
19. Fabry, R.S. A user's view of capabilities. ICR Quart. Rep.
15 (Nov. 1967), ICR, U. of Chicago, Sec. IC.
20. Fabry, R.S. Preliminary description of a supervisor for a
machine oriented around capabilities. ICR Quart. Rep. 18 (Aug.
1968), ICR, U. of Chicago, Sec. lB.
21. Fabry, R.S. List-structured addressing. Ph.D. Th., U. of
Chicago, 1971.
22. Feustal, E.A. The Rice research computer--a tagged archi-
tecture. Proc. AFIPS 1972 SJCC, Vol. 40, AFIPS Press, Montvale,
N.J. pp. 369-377.
23. Feustal, E.A. On time advantages of tagged architecture. IEEE
Trans. on Computers C-22, 7 (July 1973), 644-656.
24. Graham, G.S., and Denning, P.J. Protection--principles and
practice. Proc. AFIPS 1972 SJCC, Vol. 40, AFIPS Press,
Montvale, N.J., pp. 417-429.
25. Halton, D. Hardware of the System 250 for communication
control. Presented at the lnternat. Switching Syrup., Cambridge,
Mass., June 6-9, 1972, 7 pp.
26. Hamer-Hodges, K.J. Fault resistance and recovery within
System 250. Presented at I.C.C. Conf., Washington, D.C., Oct.
1972, 6 pp.
27. Iliffe, J.K. Basic maehhw principles. American Elsevier, New
York, 1968.
28. Iliffe, J.K., and Jodeit, J.G. A dynamic storage allocation
scheme. Comput. J. 5 (Oct. 1962), 200-209.
29. Jones, A.K. Protection structures. Ph.D. Th., Carnegie-
Mellon U., 1973.
30. Lampson, B.W. On reliable and extendable operating
systems. In Techniques in Software Engineering, NATO Science
Committee Workshop Material, Vol. 11, Sept. 1969.
31. Lampson, B.W. Dynamic protection structures. Proc. AFIPS
1969 FJCC, Vol. 35, AFIPS Press, Montvale, N.J., pp. 27-38.
32. Lampson, B.W. Protection. Proc. 5th Ann. Princeton Conf.,
Princeton U., Mar. 1971, pp. 437-443.
33. LeClerc, J.Y. Memory structures for interactive computers.
Project GENIE document No. 40.10.110, U. of California,
Berkeley, 1966.
34. Needham, R.M. Protection systems and protection imple-
mentations. Proc. AFIPS 1972 FJCC, Vol. 41, AFIPS Press,
Montvale, N.J., pp. 571-578.
35. Organick, E.I. Computer System Organization--the B5700
B6700 Series. Academic Press, New York, 1973.
36. Organick, E.I. Tile Multics System: An Examination (~/'lts
Structure. MIT Press, Cambridge, Mass., 1972.
37. Saltzer, J.H. Traffic control in a multiplexed computer system.
MAC-TR-30, Proj. MAC, MIT, Cambridge, Mass., 1966.
38. Schroeder, M.D. Performance of the GE-645 associative
memory while Multics is in operation. Proc. Workshop on
System Performance Evaluation, Cambridge, Mass., 1971, pp.
227-245.
39. Schroeder, M.D. Cooperation of mutually suspicious
subsystems in a computer utility. Ph.D. Th., MIT, 1972.
40. Sevick, K.C., et al. Project SUE as a learning experience.
Proc. AFIPS 1972 FJCC, Vol. 41, AFIPS Press, Montvale, N. J.,
pp. 331-339.
41. Shepherd, J. Principal design features of the multi-computer.
(The Chicago Magic Number Computer). ICR Quart. Rep. 19
(Nov. 1968), 1CR, U. of Chicago, Sec. 1-C.
42. Sturgis, H.E. A postmortem of a time sharing system. Ph.D.
Th., U. of California, Berkeley, 1973.
43. Wilkes, M.V. Time Sharing Computer Systems. 2nd ed.,
American Elsevier, New York, 1972.
44. Wilner, W.T. Design of the Burroughs BI700. Proc. AFIPS
1972 FJCC, Vol. 41, AFIPS Press, Montvale, N.J., pp. 489-497.
45. Wilner, W.T. Burroughs BI700 memory utilization. Proc.
AFIPS 1972 FJCC, Vol. 41, AFIPS Press, Montvale, N.J., pp. 579-
586.
46. Wulf, W.A., et al. HYDRA: The kernel o f a multiprocessor
operating system. Carnegie Mellon U., Comput. Sci. Dep. rep.,
June 1973.
47. Yngve, V.H. The Chicago Magic Number Computer. ICR
Quart. Rep. 18 (Nov. 1968), ICR, U. of Chicago, Sec. 1-B.

Formal Requirements
for Virtualizable
Third Generation
Architectures
Gerald J. Popek
University of California, Los Angeles
and
Robert P. Goldberg
Honeywell Information Systems and
Harvard University

Virtual machine systems have been implemented on a
limited number of third generation computer systems, e.g.
CP-67 on the IBM 360/67. From previous empirical
studies, it is known that certain third generation computer
systems, e.g. the DEC PDP-10, cannot support a virtual
machine system. In this paper, model of a third-
generation-like computer system is developed. Formal
techniques are used to derive precise sufficient conditions
to test whether such an architecture can support virtual
machines.

Key Words and Phrases: operating system, third
generation architecture, sensitive instruction, formal
requirements, abstract model, proof, virtual machine,
virtual memory, hypervisor, virtual machine monitor

CR Categories: 4.32, 4.35, 5.21, 5.22

Copyright © 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This is a revised version of a paper presented at the Fourth
ACM Symposium on Operating Systems Principles, IBM Thomas
J. Watson Research Center, Yorktown Heights, New York, Oc-
tober 15-17, 1973.

This research was supported in part by the U.S. Atomic
Energy Commission, Contract No. AT(ll-1) Gen 10, Project 14
and in part by the Electronic Systems Division, U.S. Air Force,
Hanscom Field, Bedford, Massachusetts under Contract Number
F19628-70-0217.

