);
public void trigger();

}

The static methodinit() should be called at the begin-
ning of a Java program to initialize the connection with the
monitor. The constructorRTEvent()is used to create an ob-
ject for each event. The methodtrigger() is to be inserted
at locations in Java programs where events of interest are
supposed to occur. Whenever an eventtrigger() method
is executed, the current time is recorded as the event occur-
rence time and this timestamp is sent to the monitor along
with the event name.

The following is an example of augmented Java applica-
tion programs:

...
// Initialize connection with the monitor
RTEvent.init();
...
// Create event ’BeginTransaction’
RTEvent e1=new RTEvent(‘‘BeginTransaction’’);
// Create event ‘EndTransaction’
RTEvent e2=new RTEvent(‘‘EndTransaction’’);
...

// Trigger the ’BeginTransaction’ event
e1.trigger();
// Transaction code
...
// Trigger the ’EndTransaction’ event
e2.trigger();
...

To understand the overhead incurred by this instrumen-
tation, we measured the execution time of these three meth-
ods ofRTEvent class. The experiment is done on Pen-
tium133 PCs with 48M memory, running Linux2.0.0 ker-
nel and XFree86 3.1.2, using JDK 1.0.2. Our results show
the init() method takes about72 milliseconds to execute,
where60 milliseconds was due to setting up a socket con-
nection with the monitor. Since this overhead is a one-time
fixed cost, it should be acceptable for most applications.
The overhead of the constructor method is quite low, tak-
ing only0:17 millisecond. The execution time oftrigger()
method is about3:3 milliseconds, where2:1 milliseconds
comes from sending the event occurrence message over the
socket connection, and along to string conversion takes
about 0:8 millisecond. This overhead seems a little bit
high consideringtrigger() may be called by the applica-
tions many times. An alternative implementation of thetrigger() method uses a background thread to send queued
event occurrence messages to the monitor so that each call
of the trigger() only involves attaching the event occur-
rence time and the event name to the queue. For this im-
plemenation,trigger() takes only0:03 millisecond to fin-
ish. However, the trade-off is the longer delay in event oc-
currence message transmission since the background thread
has lower priority than application threads.

5.3. Run-time Monitoring

Whenever an event is triggered at run time, the appli-
cation sends a message to the monitor reporting the oc-
currence time of the event instance. Upon receiving such
an event occurrence message, the monitor inserts the mes-
sage into a queue sorted according to event occurrence time.
Whenever the messages of all event instances that occur be-
fore or at the occurrence time of the message at the head
of the queue (i.e., the message with the earliest occurrence
time in the queue) have been received by the monitor, the
message at the head of the queue is processed. The monitor
first updates the occurrence log for the event correspond-
ing to the head message and then cancels all related timers
set for this event instance. After that, the constraints re-
lated to this event instance is checked for violation by the
checking algorithms described in Section 4. Timers may
be set for the occurrences of some event instances during
this check. Synchronization is enforced by delaying pro-
cessing the message at the head until the time by which all

earlier messages have been received. This delay should be
at leastdmax � dmin + �, wheredmax; dmin are the up-
per and lower bound on the message communication delay
from target processes to the monitor process, and� is the
maximum clock deviation between target system clocks.
In this case, the maximum violation detection latency is2dmax + � � dmin + ct1 + ct2, wherect1 is the message
queuing delay at the monitor, andct2 is the worst case com-
putation time of the checking procedure. This monitoring
procedure is described in Algorithm 5.

Algorithm 5: Monitoring Process
Input: Specs: compiled timing constraint specification
Output: none
MONITORING(Specs)
(1) while true
(2) if received a message from applications
(3) (evtName; occT ime) received message;
(4) recvT ime currentT ime();
(5) insert (evtName;occT ime; recvT ime) intomqueue;
(6) if mqueue is not empty and currentT ime() �mqueue:headMsg:recvT ime+Delay
(7) update the occurrence log for the event withmqueue:headMsg:evtName;
(8) occ the occurrence no. of this event instance;
(9) cancel timers set for this event instance;
(10) check constraints usingmqueue:headMsg;
(11) remove head message frommqueue;

We also did some performance measurement under the
same environment as described in Section 5.2. Monitoring
a timing constraint of fivesimple constraintconjunctions,
we determined the violation detection latency to be about34 milliseconds on the average and55 milliseconds in the
worst case. Measurements indicated that21 milliseconds
was due to message passing delay from the application to
the monitor, about2 milliseconds was caused by message
queuing delay at the monitor, and violation detection took
about11 milliseconds in average and32 milliseconds in
worst case. However, a careful study of the measured data
found that90% of the violation detection time were under12 milliseconds. It is possible that the longer detection la-
tency may be caused by process context switching which
happened during detection.

6. Conclusions and Future Work

In this paper we have presented an approach for mon-
itoring timing constraint violations in real-time systems.
Our approach includes a language for specifying timing
constraints and efficient monitoring algorithms which can
catch timing constraint violation as early as possible. We
have shown that by compiling the timing constraint speci-
fications, run-time monitoring can be performed efficiently

with low overhead. We have also shown that the memory
requirement for monitoring is bounded for our specification
language and an upper bound can be determined at compile
time. An implementation of this approach has been done
in Java. JRTM, our Java run-time timing constraint monitor
can be used in a distributed environment to help Java de-
velopers specify and monitor the timing constraints of their
applications.

In view of the results reported in this paper, other re-
search issues should be pursued to extend the utility of our
monitoring approach. Some of these issues are:� Although our results provide the shortest latency for

violation detection, sometimes an application can tol-
erate a longer delay. In this case, we might be able
to optimize our monitoring process so that even lower
monitoring overhead can be achieved. Optimization
algorithms need to be explored for this purpose.� When relative @-functions are used in a constraint, we
restrict its reference time to be the other @-function in
the constraint. What will be the impact to our monitor-
ing algorithms and memory requirements if we relax
this restriction?

