Efficient Run-Time Monitoring of Timing Constraints *

Aloysius K. Mok and Guangtian Liu

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712
E-mail: {nok, | i ugt }@s. ut exas. edu

Abstract recovery actions when possible. Another use of a timing
constraint monitor is in debugging the timing behavior of
A real-time system operates under timing constraints real-time systems during development.

which it may be unable to meet under some circumstances. Typically a timing constraint monitor collects system
The criticality of a timing constraint determines how a sys- timing information at run time and checks them against the
tem is to react when a timing failure happens. For critical specified timing constraints to be monitored. If a violation
timing constraints, a timing failure should be detected as is found, certain predefined actions may be triggered such
soon as possible. However, early detection of timing fail- as notifying the user of the violation. In general, threelgoa
ures requires more resource usage which may be deemedheed to to be achieved for such a monitoring system:
excessive. While work in real-time system monitoring has
progressed in recent years, the issue of tradeoff between ¢ Transparent monitoring: To reduce the impact of mon-

detection latency and resource overhead has not been ad- itoring on the target system (i.e., the system to be mon-
equately considered. This paper presents an approach for ~itored), it is usually desirable to separate the monitor
monitoring timing constraints in real-time systems whigh i from the target system so that users only need to spec-
based on a simple and expressive specification method for ~ ify what to monitor rather than having the system pro-
defining the timing constraints to be monitored. Efficient grammers to insert extra code into the target system
algorithms are developed to catch violations of timing con- programs.

straints at the earliest possible time. These algorithmsha
been implemented in a tool called JRTM (Java Run-time
Timing-constraint Monitor) in the language Java. This tool
can be used to specify and monitor timing constraints of
Java applications.

¢ Bounded violation detection latency: In many real-
time systems, especially hard real-time systems, it is
critical to take proper actions within a certain time
once a violation has occurred. To achieve this goal,
the monitor need to guarantee bounded delays on col-
lecting timing information and checking them against

) the constraints.
1. Introduction

¢ Minimum monitoring overhead: The monitoring over-
head, if too high, may affect the timing behavior of the
target system if it shares resources with the monitoring
process, and thus may cause timing constraint viola-
tions. To avoid this, the computation overhead of the

Real-time systems are systems that operate under timing
constraints, such as responding to an external signalmvithi
a specified deadline or performing some tasks repeatedly
at specific rates. While extensive research efforts have bee > :
devoted to scheduling system resources to guarantee the sat ~ monitoring process should be as low as possible, and
isfaction of timing constraints, violations may still occu the monitoring process should be properly scheduled
owing to unexpected behavior of the external environment or placed so that it will not affect the timing of the tar-
or errors in system specification or implementation. Hence, get system processes.
it is essential to have a monitoring facility to catch timing

: In this paper we shall present an approach for monitorin
constraint violations at run time and perform appropriate hap P P 9

timing constraints of real-time systems with explicit con-
*This work is supported by a grant from the Office of Naval Resea Sideration of detection latency. Our approach starts with a
under grant number NO0014-94-1-0582. specification language based on Real Time Logic (RTL) to

define the timing constraints to be monitored. Efficient al- violation has received less attention. In [16], an annota-
gorithms are developed to detect any constraint viola@ns tion method was introduced which marks the events of in-
run time. We shall show that the violation detection latency terests in Ada programs and uses Real Time Logic (RTL)
is bounded and the monitoring overhead is low. formulas to specify the timing constraints to be enforced.
The practicality of our approach is demonstrated by the In FLEX [9], certain predefined timing constraints can be
implementation of a timing constraint monitor for the Java monitored for violation. The work closest to our research is
language. With the increasing popularity of Java in Inter- [2] which presents an event-based model for specifying tim-
net applications, we can expect more and more real-time,ing constraints to be monitored and proposes two methods
multimedia applications to be developed in Java in the nearfor synchronous or asynchronous monitoring of real-time
future. Besides the built-in multi-threading feature, Wi constraints. A timing constraint satisfiability checkinlg a
going on to provide real-time support for Java [18, 19, 20]. gorithm is also described in that paper. In [22], the model
As pointed out in [18, 19, 20], many potential Java applica- of [2] is extended to distributed systems and the problem of
tions have timing constraints associated with them. As such detecting timing constraint violations in a distributed/ien
we see Java as a good candidate for timing constraint monfonment is discussed. It shows that the problem of mini-
itoring. We have implemented our monitoring approach mizing the number of messages among processors in order
in Java in a package called JRTM (Java Run-time Timing- to detect a violation as early as possible is NP-hard. But for

constraint Monitor). a sub-class of timing constraints, this problem is in PTime.
Our approach is heavily influenced by the work in [2,
1.1. Related Work 16, 22]. We extend previous work by providing a more ex-

pressive language for timing constraint specification Wwhic
allows using future relative event occurrences in the defini
tion of timing constraints. We have also developed a timing

|tor|nghreal-t|me systen;s_ [271]' 1Ii|arlong;rf nzwgmt(_)rrrl]ng aP~ constraint compilation algorithm which enables more effi-
proaches are proposed in [1, 11, 13, 21, 26]. €S€ aP~ient run-time violation detection at the earliest timegos

proaches use dedicated hardware to detect event OCCUTE o \We show that the memory cost for monitoring has an