Authors' addresses: Gerald J. Popek, Computer Science De-
partment, University of California, Los Angeles CA 90024; Robert
P. Goldberg, Honeywell Information Systems,Waltham, MA 02154.

412 Communications July 1974
of Volume 17
the ACM Number 7

1. Virtual Machine Concepts

There are currently a number of viewpoints suggest-
ing what a virtual machine is, how it ought to be con-
structed, and what hardware and operating system
implications result [1, 6, 7, 9, 12]. This pap¢r examines
computer architectures of third-generation-like machines
and demonstrates a simple condition which may be
tested to determine whether an architecture can support
a virtual machine. This condition may also be employed
in machine design. In the following, we specify in-
tuitively what is meant by the above, then develop a
more exact model of third-generation-like machines,
and finally state and prove a sufficient condition for
such a system to be virtualizable.

A virtual machine is taken to be an efficient, iso-
lated duplicate of the real machine. We explain these
notions through the idea of a virtual machine monitor
(V~M). See Figure 1. As a piece of software a VMM has
three essential characteristics. First, the VMM provides
an environment for programs which is essentially iden-
tical with the original machine; second, programs run
in this environment show at worst only minor decreases
in speed; and last, the VMM is in complete control of
system resources.

By an "essentially identical" environment, the first
characteristic, is meant the following. Any program
run under the VMM should exhibit an effect identical
with that demonstrated if the program had been run
on the original machine directly, with the possible
exception of differences caused by the availability of
system resources and differences caused by timing de-
pendencies. The latter qualification is required because

Fig. 1. The virtual machine monitor.

VMM
I Hardware

413

of the intervening level of software and because of the
effect of any other virtual machines concurrently exist-
ing on the same hardware. The former qualification
arises, for example, from the desire to include in our
definition the ability to have varying amounts of memory
made available by the virtual machine monitor. The
identical environment requirement excludes the behavior
of the usual time-sharing operating system from being
classed as a virtual machine monitor.

The second characteristic of a virtual machine
monitor is efficiency. It demands that a statistically
dominant subset of the virtual processor's instructions
be executed directly by the real processor, with no
software intervention by the VMM. This statement rules
out traditional emulators and complete software in-
terpreters (simulators) from the virtual machine um-
brella.

The third characteristic, resource control, labels as
resources the usual items such as memory, peripherals,
and the like, although not necessarily processor activity.
The VMM is said to have complete control of these
resources if (1) it is not possible for a program running
under it in the created environment to access any
resource not explicitly allocated to it, and (2) it is
possible under certain circumstances for the VMM to
regain control of resources already allocated.

A vh'tual machine is the environment created by the
virtual machine monitor. This definition is intended not
only to reflect generally accepted notions of virtual
machines, but also to provide a reasonable environ-
ment for a proof.

Before going on to specify a machine model, it is
worth pointing out several implications of the definition.
First, a VMM as defined is not necessarily a time-sharing
system, although it may be. However, the identical-
effect requirement applies regardless of any other ac-
tivity on the real computer, so that isolation, in the
sense of protection of the virtual machine environment,
is meant to be implied. This requirement also dis-
tinguishes the virtual machine concept from virtual
memory. Virtual memory is just one possible ingredient
in a virtual machine; and techniques such as segmenta-
tion and paging are often used to provide virtual
memory. The virtual machine effectively has a virtual
processor, too, and possibly other virtual devices.

We now describe a more formal specification of a
third-generation-like computer and a virtual machine
monitor before stating and demonstrating the sufficient
conditions that the computer must fulfill in order to
host a VMM.

2. A Model of Third Generation Machines

The picture described below is intended to reflect a
simplified version of a conventional third generation
machine, such as the IBM 360, Honeywell 6000, or
DEC I'DP-10, with a processor and linear, uniformly

Communications July 1974
of Volume 17
the ACM Number 7

addressable memory. For the purposes of the formal
part of this paper, we assume that I /o instructions
and interrupts don ' t exist, although they may be added
as extensions.

The computer is presented by stating several neces-
sary assumptions about its behavior, describing its
state-space, and specifying how changes of state may
occur.

The processor is a conventional one with two modes
of operation, supervisor and user. In supervisor mode,
the complete instruction repertoire is available to the
precessor. In user mode, it is not. Memory addressing
is done relative to the contents of a relocation register.
The instruction set consists of the usual complement of
instructions for doing arithmetic, testing, branching,
moving data in memory, and the like. In particular,
with these instructions, it is possible to perform a table
lookup on a table of arbitrary size, key, and value, and
having obtained the value, move it anywhere in memory
(the table look-up and copy property). 1

The machine can exist in any one of a finite number
of states where each state has four components : execut-
able storage E, processor mode M, program counter P,
and relocation-bounds register R.

S = (E, M, P , R)

Executable storage is a conventional word or byte
addressed memory of size q. The notation Eli] will
refer to the contents of the ith unit of storage in E, i.e.
E = E' if and only if Eli] = E'[i] for any 0 _< i < q.
The relocation-bounds register, R = (l, b) is always
active, regardless of the machine's current mode. The
relocation part l of the register gives an absolute address,
which will correspond to the apparent address 0. The
bounds part b will give the absolute size (not the largest
valid address) of the virtual memory. If it is desired to
access all of memory, the relocation must be set to 0
and the bounds to q -- 1.

I f an instruction produces the address a, the address
development is as follows:

if a 4- / > q then memorytrap else
i f a > b then memorytrap
else use E[a + l].

The meaning of " m e m o r y t r a p " used here will be dis-
cussed in detail in the next section.

The mode M of the processor is either s or u, super-
visor or user. The program counter P is an address rela-
tive to the contents of R, which acts as an index into E,
indicating the next instruction to be executed. Note
that the state S is intended to specify the current state
of the real computer system, not some portion of it,
or some virtual machine.

