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Testing is Inevitable

Can be applied to the actual implementation

Scales up
Can be applied to the actual implementation
No need to build a model of the system

It is complex to build a model
The system is a combination of software and hardware
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The Testing Problem

Test suite generation

Test execution and behaviour observation

Test oracle
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The Challenges of Testing

It involves a lot of effort to:

simulate the deployment environment
come up with a good test suite
run the tests
verify the tests

Thus the need to automate these activities

Relatively easy to automate test execution and verification
Challenging to automate test case development
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Testing and System Specification

Testing verifies the system against a specification

An incomplete/inaccurate/ambiguous specification hinders
testing

Test-driven development addresses this issue by forcing
programmers to write their tests before coding
(Forcing them to write a low-level specification)

Formal specifications are unambiguous and can be processed
automatically
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Different Types of Testing

Aspect to be tested

Functionality
Reliability
Availability
Robustness
Load

Level of abstraction

Unit
Integration
System

Levels of system visibility

White box
Grey box
Black box
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Model-Based Testing

Black box, functional testing
. . . conformance (w.r.t specs) testing

Use a model of the system to intelligently test it:

Guide test-case generation
As an oracle of the test results
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Testing Reactive Systems

Reactive systems continually react to stimuli from the
environment

Examples: embedded systems and protocols

Generating tests on-the-fly (while executing) is beneficial as
the test can be arbitrarily long
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Labelled Transition Systems

s
a

−−→ s ′ — when the system is in state s, it may perform
interaction a and progresses to state s ′

r1
?but·?but·!choc
=========⇒ — the labelled transition system can

produce chocolate after two button presses
[TB99]
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Input/Output

A set of input actions LI : {?a, ?b, . . .}

A set of output actions LU : {!a, !b, . . .}

With all inputs enabled at each state:

∀s ∈ S , ?a ∈ LI · ∃s
′ ∈ S · s

?a
−−→ s ′
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Definition of Conformance

Let i represent an input/output transition system
and s a specification in terms of a labelled transition system

s after σ
def
= {s ′ | s

σ

==⇒ s ′}

out(s)
def
= {a ∈ LU | s

a
−−→ } ∪ {δ | ∀a ∈ LU : p

a
−−→6 }

out(s after σ) — all outputs possible when consuming σ
starting from s

L = LI ∪ LU ∪ {δ}

i ioco s ⇐⇒ ∀σ ∈ L∗ · out(i after σ) ⊆ out(s after σ)
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Definition of Conformance

Let i represent an input/output transition system
and s a specification in terms of a labelled transition system

s after σ
def
= {s ′ | s

σ

==⇒ s ′}

out(s)
def
= {a ∈ LU | s

a
−−→ } ∪ {δ | ∀a ∈ LU : p

a
−−→6 }

out(s after σ) — all outputs possible when consuming σ
starting from s

L = LI ∪ LU ∪ {δ}

i ioco s ⇐⇒ ∀σ ∈ L∗ · out(i after σ) ⊆ out(s after σ)
i implements s if in any situation it never produces an output
not produced by the specification s.
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Example

r2 ioco r1 but not r1 ioco r2
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Example

r2 ioco r1 but not r1 ioco r2

!choc ∈ out(r1 after ?but · δ·?but) and
!choc /∈ out(r2 after ?but · δ·?but)
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The Perfect Test Suite

Detects all ioco-erroneous implementations . . .
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The Perfect Test Suite

Detects all ioco-erroneous implementations (completeness)
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The Perfect Test Suite

Detects all ioco-erroneous implementations (completeness)

Detects only ioco-erroneous implementations . . .
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The Perfect Test Suite

Detects all ioco-erroneous implementations (completeness)

Detects only ioco-erroneous implementations (soundness)
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The Perfect Test Suite

Detects all ioco-erroneous implementations (completeness)

Detects only ioco-erroneous implementations (soundness)

Given a spec. s, an implementation i

Test suite Ts generated by algorithm T on spec s

Christian Colombo Automatic Testing with Formal Methods



The Perfect Test Suite

Detects all ioco-erroneous implementations (completeness)

Detects only ioco-erroneous implementations (soundness)

Given a spec. s, an implementation i

Test suite Ts generated by algorithm T on spec s

The perfect algorithm would have that:

∀i , s : i ioco s ⇐⇒ test exec(Ts , i) = pass
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A Practical Test Suite

In practice it is not feasible to have a sound and complete test
suite

Therefore we at least need soundness... if a test fails, then we
are sure the implementation is incorrect
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Test Cases

A test case is a labelled transition system (lts) with a special
structure:

A finite and tree-structured lts
each terminal state is either pass or fail
for each non-terminal state, there is either:

a transition labelled with a system input
or
a transition for each system output and another with θ (a
timeout)
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Test Case Example
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Test Case Execution

Executing a test case involves:

Executing the test case and the implementation simultaneously
If the test case lts ends in a failure, then the fail verdict is
assigned...
... and vice-versa if the test case succeeds
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Test Case Execution Example

Executing both lts’ simultaneously may result in
?but · θ·?but·!liq

Leading to fail
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Test Derivation Algorithm

s is a lts specification with initial state s0

S is a set of states in which the implementation can be in at a
particular stage of the test case

A test case t is obtained from s by applying one of the
following non-deterministic choices

1 t := • pass
2
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Test Derivation Algorithm

Try all possible outputs and check which would signify a
failure.
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On-the-fly Testing

Test inputs and outputs are generated lazily... step by step (as
in the algorithm described above)

either the tester decides to generate a stimulus to the
implementation under test (IUT)
or
the tester observes the output produced by the IUT
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Advantages of Testing with Formal Methods

Reduce ambiguity in specifications

Automatic maintenance of tests

Arbitrarily long tests generated lazily
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Disadvantages of Testing with Formal Methods

Random testing instead of manually selected test cases

Steep learning curve

High initial costs to come up with formal specifications
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