rences by snoqping and matching bus signals O_f target Sys'upper bound which can be determined at compile time.
tems and storing event data for post-processing. These
methods are especially suitable for monitoring hard real-
time systems because they are non-intrusive. In [3, 8, 25]
software monitoring approaches are proposed which inser o o : _ X
event-detection and event-data-collecting code intoieapl for speC|fy|r_19 the tlr_nln_g constra_lnts._ Algonthms for t'm_'
tion programs, operating system kernels or monitoring sys- ing cons_tralnt gompllatlon and_ violation det_ect|on are- glls
tems. In [25], a real-time monitor (ARM) for a distributed _cussed in Section 3 ’?‘”‘?‘ Section 4 respe(_:tlvely. Section 5
real-time operating system (ARTS) is described. Events, mt_roduces_the Java timing c_onstralnt mo_nlto_r that we ha_/e
which are generated whenever a process changes state, apg,_ult and dlscus_ses several implementation issues. $ectio
captured by the ARTS kernel and sent to a visualizer on 6is the conclusion.
another machine for displaying and analysis. In [3], a mon-
itoring system is described that monitors events in a dis- 2. Specifying Timing Constraints
tributed environment. In this system, code for generating
events are inserted into the kernel, system call libratgrin ~ 2.1. Event Model
rupt handlers, shared variable access methods as well as ap-
plication programs. These software monitoring approaches Most real-time monitoring systems work by capturing
are intrusive because they all to various degrees interferethe events generated from the target systems. Informally,
with the run-time behavior of the target systems. Less in- eventgepresent state changes of interests that may occur in
terference to the target systems can be achieved by systema system. For example, “received a message from process
which use special hardware for event detection and eventA’, “start the execution of function foo()” can be defined as
data collection but nevertheless instrument target progra events. We adopt the event model first proposed in [6, 15].
to trigger events. Examples of this type of hybrid monitor- Events are a finite set of names specified by the user and
ing approach can be seen in [4, 5, 14]. are generallyrecurrent i.e., an event may occur multiple
Most of the forementioned research mainly addressestimes during a computation. We shall not concern ourselves
various problems in event detection and event data collec-with the specific syntactic rules in application programs fo
tion. The event data collected during monitoring is usually defining the occurrence of events. For our purposes, an
used for postmortem analysis for violation of timing con- event occurrencalefines a point in time at which an in-
straints. Work on run-time detection of timing constraint stance of the event happens (i.e., an event occurrence is a

Significant work has been done in recent years on mon-

The rest of this paper is organized as follows: Section 2
’tdefines the event model and describes the approach we use

pair consisting of an event name and a time value). The2.2. Simple Constraints

computation of a real-time system can be viewed as a se-

guence of sets advent occurrences With the event occurrences representing points of time

To capture the relationship between event instances andluring the execution of real-time systems, we can express

their occurrence time during a computation, we introduce timing constraints as a set of assertions that relate the tim

below an uninterpreted function symbol: the @ function of occurrences of different events to one another. With

which we call the event occurrence function [6, 15]. the help of the @-function and the relative @-function,
the timing constraints between two event instances can

Definition 1 For evente and integer: € N1, we define be expressed as inequalities relating the corresponding @-

@-function as functions or relative @-functions. We call such an inequal-
ity as asimple constraint

@(e, i) = occurrence time of the ith instance of event e pefinition 4 A simple constraint is an expression of the
_) form: 77+ D > T, whereD is an integer constant, arid ,
i is called the occurrence parameter of the @-function. T, are two time terms which may be an @-function, relative
@-function or0, subject to the following restrictions:
Example 1 @(e, 4) represents the occurrence time of the | A+ |aast one o', and T, must be @-function.
4th instance of evert.

o If @-functionis used to represeiit and/or7%, the oc-

We assume that th@-function is monotonic with respect currence parameter of the @-function is an arithmetic
to the occurrence parameter, i.e. expression in the form af« ¢ + b, where: is a variable
anda, b are integer constants witlhh > 0. The domain
Yevent e, Vi € N, @(e,i 4 1) > @(e, 7) of the variablei is N'*.
_ _ o If T} is a relative @-function, its reference time must
We also define another function, denoted#ie, t), to beT: and its occurrence parameter must be an integer

represent the occurrence index of the most recent instance ¢onstant, and vice versa.

of evente at timet during a computation. _)]]
Example 3 The simple constrairf(e;, ¢) + d > @(eq, 1)

Definition 2 For evente and timet during a computation, with d > 0 specifies the deadline for thigh occurrence of

we define #-function as evente, to bed time units after théth occurrence of event
e1. The simple constraire,, ¢) — d > @(es,) withd > 0

0 if t<@(e,1) requires theith occurrence of evert; be at leastd time
#(e,t) = { i ifi> 1A Qe i) <t A @it 1) >t units later than theth occurrence of event,.

_ When relative @-functions are involved, we shall use a
[2, 22] extends the @-function to represent occurrence shorthand. Consider a typical simple constraide; , i) +
times of past relative instances. We further extend itterep 19 > @(ey,@(ey,4),2). For abbreviation, we shall also

resent future relative instances. write this constraint ag(eq,) + 10 > @(es, %2).

Definition 3 For evente, integeri € N and timet during 2.3. Timing Constraint Specification
a computation, we define relative @-function as
By expressing the timing relationship between two event
@, (e,t,i) = @Q(e, #(e,t) + i) when #(e,t)+i>0 instances with simple constraints, we can specify timing
constraints of a real-time system as universally quantified
t is called the reference time ands called the occurrence formulas of simple constraints in disjunctive normal forms
parameter of the relative @-function. Existential quantifiers are disallowed for now and their-con
sideration is left for future work. Conjuncts of simple con-

Whenever there is no ambiguity, we shall overload the straints in such formulas will be callemnstraint conjunc-
@ operator by using it in place of the, symbol for the tions

lati -function. . .
relative @-function Example 4 In a database system, a timing rule like
Example 2 @(e, 4, 1) represents the next occurrence time a(start.T, Z:) +100 > @(Commat.T, %1) Vv
of evente at time4. @(e;, @(es, 4), 0) denotes the occur- Q(Start T,i) +100 > @(Abort T, %1)
rence time of the most recent instance of evenat time asserts that each execution of transactigrshould be fin-
@(e2,4). ished, either aborted or committed, witHif0 time units.