The contents of the triplet (M, P, R) are often
referred to as the program status word, or PSW. To
make our proof easier, we will assume that a PSW can
be recorded in one storage location. This restriction
can be easily removed. We shall have occasion to use

El0] and El1] to store an old-Psw and fetch a new-Psw
respectively.

Each component of S can take on only a finite
number of values. Call the finite set of states C.

Then an instruction i is a function from C to C.
i : C - ~ C. So, for example, i(S1) = $2, or
i(E1, /141, P I , R 1) = (E2, M2, P2,R2).

So far, this specification of a conventional third
generation computer should not be too surprising.
After superficial complexities in such systems are re-
moved, what remains is generally a primitive protection
system built around a supervisor/user mode concept,
and a simple memory allocation system built around a
relocation-bounds system. In this model, for simplicity,
we have departed slightly from most common reloca-
tion systems by assuming it to be active in the super-
visor as well as user mode. This difference will not be
important to the proof of our result. Note also that all
references made by the processor to memory are
assumed to be relocated.

One key restriction in the model is the exclusion of
I /o devices and instructions. While it is commonplace
now to provide users with an extended software machine
without explicit I/O devices or instructions, there is one
late third generation hardware machine that exhibits
this appearance. In the DEC PDP-11, I/O devices are
treated as memory ceils and I /o operations are per-
formed by doing the proper memory transfer to the
appropriate cell.

Traps
We continue with the model of the third generation

machine by defining the action of a trap. An instruction
i is said to trap if i(E1,M1,P1,R1) = (E2,M2,P2,R2) where

E2[j] = EI[j], f o r 0 < j < q,
E2[0] = (M,,P~,Rx)

(M2, P2, R2) = E~[1].

Hence, when an instruction traps, storage is left un-
changed, except for location zero in which is put the
PSW that was in effect just before the instruction trap-
ped. The PSW to be in effect after the instruction trap-
ped is taken from location one. In the software of most
third generation machines, one expects that M2 = s
and R2 = (0,q-- 1).

Intuitively, a trap automatically saves the current
state of the machine and passes control of a pre-
specified routine by changing the processor mode, the
relocation bounds register, and the program counter to
the values specified in Ell1]. Our definition could be
relaxed to include cases in which the trap does not
block the instruction but rather gains control im-
mediately afterward or even some number of instruc-
tions later, providing that the state of the machine is
stored in such a way as to be reversible to the point at
which the instruction causing the trap was about to be
executed.

It will be convenient to have defined several par-

414 Communications July 1974
of Volume 17
the ACM Number 7

t icular varieties of traps. One such is a memory trap.
A memory trap is a t rap caused as a result of an a t tempt
by an ins t ruct ion to develop an address which is greater
than the bounds in R or physical memory. F r o m above,
the micro-sequence would be

i f a -[- l >_ q then trap;
if a >_ b then trap

3. I n s t r u c t i o n B e h a v i o r

In the following, we classify inst ruct ions on the
basis of their behavior as a funct ion of the state S of
the machine. Which groups an ins t ruct ion falls into
will determine whether the real machine is virtualizable.

Ins t ruct ion i is privileged if and only if for any pair
of states 5'1 = (e, s, p, r) and 5'2 = (e, u, p, r) in which
i(S~) and i(S2) do no t memory t rap: i(S2) traps and
i(S1) does not.

The states 5'1 and $2 differ only in that the mode of
St is supervisor and the mode of $2 is user. The t rap
that occurs under these condi t ions is often called a
privileged ins t ruct ion trap.

This no t ion of a privileged ins t ruct ion is close to the
convent iona l one. Privileged ins t ruct ions are independ-
ent of the vir tual izat ion process. They are merely
characteristics of the machine which may be determined
from reading the principles of operat ion. Note, however,
that the way we have defined privileged ins t ruct ions
requires them to trap. Merely NoPing the ins t ruct ion
wi thout t rapping is insufficient. The latter case should
no t be called a privileged ins t ruct ion; maybe "use r
mode NOP" would be more accurate.

Examples of privileged ins t ruct ions in c o m m o n third
generat ion machines:

(1) if M = s then load_PSW
else trap;

(2) if M = s then load_R
else trap;

IBM System/360 LPSW

Honeywell 6000 LBAR,
DEC PDP-10 DATAO APR

Another impor t an t group of ins t ruct ions will be
called sensitive instructions [4]. The members of this
group will have a major bear ing on the vir tualizabil i ty
of a part icular machine. We define two types of sensi-
tive instruct ions.

An ins t ruct ion i is control sensitive if there exists a
state 5'1 = (e i , m l , P l , rl), and i(S1) = $2 = @2, m.2,
p2,/'2) such that i (&) does not memory trap, and either:
(a) rl ~ r2, or (b) ml ~ m2, or both.

Tha t is, an ins t ruct ion is cont ro l sensitive if it
a t tempts to change the a m o u n t of (memory) resources
available, or affects the processor mode wi thout going
through the memory t rap sequence. 2 The examples
given of privileged ins t ruct ions are a l so -con t ro l sen-
sitive. Ano the r example of a control sensitive ins t ruct ion
is JRST 1, on the DEC PDP-10, which is a re turn to user
m o d e .

There are several aspects of this definit ion that bear
explanat ion. First , in the intui t ive definit ion of a VMM,

it was ment ioned that complete control over system
resources was required. Cont ro l sensitive ins t ruct ions
are those which affect, or potent ia l ly affect, that con-
trol. In this simplified view of third generat ion machines ,
the only resource is m e m o r y ?

Second, ours is a simplified machine. There are no
isolated condi t ion codes or other compl ica t ions by
which inst ruct ions can interact, other than through the
contents of the PSW. For actual machines on which
ins t ruct ions such as ADD or DIVIDE trap on exception
condit ions, the definition of control sensitivity should
exclude those traps as well as memory traps.

In order to describe a second variety of sensitivity,
we first in t roduce a bit of nota t ion. Earlier, the reloca-
t i on -bounds register with values r = (l,b) was defined.
For x an integer, we define an operator @, such that
r' = r G x = (l+x ,b) . The relocation register has had
its base value shifted by the value of x.

