
Interpreting Leo-II’s proofs in Isabelle/HOL

Nik Sultana1? and Christoph Benzmüller2

1 Cambridge University Computer Lab, UK
2 Freie Universität Berlin, Germany

Abstract. We describe the design and implementation of a proof-reconstruction
module that converts TPTP-encoded proofs produced by Leo-II into
theorems of Isabelle/HOL. We provide theoretical and practical justifi-
cation for design decisions, and discuss the generality of the method.

1 Introduction

The case for interfacing logic tools together has been made countless times in
the literature, but this has not diluted its importance. Nor are the solutions to
this problem reaching saturation: despite there being various logics and tools for
carrying out formal developments, practitioners lament the di�culty of reliably
exchanging mathematical data between tools.

Writing a proof-reconstruction tool is hard, since usually such tools need to
be extended for each source prover they are to handle (since each prover usually
implements its own proof calculus). Moreover, system integration is inevitably
fraught with di�culties of engineering. This article describes a how to uniformly
transform proofs from a class of calculi into a form which can be readily recon-
structed in Isabelle/HOL (§3).

We also describe a new bridge between Leo-II and Isabelle/HOL, which
allows Isabelle/HOL users to reliably import proofs found by Leo-II. There
is already an interface between Leo-II and Isabelle/HOL, forming part of Is-
abelle/HOL’s Sledgehammer tool [1]. Sledgehammer interfaces between Isabelle/HOL
and various kinds of proof tools. It prepares and translates Isabelle/HOL prob-
lems into the provers’ input languages. If a target prover finds a proof, Sledge-
hammer oversees the reconstruction of the proof in Isabelle/HOL. However,
proof reconstruction in Sledgehammer consists of re-finding a proof using another
prover whose proofs can be interpreted by Isabelle/HOL: currently Sledgeham-
mer relies on Metis [2] and Z3 [3] for this. We hope that our work can complement
these by making Leo-II available to assist with proof-reconstruction. The imme-
diate consequence of our work is that the reliability of reconstruction of Leo-II
proofs increases considerably—from about 70% to over 90% in our experiments
(§5).
? Thanks to Larry Paulson for regular conversations on this topic, and for Isabelle.

Contributions. We study syntactic transformations (§3) which can map proofs
encoded in formalisms belonging to a class of consistency-preserving calculi, into
proofs encoded in formalisms in a class of validity-preserving calculi. In partic-
ular, we study how this can be used to map Leo-II proofs into Isabelle/HOL
theorems. We argue for the adequacy (soundness and completeness) of these
transformations. An implementation of a Leo-II proof-reconstruction module
for Isabelle/HOL is described (§4) and evaluated (§5).

In the course of this work we have done various improvements to Leo-II’s
proof output. We also o↵er suggestions for improvements to the TPTP proof
format, arising from our experience in building the proof-reconstruction module.
These suggestions are discussed in §7. Related work is addressed in §6.

2 Background

2.1 Leo-II

Leo-II [4] is an implementation of a resolution-style calculus for classical higher-
order predicate logic. It works in concert with other provers (usually E [5])
to find refutations. In this article we will focus on the calculus of Leo-II (as
reflected in its proof output), not the implementation, and we will describe
parts of the calculus as we go along. Leo-II consumes problems encoded in
TPTP languages [6], and produces proofs [7] which are also encoded in TPTP
languages. In this article we will describe how such proofs can be imported into
Isabelle/HOL as theorems.

2.2 Isabelle and Isabelle/HOL

Isabelle [8] is a programmatic framework for building interactive reasoning tools.
It provides a meta-logic and associated API to facilitate the encoding of, and
reasoning with, various logics. Isabelle/HOL [9] is an encoding of classical higher-
order predicate logic (HOL) in Isabelle.

Isabelle’s formalism is based on the simply-typed �-calculus [10], and it uses
a linear notation for rules. For instance the rule A^B

B

is encoded in Isabelle
as Trueprop(A ^ B) =) Trueprop(B). Note that ‘A ^ B’ and ‘B’ are terms in
the object language (say, propositional logic), whereas ‘Trueprop(A ^ B) =)
Trueprop(B)’, ‘=)’, ‘Trueprop(A^B)’ and ‘Trueprop(B)’ are terms in the meta-
language. ‘Trueprop’ is a truth judgement in the meta-language; it maps proposi-
tions in the object language (such as HOL) to propositions in the meta-language
(Isabelle). Semantically, in HOL propositions take Boolean values. Isabelle is a
minimal logic, and its propositions can be interpreted as witnesses to the inhab-
itation of simple types [11].

Isabelle interprets three primitive constants: ‘⌘’ denotes identity of proposi-
tions up to ↵�⌘-equivalence, ‘=)’ is an implication between propositions, and
‘
V
’ is a binder denoting generalisation: it maps a propositional function into a

proposition.

It is useful to distinguish the kinds of symbols which appear in Isabelle encod-
ings, together with the typographical conventions we will use to help distinguish
them:

Variables x, y, . . . are symbols which are bound by an object-level binder, and
whose scope is determined by the binding.

Abstractions �x. T (for T a meta-variable ranging over terms) express �-
functions.

Constants c, d, . . . denote a fixed and arbitrary value. Constant symbols are
drawn from a countable signature ⌃ and are globally scoped (i.e., their scope
extends throughout the theory). We write constants (or symbols which are
regarded to be constants at the object-level, as described next) in sans.

Logical variables x̂(), ŷ(c,d), . . . are meta-level unbound variables which denote
a non-fixed and arbitrary value. Their scope extends to the end of a proof.
Despite being unbound, these variables are conscious to the scopes of enclos-
ing

V
-bindings. For instance, in a theory whose signature is ⌃, the logical

variable x̂() may only be instantiated for a �-term whose constants are in ⌃.
On the other hand if the logical variable ŷ arises in a context where variables
(say c and d) are bound at the meta-level using ‘

V
’, then the logical variable

is expressed as ŷ(c,d), and it may be instantiated for any �-term whose con-
stants are in ⌃ [{c, d}. In other words, the values of logical variables may
have an extended range. Careful handling of instantiation is important for
soundness and completeness, as discussed in §B.1.
In a local sense — that is, within a formula —

V
-bound variables can be

regarded to be constants, and ‘
V
’ can be used to formalise a local extension of

the signature. It was used by Paulson to encode Eigenvariable conditions [14].
Here it serves essentially the same purpose: encoding a name-freshness side-
condition wrt the original signature.

Semantically, ‘
V
’ names an arbitrary element of the universe. It also asserts

that a corresponding element in the domain must exist, but this is acceptable
since, in our object logic, domains are non-empty.

For a
V
-prefixed statement to be valid, the statement’s body must be satis-

fied by any such named element. This describes a universal quantifier; indeed,
for HOL’s ‘8’ combinator it’s possible to prove that 8P ⌘ V

P for any HOL
predicate P . (Recall that in HOL, quantifiers are higher-order functions, and
we can write 8P , 8(�x.Px), and 8x.Px interchangeably since HOL validates
⌘-equivalence.)