3. Compiling Timing Constraints

3.1. Implicit Constraints

In general, timers are needed to detect violations for sim-

ple constraints, especially if we want to catch violations

as early as possible. For instance, the simple constraint

Q@(eq,1) + 5 > Q(es, 1) will be violated 5 time units af-
ter the first occurrence of eveni if the first instance of
evente, has not occurred by then. But eventmay never

occur, so the detection of the violation cannot be triggered

by the occurrence of event alone. Furthermore, the de-
tection problem is complicated by the existencengplicit
constraints, which are derived from constraint conjuntgio

Definition 5 Given a constraint conjunctiofi, an explicit
constraint ofC' is a simple constraint that appears {fi.
A simple constraint that is not an explicit constraint but is
logically implied byC' is called animplicit constraint ofC'.

Example 5 Given constraint conjunction
@(ey,) + 1000 > @(eq,i) A Q@(eq, i) — 999 > @(eg, 1)

we can get an implicit constrairi(e;,7) + 1 > Q(es,),
whose related explicit constraints af@(e;,) + 1000 >
Q(eq, 1) and @(eq, 1) — 999 > @(es,). Suppose thé&h
instance of event; happens at timé. If none of theth in-
stances of event, and es have occurred by time, then

at time 2 this implicit constraint is violated but none of
the explicit ones are. Hence, checking this implicit con-
straint will enable us to catch a violation early. Note, how-
ever, not all implicit constraints are violated before thee r
lated explicit ones. For instance, the implicit constraint
Q@(eq,4) + 1999 > @(es, 1), which is derived from the ex-
plicit constraint conjunction

@(eq,) + 1000 > @(eq,) A @(eq, i) + 999 > @(es, i)

cannot be violated before both of the two related explicit
constraints.

Definition 6 Given a set of simple constraint§ a con-
straintc in S is said to beunnecessary if there exists a sub-
setS. of S, 5. ={c; |e; €5, ¢; e, i=1,... k k> 1}
such that at any time during a computation, if conjunct
AF_,c; is satisfied at time, then so is:, and ifc is violated
at timet, then so is*_, ¢;. Any simple constraint if§' that
is not unnecessary is calledrecessary constraint ofsS.

Definition 7 Given constraint conjunctiof, let SC' be the
set consisting of all explicit and implicit constraints ©f
Supposé is a subset o6 C' and(” is the conjuction of all
the simple constraints is. We callS a useful constraint
set of C'if and only if at any time during a computation, if
(' is satisfied, then so 6, and ifC is violated, then so is
.

@(e3,@(el,).1)

@(e3,@(e2,i+1),

Figure 1. A Constraint Graph

3.2. Constraint Graph

As shown in Figure 1 where vertices denote the terms in
simple constraints, we can represent a simple constraint as
a weighted, directed edge and a constraint conjunction as a
weighted directed graph, to be called ttmnstraint graph
of the constraint conjunction. The constraint graph in Fig-
ure 1 represents the following constraint conjunction:

@(61,i) —6 Z @(62,i—|— 1) A @(61,i) —|—5 Z @(63,%1)
A @(62,i—|— 1) —|—9 Z @(63,%1) A @(61,i) S 10

Notice a speciaterovertex is introduced to represent con-
straints like@(eq,7) < 10. We shall call those vertices
representing @-function terms, such @se, ¢), absolute
vertices and we call those vertices representing relative @
function terms, such a8(e, %4), relative vertices. Fur-
thermore, thoseelative vertices whose corresponding rel-
ative @-function terms represent future event occurrences
(e.g9.@(e, %2)) are calleduture relativevertices. Likewise,

the vertices for@(e, %0) and@(e, % — 3) arepast relative
vertices because they refer to past event instances. Notice
that according to our constraint definition, eaetativever-

tex should have aabsolutevertex as itgeferencevertex.
Obviously, each path in a constraint graph with at least one
intermediate vertex represents an implicit constraintef t
corresponding constraint conjunction. We call a cycle in a
constraint graph with negative weighhagative cycleThe
following theorem regarding negative cycles is immediate:

Theorem 1! If a negative cycle exists in a constraint
graph, then the corresponding constraint conjunction is un
satisfiable.

3.3. Compiling Constraint Graphs

In [2] Chodrow et al described a satisfiability check-
ing algorithm which instantiates a constraint graph at each
check point and searches for negative cycles on the instan-
tiated graph by using the Floyd-Warshall algorithm. If a

1see [17] for proof of all theorems and corollaries.