At this point, we note that the only part of memory
that can be accessed from a part icular state is that
specified by the re loca t ion-bounds register R. So for the
purposes of examining the effect of an instruct ion, we
can just as well include in the state description only
that por t ion of memory to which we are restricted by
R. The nota t ion E I R will mean the contents of that
part of memory. For r = (l,b), E I r stands for the
contents of that section of memory from location /
to locat ion l q- b. So, for example, we might essentially
specify a state by the no ta t ion S = (e [r , m, p, r)?
What then does E I r @ x mean? Combi n i ng the two
pieces of nota t ion , it represents the contents of that
section of memory from [l + x] to [l + b + x].

Then to say that E I r = E ' I r @ x means that for
0 < i < b , E [l + i] = E ' [l + x - t - i].

Intuit ively, we are getting ready to describe condi-
t ions akin to those which occur when programs are
moved abou t in executable storage.

After this unfor tuna te ly no ta t ion- laden tangent , we

1 This property will be used in the proof.
Certain machines may have instructions that can store old

and new PSWs directly; that is, reference e[0] or e[l], regardless of
the values in the relocation register R. In that case, one might wish
to add to the two control sensitivity conditions a third one: that
el[i] ~ e2[i] for i = 0,1.

3 We do not treat the processor as a resource. In its simplest
form, the virtual machine concept does not require multiprogram-
ruing or time-sharing, so that it is not necessary to control alloca-
tion of the processor. In most practical systems, however, this
assumption is not accurate, so that when I/O is introduced, it will
have to be changed. One curious effect of ignoring the resource
aspect of the processor is that a HALT instruction may be allowed
to execute directly, behavior that will not be acceptable if virtual
machine time-sharing is considered.

4 To be more precise, (e J r, m, p, r) represents an equivalence
class of states: those whose values of m, p, and r match, and lor
whom that portion of memory from 1 to 1 -4- b is the same. To be
completely accurate, it must also be the case that E[I] is also the
same. In this way the equivalence classes of states are maintained .
by instructions. That is, for any $1 and $2 both in the class (elr ,
m, p, r) and any instruction i, where i(S,) = S,' and i(S2) = $2',
Sl' and $2' are also in the same equivalence class. Even though
(e I r, m, p, r) really specifies a set of states rather than a single
state, we will not maintain the distinction in the text since it will be
clear from context that instructions behave as above.

415 Communications July 1974
of Volume 17
the ACM Number 7

are now ready for a definition of the second kind of
sensitive instruction. An instruction i is behavior sen-
sitive ~ if there exist an integer x and states:

(a) & = (e I r, m r , p , r), and
(b) & = (e [r @ x , m . , , p , r @ x),

where

(c) i (&) = (e, I r, m l , p , , r),
(d) i(&) = (e2 I r @ x, m.2,p.e, r @ x), and
(e) neither i(&) or i(&) memoryt rap ,

such that either

(a) e l [r # e 2 1 r O x, or
(b) pl # p2, or both.

Intuitively, an instruction is behavior sensitive if the
effect of its execution depends on the value of the reloca-
t ion-bounds register, i.e. upon its location in real
memory , or on the mode. The other two cases, where
the locat ion-bounds register or the modes do not
match after the instruction is executed, fall into the
class of control sensitive instructions.

In our model, there are really two kinds of behavior
sensitivity. In one case, which might be called location
sensitivity, an instruction's execution behavior de-
pends on its location in real memory . In the other, an
instruction's behavior is affected by the machine 's mode.

E x a m p l e of behavior sensitive instructions:
Locat ion sensi t ive-- load physical address (IBM 360/

67 ERA).
Mode sensi t ive--move f rom previous instruction

space (DeC PDP-11/45 MVPI). (This instruction forms its
effective address f rom information that depends on the
current mode.)

By definition, we shall say that an instruction i is
sensitive if it is either control sensitive or behavior
sensitive. I f i is not sensitive, then it is innocuous.

N o w that we have classified instructions, we need
to specify the virtual machine moni tor more exactly.

4. The Virtual Machine Monitor

The virtual machine moni tor will be a particular
piece of software, which we shall call a con tro lprogram,
that exhibits certain properties. That p rogram consists
of several modules. The necessary properties of those
modules are presented. It will then be demonst ra ted
that a control p rogram which meets the stated prop-
erties can be constructed for third-generation-like ma-
chines whose instruction set fulfills one particular con-
straint.

The control program modules fall into three groups
which we present fairly informally. First is a dispatcher
D. Its initial instruction is placed at the location to
which the hardware traps: the value of P in location 1.
Note that a l though not included in our simple trap
definition, certain machines trap to one of several loca-

tions depending on the type of trap. Such behavior
causes no real difficulty since there may be several
" f i rs t" instructions (entry points) to the dispatcher.

The dispatcher can be considered as the top level
control module of the control program. It decides which
module to call. It may invoke one f rom either the second
or third set of modules.

The second set in this skeletal specification has one
member, an allocator A. It is the al locator 's task to
decide what system resource(s) are to be provided.
In the case of a single VM, the al locator needs only to
keep the VM and the VMM separate. In the case of a
virtual machine moni tor which hosts several VRS, it is
also the a l locator ' s task to avoid giving the same
resource (such as part of memory) to more than one
VM concurrently. It is assumed that any usual third-
generation-like machine has the capabilities to build an
al locator with the appropr ia te resource tables, etc.

The al locator will be invoked by the dispatcher
whenever an at tempted execution of a privileged instruc-
tion in a virtual machine environment occurs which
would have the effect of changing the machine resources
associated with that environment . At tempt ing to reset
the R (relocat ion-bounds) register is the pr imary ex-
ample in our skeletal model. If the processor were to
be treated as a resource, a halt would be another.