At the top-level of a term, there is no such thing as free variables. The object-
predicate P in the previous meta-formula is bound in neither the object-level nor
the meta-level, but the binding does takes place, in the meta-meta-language, in
the phrase that follows it. In Isabelle/HOL, free object variables are implicitly
bound by ‘

V
’ at the meta-level.

Since we will use Isabelle-style notation to make meta-inference and meta-
binding explicit, we will extend Isabelle’s notation with a meta-existential binder,
denoted by ‘

W
’. This will be used in consistency-preserving calculi (such as that

of Leo-II) but not in validity-preserving calculi (such as that of Isabelle/HOL).

Following Isabelle’s non-classical character, we give an intuitionistic semantics
to ‘

W
x.P ’: it denotes a pair (d,⇡P (d)) consisting of a witness d and a proof ⇡

that P (d) = True.
However, this notation will be used only to make meta-level reasoning more

precise, and will not be interpreted by Isabelle. We will never use ‘
V
’ and ‘

W
’ in

the same formula.

Definition 1 (closed, closed modulo, scoped constants, signature ex-
tension). A formula is closed if all its object variables are object-level bound. A
formula is closed modulo a signature extension if the object-level free variables
are bound by

V
or

W
at the meta-level. The set of

V
or

W
-bound symbols which

are in scope in a subterm is called the signature extension relative to which that
subterm is interpreted. The object-level variables which are bound at the meta-
level are called scoped constants.

Notation 2. We write F1[F2], where F
i2{1,2} range over (object-logic) formulas,

to suggest that F2 occurs in F1. If F2 is an object-level variable then it means
that F1[F2] is not closed.

From here onward whenever we speak of a rule A1...An
An+1

in a consistency-
preserving calculus, we implicitly include the following variable-closure con-
straints:

A1 . . . A
n

W

W

0A
n+1

That is, A1, . . . , An+1 are in scope of
W
, and A

n+1 is also in scope of
W

0.

2.3 Henkin semantics

We will rely on the semantical framework described by Henkin for higher-order
logic, as described and developed by Benzmüller et al [12]. In particular, we will
work relative to the model class M

�fb (extensional higher-order logic without
Choice). We did not handle Choice yet since, in Leo-II’s calculus at least, the
Choice rule simply manages the instantiation of the axiom of Choice (in such a
way that avoids simulating Cut [13] during proof search). Thus, the Choice rule
enables further inferences to take place, but does not carry out inferences itself.
This behaviour could be simulated in Isabelle/HOL by instantiating a scheme
which formalises the axiom of Choice, and feeding these instantiations to the
counterparts of the Leo-II inferences which rely on them to eventually derive
the empty clause.

3 Rule transformations

In this section we discuss a general theoretical correspondence between Leo-

II proofs and Isabelle/HOL theorems, and prove that. in principle, for each
Leo-II-theorem F , a Leo-II-proof of F can be reconstructed in Isabelle/HOL

to show that F is an Isabelle/HOL-theorem (Corollary 8). We then discuss an
approach which allows for more e�cient implementation of proof reconstruction,
without sacrificing completeness. In what follows we will use Isabelle as a formal
meta-language, and we describe its relevant features as we proceed.

3.1 Tableau embeddings

Since Leo-II’s is a refutation calculus, it proves results of the form |= � �! False.
Rules in such a calculus are consistency-preserving, but not generally validity-
preserving. In the results that follow, the precise rules of a calculus don’t always
matter — we study properties of a calculus as a whole, by relying on its sound-
ness and completeness to assure us that any inconsistent set of formulas can be
refuted.

In what follows let C represent an arbitrary sound-and-complete refutation
calculus whose inference rules can be adequately formalised as Isabelle terms
(that is, their side-conditions are limited to variable conditions).3 LetV represent
a calculus whose rules preserve validity, and which can be formalised as Isabelle
terms; Isabelle/HOL is such as calculus. We take soundness and completeness to
be relative to extensional Henkin models, but several of the properties described
below hold in a broad class of classical logics.

We start with a basic lemma which establishes a correspondence between
two families of calculi.

Lemma 3 (Refutation correspondence). For all sets of sentences �, � `C ⇤
i↵ `V � �! False.

Proof sketch: The semantic expansions of � `C ⇤ and `V � �! False are
identical.
(Proof in §A.2) C

To reconstruct Leo-II proofs we will only use the ‘fi’ direction of Lemma 3.
But the lemma is not directly usable, since it does not show us how to transform
a proof from `C to `V. We now define a transformation for mapping inferences
from `C to `V. It will be used to map proofs between the two systems. Intuitively,
the transformation formalises the consistency-preservation property of a `C-rule
A1...An

B

by producing another rule which says: if there is no model satisfying
A1, . . . , An

, B then there is no model satisfying A1, . . . , An

; moreover, this latter
rule is admissible in `V (i.e., it is validity-preserving). This is also the informal
argument of Lemma 5, which validates this transformation.

Definition 4 (Contranegation). Given a rule r: A1 . . . A
n

W

W

0B
where

W
,0B is closed modulo, we transform it into r?:

3 This constraint may exclude exotic formalisations, but it is weak enough to include
Leo-II’s calculus.

A1 . . . A
n

V
,0

2

64
A1, . . . , An

, B
...

False

3

75
V

False

In Definition 4, the result r? is closed modulo. Also, since ‘
V
’ is a binder,

nested bindings can always be renamed to avoid variable capture. Thus we can
always ensure that ⌃ \ = ;, ⌃ \ 0 = ;, and \ 0 = ;.
Lemma 5. Assuming `C to be sound, and `V to be complete, then for each
inference r 2 `C, r is consistency-preserving i↵ r? is validity-preserving.

Proof sketch: We use the soundness of r to derive r? from r. Through semantic
reasoning, the two rules can be shown to be equivalent within a refutation setting.
(Proof in §A.3) C

Notation 6. The symbol ⇡ will range over proofs. We write ⇡ 2 `C if ⇡ is
encoded in a consistency-preserving calculus. Proofs consist of chains of instances
of inference rules (r1, . . . , rn) in that calculus.

We write ‘A `C,⇡ B’ to mean that from A we can derive B using calculus
`C, and that ⇡ is such a derivation.

We can now prove a constructive version of Lemma 3. A proof ⇡ can be
mapped into ⇡? by mapping each rule r element-wise to r?.

Lemma 7 (Refutation correspondence – constructive). For every proof
⇡ 2 `C, and for every �, � `C,⇡ ⇤ i↵ `V,⇡

? � �! False.

Proof sketch: Induction on derivations ⇡.
(Proof in §A.4) C

In principle then we should be able to map any proof from Leo-II’s calculus
into that of Isabelle/HOL.

Corollary 8. If Leo-II is sound and Isabelle/HOL is complete, then every
theorem proved by Leo-II is also a theorem of Isabelle/HOL.

Proof sketch: The proof follows from Lemma 7, the content of which describes
how to map a Leo-II proof into an Isabelle/HOL proof. We also verified this
by checking that, for each of the rules in Leo-II’s calculus, the transformation
yields Isabelle/HOL-admissible rules. (cf §A.5) C

Remark 9. The converse of Corollary 8 could be true in principle, since in (this
version of) HOL, refutation completeness means the same thing as complete-
ness.4 However, the converse is not believed to be true in practice because of the
following:

4 The negations we prove valid are fed to a contradiction rule, which allows us to
show the theorem-hood of arbitrary formulas by proving their double-negation. Use
of the contradiction rule is equivalent to assuming that the stability axiom [16, §2.3]
¬¬A ! A holds for all predicates A.