negative cycle is found, then the corresponding instanti- Corollary 4.3 Consider a constraint grapli: = (V,).
ated constraint conjunction is unsatisfiable and a viahatio V path p of G such thatp has at least one intermediate
is detected. This means at each check poifit?) time is vertex, if the weight on the first edge along the patis
needed in worst case for each instantiated constraint graphnon-negative but not bigger than the lengthppthenyp is
wheren is the number of vertices in the instantiated con- unnecessary.
straint graph. However, if we can resolve most, if not all,
of the shortest paths of an instantiated constraint graph at \jith Theorem 3 and Theorem 4, we can compile a con-
compile time, the computation needed at each check pointstraint graph by first searching the shortest paths between
can be greatly reduced. In fact, in our algorithm o6ifr) all pairs of vertices in the graph to eliminate those unnec-
time is needed in the worst case at each check point. essary paths identified in Theorem 3, and then checking
Since a path between any two vertices in a constraintthe remaining shortest paths to eliminate those unnegessar
graph' represents either an explicit or implicit constraint, constraints which can be identified by Theorem 4 and its

we define a path it to be necessanyif its correspond- corollaries. Moreover, if a negative cycle is found during
ing constraintc, is necessary for the constraint set= the compilation, we can conclude that the constraint con-
{ep} U {c | cis the constraint corresponding to edgi (7, junction is unsatisfiable from Theorem 1 . Algorithm 1 de-
Ve in G}. Similarly, a path isinnecessarif its correspond- scribes this compilation procedure. The Floyd-Warshall al
ing constraint is unnecessary Q. gorithm is used here.

Theorem 2 Given a constraint graplir = (V, E), Yu,v € This compilation algorithm can eliminate most of the un-
V, let! be the length of the shortest path franto v. If necessary paths in the compiled constraint graph. However,

some vertices in the compiled constraint graph may become
the same vertex in some of its instantiated graphs, i.ey, the
all represent the occurrence of the same event instance in an
Corollary 2.1 Positive cycles are unnecessary paths. instantiated constraint graph. We call these vertigsiv-
Theorem 3 Given a constraint conjunctiony, let ¢ = alentvertices. In some instantiated constraint graphs, these

(V, E) be its corresponding constraint graph and = equivalentvertices may give rise to additional necessary

(V, E') be the constraint graph whetu, v € V,u # v, path_s that are _not dispovered by our compilatio_n algorithm.
As discussed in Section 4, some of these additional neces-

sary paths can be resolved at compile time while others can
be determined at run time at a cost®fr) time, wheren is
the number of vertices in the instantiated constraint graph

edgeu Lve E, then any longer paths from to v are
unnecessary.

edgeu = v € E’ if and only ifw is the length of the short-
est path fromu to v in G. Then the constraint s&t, which
consists of all the constraints represented by edgés jis
a useful constraint set af.

According to Theorem 3, the shortest paths between ver-
tex pairs inG consist of a useful constraint set©f How-
ever, not all of these shortest paths represent necessary co
straints. Theorem 4 and its corollaries will be used to help 4.1, Detecting Violation of a Constraint
decide whether such a shortest path corresponds to a neces-
sary constraint.

4. Monitoring Timing Constraints

We make the following observations regarding the viola-

Theorem 4 Consider constraint graphG = (V| E). tion time of a simple constraint:

Yu,v,w € V, (u,v),(v,w) € E, lett,,t,,t, be the

time points denoted by vertices v, w in a computation Theorem 5 Consider a constraint graptG = (V, E).
and letd;, d» be the weights on edgés, v) and (v, w). Yu,v € V such thatu, v) € E, lett,, t, be the time points

If ¢, is always no later than the earliest violation detec- denoted by vertices, v in a computation and lef be the
tiontime of the implicit constraint corresponding to thepa ~ weight on edgéu, v). Suppose is the earliest violation
p = u — v — w, thenp is unnecessary. detection time for the constraint represented(byv), then

Corollary 4.1 Consider a constraint grapldé: = (V, E).

Yv € V, if vis arelative vertex, then any path starting from
v or ending atv that has at least one intermediate vertex is
unnecessary.

a.t>t,+difd>0;
b.t =t,ifd <0.

Corollary 4.2 Consider a constraint grapldé: = (V, E). By exploiting Theorem 5, we given a violation
Y path p of G such thatp has at least one intermediate detection algorithm for a simple constraint =
vertex, if the weight on the first edge along the patis (Th + d > T3) in Algorithm 2, where we use
negative, them is unnecessary. ely,cd, c Ty to denote 71,d and T, respectively.

Algorithm 1: Compile Constraint Graph
Input: V' : the vertex vector of a constraint graph

Dist : distance metrics of the constraint gra@h
Output: Dist is updated such thdist(u, v) = oo if there is no
necessary path from to v; otherwiseD1ist(u, v) is the length of
the necessary path fromto v.
CoMmPILE(V, Dist)
(1) fori=0to V.size() —1

@) Dist(1,1) = 0;

(3) fork=0toV.size() — 1

4) if d(k,k) < 0then

(5) NEGATIVECYCLEHANDLER();

(6) return

) else

8) for i = 0to V.size() — 1

9) for j=0to V.size() — 1

(10) Dist(1,5) + man(Dist(s, §), Dist(i, k) +

DiSt(kvj))§

(11) fori=0to V.size() — 1

(12) if V(2) is arelative vertexhen

(13) for j =0to V.size() — 1

(14) if V() is not the reference vertex &f(¢) then

(15) Dist(1, 3) + oo;

(16) else

a7) for j =0to V.size() — 1

(18) if V() is a relative vertexhen

19) if V(7) is not the reference vertex &f(;) then

(20) Dist(1, j) + oc;

(22) else

(22) for k =0to Visize() — 1

(23) if £ # 1andk # j and Dist(1,5) # oo
and Dist(i,k) # oo and Dist(k,j) # oo
and Dist(s,j) = Dist(i, k) + Dist(k,j)
and (Dist(i,k) < 0 or Dist(s, k) <
Dist(1, 5)) then

(24) Dist(1, 3) + oo;