The third set of modules in the control p rogram can
be thought of as interpreters for all of the other instruc-
t ions which trap, one interpreter routine per privileged
instruction. The purpose of each such routine is to
simulate the effect of the instruction which trapped.
To specify further, recall that in our current nota t ion,
i (&) = S.e means that state $1 is mapped into state $2
by the instruction i. We will agree that i j (&) = $2
means that there exists a state Sa such that i(S1) = Sa
and j (Sa) = S.,.. The meaning of a sequence of instruc-
tions ij . . . k(S1) should then be clear.

Let vi represent such a series of instructions. Then
we may represent the set of interpretive routines as a
set of v~, indicated notat ional ly as {vi}, i = 1 to m,
where m is the number of privileged instructions. Of
course the dispatcher and al locator are also sequences
of instructions.

A control p rogram is thus specified by its three
parts: C P = (D, A, {vi}).

The only control programs of interest to us will
be those which satisfy the properties we are about to
discuss. Since it is a fairly c o m m o n practice in actual
systems, we assume, for simplicity, that the control
p rogram will run in supervisor mode. Tha t is, the
psw in location 1, which is loaded by hardware when a
trap occurs, has mode set to supervisor and program

The results of this paper are still true if the definition of be-
havior sensitivity is restricted to the cases where m2 ~ s. Changes
in instruction behavior due to relocation in supervisor mode does
not affect virtual machine code, since that code is run in user mode.

6See for example [6, pp. 108-113] for a discussion of other
alternatives to these assumptions.

416 Communications July 1974
of Volume 17
the ACM Number 7

counter set to the first location of the dispatcher.
Furthermore, we will agree that all other programs will
run in user mode. 6 That is, the Psw, which the control
program loads as its last operation, turning control
back to the running program, will have its mode set to
user. Hence it will be necessary that one location in the
control program be used to record the simulated mode
of the virtual machine.

5. The Virtual Machine Properties

There are three properties of interest when any
arbitrary program is run while the control program is
resident: efficiency, resource control, and equivalence.

The efficiency property. All innocuous instructions
are executed by the hardware directly, with no interven-
tion at all on the part of the control program.

The resource control property. It must be impossible
for that arbitrary program to affect the system re-
sources, i.e. memory, available to it; the allocator of the
control program is to be invoked upon any attempt.

The equivalence property. Any program K executing
with a control program resident, with two possible
exceptions, performs in a manner indistinguishable from
the case when the control program did not exist and K
had whatever freedom of access to privileged instruc-
tions that the programmer had intended.

As mentioned earlier, the two exceptions result from
timing and resource availability problems. Because of
the occasional intervention of the control program,
certain instruction sequences in K may take longer to
execute, so assumptions about the length of time re-
quired for execution might lead to incorrect results.
In our simple system we will assume for the time being
that there are no such difficulties.

The resource availability problem is the following.
It might be the case, for example, that the allocator
does not satisfy a particular request for space (an
attempt to change the relocation-bounds register). The
program may then be unable to function in the same
manner as it would if the space were made available.
The problem could easily occur, since the control pro-
gram itself takes space.

One way around this difficulty is to realize that the
virtual machine environment being produced is a
"smaller" version of the actual hardware: logically the
same, but with a lesser quantity of certain resources.
Then the equivalence to be guaranteed is that between
running on an actual smaller hardware machine and the
environment we have created. On a paged machine, the
resource consumed is more likely drum space to hold
the pages of the VMM. In any case, we will specify this
equivalence property more precisely. But first, a defi-
nition and the statement of our major theorem are in
order.

We say that a virtual machine monitor (VMM) is any
control program that satisfies the three properties of

417

efficiency, resource control, and equivalence. Then
functionally, the environment which any program sees
when running with a virtual machine monitor present is
called a virtual machine. It is composed of the original
real machine and the virtual machine monitor. This
informal definition should agree with the intuitive de-
scription early in this paper.

That done, we may now state our basic theorem.
THEOREM 1. For any conventional thh'd generation

computer, a virtual machine monitor may be constructed
i f the set o f sensitive instructions for that computer is a
subset o f the set o f privileged instructions.

6. Discussion of Theorem

Before discussing the import of this theorem, it
would be appropriate to clarify what is meant by "con-
ventional third generation computer." This phrase is
intended to imply all the assumptions made so far in
this paper regarding the operation of: relocation mech-
anisms, supervisor/user mode, and trap mechanisms.
The assumptions were chosen to provide both clarity
and a reasonable reflection of the relevant practices in
common third generation machines. Also, the phrase
is meant to imply that the instruction set is of general
purpose enough to allow the construction of a dis-
patcher, allocator, and a generalized table lookup
procedure. The need of the last will appear later in this
discussion.

The theorem provides a fairly simple condition
sufficient to guarantee virtualizability, assuming, of
course, that the requisite features of "conventional
third generation machines" are present. However,
those features which have been assumed are fairly
standard ones, so the relationship between the sets of
sensitive and privileged instructions is the only new
constraint. It is a very modest one, easy to check.
Further, it is also a simple matter for hardware designers
to use as a design requirement. Of course, we have not
characterized the requirements which result from in-
terrupt handling or I/O. They are of a very similar nature.

It will be useful in the proof to characterize the
equivalence property in terms of a homomorphism on
possible states in C, the collection of machine states.
Partition C into two parts. The first set C~ contains all
those states for which the VMM is present in memory and
the value of P in the PSW stored in location 1 is equal
to the first location of the VMM. The second set Cr con-
tains the remaining states. The two sets reflect the
possible states of the real machine with and without a
VMM, respectively.

Each instruction in the processor set can be thought
of as a unary operator on the set of states: i(Si) = Sk .
Likewise, each instruction sequence e,,(S1) = ij. • . k (S1)
= 5'2 can also be thought of as a unary operator
on C. Consider all the instruction sequences of finite
length. Call that set of instruction sequences I. This

Communications July 1974
of Volume 17
the ACM Number 7

set contains the operators with which the homorphism
will be concerned.