1. Isabelle’s calculus is polymorphic, while Leo-II’s is monomorphic, and we
don’t know of a complete encoding from the former into the latter. We could
restrict the translation to monomorphic Isabelle.

2. It is not known if Isabelle/HOL’s theory is stronger than the facts which are
Henkin valid. To deal with this, we could make sure to restrict the transla-
tion to Isabelle/HOL theorems which are purely derived in HOL (by filtering
away those Isabelle/HOL theorems which rely on non-HOL axioms). More
generally, we could encode the definitions from arbitrary Isabelle/HOL the-
ories into Leo-II, which should make the two systems equistrong.

3. Leo-II’s calculus (never mind the implementation) has not been proved to
be Henkin-complete. For that matter, Isabelle/HOL has not been proved
complete either, but the HOL calculus on which Isabelle/HOL is based [17]
has been proved sound and complete [18].

Structurally, Definition 4 maps `C-style systems into left-handed free-variable
tableau systems, the inferences of which can be admitted in `V-style systems.
In our setting, the tableau system is shallowly embedded in Isabelle/HOL.
The reconstructed fragment of the search space forms a tableau branch; this
branches further when disjunctions are processed, with each disjunct forming a
new branch. The preceding elements of the branch are shared by all subsequent
branches.

Remark 10. When we reconstruct a `C-refutation into a `V-proof via Defini-
tion 4 and Lemma 7, we are being less e�cient than when we would use a
tableau calculus directly, because the latter deletes redundant formulas from
the branches. Specifically, when an ↵-rule is applied the original conjunction
is deleted. (Note that we only delete a formula when a logically equivalent set
of formulas is added to the branch; anything weaker would generally introduce
incompleteness.) It should be possible to modify Definition 4, and subsequently
Lemma 7, to allow this deletion. This is a tiny optimisation which makes the
reconstruction behave like a tableaux proof, but we do not pursue this here.

3.2 Isabelle encoding of tableau embedding

We now look at some rules from Leo-II’s calculus, and the formalisation of their
contranegation encoding in Isabelle/HOL as meta-theorems. Meta-theorems are
essentially admissible rules. We have checked that the contranegation r? of each
Leo-II rule r is valid in Isabelle/HOL. This is described in Lemma 15 and
the Isabelle/HOL script is included in §E.2. Furthermore, in §D.1 we provide
an example a proof which is translated using this method. We also provide a
detailed description of the role of logical variables in this calculus in §B.

Let C,D be meta-variables ranging over Leo-II clauses, and A,B be meta-
variables ranging over formulas. Then Leo-II’s resolution rule

C _ [A]True D _ [B]False

C _D _ [A = B]False

whose transformed (Definition 4) form is

C _ [A]True D _ [B]False

C _ [A]True D _ [B]False C _D _ [A = B]False

...
False

False

can be encoded in Isabelle/HOL as
2

66664

C _ [A]True;
D _ [B]False;2

4
C _ [A]True;
D _ [B]False;
C _D _ [A = B]False

3

5 =) False

3

77775
=) False

where Leo-II literals [A]p (where p 2 {True,False}) are encoded in Isabelle/HOL
as A = p. Leo-II clauses are encoded as disjunctive HOL formulas. In Isabelle
notation, ‘;’ acts as a conjunction between hypothesis: [A;B] =) C abbreviates
A =) B =) C.

The Leo-II Skolemisation rule

C _ [8P]False
sk fresh constant

C _ [P sk]False

and which can be rewritten to encode the side-condition in the meta-language

C _ [8P]False
W
sk. C _ [P sk]False

and whose transformed (Definition 4) form is

C _ [8P]False

V
sk

2

64
C _ [8P]False C _ [P sk]False

...
False

3

75

False

can be encoded as
2

4
C _ [8P]False;
V
sk

C _ [8P]False;
C _ [P sk]False

�
=) False

3

5 =) False

Note that the
W
-bound sk in the `C-style calculus becomes

V
-bound when

mapped into the `V calculus. This is detailed in the proof of Lemma 5, but
intuitively, the

W
-bound sk can denote any element of the domain which can

satisfy the formula, whereas the
V
-bound sk is used in a setting where any

denotation of sk will ultimately result in a refutation.
And finally, the Leo-II generalisation rule

C _ [8P]True
X fresh variable

C _ [PX]True

and whose transformed (Definition 4) form is

C _ [8P]True

C _ [P X]True

...
False

False

can be encoded as
2

4
C _ [8P]True;
C _ [8P]True;
C _ [PX]True

�
=) False

3

5 =) False

3.3 Implicative embeddings

The technique described above su↵ers in practice because it does not delete
subsumed hypotheses. In addition to space complexity, there is some imple-
mentational complexity incurred when implementing the previous technique in
Isabelle. Normally, automatic provers use data structures allowing them to ad-
dress specific clauses; but Isabelle natively only allows the addressing of subgoals
— not hypotheses. This means that picking which clauses to apply an inference
to is not a simple matter: we might need to rotate the clauses making up the
hypotheses, or else backtrack through a space, since we cannot ‘point’ to the
relevant clauses. Having fewer items in the set of hypotheses makes it easier to
manage that set.

Using the embedding we have studied so far would produce rather bulky
reconstructions. While it would be convenient to apply the transformation in
Definition 4 uniformly to obtain a reconstructed proof, this wouldn’t work very
well in practice.

Definition 4 is particularly useful when most of the rules r 2 `C are not
validity-preserving. However, inspecting Leo-II’s calculus reveals that only two
rules aren’t validity preserving: Skolemisation and splitting.

If a r 2 `C is validity preserving, then it should be admissible in `V. We
should be able to encode every such rule directly in Isabelle/HOL, and prove it
to be a meta-theorem. We call such an embedding implicative.

Compared to the tableau embedding (§3.1), using such an embedding o↵ers
appealing features:

– We can formalise each r as a scheme, validate it in Isabelle/HOL (proving
it to be a meta-theorem), then instantiate it to obtain the precise instances
of r used by Leo-II. Clauses in Leo-II are ground, therefore we don’t have
free universal variables (but we may have Skolem constants) at the level of
inferences.

– Since we don’t have free universal variables, we can avoid using logical vari-
ables when chaining reconstructed inferences. This is desirable since handling
such variables requires us to rely on unification, which is not easy to con-
trol or tune. Moreover, the scope of such variables spans across branches,
creating dependencies.

– All inference rules can be reconstructed separately in isolation, then back-
chained together. Indeed, the reconstruction of separate inferences can be
parallelised, since (as mentioned above) they are independent from one an-
other. Since we are reconstructing each inference separately, we get a local
reasoning scope for each rule, and can write specialised code to target each
rule, without fearing interference from ongoing reconstruction in other parts
of the proof.

– This backchaining-based approach lends itself well for implementation over
Isabelle’s core inference engine, which works through resolution. In principle
Isabelle’s calculus is a constructive sequent calculus, but its reasoning engine,
for e�ciency reasons, mainly relies on a function implementing a derived
resolution rule, rather than on the primitive rules of the Isabelle calculus [14].