(25) break

(26) return

Algorithm 2: Check the Satisfiability of a Constraint
Input: ¢: the constraint to be checked

Output: none

CHECK(c)

Q) if .7} is known

2) if ¢.T> is known

?3) if cTi +cd<cTs

4) CONSTRAINTVIOLATIONHANDLER(C)

(5) elseifc.d > 0

(6) Set deadline timer for the event instance correspond-
ing toc.T» with deadline at. 77 + c.d

) else

(8) CONSTRAINTVIOLATIONHANDLER(C)

(9) elseifc. T is knownandc.d < 0

(10) Set delay timer for the event instance corresponding to

c.T1 with timeout atc. 75 — c.d
(11) return

4.2. Detecting Violation of a Constraint Conjunc-
tion

According to our discussion in Section 3, all necessary
constraints in a useful constraint set of a constraint aozyju
tion need to be checked in order to catch any violation as
early as possible. As we mentioned in Section 3.3, we ex-
pect most of the necessary paths in the compiled constraint
graph to be identified after the compilation. However, some
implicit necessary constraints may remain unidentified for
some instantiated constraint conjunctions owing to thepre
ence ofequivalent vertices Two vertices areequivalentif
the time terms they represent are instantiated to the same
value. There are two cases regarding equivalent vertices:

a. Some vertices may be merged when the time terms they
represent are unified by the instantiation of the occur-
rence parameter to certain values. Figure 2(a) and 2(b)
show such an example. Verticesandv, in the con-
straint graph of Figure 2(a) become one vertein
the instantiated constraint graph of Figure 2(b) when
i = 1. This reduces the length of the shortest path
length fromu to w to 2 from the previous valus.

b. Somerelative vertices may merge with other vertices
into one vertex at run time. For example, vertiegs
andwvs in Figure 2(a) become vertex in the instan-
tiated constraint graph of Figure 2(c) whése= 2 and
#(e2,@(e1,2)) = 1. This reduces the length of the
shortest path frona to w to 3 from the previous.

The equivalent vertices of case (a) can be identified at com-
pile time by solving for the variable values that unify the
time terms of the vertices. For a constraint graph afer-
tices, there can be at mﬁl“z;12 such variable values, each
of which corresponds to an instantiated constraint graph.
We can run our compilation algorithm on these instantiated
constraint graphs to identify the necessary paths. We call
this approactstatic instantiationUsing static instantiation,
we do not have to worry about the equivalence of case (a)
during the run-time monitoring. The trade-off is increased
space complexity, from the previous worst cas@¢f?) to
O(n*). An alternative is to defer this second compilation to
run time when we check the satisfiability of the instantiated
constraint graphs. This means that we incur an extfa’)
time complexity in the worst case when checking certain in-
stantiated constraint graphs. There are at nﬁé’gi—l) such
instantiated graphs for a constraint conjunction. We &adl t
alternative approactlynamic instantiation

When relative vertices are involved, however, there is no
way we can determine the equivalence of vertices in case (b)
until the reference event instances occur at run time. This
means we need to search for additional necessary paths at
run time when a relative vertex becomes equivalent to some

@ (b) (©

Figure 2. Equivalent vertices

other vertices in an instantiated constraint graph. The fol Now we can check satisfiability of a constraint conjunc-
lowing theorem helps us identify the new necessary paths intion at run time by checking the constraints corresponding
such cases. to edges in the updated instantiated constraint graph iat the
corresponding check points, using Algorithm 2. If a con-
(V,E), v,0,,v. € V, wherew, is a relative vertex is stra_int is_viol_ate_d, the corresponding instantiated crmrmt
v,'s reference vertex. Suppose at timi@ a computation, conjunction is V|0Iate_d. If_ all the_se constramt_s are ém .
then the corresponding instantiated constraint conjoncti

v, and v, become equivalent, i.e., they both represent the. . RPN .
0::<:urrenece of the same event instance in the instantiated> satisfied. The skeleton of the satisfiability checking al-

constraint graphG’. Then any new shortest pathin G gorithm for a constraint graph is described in Algorithm 4.
resulting from this equivalence is unnecessary unlgss
a future relative vertex angls source or destinationis.

Theorem 6 Consider a compiled constraint grapfi =

Algorithm 4: Check Satisfiability of a Constraint Graph

Description: Check the satisfiability of an instantiated constraint
When a relative vertex becomes equivalent with other 9raph at the occurrence of an event instafacé)

vertices in an instantiated constraint graph, Theoreml$ tel nput: G : the compiled constraint graph;

us to search for new necessary paths only when a future rel- G the instantiated constraint graph®f

ative vertex is involved. In updating those paths to and from N : an absolute vertex i Correspondmg e, k);
. . . v; :the corresponding vertex ofin G;
the referer_wce vertex, at maSi(n) time is needed. This up- Output: none
date algorithm s given below: CHECKCONSTRAINTGRAPH(G, G, v, v;)
(1) foreachfuture relative vertex: referencing in G

Algorl.th.m 3: Update Paths .) . . (2 if vertexw of G is equivalent with: in G
Description: Update necessary paths in an instantiated constralnt(g) UPDATEPATH(G, Gs, u, vy, w)

graph when a future relative vertex becomes equivalent aith (4) foreachadjacent vertex: of v; in (s

