
Automatic Testing with Formal Methods

Christian Colombo

November 30th, 2010

Christian Colombo Automatic Testing with Formal Methods



Testing is Inevitable

Can be applied to the actual implementation

Scales up
Can be applied to the actual implementation
No need to build a model of the system

It is complex to build a model
The system is a combination of software and hardware

Christian Colombo Automatic Testing with Formal Methods



The Testing Problem

Test suite generation

Test execution and behaviour observation

Test oracle

Christian Colombo Automatic Testing with Formal Methods



The Challenges of Testing

It involves a lot of effort to:

simulate the deployment environment
come up with a good test suite
run the tests
verify the tests

Thus the need to automate these activities

Relatively easy to automate test execution and verification
Challenging to automate test case development

Christian Colombo Automatic Testing with Formal Methods



Testing and System Specification

Testing verifies the system against a specification

An incomplete/inaccurate/ambiguous specification hinders
testing

Test-driven development addresses this issue by forcing
programmers to write their tests before coding
(Forcing them to write a low-level specification)

Formal specifications are unambiguous and can be processed
automatically

Christian Colombo Automatic Testing with Formal Methods



Different Types of Testing

Aspect to be tested

Functionality
Reliability
Availability
Robustness
Load

Level of abstraction

Unit
Integration
System

Levels of system visibility

White box
Grey box
Black box

Christian Colombo Automatic Testing with Formal Methods



Model-Based Testing

Black box, functional testing
. . . conformance (w.r.t specs) testing

Use a model of the system to intelligently test it:

Guide test-case generation
As an oracle of the test results

Christian Colombo Automatic Testing with Formal Methods



Testing Reactive Systems

Reactive systems continually react to stimuli from the
environment

Examples: embedded systems and protocols

Generating tests on-the-fly (while executing) is beneficial as
the test can be arbitrarily long

Christian Colombo Automatic Testing with Formal Methods



Labelled Transition Systems

s
a

−−→ s ′ — when the system is in state s, it may perform
interaction a and progresses to state s ′

r1
?but·?but·!choc
=========⇒ — the labelled transition system can

produce chocolate after two button presses
[TB99]

Christian Colombo Automatic Testing with Formal Methods



Input/Output

A set of input actions LI : {?a, ?b, . . .}

A set of output actions LU : {!a, !b, . . .}

With all inputs enabled at each state:

∀s ∈ S , ?a ∈ LI · ∃s
′ ∈ S · s

?a
−−→ s ′

Christian Colombo Automatic Testing with Formal Methods



Definition of Conformance

Let i represent an input/output transition system
and s a specification in terms of a labelled transition system

s after σ
def
= {s ′ | s

σ

==⇒ s ′}

out(s)
def
= {a ∈ LU | s

a
−−→ } ∪ {δ | ∀a ∈ LU : p

a
−−→6 }

out(s after σ) — all outputs possible when consuming σ
starting from s

L = LI ∪ LU ∪ {δ}

i ioco s ⇐⇒ ∀σ ∈ L∗ · out(i after σ) ⊆ out(s after σ)

Christian Colombo Automatic Testing with Formal Methods



Definition of Conformance

Let i represent an input/output transition system
and s a specification in terms of a labelled transition system

s after σ
def
= {s ′ | s

σ

==⇒ s ′}

out(s)
def
= {a ∈ LU | s

a
−−→ } ∪ {δ | ∀a ∈ LU : p

a
−−→6 }

out(s after σ) — all outputs possible when consuming σ
starting from s

L = LI ∪ LU ∪ {δ}

i ioco s ⇐⇒ ∀σ ∈ L∗ · out(i after σ) ⊆ out(s after σ)
i implements s if in any situation it never produces an output
not produced by the specification s.