This approach is clearly desirable to the tableau embedding, but it is also clearly
not immediately and universally applicable to all of Leo-II’s rules. We will
now describe how to handle Skolemisation in order to implicatively embed such
inferences. We describe the handling of splitting in the next section.

Implicative Skolemisation. Instead of assigning a fresh constant to a witness,
Hilbert’s rule describes the witness using the information at hand (i.e., that such
a witness, if it exists, must satisfy a specific predicate):

9P
P ("P)

Hilbert’s rule can be used to simulate Skolemisation by validating the follow-
ing scheme for a faux Skolem constant c (that is, c is simply a theory-scoped
constant):

9P c = "P
P c

To use this, however, we would need to have Skolem equations (such as c =
"P above). Leo-II doesn’t provide these definitions, but we can discover them
during a pre-processing phase.

Since we are emulating Skolemisation, the constants must be kept in the con-
text of clause-level universally-quantified variables in order to ensure soundness.
Indeed, simulating Leo-II’s inference requires this.

Remark 11. Skolem constants are not adequately distinguished in higher-order
logic proofs encoded in TPTP. In such encodings, a Skolem constant c appears
as a normal constant. Such a constant’s scope extends throughout the theory.
This is unnecessary: a Skolem constant should be proof-scoped.

3.4 Combining embeddings for Leo-II proof reconstruction

In the previous section we have seen how we can directly interpret all but one of
Leo-II’s inferences in Isabelle/HOL, allowing us to use an implicative embedding
(§3.3) for those inferences.

The remaining rule is splitting; we use a tableau (§3.1) embedding for split-
ting, and obtain a hybrid embedding technique which allows arbitrary Leo-II

proofs to be mapped to Isabelle/HOL theorems. In fact, the simplified counter-
part to splitting turns out to be the _E (Disjunction Elimination) rule, which
is encoded in Isabelle/HOL as

2

4
C _D;
[C] =) False;
[D] =) False

3

5 =) False

By using the validity-preserving counterparts to the Leo-II rules, we can
backward-chain through the inferences. This is a style of reasoning which Isabelle
can handle very well.

Adequacy. Soundness is assured since (i) the rules which are implicatively em-
bedded are validity-preserving, and (ii) the _E rule used for splitting is sound.
Completeness is assured since every Leo-II inference — be it validity-preserving
or not — can be interpreted as an Isabelle/HOL meta-theorem, via the embed-
dings described above. Thus we are still assured that every Leo-II theorem is a
theorem of Isabelle/HOL.

4 Implementation

We used the Isabelle-integrated TPTP parser and interpreter developed during
previous work [1]. It is convenient that both TPTP-encoded problems and proofs
share the same syntax; in TPTP the two kinds of formal objects di↵er mainly
in the annotations given to formulas. These annotations contain information
related to the inference made by a theorem-prover.

When a Leo-II proof is loaded, it goes through four proof transformations:

1. Eliminating redundant parts of the proof — occasionally Leo-II includes
redundant chains of inferences which do not contribute to the refutation.

2. Extracting subproofs related to splitting. Each subproof yields a refutation.
The set of nodes generated during a subproof are disjoint from the sets from
other subproofs. Each subproof is used to construct a lemma, which is fed
into the _E rule.

3. Separating instantiation from other inferences. Unfortunately Leo-II some-
times overloads inferences with instantiation. This transformation separates
the two into consecutive inferences, allowing us to handle them separately.

4. Discovering Skolemisation equations (described in §3.3). This involves analysing
the syntax of Skolemisation steps to produce Skolemisation equations, and
adding these as axioms to the theory.

At this point we have a proof graph which has been filtered from redundant
information, refined (in case inferences were overloaded with instantiation infor-
mation), and segmented (to identify subproofs related to splitting). The proof
graph is one of the two key pieces of information we use during reconstruction.

The other piece of information consists of a dictionary which maps vertices
in the proof graph to Leo-II inferences. These inferences are interpreted as Is-
abelle/HOL meta-formulas, and reconstructed to give meta-theorems. We then
walk the graph, applying the reconstructed inferences, to reconstruct the entire
Leo-II proof into an Isabelle/HOL theorem. All of our inferences are checked
by Isabelle’s trusted kernel; this acts as the final arbiter of validity, and pro-
tects against any bugs in our implementation. Our code can be downloaded
from http://www.cl.cam.ac.uk/~ns441/files/lpar_src.tgz.

update

Our prototype has the following limitations:

1. It cannot handle compound inferences — it only handles single inferences.
Leo-II can batch together inferences to shorten proofs, but this makes recon-
struction much harder. For instance, compound rules would make it di�cult
to discover Skolemisation equations. We do not know if this limitation is
surmountable if we are to have feasible reconstruction complexity.

2. Currently we do not handle the rules in Leo-II’s calculus which deal with
the Axiom of Choice. AC-support is a new feature in Leo-II [19], but it only
involves instantiating AC. Reconstructing AC-related Leo-II-inferences in
Isabelle/HOL is a natural extension to our work.

3. Currently we do not handle the contributions which E makes to finding
a refutation. Recall that Leo-II collaborates with E to find a refutation.
Interpretation of E proofs in Isabelle/HOL is still an open problem. Some
of the techniques in this article might apply, but tackling E remains future
work.

5 Evaluation

We obtained a set of test proofs by running Leo-II 1.6 for 30s on all THF
problems in the TPTP 5.4.0 problem set. Leo-II produced 1537 proofs. The
reconstructor was run with a timeout of 10s and reconstructed 1442 (93.8%)
proofs completely. The failures fell into three categories:

Syntactic. There were two such cases: one relates to an exotic node-naming
feature of TPTP (which only appears in a syntax-testing problem), and the
other relates to a bug in Leo-II’s proof output.

Partial reconstruction. There were 12 cases of this. Half of these cases appear
to be problems in our interpretation of inferences. We found that increasing
the unification depth improves completeness but hurts performance. The
other half of these cases appear to arise from alignment problems when a
proof is translated to an intermediate language which we use to represent
proofs. We feed these proofs to an implementation of an abstract proof-
checking machine (which in turn relies on Isabelle’s kernel). On occasion,

http://www.cl.cam.ac.uk/~ns441/files/lpar_src.tgz

one of the instructions is too strong, and reconstructs more than one step of
the proof; this causes the subsequent reconstruction steps to fail.

Timeouts. There were 81 cases of this. The most likely cause of a timeout is
problem size. All of these problems are fairly big: ordered by file-size, the
first timeout occurs at the 1088th problem, and the second at the 1432nd
(out of 1537).

Comparison with existing reconstruction. We compared our approach with re-
finding the proofs using Metis [2] and Z3 [3]—these are the means currently used
by Sledgehammer to reconstruct proofs found by externals provers. We checked
if any axioms/definitions not used in a Leo-II proof could be filtered away, and
ensured that Metis and Z3 did not use any additional facts from the Isabelle
library of lemmas. Essentially, this test involves trying to re-find the proof in 10s
(which Leo-II might have taken 30s to find), since the proof re-finding approach
doesn’t benefit from the structure of the Leo-II proof. As a result, Metis and
Z3 reconstructed 57.3% and 68.9% of the proofs respectively.