:)r:hsz.ver(t;ex - the compiled constaint aranh: (5) if edge(x,v;) exists inG; and (z corresponds a relative
P G; : the instaF;]tiated constrai?lt g?ai)h@f vertex InG or Gi distance(, Ui-) newly updatey
u L the future relative vertex in; © -CH ECKCO-NSTRAINT(C-onStram(x’ v))
v - the reference vertex af in .- (7 if constrain(z, v;) is violated
: ¢ 8 return
w :the equivalent vertex af in G 59; if edge(v;, z) exists inG;
Sﬁt;):Tt:E;ApTdHa(t(e;dcl;nstantlatc)ed constraint graph (20) CHECKCONSTRAINT(cONstraint v, z))
cy U, U, W
A 11 f tl i lated
(1) y < the vertex representingandw in G;; 212; ! (r:Ztr:Jsmralnt(v =) is violate
(2) if edge(u,v) exists inG (13) return
?3) foreachvertexz in G;
g; i g’jﬁitt((i’ z)) :Gédl;fif(’;)yi fé’d;f;((xu’ Ug) If the static instantiation approach is adopted, the worst
© if edge(vl.u) exists inG: v ' ' ' case computation complexity of this checking algorithm is
@ foreachvertexa in e Q(n). If we use dynamic ins;antiation_, then the Worsg-case
®) if G.dist(v,u)+ Gidist(y,z) < G;.dist(v,r) time complexity of our checking algorithm beconm®@én?)
9) Gidist(v,z) < G.dist(v,u) + Gi.dist(y, z) which is incurred by the need to search for additional nec-

(10) return essary paths as a result of equivalent vertices (case (a)).

Violation
Report
4;:[%‘ Compiled
Monitor Specification
Action Event Event Action
Trigger Occurrence - Occurrence Trigger
Java Java Specificatio
Application - e = Applicatio Compiler
Event . . . Event
Augumentatio Augumentation

Timing
Specification

Developers

Figure 3. The interaction between JRTM and Java applications

4.3. Memory Requirements tation of deterministic behavior very well. It is thus im-
portant to incorporate timing violation detection in theaa

We need to maintain an event occurrence log for eachrun-time environment.
event involved in the checking algorithm and yet we should ~ Since many anticipated Java applications are distributed
not allow the log to grow unbounded so as to render moni- Systems and have either soft or hard real-time requirements
toring impractical to implement. Hence, it is important for we have implemented a Java run-time timing constraint
us to know thenecessary lengtbf an event log, i.e., the monitor (JRTM) based on the monitoring approach pre-
minimum number of occurrences we need to record in suchsented in this paper. JRTM provides a simple but expressive
alog so that no violation will be missed. As we have proven language for specifying timing constraints to be monitored
in [17], an upper bound for the necessary length can be de-The run-time monitor can catch any violations of the speci-
termined for each event log at compile time. fied timing constraints with a low overhead.

Since timers are used in our constraint checking algo-
rithm in Section 4.1, the careful reader may also be con- 9.1. System Model
cerned about the number of outstanding timers during the _) o
monitoring. Similar to the necessary event log length, it ~ The interaction between the JRTM and Java applications
turns out that we can also determine at compile time an up-1S Shown in Figure 3. In this model, we assume that Java

per bound for the number of outstanding timers [17]. applications may run on different processors, whose clocks
are synchronized within a maximum deviatiorAll occur-

. . rences of events of interests are sent to the monitor foaviol

5. JRTM T A . Java Run-time Timing- tion detection. In addition, we assume that the communica-
constraint Monitor tion between target processes and the monitoring process is

reliable and the communication delay has an upper bound.

Java is a popular object-oriented programming language The timing constraints of the Java application are ex-
introduced by Sun Microsystems in May, 1995. Java haspressed by the specification method as described in Sec-

been claimed to be architecture independent and portabldgion 2. These specifications are compiled by the Timing

over the Internet because any Java program can be compile@€onstraint Specification Compiler, using the compilation
into a standard byte-code format which can run on any plat- algorithm in Section 3. Necessary constraints and event

form with a Java interpreter that implements the Java Vir- log length are automatically derived by the compiler. The

tual Machine. The built-in multi-threading support in the compiled specification is loaded into the monitor at run
language makes it a candidate for implementing real-timetime. Because there is no general event triggering mech-
and/or multimedia applications. Unfortunately, the catre anism implemented in Java, we provide an event class that
Java Virtual Machine does not lend itself to the implemen- has a triggering method. Java programmers can insert the

event triggering method calls in their Java programs where// Trigger the ' Begi nTransaction’ event
event instances are supposed to occur. At run time, whenel. trigger();

these event triggering methods are executed, the applical/ Transaction code

tions send the event instance occurrence timestamps alon
with the event names to the monitor. The monitor keeps .
these event occurrence messages in a sorted queue with - trigger();
earliest event message at the head of the queue. The event -

message at the head is processed at an appropriate time t0 1o ynderstand the overhead incurred by this instrumen-
check the related constraints. Once a violation of the spec-tation, we measured the execution time of these three meth-
ification is found, users are notified and some predefinedqs of RT Event class. The experiment is done on Pen-
exception triggering messages may be sent to applicationgjym133 PCs with 48M memory, running Linux2.0.0 ker-
to invoke recovery actions. nel and XFree86 3.1.2, using JDK 1.0.2. Our results show
The monitor can run on either the same machine with the j;¢() method takes abour milliseconds to execute,
a target process or on a stand-alone monitoring machinehere0 milliseconds was due to setting up a socket con-
Since the run-time monitor and the specification compiler nection with the monitor. Since this overhead is a one-time
are both written in Java, this toolset can be used on all ma-fixeq cost, it should be acceptable for most applications.
chines which support Java. The monitor can be run as antpe gverhead of the constructor method is quite low, tak-
appletinside a web page. A standalone version is also avail-ing only0.17 millisecond. The execution time ¢figger ()