Christian Colombo Automatic Testing with Formal Methods



Example

r2 ioco r1 but not r1 ioco r2

Christian Colombo Automatic Testing with Formal Methods



Example

r2 ioco r1 but not r1 ioco r2

!choc ∈ out(r1 after ?but · δ·?but) and
!choc /∈ out(r2 after ?but · δ·?but)

Christian Colombo Automatic Testing with Formal Methods



The Perfect Test Suite

Detects all ioco-erroneous implementations . . .

Christian Colombo Automatic Testing with Formal Methods



The Perfect Test Suite

Detects all ioco-erroneous implementations (completeness)

Christian Colombo Automatic Testing with Formal Methods



The Perfect Test Suite

Detects all ioco-erroneous implementations (completeness)

Detects only ioco-erroneous implementations . . .

Christian Colombo Automatic Testing with Formal Methods



The Perfect Test Suite

Detects all ioco-erroneous implementations (completeness)

Detects only ioco-erroneous implementations (soundness)

Christian Colombo Automatic Testing with Formal Methods



The Perfect Test Suite

Detects all ioco-erroneous implementations (completeness)

Detects only ioco-erroneous implementations (soundness)

Given a spec. s, an implementation i

Test suite Ts generated by algorithm T on spec s

Christian Colombo Automatic Testing with Formal Methods



The Perfect Test Suite

Detects all ioco-erroneous implementations (completeness)

Detects only ioco-erroneous implementations (soundness)

Given a spec. s, an implementation i

Test suite Ts generated by algorithm T on spec s

The perfect algorithm would have that:

∀i , s : i ioco s ⇐⇒ test exec(Ts , i) = pass

Christian Colombo Automatic Testing with Formal Methods



A Practical Test Suite

In practice it is not feasible to have a sound and complete test
suite

Therefore we at least need soundness... if a test fails, then we
are sure the implementation is incorrect

Christian Colombo Automatic Testing with Formal Methods



Test Cases

A test case is a labelled transition system (lts) with a special
structure:

A finite and tree-structured lts
each terminal state is either pass or fail
for each non-terminal state, there is either:

a transition labelled with a system input
or
a transition for each system output and another with θ (a
timeout)

Christian Colombo Automatic Testing with Formal Methods



Test Case Example

Christian Colombo Automatic Testing with Formal Methods



Test Case Execution

Executing a test case involves:

Executing the test case and the implementation simultaneously
If the test case lts ends in a failure, then the fail verdict is
assigned...
... and vice-versa if the test case succeeds

Christian Colombo Automatic Testing with Formal Methods



Test Case Execution Example

Executing both lts’ simultaneously may result in
?but · θ·?but·!liq

Leading to fail

Christian Colombo Automatic Testing with Formal Methods



Test Derivation Algorithm

s is a lts specification with initial state s0

S is a set of states in which the implementation can be in at a
particular stage of the test case

A test case t is obtained from s by applying one of the
following non-deterministic choices

1 t := • pass
2

Christian Colombo Automatic Testing with Formal Methods



Test Derivation Algorithm

Try all possible outputs and check which would signify a
failure.

Christian Colombo Automatic Testing with Formal Methods



On-the-fly Testing

Test inputs and outputs are generated lazily... step by step (as
in the algorithm described above)

either the tester decides to generate a stimulus to the
implementation under test (IUT)
or
the tester observes the output produced by the IUT

Christian Colombo Automatic Testing with Formal Methods



Advantages of Testing with Formal Methods

Reduce ambiguity in specifications

Automatic maintenance of tests

Arbitrarily long tests generated lazily

Christian Colombo Automatic Testing with Formal Methods



Disadvantages of Testing with Formal Methods

Random testing instead of manually selected test cases

Steep learning curve

High initial costs to come up with formal specifications

Christian Colombo Automatic Testing with Formal Methods



References

G. J. Tretmans and A. F. E. Belinfante.
Automatic testing with formal methods.
In EuroSTAR’99: 7th European Int. Conference on Software
Testing, Analysis & Review, Barcelona, Spain, Galway, Ireland,
1999. EuroStar Conferences.

Christian Colombo Automatic Testing with Formal Methods