Our results and scripts can be downloaded from http://www.cl.cam.ac.uk/

~ns441/files/lpar_results.tgz.We used a repository version of Isabelle2013,
update

and the experiments were done on a 1.6GHz Intel Core2 Linux box with 2GB
RAM.

6 Related work

The methods described in §3 elaborate the discussion of Troelstra and Schwicht-
enberg [16], who describe translations between various calculi whose inference
rules are validity-preserving, and resolution calculi. Troelstra and Schwichten-
berg restrict themselves to propositional and first-order systems, and do not
explore uniform tableau embeddings or their combination with other embed-
dings.

Techniques to encode clauses and inferences usually play to the strengths of
the target system. For instance, it is preferable to avoid manipulations related to
associativity and commutativity in clauses during proof reconstruction; this is
achieved when using Isabelle by encoding clauses using Isabelle’s sequents, thus
leaving Isabelle to handle the commutativity and associativity of connectives.
This technique was used by Paulson [20] to reconstruct proofs from a tableau
prover that he had extended Isabelle with. A similar technique was described by
Weber and Amjad [21] for encoding clauses. They carefully tune their technique
to obtain good performance on Isabelle’s resolution engine. Semantically, repre-
sentation is logically insignificant, but in practice is matters a great deal. Weber
and Amjad focus on reconstructing resolution proofs from SMT solvers, and
they essentially use propositional logic, where complications related to binding
and variables do not arise. These techniques seem to be related to the tableau
embedding (§3.1), but they focus on encoding clauses and specific inferences,
not on mapping a calculus. We are not aware of this embedding being described
previously. We haven’t tried to tune the tableau embedding by using the clause-
encoding techniques described earlier.

http://www.cl.cam.ac.uk/~ns441/files/lpar_results.tgz
http://www.cl.cam.ac.uk/~ns441/files/lpar_results.tgz

The implicative approach (§3.3) has been used for reconstructing proofs
too [22]. This approach is appealing because of its simplicity. It too can ben-
efit from use of clause-encoding techniques. To our knowledge, the combination
of tableau-embedding and implicative-embedding had not been explored yet.

7 Discussion

Herbrand-Skolem connection. One of the most surprising observations which
arose during this work was that Skolemisation is mapped to Gentzens’s Existen-
tial Elimination rule (9E) by the tableau embedding.

However there is a lingering peculiarity: the latter relies on Skolem constants
rather than full Skolem terms. In the interest of soundness and completeness [23],
we expect Skolemisation in higher-order logic to generate Skolem terms headed
by a fresh Skolem constant having a fixed arity. In this setting, this seems to
transfer over to the “universal” variables: logical variables. Here we observe the
duality seen between the approaches of Skolem and Herbrand: the latter relies on
the the fixation of existential variables into place-holders for arbitrary-but-fixed
elements (which can be formalised as constants), and treats universal variables
as witness candidates. In Isabelle, these candidates are ranged over by logical
variables, which carry with them information about which existential constants
are in scope.

Granularity of inference rules. We observed that proof-finding during proof-
reconstruction can be very expensive. For instance, Leo-II can hide a chain of
normalisation inferences (including Skolemisation) behind a single, compound
inference called extcnf_combined. We discovered that attempting to validate
this inference using the approach described in §3.3 can take time in O(n!) where
n is the number of existentially-bound variables (cf. §C.1). Thus, having proofs
composed of fine-grained inferences can be highly desirable; this relates to limi-
tation 1 described in §4.

Currently, we treat E subproofs as compound meta-theorems proved by
an oracle. In future work we would like to find ways of reconstructing (in Is-
abelle/HOL) proofs generated by E, and by the combination Leo-II+E.

TPTP proof format. The TPTP languages are a very useful medium for com-
municating problems and proofs, and a lot of care has gone into managing the
growth of their specification. While working on this project we noticed that the
following features might facilitate the reconstruction of TPTP proofs:

Annotating constants with their scope. Theories in TPTP are implicit, based
on type and constant declarations, and axioms stated. Problems pertain to
the same theory if they make, or import, the same declarations. Currently
it is assumed that once a constant is declared, its scope extends through-
out the theory; and proofs are seen as chains of reasoning occurring within
a theory. That is, there is no encapsulation of inferences within proofs. It
would be useful to limit the scope of Skolem constants to specific proofs (cf.

Remark 11), rather than not distinguish them from normal constants in a
theory.

Distinguishing certain nodes in a proof. In particular, the conclusion node.
There are two reasons for this:
– It provides a starting point for certain proof analyses; currently we

heuristically assume that the conclusion node is the last node in a proof
script, but this is not generally valid.

– This could serve as the end-of-scope marker for scoped constants (cf.
Remark 11).

Currently it’s possible to make prover-specific annotations in TPTP, but the
structure of proofs, and the scope of symbols, seem like universal-enough con-
cepts to deserve representation in the shared standard.

8 Conclusion

There is an increasing trend for logic tools to produce proofs which can be
inspected or used by other tools, and for languages to be standardised across
systems. However, there remain many obstacles to actually using proofs pro-
duced by other systems, because proof reconstruction is di�cult in practice; it
usually involves defining an ad hoc embedding of the source calculus into the
target. The tableau embedding (§3.1) facilitates reconstruction by relying on
a transformation applied uniformly to all inferences in the source calculus, to
obtain admissible rules in the target calculus. In order to work, it relies on meta-
theoretical properties of the source and target calculi: that they are sound and
complete.

We also discussed how this technique, despite the elegance of its uniformity,
does not scale as well as an ad hoc embedding. We implemented and evaluated
such an embedding for Leo-II in Isabelle/HOL. However, we believe that the
tableau embedding can be useful for several reasons. It is much easier for building
proof-reconstruction prototypes compared to using an ad hoc embedding. More
importantly, calculi which make more use of consistency-preserving rules than
Leo-II might be easier or computationally cheaper to model using a tableau
embedding. For instance, carrying out a validity-preserving clausification directly
in Isabelle/HOL would be very expensive, and E’s clausification calculus makes
much heavier use on consistency-preserving steps than Leo-II’s, because the
former relies on Tseitin-style clausification. This can be accommodated by the
tableau embedding. Further work could study optimisations which could make
this sort of embedding more appealing in practice as well as in theory.