References

[1] W.C. Brantley, K.P. McAuliffe, and T.A. Ngo, “RP3
Performance Monitoring Hardware”, inInstrumenta-
tion for Future Parallel Computing Systems, M. Sim-
mons, R. Koskela, and I. Bucher, eds., ACM Press,
New York, 1989, pp.35-47.

[2] S.E. Chodrow, F. Jahanian, and M. Donner, “Run-
Time Monitoring of Real-Time Systems”,Proc. Real-
Time Systems Symp., 1991, pp.74-83.

[3] P.S. Dodd and C.V. Ravishankar, “Monitoring and De-
bugging Distributed Real-Time Programs”,Software–
Practice and Experience, Vol.22, No.10, Oct. 1992,
pp.863-877.

[4] M.M. Gorlick, “The Flight Recorder: An Architec-
tural Aid for System Monitoring”,Proc. ACM/ONR
Workshop Parallel and Distributed Debugging, 1991,
pp.175-183.

[5] D. Haban and D. Wybranietz, “A Hybrid Monitor
for Behavior and Performance Analysis of Distributed
Systems”,IEEE Trans. Software Eng., Vol.16, No.2,
Feb. 1990, pp.197-211.

[6] F. Jahanian and A. K. Mok, “Safety Analysis of Tim-
ing Properties in Real-Time Systems”,IEEE Trans.
Software Eng., Vol.SE-12, No.9, Sept. 1986, pp.890-
904.

[7] F. Jahanian and A. Goyal, “A Formalism for Monitor-
ing Real-Time Constraints at Runtime”,Proc. IEEE
Fault-Tolerant Computing Symp., June 1990, pp.148-
155.

[8] J. Joyce, G. Lomow, K. Slind, and B. Unger, “Mon-
itoring Distributed Systems”,ACM Trans. Computer
Systems, Vol.5, No.2, May 1987, pp.121-150.

[9] K.B. Kenny and K.-J. Lin, “Building Flexible Real-
Time Systems using the Flex Language”,Computer,
Vol.24, No.5, May 1991, pp.70-78.

[10] R.J. LeBlanc and A.D. Robbins, “Event-Driven Mon-
itoring of Distributed Programs”,Proc. 5th Int’l Conf.
Distributed Computing Systems, 1985, pp.515-522.

[11] A.-C. Liu and R. Parthasarathi, “Hardware Monitor-
ing of a Multiprocessor System”,IEEE Micro, Vol.9,
No.5, Oct. 1989, pp.44-51.

[12] J.E. Lumpp et al., “Specification and Identification of
Events for Debugging and Performance Monitoring of
Distributed Multiprocessor Systems”,Proc. 10th Int’l
Conf. Distributed Computing Systems, 1990, pp.477-
483.

[13] D.C. Marinescu, J.E. Lumpp, Jr., T.L. Casavant, and
H.J. Siegel, “Models for Monitoring and Debugging
Tools for Parallel and Distributed Software”,J. Par-
allel and Distributed Computing, Vol.9, June 1990,
pp.171-183.

[14] A. Mink, R. Carpenter, G. Nacht, and J. Roberts,
“Multiprocessor Performance-Measurement Instru-
mentation”, Computer, Vol.23, No.9, Sept. 1990,
pp.63-75.

[15] A.K. Mok, “A Graph-Based Computation Model for
Real-Time Systems”,Proc. IEEE Parallel Processing,
August 1985, pp.619-623, .

[16] A.K. Mok, “Annotating Ada for Real-Time Program
Synthesis”,Proc. Computer Assurance, 1987

[17] A.K. Mok and G. Liu, “Early Detection of Timing
Constraint Violations”,Technical Report, Real-Time
System Lab, Department of Computer Sciences, The
University of Texas at Austin, 1997

[18] K. Nilsen, “Issues in the Design and Implementation
of Real-Time Java”, Iowa State University: Ames,
Iowa, 1995.

[19] K. Nilsen, “Real-Time Java”, Iowa State University:
Ames, Iowa, 1996.

[20] K. Nilsen, “Embedded Real-Time Development in the
Java Language”, Iowa State University: Ames, Iowa,
1996.

[21] B. Plattner, “Real-Time Execution Monitoring”,IEEE
Trans. Software Eng., Vol.SE-10, No.6, Nov. 1984,
pp.756-764.

[22] S.C.V. Raju, R. Rajkumar, and F. Jahanian, “Monitor-
ing Timing Constraints in Distributed Real-Time Sys-
tems”, Proc. Real-Time Systems Symp., 1992, pp.57-
67.

[23] J.D. Schoeffler, “A Real-Time Programming Event
Monitor”, IEEE Trans. Education, Vol.31, No.4, Nov.
1988, pp.245-250.

[24] R. Snodgrass, “A Relational Approach to Monitoring
Complex Systems”,ACM Trans. Computer Systems,
Vol.6, No.2, May 1988, pp.157-196.

[25] H. Tokuda, M. Kotera, and C.W. Mercer, “A Real-
Time Monitor for a Distributed Real-Time Operat-
ing System”,Proc. ACM Workshop Parallel and Dis-
tributed Debugging, 1988, pp.68-77.

[26] J.J.P. Tsai, K.-Y. Fang, and H.-Y. Chen, “A Nonin-
vasive Architecture to Monitor Real-Time Distributed
Systems”,Computer, Vol.23, No.3, Mar. 1990, pp.11-
23.

[27] J.J.P. Tsai and S.J.H. Yang, eds, “Monitoring and De-
bugging of Distributed Real-Time Systems”, IEEE CS
Press, Los Alamitos, CA, 1995.