?/ Trigger the ’EndTransaction’ event

able to run outside of web browsers. method is abous.3 milliseconds, wher&.1 milliseconds
comes from sending the event occurrence message over the
5.2. Event Class socket connection, andlang to string conversion takes

about0.8 millisecond. This overhead seems a little bit
To monitor the timing constraints on event occurrences, high consideringrigger() may be called by the applica-
the monitor needs to know the occurrence time of event in- tions many times. An alternative implementation of the
stances on the target systems. Since Java does not have,a;, ;) method uses a background thread to send queued
mechanism that generates and reports event occurrence insyent occurrence messages to the monitor so that each call
formation to the monitor, we provide a simple event class of the trigger() only involves attaching the event occur-

for this purpose. The interface of our event class is: rence time and the event name to the queue. For this im-

cl ass RTEvent { plemenationrigger() takes only0.03 millisecond to fin-
public void static init(); ish. However, the trade-off is the longer delay in event oc-
public RTEvent(String enane); currence message transmission since the background thread
public void trigger(); has lower priority than application threads.

}

The static methodnit() should be called at the begin- 5.3. Run-time Monitoring
ning of a Java program to initialize the connection with the
monitor. The constructdRTEvent()s used to create an ob- Whenever an event is triggered at run time, the appli-
ject for each event. The methadgger() is to be inserted ~ cation sends a message to the monitor reporting the oc-
at locations in Java programs where events of interest arecurrence time of the event instance. Upon receiving such
supposed to occur. Whenever an everiyger() method an event occurrence message, the monitor inserts the mes-

is executed, the current time is recorded as the event occurSage into a queue sorted according to event occurrence time.
rence time and this timestamp is sent to the monitor along\Whenever the messages of all event instances that occur be-

with the event name. fore or at the occurrence time of the message at the head
The following is an example of augmented Java applica- of the queue (i.e., the message with the earliest occurrence
tion programs: time in the queue) have been received by the monitor, the

message at the head of the queue is processed. The monitor
first updates the occurrence log for the event correspond-
ing to the head message and then cancels all related timers
set for this event instance. After that, the constraints re-
lated to this event instance is checked for violation by the

/!l Initialize connection with the nonitor
RTEvent.init();

/1 Create event ’'BeginTransaction’

RTEvent el=new RTEvent (‘' Begi nTransaction’’); checking algorithms described in Section 4. Timers may
/| Create event ‘EndTransaction’ be set for the occurrences of some event instances during
RTEvent e2=new RTEvent (‘‘EndTransaction’’); this check. Synchronization is enforced by delaying pro-

cessing the message at the head until the time by which all

earlier messages have been received. This delay should bwith low overhead. We have also shown that the memory
at leastd, 4 — dinin + ¢, Whered,,qz, dimin, are the up- requirement for monitoring is bounded for our specification
per and lower bound on the message communication delaylanguage and an upper bound can be determined at compile
from target processes to the monitor process, aiglthe time. An implementation of this approach has been done
maximum clock deviation between target system clocks. in Java. JRTM, our Java run-time timing constraint monitor
In this case, the maximum violation detection latency is can be used in a distributed environment to help Java de-
2dmae + € — dmin + ct1 + cto, Wherect; is the message velopers specify and monitor the timing constraints ofithei
gueuing delay at the monitor, ant}, is the worst case com- applications.

putation time of the checking procedure. This monitoring In view of the results reported in this paper, other re-
procedure is described in Algorithm 5. search issues should be pursued to extend the utility of our

) o monitoring approach. Some of these issues are:
Algorithm 5: Monitoring Process

Input: Specs: compiled timing constraint specification e Although our results provide the shortest latency for
Output: none violation detection, sometimes an application can tol-
MONITORING(Specs) erate a longer delay. In this case, we might be able
(1) while true to optimize our monitoring process so that even lower
) if received a message from applications monitoring overhead can be achieved. Optimization
®) (evtName, occTime) « received message; algorithms need to be explored for this purpose.
4) recvlime « currentTime();
(5) insert (evtName,occTime, recvTime) into ¢ When relative @-functions are used in a constraint, we
mqueue; restrict its reference time to be the other @-functionin
(6) if mqueue is not empty and currentTime() < the constraint. What will be the impact to our monitor-
mqueue.headM sg.recvTvme + Delay) ing algorithms and memory requirements if we relax
) update the occurrence log for the event with this restriction?
mqueue.headM sg.evt N ame;
8 occ + the occurrence no. of this eventinstance;
9) cancel timers set for this event instance; References
(10) check constraints usingqueue.head M sg;
(11) remove head message frangucue; [1] W.C. Brantley, K.P. McAuliffe, and T.A. Ngo, “RP3

) Performance Monitoring Hardware”, iimstrumenta-
We also did some performance measurement under the tion for Future Parallel Computing Systend. Sim-

same environment as described in Section 5.2. Monitoring mons, R. Koskela, and I. Bucher, eds., ACM Press,
a timing constraint of fivesimple constraintonjunctions, New York, 1989, pp.35-47.

we determined the violation detection latency to be about

34 milliseconds on the average aa@ milliseconds in the [2] S.E. Chodrow, F. Jahanian, and M. Donner, “Run-
worst case. Measurements indicated thatmilliseconds Time Monitoring of Real-Time SystemsProc. Real-

was due to message passing delay from the applicationto ~ Time Systems Symp991, pp.74-83.

the monitor, abouf milliseconds was caused by message [3] P.S. Dodd and C.V. Ravishankar, “Monitoring and De-

gueuing delay at the monitor, and violation detection took bugging Distributed Real-Time ProgramSoftware—

about11 milliseconds in average ant2 milliseconds in Practice and Experiencevol.22, No.10, Oct. 1992,
worst case. However, a careful study of the measured data 0p.863-877

found that90% of the violation detection time were under

12 milliseconds. It is possible that the longer detection la- [4] M.M. Gorlick, “The Flight Recorder: An Architec-

tency may be caused by process context switching which tural Aid for System Monitoring”,Proc. ACM/ONR

happened during detection. Workshop Parallel and Distributed Debuggint991,
pp.175-183.