References

1. Sultana, N., Blanchette, J., Paulson, L.: LEO-II and Satallax on the Sledgehammer
test bench. Journal of Applied Logic 11(1) (2013) 91–102

2. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In
Archer, M., Vito, B.D., Muñoz, C., eds.: Proceedings of STRATA 2003. Number
NASA/CP-2003-212448 in NASA Technical Reports (2003) 56–68

3. de Moura, L., Bjørner, N.: Z3: An E�cient SMT Solver. In: Proceedings of TACAS
2008. Volume 4963 of LNCS. Springer (2008) 337–340

4. Benzmüller, C., Theiss, F., Paulson, L., Fietzke, A.: LEO-II - a cooperative au-
tomatic theorem prover for higher-order logic. In: Proceedings of IJCAR 2008.
Volume 5195 of LNCS., Springer (2008) 162–170

5. Schulz, S.: E – A Brainiac Theorem Prover. AI Commun. 15(2/3) (2002) 111–126

6. Sutcli↵e, G.: The TPTP problem library and associated infrastructure. Journal of
Automated Reasoning 43(4) (2009) 337–362

7. Sultana, N., Benzmüller, C.: Understanding LEO-II’s proofs. In Ternovska, E.,
Korovin, K., Schulz, S., eds.: Proceedings of IWIL 2012. (2012)

8. Paulson, L.: Isabelle - A Generic Theorem Prover (with a contribution by T.
Nipkow). Volume 828 of LNCS. Springer (1994)

9. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-
Order Logic. Volume 2283 of LNCS. Springer (2002)

10. Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic
5(2) (1940) 56–68

11. Berghofer, S.: Proofs, Programs and Executable Specifications in Higher Order
Logic. PhD thesis, Technical University Munich (2003)

12. Benzmüller, C., Brown, C., Kohlhase, M.: Higher-order semantics and extension-
ality. Journal of Symbolic Logic 69(4) (2004) 1027–1088

13. Benzmüller, C., Brown, C., Kohlhase, M.: Cut-simulation and impredicativity.
Logical Methods in Computer Science 5(1:6) (2009) 1–21

14. Paulson, L.C.: The foundation of a generic theorem prover. Journal of Automated
Reasoning 5(3) (1989) 363–397

15. Miller, D.: Unification under a mixed prefix. Journal of Symbolic Computation
14(4) (1992) 321–358

16. Troelstra, A.S., Schwichtenberg, H.: Basic proof theory. Number 43. Cambridge
University Press (2000)

17. Gordon, M.: HOL : A machine oriented formulation of higher order logic. Technical
Report UCAM-CL-TR-68, University of Cambridge, Computer Laboratory, 15 JJ
Thomson Avenue, Cambridge CB3 0FD, UK (1985)

18. Gordon, M.J., Melham, T.F.: Introduction to HOL: a theorem proving environment
for higher order logic. Cambridge University Press (1993)

19. Benzmüller, C., Sultana, N.: LEO-II version 1.5. In: Proceedings of PxTP 2013.
Volume 14 of EPiC Series., EasyChair (2013) 2–10

20. Paulson, L.C.: Generic automatic proof tools. In Vero↵, R., ed.: Automated Rea-
soning and its Applications: Essays in Honor of Larry Wos, MIT Press (1997)

21. Weber, T., Amjad, H.: E�ciently checking propositional refutations in HOL the-
orem provers. Journal of Applied Logic 7(1) (2009) 26 – 40

22. Böhme, S.: Proving Theorems of Higher-Order Logic with SMT Solvers. PhD
thesis, Technical University Munich (2012)

23. Miller, D.: Proofs in Higher-Order Logic. PhD thesis, Carnegie Mellon University
(1983)

A Proofs

A.1 Lemma 12

In the proof of Lemma 5, given in §A.3, we will rely on the following lemma
about signature extension.

Lemma 12. For any ⌃-model M = (D,@, E , v) and ⌃0-model M0 = (D,@, E 0, v)
where ⌃ ✓ ⌃0, and where E

'

(c) = E 0
'

(c) for all c 2 ⌃, the following property
holds: For any formula F with constants only in ⌃, M |= F i↵ M0 |= F .

Proof. We are to show that v(E
'

(F)) ⌘ v(E 0
'

(F)) for all ', if F 2 w↵(⌃). We
prove this by showing that E

'

(F) = E 0
'

(F) for all ', if F 2 w↵(⌃).
Proceed by induction on F :

– Case F is a variable x: Using definition of evaluation functions [12, Remark
3.18], we have that E

'

(x) = '(x) = E 0
'

(x).
– Case F is a constant c: Since c 2 w↵(⌃), then it’s necessary that c 2 ⌃. By

assumption we have E
'

(c) = E 0
'

(c) for all c 2 ⌃.
– Case F is an application t1t2: E'(t1t2) = E

'

(t1)@E
'

(t2) = E 0
'

(t1)@E 0
'

(t2) =
E 0
'

(t1t2) using IH.
– Case F is an abstraction �x. t: IH gives us that E

',[a/x](t) = E 0
',[a/x](t) for

each a 2 D. Using the IH, for arbitrary a we have E
'

(�x. t)@a = E
',[a/x](t) =

E 0
',[a/x](t) = E 0

'

(�x. t)@a. Therefore E
'

(�x. t) = E 0
'

(�x. t) by extensionality.
ut

A.2 Lemma 3

Proof. � `C ⇤ i↵ there is no Henkin model M such that M |= �. Recall that
M would consist of a tuple (D,@, E , v), and that M |= � i↵ for all � 2 �,
v(E(�)) ⌘ >. (Since each � 2 � is closed, we need not worry about variable
assignments.)

Equivalently, for all Henkin models, there is a � 2 � such that v(E(�)) ⌘ ?.
This is equivalent to saying that, for all Henkin models, v(E(�1^ . . .^�

n

)) ⌘ ?,
where {�1, . . . ,�n

} = �, and where we use the usual interpretation of ‘^’ [12,
Figure 2]. We will continue to use the symbol � to abbreviate its conjunctive
form �1 ^ . . . ^ �

n

.
This is equivalent to saying that, for all Henkin models, v(E(� �! False) ⌘ >

(by using the usual interpretation of ‘�!’ and ‘False’). That is, |= � �! False

From the assumption that `V is complete, we have `V � �! False. ut

A.3 Lemma 5

Proof. From the soundness proof of `C we have that for each rule r 2 `C, where
r is the tuple of (possibly several) hypotheses and a (single) conclusion, (H,C),
if there exists a model M such that M |= H then there exists a model M0 such
that M0 |= H and M0 |= C.

Note that the interpretation of free top-level variables (occurring in H and
C) by M0 is unconstrained; therefore M0 must satisfy H and C for at least one
possible instantiation of their free variables. For clarity, let us make free top-
level variables explicit through Notation 2.5 Then the statement of r’s soundness
becomes: if there exists a model M such that M |= H[x] for some x, then there
exists a model M0 such that M0 |= H[x] and M0 |= C[y] for some x,y.

Taking the contrapositive, this is equivalent to the statement: if there doesn’t
exist a model M0 such that M0 |= H[x] and M0 |= C[y] for some x,y, then
there doesn’t exist a model M such that M |= H[x] for some x.

Recall that, for all �, we have that |= ¬� i↵ there doesn’t exist a model M
such that M |= �. Also, for all �1,�2, we have that M |= �1 ^ �2 i↵ M |= �1

and M |= �2. By using these equivalences, and pushing in the negation, we can
rewrite the previous statement as: if |= ¬(H[x] ^ C[y]) then |= ¬H[x]. This
should hold for arbitrary x and x,y, because of pushing-in the negation. Note
that the antecedent and consequent occurrences of x occur in di↵erent scopes;
we make this explicit by using the

V
binder when we switch to using Isabelle

notation. Using
V

also makes explicit that the formulas are expected to hold for
all x and x,y respectively.

