Automatic Testing with Formal Methods

Christian Colombo

November 30th, 2010

Christian Colombo Automatic Testing with Formal Methods

Testing is Inevitable

@ Can be applied to the actual implementation

@ Scales up
o Can be applied to the actual implementation
o No need to build a model of the system

o It is complex to build a model
@ The system is a combination of software and hardware

Christian Colombo Automatic Testing with Formal Methods

The Testing Problem

@ Test suite generation
@ Test execution and behaviour observation

@ Test oracle

Christian Colombo Automatic Testing with Formal Methods

The Challenges of Testing

@ |t involves a lot of effort to:

@ simulate the deployment environment
@ come up with a good test suite

@ run the tests

o verify the tests

@ Thus the need to automate these activities

@ Relatively easy to automate test execution and verification
@ Challenging to automate test case development

Christian Colombo Automatic Testing with Formal Methods

Testing and System Specification

@ Testing verifies the system against a specification

@ An incomplete/inaccurate/ambiguous specification hinders
testing

@ Test-driven development addresses this issue by forcing
programmers to write their tests before coding
(Forcing them to write a low-level specification)

@ Formal specifications are unambiguous and can be processed
automatically

Christian Colombo Automatic Testing with Formal Methods

Different Types of Testing

@ Aspect to be tested

@ Functionality
Reliability
Availability
Robustness
Load

@ Level of abstraction
o Unit

o Integration
o System

¢ © @ ¢

@ Levels of system visibility

o White box
o Grey box
o Black box

Christian Colombo Automatic Testing with Formal Methods

Model-Based Testing

@ Black box, functional testing
. conformance (w.r.t specs) testing
@ Use a model of the system to intelligently test it:

@ Guide test-case generation
@ As an oracle of the test results

Christian Colombo Automatic Testing with Formal Methods

Testing Reactive Systems

@ Reactive systems continually react to stimuli from the
environment

@ Examples: embedded systems and protocols

@ Generating tests on-the-fly (while executing) is beneficial as
the test can be arbitrarily long

Christian Colombo Automatic Testing with Formal Methods

Labelled Transition Systems

Zbut

Zbut

Zbut

@ s 23 s’ — when the system is in state s, it may perform

interaction a and progresses to state s’

?but-?but-Ich ..
0 r ——=C"S%% __ the labelled transition system can

produce chocolate after two button presses
o [TBYY]

Input/Output

@ A set of input actions L;: {?a,?b,...}

@ A set of output actions Ly: {!a,!b,...}

@ With all inputs enabled at each state:
VsGS,?aGL/~EIs’€S-s?—a>s’

Christian Colombo Automatic Testing with Formal Methods

Definition of Conformance

Let / represent an input/output transition system

and s a specification in terms of a labelled transition system
safter o 2 {s'|s == s}

out(s) = {aely|s—}U{d|Vacly:p-2t}

out(s after o) — all outputs possible when consuming o
starting from s

L=LULyU {5}

i ioco s <= Vo € L* - out(i after o) C out(s after o)

(]

(]

(]

(]

(]

Christian Colombo Automatic Testing with Formal Methods

Definition of Conformance

@ Let i represent an input/output transition system
and s a specification in terms of a labelled transition system

o s after 0 = {s' | s == 5/}

o out(s)E{aecly|s—}U{d|Vaely:p—2b}

@ out(s after o) — all outputs possible when consuming o
starting from s

o L=1LULyuU{s}

@ j joco s <= Vo € L* - out(i after o) C out(s after o)

i implements s if in any situation it never produces an output
not produced by the specification s.

Christian Colombo Automatic Testing with Formal Methods

Zbut

Zbut 10 ¢O Zhut
— -
Zbut
Zbut - Zbut
: ioco Zhut !
Ichoc
Zbut Zbut
" rg

@ rp ioco r but not r; ioco r

Christian Colombo Automatic Testing with Formal Methods

Zbut

Zbut 10 ¢O Zhut
— -
Zbut
Zbut - Zbut
: ioco Zhut !
Ichoc
Zbut Zbut
" rg

@ rp ioco r but not r; ioco r

@ !choc € out(r after ?but - §-?but) and
Ichoc ¢ out(ry after ?but - 0-7but)

Christian Colombo Automatic Testing with Formal Methods

The Perfect Test Suite

@ Detects all ioco-erroneous implementations . . .