A virtual machine map (VM map) f : Cr ~ Co is a
one-one homomorphism with respect to all the opera-
tors ei in the instruction sequence set L

That is, for any state Si C Cr and any instruction
sequence ei, there exists an instruction sequence e~'
such that f (ei(Si) = ei'(f(Si)). This correspondence is
shown in Figure 2.

There are two related properties included in the
definition of a VM map. First is the mathematical
existence of a particular mapping from the states of the
real machine to the virtual machine system. Nothing,
however, is said about the ability to construct such a
map, by hardware or any other way. Second is the
actual existence of instruction sequences el' on the C,,
domain that correspond to the sequences ei on the C~
domain. We demand as part of the definition of a VM
map that for each e,, the appropriate e / c a n be found
and executed. Hence it is not immediately clear that a
VM map exists for a particular machine.

As part of the definition, it is also necessary that f
be one-one. This requirement is equivalent to saying
t h a t f h a s a (left) inverse. Call that inverse g. It will be
needed in the proof.

To make this mapping concept more precise, we
will demonstrate a particular VM map.

Let the control program occupy the first k locations
of physical memory. That is, El0] and El1] are reserved
for Psws, so the control program takes locations 2
through k -- 1. The next w locations will be used for
a virtual machine. We assume that k + w _< q. So
f (E , M, P, R) = (E', M', P', R') where S = (E, M,
P, R) is the machine without a VMM present. It is as-
sumed that in this real machine (the machine to which
we will compare the activity in the virtual machine),
the value of b in r = (1,b) is always less than w. Then

E'[i q-- k] = Eli], f o r i = 0, w - - 1,
E '[I] = the control program, f o r i = 2 t o k - - 1,
E'[i] = (m',p',r'),

m' = supervisor,
p ' = first location of the control program,
r ' = (0 , q - 1),

E'[0] = (m,p,r) as last set by trap handler,
M' = u (user),
p ' = p,
R' = (l + k, b), where R = (l, b).

Notice that the VM map specified above only maps
states after the completion of one instruction in the
real machine and before the beginning of the next.

This virtual machine map is a fairly simple one; it is
certainly possible to create much more complex func-
tions which display the properties of a VM map required
so far. However, the above will be taken as the stand-
ard VM map, and for the remainder of this paper any
reference to a VM map will mean the standard VM map,
unless otherwise noted.

418

Fig. 2. The virtual machine map.

Now we can state what is meant by "equivalence,"
or "essentially identical effect" more precisely. Suppose
the two machines are started, one in state 5'1, the other
in state $1' = f(S~). Then the environment provided by
the virtual machine monitor is equivalent to the real
machine if and only if, for any state $1, if the real machine
halts in state $2 ; then the virtual machine halts in state
S~' = f(S2). By the virtual machine halting, we mean
that an attempt is made in the virtual machine system
to execute a halt from a loca t ionj where j > k, that is,
by the user program. Again see Figure 2.

This definition is chosen for several reasons. First,
halts are used as comparison points rather than counts
of the number of instructions executed, for example,
because certain instructions will be interpreted by the
virtual machine system, using potentially long in-
struction sequences. Also, since the VM map f is so
simple and the difference from the user's point of view
so inconsequential, we argue that it is not necessary to
actually apply g to determine whether g(S2') = 5'2 in
order to check for equivalence. Showing thatf(S2) = $2'
is enough.

Proof Sketch
The proof of the theorem consists of demonstrating

that a control program can be constructed which has the
three properties of equivalence, resource control, and
efficiency as now defined.

We construct a control program that obeys the
three requisite properties. It is the cp outlined earlier.
The only constructive part not demonstrated was the
ability to provide the appropriate interpretive routines
for all privileged instructions. We demonstrate below
that a general solution exists. Note that this will be an
existence argument only. In practice there are much

Communications July 1974
of Volume 17
the ACM Number 7

more practical techniques. The effect of any privileged
instruction (in general, any instruction) depends only
on M, P, R, E[1] and E I R; that is, not on all of memory,
but only on location 1 and that part specified by the
relocation bounds register R. The maximum size of
E] R is w. Then the effect of any privileged instruc-
tion can be specified in a table of two-tuples where the
length of the table is the number of possible states
that <EIR , M, P, R) can describe. The first entry in
each tuple is a state, the second the state corresponding
to the effect of the particular privileged instruction
executed in the first state.

Such a state transition table can be extremely large,
and there is a table for each privileged instruction. The
VMM, that is to say k, can be quite large. Without going
through the arithmetic, we argue however that the
tables can be made small by limiting the size of the
the real machine. That is, w can be chosen small.

We have assumed that third generation machines
have an instruction set capable of managing these
tables. Hence, interpretive routines are guaranteed con-
structable. Note of course that such state tables are a
last resort, for those privileged instructions of an ex-
tremely arcane nature which are in fact arbitrary al-
gorithms. By limiting the size of " r ea l " memory
though, the number of nonequivalent such programs
is also limited, hence the appropriate tables are also of
limited size. In all real cases today, much simpler and
more efficient routines exist, and should be used.

This completes the description of the control pro-
gram, so it remains to discuss the three properties.

Guarantees of the resource control and efficiency
properties are trivially dispensed with. By the definition
of sensitive instruction and the subset requirement of
the theorem, any instruction that would affect the
allocation of resources traps and passes control to the
VMM. Efficiency has been taken to mean the direct
execution of innocuous instructions; we have con-
structed the VMM to provide that behavior.

Only equivalence remains. It is necessary to demon-
strate that, for any instruction sequence t = ij . . . k
where k is a halt and any state S~ of a real machine,
the following is true.

Let $1' = f(S1) and $2 = t(S~). Thenf(S2) = t(S~').
Again, see Figure 2.

First, we demonstrate that the equivalence prop-
erty is true for single instructions; that is, for t = any
instruction i. We consider two cases, innocuous in-
structions and sensitive instructions. Both cases are
easy, and demonstrated in detail in the Appendix as
lemmas 1 and 2. The innocuous case follows from the
definition of an innocuous instruction and direct applica-
tion of the definition of VM map. The sensitive case
follows from the fact that all sensitive instructions are
privileged, from the existence of correct interpretation
sequences and the VM map definition.