Since `V is complete, we should be able to admit this in rule form:6

`V ¬(H[x] ^ C[y])

`V ¬H[x]

which in Isabelle notation is written:
⇣^

x,y. ¬(H[x] ^ C[y])
⌘
=)

^
x. ¬H[x]

Using the equivalence (¬A) = (A �! False), followed by implication-introduction
and simplification we get the equivalent rule

⇣^
x,y. ¬(H[x] ^ C[y])

⌘
=)

^
x. H[x] =) False

By re-using the previous equivalence, together with the equivalence (�!) ⌘ (=)),
we obtain

0

B@
^

x,y.

2

64
H[x] ^ C[y]

...
False

3

75

1

CA =)
^

x. H[x] =) False

which, when rewritten using more conventional notation, and by eliminating the
top-level iterated conjunction in H (to give H1, . . . , Hn

), is equivalent to

5 Alternatively, we could have used the
W
-notation, but it is simpler to use object level

unless we’re using Isabelle notation. Also alternatively, we could have existentially-
closed the object formula, but this would involve additional syntactic manipulation;
it’s best to keep things as they are as long as the semantics are understood and
preserved.

6 Even better, this rule is derivable.

V
x,y

2

64
H1[x], . . . , Hn

[x], C[y]
...

False

3

75
H1[x] . . . H

n

[x]V
x

False

which is equivalent to r?. Starting with the assumption that r is consistency-
preserving we have arrived, via a series of i↵-steps, at a validity-preserving rule
equivalent to r?. ut

A.4 Lemma 7

Proof. We argue by induction on derivations ⇡.

Case ⇡ = (). Note that ⇡? = ⇡ = (). A proof ⇡ is empty if it is immediate that
� `C,⇡ ⇤. If a proof is empty, then it must be necessary that False 2 �. The
argument is by contradiction: assume that � `C ⇤ can be shown in 0 steps,
and assume, for contradiction, that False 62 �. Then it could not be true that
� `C ⇤ can be shown in 0 steps. The argument for `V � �! False is similar.
From the fact that False 2 �, it is straightforward to prove the base case.

Case ⇡ = (⇡0, r). W.l.o.g let r be the rule A1...An
B

. Working within an extended
signature 0, the induction hypothesis allows us to assume that this property
holds for ⇡0 and ⇡0?:

�[{A1, . . . , Am

, B} `C,⇡0 ⇤ i↵ `V,⇡

0? 80. �^A1^. . .^Am

^B �! False

We are to show that:

� [{A1, . . . , Am

} `C,⇡ ⇤ i↵ `V,⇡

? 8. � ^A1 ^ . . . ^A
m

�! False

where ✓

0.
We start with the “fi” direction. Assume � [{A1, . . . , Am

} `C,⇡ ⇤ to show
`V,⇡

? 8. � ^A1 ^ . . . ^A
m

�! False.
Note that ⇡ consists of ⇡0 followed by r, and that if �[{A1, . . . , Am

} `C,⇡ ⇤
then � [{A1, . . . , Am

, B} `C,⇡0 ⇤, by the soundness of r.
We can use this to infer, via the IH, that `V,⇡

0? 80. �^A1^. . .^Am

^B �!
False. We use this in r? (which we obtain via Lemma 5, together with its
admissibility in `V), and introduce connectives to derive `V,⇡

? 8. �^A1^
. . . ^A

m

�! False.
For the “if” direction, assume `V,⇡

? 8. � ^ A1 ^ . . . ^ A
m

�! False to
show � [{A1, . . . , Am

} `C,⇡ ⇤. As before, the proof ⇡ relies on a subproof
⇡0 which proves `V,⇡

0? 80. � ^ A1 ^ . . . ^ A
m

^ B �! False. Using the
IH, we derive � [{A1, . . . , Am

, B} `C,⇡0 ⇤. By the soundness of r, if S =
� [{A1, . . . , Am

, B} is inconsistent then so is S/B. Therefore we conclude
that � [{A1, . . . , Am

} `C,⇡ ⇤.
ut

A.5 Corollary 8

This corollary follows from Lemma 7, but we can improve our confidence in the
argument by checking the contranegation transformation on each Leo-II rule,
to ensure that the result is derivable in Isabelle/HOL.

Then this enables us to prove the corollary’s statement in another way: we
can then show how chaining together the contranegated Leo-II rules in Is-
abelle/HOL yields a valid Isabelle/HOL proof. In a sense, this instantiates the
argument made in Lemma 5 (in one direction) then unfolds it in Lemma 7.

For our proofs, we will use the Leo-II calculus described in earlier work [7].
We ignore the rules which are logistic, focussing on those which relate to nor-
malisation, extensionality, unification, and resolution.

Definition 13. The core rules of Leo-II’s calculus are those which belong to
one of the following families: {normalisation, extensionality, unification, resolution}
Lemma 14. For each derivation ⇡ in Leo-II for �, there exists a derivation
⇡0 in Leo-II for �0 such that ⇡0 consists of inferences made up solely of core
rules, and that � is satisfiable i↵ �0 is satisfiable.

Proof. We need to show that each problem can be replaced with an equisatis-
fiable problem, and that arbitrary derivations from the former can be matched
by core-rule-only derivations from the latter.

A derivation isn’t necessarily a refutation—it doesn’t need to end in an empty
clause. Therefore the final rule r of a derivation could be any rule. We proceed
by cases on the terminal rules of a derivation, and assume that the property
holds for the preceding steps of the derivation.

If r is a core rule then the proof is immediate. We sketch the argument for
the remaining rules.

– r is negate_conjecture: It cannot be the case that this occurs in arbitrary
points in a derivation, since negate_conjecture occurs only at the very
start of a refutation.

– r is polarity_switch: Replace the original literal with its double-negation.
(Do this all the way up the derivation.) This doesn’t change the formula’s
semantics, or the problem’s satisfiability. Then double each application of
negation-related normalisation rules to that literal. At this point, applying
a single negation-related normalisation rule allows us to get the same e↵ect
as using the polarity_switch.

– r is unfold_def: Form �0 by unfolding the definitions in �. This makes �0

and � equisatisfiable. Form ⇡0 by taking ⇡ and deleting the unfold_def-
inferences in ⇡ (connecting the parent of the unfold_def inference node
directly with the node’s child.)

– r is rename: Simply carry out the renaming at the source node.
– r is copy: Delete the inference, and have its child point to the copied clause.
– r is fo_atp_e: We do not handle E subproofs; so in this case we either treat

this as an oracle step, or exclude derivations in which E played a part.

– r is sim: Add the simplification formulas to �0, and make explicit any infer-
ence related to them in ⇡0.

– r is extcnf_combined or standard_cnf: This shouldn’t happen, since we
work on expanded proofs. (That is, all normalisation steps are explicit. They
are core rules.)

– r is extcnf_forall_special_pos: Replace with extcnf_forall_pos, and
include the resulting derivation from extcnf_forall_pos.

– r is split_conjecture: Instead of splitting a clause, combine the instanti-
ation information from the split branches, to find the refutation for the full
clause.

– r is solved_all_splits: This cannot happen, since occurrences of this in-
ference will be removed when handling split_conjecture.

ut
Lemma 14 e↵ectively describes a proof transformation which purifies Leo-II

proofs to use the core calculus. This might also involve modifying the source
clause set � to produce an equisatisfiable set �0.