6. Conclusions and Future Work [5] D. Haban and D. Wybranietz, “A Hybrid Monitor

) for Behavior and Performance Analysis of Distributed
In this paper we have presented an approach for mon- Systems”,IEEE Trans. Software Eng\ol.16, No.2,
itoring timing constraint violations in real-time systems Feb. 1990, pp.197-211

Our approach includes a language for specifying timing
constraints and efficient monitoring algorithms which can [6] F. Jahanian and A. K. Mok, “Safety Analysis of Tim-
catch timing constraint violation as early as possible. We ing Properties in Real-Time SystemdEEE Trans.
have shown that by compiling the timing constraint speci- Software Eng.Vol.SE-12, No.9, Sept. 1986, pp.890-
fications, run-time monitoring can be performed efficiently 904.

[7] F. Jahanian and A. Goyal, “A Formalism for Monitor-
ing Real-Time Constraints at RuntimeProc. IEEE
Fault-Tolerant Computing Symplune 1990, pp.148-
155.

[8] J. Joyce, G. Lomow, K. Slind, and B. Unger, “Mon-

itoring Distributed Systems”’ACM Trans. Computer

Systems\ol.5, No.2, May 1987, pp.121-150.

[9] K.B. Kenny and K.-J. Lin, “Building Flexible Real-

Time Systems using the Flex Languag€omputer

Vol.24, No.5, May 1991, pp.70-78.

[10] R.J. LeBlanc and A.D. Robbins, “Event-Driven Mon-

itoring of Distributed Programs'RProc. 5th Int’l Conf.

Distributed Computing Systemk985, pp.515-522.

A.-C. Liu and R. Parthasarathi, “Hardware Monitor-
ing of a Multiprocessor SystemlEEE Micro, Vol.9,
No.5, Oct. 1989, pp.44-51.

[11]

[12] J.E. Lumpp et al., “Specification and Identification of
Events for Debugging and Performance Monitoring of
Distributed Multiprocessor SystemdPyoc. 10th Int'l
Conf. Distributed Computing Systeni®90, pp.477-
483.

[13] D.C. Marinescu, J.E. Lumpp, Jr., T.L. Casavant, and
H.J. Siegel, “Models for Monitoring and Debugging
Tools for Parallel and Distributed Softwarel, Par-
allel and Distributed ComputingVol.9, June 1990,
pp.171-183.

[14] A. Mink, R. Carpenter, G. Nacht, and J. Roberts,
“Multiprocessor Performance-Measurement Instru-
mentation”, Computer Vol.23, No0.9, Sept. 1990,
pp.63-75.

[15] A.K. Mok, “A Graph-Based Computation Model for
Real-Time SystemsProc. IEEE Parallel Processing
August 1985, pp.619-623, .

[16] A.K. Mok, “Annotating Ada for Real-Time Program
Synthesis”Proc. Computer Assuranc&987

[17] A.K. Mok and G. Liu, “Early Detection of Timing
Constraint Violations” Technical ReportReal-Time
System Lab, Department of Computer Sciences, The
University of Texas at Austin, 1997

[18] K. Nilsen, “Issues in the Design and Implementation
of Real-Time Java”, lowa State University: Ames,
lowa, 1995.

[19] K. Nilsen, “Real-Time Java”, lowa State University:
Ames, lowa, 1996.

[20] K. Nilsen, “Embedded Real-Time Development in the
Java Language”, lowa State University: Ames, lowa,
1996.

[21] B. Plattner, “Real-Time Execution MonitoringEEE
Trans. Software Eng.Vol.SE-10, No.6, Nov. 1984,

pp.756-764.

[22] S.C.V. Raju, R. Rajkumar, and F. Jahanian, “Monitor-
ing Timing Constraints in Distributed Real-Time Sys-
tems”, Proc. Real-Time Systems Syn992, pp.57-

67.

[23] J.D. Schoeffler, “A Real-Time Programming Event
Monitor”, IEEE Trans. Educatiorvol.31, No.4, Nov.

1988, pp.245-250.

[24] R. Snodgrass, “A Relational Approach to Monitoring
Complex Systems”ACM Trans. Computer Systems

Vol.6, No.2, May 1988, pp.157-196.

H. Tokuda, M. Kotera, and C.W. Mercer, “A Real-
Time Monitor for a Distributed Real-Time Operat-
ing System”,Proc. ACM Workshop Parallel and Dis-
tributed Debugging1988, pp.68-77.

[25]

[26] J.J.P. Tsai, K.-Y. Fang, and H.-Y. Chen, “A Nonin-
vasive Architecture to Monitor Real-Time Distributed
Systems”Computey Vol.23, No.3, Mar. 1990, pp.11-

23.

[27] J.J.P. Tsai and S.J.H. Yang, eds, “Monitoring and De-
bugging of Distributed Real-Time Systems”, IEEE CS

Press, Los Alamitos, CA, 1995.