Since single instructions "execute correctly," it now
remains only to show that finite sequences also do.

419

That is for any instruction sequence e,~ = ij . . . k,
em(f(S)) = f(em'(S)). This fact follows from lemmas 1
and 2, and the definition of the VM map f as a one-one
homomorphism. It is a fairly standard proof and is
demonstrated in the Appendix as lemma 3.

The proof is now complete, since for third-genera-
tion-like machines in which sensitive instructions are a
subset of privileged instructions, we have demonstrated
that a control program can be constructed which obeys
the required three properties. That is, we have ex-
hibited a VMM. Q.E.D.

Note that there are several reasons why the necessity
direction of this theorem is not true in general. That is,
under certain conditions it may still be possible to
virtualize a machine even if the conditions of the theorem
are not fulfilled. As a case in point, architectures that
include location sensitive instructions may still support
a virtual machine system if it is possible to construct a
VMM that resides in high core, letting other programs
execute unrelocated. Location sensitivity then would
not matter.

In addition, there may be instructions that are not
true privileged instructions as defined earlier, but which
still trap when an undesirable action would result. An
example of such a case is an instruction that is able to
change the relocation bounds register, but can only
decrease the bounds value when executed from user
mode.

7. Recursive Virtualization

A number of related results can quickly follow from
this approach. One simple example is the idea of
recursive virtualization. Is it possible for a virtual
machine system to run under itself a copy of the VMM,
and will that copy also exhibit all the properties of a
VMM? If this procedure can be repeated until the
resources of the system are consumed (since each con-
trol program takes up space), then the original machine
is recursively virtualizable [2, 6].

THEOREM 2. A conventional third generation computer
is" recursively virtualizable i f it is: (a) virtualizable, and
(b) a VMM without any timing dependencies can be
constructed for it.

PROOF. This property is nearly trivial to demon-
strate. A VMM is guaranteed, by definition, to produce an
environment in which a large class of programs run
with effect identical to that on the real machine. Then it
is merely necessary to demonstrate that a VMM which
belongs to that class of programs can be constructed.
I f it can, then the performance of the VMM running on
the real machine and under other VMMS will be in-
distinguishable.

The only programs excluded from the class of
identically performing programs are those which are
resource bound, or have timing dependencies. The
second limitation is mentioned in the statement of the

Communications July 1974
of Volume 17
the ACM Number 7

theorem. The resource bound for our skeletal model is
only memory, and it just limits the depth (number of
nested VMMS) of the recursion, as pointed out in the
definition of recursive virtualization. Hence the VMM as
constructed earlier qualifies as a member of that " large
class of programs." Q.E.D.

8. Hybrid Virtual Machines

1 o aemonstrate the utility of the concept of a HVM
monitor, we present the following.

Example. The PDP-10 instruction JRST 1, (return to
user mode) is a supervisor control sensitive instruc-
tion which is not a privileged instruction. Hence the
PDP-10 cannot host a VMM. However, since all user
sensitive instructions are privileged, it can host a hy-
brid virtual machine monitor [3].

As remarked earlier, there exist very few third
generation architectures which are virtualizable [5, 6].
For that reason, we relax the definition to yield a re-
lated, more general, but less efficient form which we
label a hybrid virtual machine system (HVM) [6]. Its
structure is almost identical to a virtual machine sys-
tem, but more instructions are interpreted rather than
being directly executed. Hence the HVM is less efficient
than a VM, but as a result, more actual third generation
architectures qualify. For example, the PDP-10 can
host a nVM monitor, although it cannot host a VM
monitor [3].

To specify the relaxed conditions, it is necessary to
divide the class of sensitive instructions into two not
necessarily disjoint subsets.

An instruction i is said to be user sensitive if there
exists a state S = (E, u, P, R) for which i is control
sensitive or behavior sensitive.

That is, an instruction i is user control sensitive if the
definition given earlier for control sensitivity holds,
with ml in that definition set to user. The instruction
i is user behavior sensitive if the definition for location
sensitivity holds with the mode of states $1 and $2
equal to user. Then i is user sensitive if it is either user
control sensitive or user location sensitive. Intuitively,
these are instructions which cause difficulty when
executed from user mode.

In a parallel fashion, an instruction i is supervisor
sensitive if there exists a state S = (E, s, P, R) for which
i is control sensitive or behavior sensitive.

THEOREM 3. A hybrid virtual machine monitor may
be constructed for any conventional third generation
machine in which the set o f user sensitive instructions
are a subset o f the set o f privileged instructions.

In order to argue the validity of the theorem, it is
first necessary to characterize the HVM monitor. The
difference between a HVM monitor and a VMM is that,
in the nVM monitor, a// instructions in virtual super-
visor mode will be interpreted. Otherwise the HVM
monitor is the same as the VM monitor. Equivalence
and control can then be guaranteed as a result of two
facts. First, as in the VMM, the nVM monitor always
either has control, or gains control via a trap, whenever
there is an at tempt to execute a behavior sensitive or
control sensitive instruction. Second, by the same argu-
ment as before, there exist interpretive routines for all
the necessary instructions. Hence, all sensitive instruc-
tions are caught by the HVM and simulated.

9. Conclusion

In this paper, we have developed a formal model of a
third generation computer system. Using the model we
have derived necessary and sufficient conditions to
determine whether a particular third generation machine
can support a virtual machine monitor. While previous
authors [4, 5] have speculated about architectural
characteristics required of third generation virtual
machines, we have been able, using the formal ap-
proaches of this paper, to establish much more precisely
the mechanisms to be used and the requirements to be
met. These results have been used at UCLA, for ex-
ample, to evaluate the DEC PDP-11/45, and make
modifications to it so that a virtual machine system
could be constructed [13].

While the model does capture much of the essence
of third generation virtual machines, there have been
a number of simplifications introduced for purposes of
presentation. It has been indicated empirically that
some of these omissions, such as I/O resources and
instructions, asynchronous events, o r . m o r e complex
memory mapping schemes can be added as straight-
forward extensions to the basic model and our major
result extended [6, 12].