Christian Colombo Automatic Testing with Formal Methods

The Perfect Test Suite

@ Detects all ioco-erroneous implementations (completeness)

Christian Colombo Automatic Testing with Formal Methods

The Perfect Test Suite

@ Detects all ioco-erroneous implementations (completeness)

@ Detects only ioco-erroneous implementations . ..

Christian Colombo Automatic Testing with Formal Methods

The Perfect Test Suite

@ Detects all ioco-erroneous implementations (completeness)

@ Detects only ioco-erroneous implementations (soundness)

Christian Colombo Automatic Testing with Formal Methods

The Perfect Test Suite

Detects all ioco-erroneous implementations (completeness)
Detects only ioco-erroneous implementations (soundness)

Given a spec. s, an implementation /

Test suite T generated by algorithm T on spec s

Christian Colombo Automatic Testing with Formal Methods

The Perfect Test Suite

Detects all ioco-erroneous implementations (completeness)
Detects only ioco-erroneous implementations (soundness)
Given a spec. s, an implementation /

Test suite T generated by algorithm T on spec s

The perfect algorithm would have that:

Vi,s: i ioco s <= test_exec(Ts, i) = pass

Christian Colombo Automatic Testing with Formal Methods

A Practical Test Suite

@ In practice it is not feasible to have a sound and complete test
suite

@ Therefore we at least need soundness... if a test fails, then we
are sure the implementation is incorrect

Christian Colombo Automatic Testing with Formal Methods

@ A test case is a labelled transition system (lts) with a special
structure:
& A finite and tree-structured Its
o each terminal state is either pass or fail
o for each non-terminal state, there is either:
@ a transition labelled with a system input
or
@ a transition for each system output and another with 6 (a
timeout)

Christian Colombo Automatic Testing with Formal Methods

Test Case Example

Ichoc

pass fail

fail

fail

Christian Colombo Automatic Testing with Formal Methods

Test Case Execution

@ Executing a test case involves:
@ Executing the test case and the implementation simultaneously
o If the test case Its ends in a failure, then the fail verdict is
assigned...
o ... and vice-versa if the test case succeeds

Christian Colombo Automatic Testing with Formal Methods

Test Case Execution Example

fail 2but

Zbut
fail

Zbut

pass

fail

@ Executing both Its' simultaneously may result in
?but - 0-7but-lig
@ Leading to fail

Christian Colombo Automatic Testing with Formal Methods

Test Derivation Algorithm

@ s is a Its specification with initial state sy
@ S is a set of states in which the implementation can be in at a
particular stage of the test case

@ A test case t is obtained from s by applying one of the
following non-deterministic choices
Q t:= e pass
o

Christian Colombo Automatic Testing with Formal Methods

Test Derivation Algorithm

@ Try all possible outputs and check which would signify a
failure.

where Ly = {wy,29,...,2,}, 1 < j<m:
if x; & out(S) then t;=fail
if o0& out(S) then ty=fail
if x; € out(S) then t;is obtained
by recursively applying the algorithm for S after x;
it deout(S) then ¢ty is obtained
by recursively applying the algorithm for {s € S| s 2, }

Christian Colombo Automatic Testing with Formal Methods

On-the-fly Testing

. Next mput Offer input
Specification e e it 4
-— Tester ni— UT
module Check output Observe output
or quiescence or quiescence

@ Test inputs and outputs are generated lazily... step by step (as
in the algorithm described above)
o either the tester decides to generate a stimulus to the
implementation under test (IUT)
or
@ the tester observes the output produced by the IUT

Christian Colombo Automatic Testing with Formal Methods

Advantages of Testing with Formal Methods

@ Reduce ambiguity in specifications
@ Automatic maintenance of tests

@ Arbitrarily long tests generated lazily

Christian Colombo Automatic Testing with Formal Methods

Disadvantages of Testing with Formal Methods

@ Random testing instead of manually selected test cases
@ Steep learning curve

@ High initial costs to come up with formal specifications

Christian Colombo Automatic Testing with Formal Methods

References

@ G. J. Tretmans and A. F. E. Belinfante.
Automatic testing with formal methods.
In EuroSTAR'99: 7th European Int. Conference on Software
Testing, Analysis & Review, Barcelona, Spain, Galway, Ireland,
1999. EuroStar Conferences.

Christian Colombo Automatic Testing with Formal Methods