Very recent work in computer systems architecture
has included proposals for virtualizable architectures
[2, 6, 8, 10, 11] which directly support virtual machines
while avoiding the need for traditional VMM interpretive
software overhead. The formal techniques, as sketched
in this paper, may be applied to these new architectures
to verify that they are virtualizable as claimed.

Acknowledgments. The authors would like to thank
their colleagues at both UCLA and Harvard for many
helpful discussions on various aspects of virtual com-
puter systems. Special thanks are due to Professor G.
Estrin of tJCLA and Dr. U.O. Gagliardi of Harvard
University and Honeywell Information Systems for
their advice and encouragement during the prepara-
tion of this paper. In addition, the authors wish to
thank the referees for their constructive comments on an
earlier draft of this paper.

420 Communications July 1974
of Volume 17
the ACM Number 7

Appendix

Several results were used in the s tatement of the
p roo f without being explicitly demonstrated. They are
the lemmas which follow.

LEMMA 1. Innocuous instructions, as executed by the
virtual machine system, obey the equivalence property.

PROOF SKETCH. Let i be any innocuous instruction.
Let S be any state in the real machine, and S ' = f (S) .
S = (e I r, m, p, r) and S ' = (e' [r ' , m' , p ' , r '). However,
f rom the definition o f f , e' I r ' = e I r and p ' = p, and
the bounds in both r ' and r are the same. By definition,
i(S) cannot depend on m or 1 (the relocation part of r),
and all other parameters are the same for both S and S'.
Hence it must be the case that i(S) = i(S'). Q.E.D.

LEMMA 2. Sensitive instructions, as interpreted by
the virtual machine system, obey the equivalence property.

PROOF SKETCH. By assumption, any sensitive in-
struction i traps. By construction, the interpretat ion is
done correctly, given all necessary parameter specifica-
tions. The values of locations E I R are not changed
by the trap. The values of P and R are saved in El0].
The "s imula ted m o d e " value M is stored by the VMM.
Hence all necessary informat ion is present, so proper
interpretat ion can be performed. Q.E.D.

LEMMA 3. Given that all single instructions obey the
equivalence property, any finite sequence of instructions
also obeys the equivalence property.

PROOF. The p roof is by induction on the length of
the instruction sequence. Each sequence can be thought
of as a unary operator on the set C of states. The basis of
the lemma is true by the hypothesis in the statement of
the lemma.

In the following, parentheses will be used only
sparingly. Hence f (g(h(S))) may be written fgh(S).

Induction Step. Let i be any instruction, and t any
sequence of length less than or equal to k, and t' the
instruction sequence corresponding to t.

Then by the induct ion and lemma hypothesis, we
have that, for any state S, there exists an instruction
sequence t ' such that

f (t (S)) = t '(f(S)) and f (i (S)) = i '(f(S))

where the primed operators may or may not be the
same instructions or sequences as the unprimed opera-
tors. The instruction sequences may differ since some of
the instructions expressed by the unpr imed operators
may be sensitive. The primed opera tor includes the
interpretat ion sequences for those instructions.

We are given

f t (s) = t ' f (s) . (1)

Clearly then,

i'ft(S) = i't'f(S). (2)

But, for any S, we are given

i 'f(S) = f i (S) . (3)

So, letting t(S) in (2) be S in (3), we have, combining
(3) with the left side o f (2):

f i t (S) = i't'f(S).

Since the sequence may be any sequence of length
k + 1, and the above is the desired induction step
result, the lemma is proven. Q.E.D.

References
1. Buzen, J.P., and Gagliardi, U.O. The evolution of virtual
machine architecture. Proc. NCC 1973, AHPS Press, Montvale,
N.J., pp. 291-300.
2. Gagliardi, U.O., and Goldberg, R.P. Virtualizable architectures,
Proc. ACM AICA lnternat. Computing Symposium, Venice,
Italy, 1972.
3. Galley, S.W. PDP-10 Virtual machines. Proc. ACM
SIGARCH-SIGOPS Workshop on Virtual Computer Systems,
Cambridge, Mass., 1969.
4. Goldberg, R.P. Virtual machine systems. MIT Lincoln
Laboratory Rept. No. MS-2686 (also 28L-0036), Lexington,
Mass., 1969.
5. Goldberg, R.P. Hardware requirements for virtual machine
systems. Proc. Hawaii hlternat. CoJ~lbrence on Systems Sciences,
Honolulu, Hawaii, 1971.
6. Goldberg, R.P. Architectural principles for virtual computer
systems. Ph.D. Th., Div. of Eng. and Applied Physics, Harvard
U., Cambridge, Mass., 1972.
7. Goldberg, R.P. (Ed). Proc. ACM SIGARCH-SIGOPS
Workshop on Virtual Computer Systems, Cambridge, Mass.,
1973.
8. Goldberg, R.P. Architecture of virtual machines. Proc. NCC
1973, AFIPS Press, Montvale, N.J., pp. 309-318.
9. IBM Corporation. IBM Virtual Machine Facility/370:
Planning Guide, Pub. No. GC20-1801-0, 1972.
10. Lauer, H.C., and Snow, C.R. Is supervisor-state necessary?
Proc. ACM AICA lnternat. Computing Symposium, Venice,
Italy, 1972.
11. Lauer, H.C., and Wyeth, D. A recursive virtual machine
architecture. Proc. ACM SIGARCH-SIGOPS Workshop on
Virtual Computer Systems, Cambridge, Mass., 1973.
12. Meyer, R.A., and Seawright, L.H. A virtual machine time-
sharing system. IBM Systems J. 9, 3 (1970).
13. Popek, G.J., and Kline, C. Verifiable secure operating system
software. Proc. NCC 1974, AFIPS Press, Montvale, N.J., pp. 145-
151.

421 Communications July 1974
of Volume 17
the ACM Number 7