Lemma 15. For each rule r in Leo-II, if r is a core rule then we have that r?

is derivable in Isabelle/HOL.

Proof. Proceed by cases on the core rules. These were formalised and checked in
Isabelle/HOL—the script is included in §E.2. Note that:
– The decomposition rule is an n-ary rule. In our implementation (§4) we

implemented this as a function which accepts a parameter 1 < n < ! and
produces (and validates) an n-ary decomposition rule.

– The substitution and primitive substitution rules could not be formalised
since they include a meta-logical operation (substitution) which is not ex-
plicit in Isabelle. In our description we factor-out instantiation steps from
the proof, and apply the instantiations using a custom tactic. ut

Lemma 16. Every theorem proved by Leo-II is also a theorem of Isabelle/HOL.

Proof. Lemma 14 gives us the license to restrict our attention to the core rules
of Leo-II. From Lemma 15 we have that every core rule of Leo-II corresponds
to an admissible rule in Isabelle/HOL. Then we need to map how proofs (as
sequences of applications of core rules) formalised in Leo-II’s calculus map into
a calculus which can be embedded in Isabelle/HOL. This is described in the “fi”
direction of Lemma 7. ut

B Role of logical variables

In the Isabelle encoding of generalisation given in §3.2, how do we know that X
is fresh? Unlike with Skolem constants, we have not encoded this in the meta-
language yet. More importantly, what is the purpose of X? X is intended to
be a recipient for unification; Leo-II might eventually derive a contradiction by

coming up with a suitable instantiation for X. So the freshness of X is only an
artefact; we actually don’t need X to be a variable: X stands for any suitable
term. The meaning of “any suitable term” is: any �-term, possibly including any
constants from signature-extensions which have occurred up to this point in the
proof (but not any subsequent ones, as will be discussed below.)

We can do away with this by relying on logical variables instead. Logical
variables are extra-logical devices which act as candidates for instantiation (via
unification), so they fulfill the role splendidly. Isabelle will manage these variables
for us. Assuming that the signature is currently extended to include c, then if we
rewrite the generalisation rule from §3.2 to make explicit this signature extension,
we get

C _ [8P]TrueW
c

C _ [P x̂(c)]True

and whose simplified form of the transformation (Definition 4) is

C _ [8P]True

C _ [P x̂(c)]True

...
FalseV

c
False

Remark 17. “Freshness” is not a concept that applies to x̂(c), since it ranges over
a class of terms, and its name isn’t meaningful in the object-language (since it
is an extralogical symbol).

B.1 Impact on soundness and completeness

In this section we give two examples showing how the correct handling of logical
variables is essential for both soundness and completeness.

Soundness. The formula 8xP (x, x) �! 9x8y9zP (x, y z) is not valid. For a
counter-model, consider a model where D

◆

= {a, b} and E(P) = {(a, a), (b, b)}.
Note that D

◆!◆

contains two constant functions, call them f

a

and f

b

:

f
a

: {(a, a), (b, a)}
f
b

: {(a, b), (b, b)}
Clearly, ‘8xP (x, x)’ is true in this model, but ‘9x8y9zP (x, y z)’ is falsified as
follows: if you pick a for x, then picking f

b

for y excludes the possibility of finding
a z which can satisfy the formula (that is, s.t. f

b

y = a); alternatively, if you pick
b for x, then picking f

a

for y leads to the same problem.
However, this formula becomes provable if we ignore the context of logical

variables. Writing ‘. . .’ for unimportant parts of the search space we’ve already
seen, and underlining the clauses which are acted upon in that step, the search
space grows as follows:

1.
h
¬(8xP (x, x) �! 9x8y9zP (x, y z))

i
=) False

2.
h
. . . ; 8xP (x, x);¬(9x8y9zP (x, y z))

i
=) False

3.
h
. . . ;P (x̂(), x̂());¬(9x8y9zP (x, y z))

i
=) False

4.
h
. . . ;P (x̂(), x̂());¬(8y9zP (x̂2(), y z))

i
=) False

5.
h
. . . ;P (x̂(), x̂());¬(9zP (x̂2(), c z))

i
=) False

6.
h
. . . ;P (x̂(), x̂());¬(P (x̂2(), c ẑ(c)))

i
=) False

Note that x̂() and x̂2() are distinct logical variables. We close the “proof” by
resolving the two clauses, deriving an empty clause, via the following instantia-
tions:

1. x̂2() 7! c ẑ(c)
2. x̂() 7! c ẑ(c)

Of course, the unification should have been impossible: both x̂2() and x̂()

cannot be instantiated into terms which interpret the constant c.

Completeness. The formula 8xy9f.fx = fy is valid, but it is not provable unless
logical variables carry context around with them. The “derivation” proceeds
thus:

1.
h
¬(8xy9f.f x = f y)

i
=) False

2.
h
. . . ;¬(8y9f.f x = f y)

i
=) False

3.
h
. . . ;¬(9f.f x = f y)

i
=) False

4.
h
. . . ;¬(f̂ () x = f̂ () y)

i
=) False

Now we are stuck: we are constrained to instantiating f̂ () with �xx, but that
won’t move the proof forward. Remember that we cannot instantiate f̂ () to x

or y, since both of the latter are only contained in the extended, not original,
signature.

The mistake occurred at step 4; the correct step is:
h
. . . ;¬(f̂ (x,y) x = f̂ (x,y) y)

i
=) False

Now, in addition to �xx, we can instantiate f̂ (x,y) to � .x or � .y, either of which
can help us get a refutation.

Remark 18. The non-emptiness of domains still holds: we are not forbidden from
unifying logical variables having identical contexts, such as x̂() and ŷ() for exam-
ple.

Remark 19. It is acceptable to deliberately lose information about the context
— for instance, by mapping x̂(a) 7! ŷ(). This acknowledges that any term we can
use to instantiate ŷ() can also be used to instantiate x̂(a). The opposite is not
acceptable — e.g., by mapping x̂() 7! ŷ(a) — as it would be unsound.

C Calculations

C.1 Factorial complexity of Leo-II’s extcnf combined rule

Consider an extcnf_combined inference which has the following form:

[8x1. P1]False _ . . . _ [8x
n

. P
n

]False

D

where each x
i

has been Skolemised in clause D. W.l.o.g assume that there are no
clause-level variables (that is, we will have Skolem constants in the conclusion,
rather than (more general) Skolem terms). This means that D is identical to
[Q1 c1]False _ . . . _ [Q

n

c

n

]False, where a Q
j

is a normalised version of some P
i

.
Our task is to validate this inference:

[8x1. P1]False _ . . . _ [8x
n

. P
n

]False

[Q1 c1]False _ . . . _ [Q
n

c

n

]False

We cannot assume that the literals have not been re-ordered. When attempting
to expand this step into native inferences (e.g., Skolemisation), how do we match
each c

i

to the x
j

for which it is a Skolem constant? In the best case, the types of
each variable x

j

are distinct: then we can simply perform the matching on the
basis of types, and it takes time O(n). In the worst case, each x

j

has the same
type. In this case each matching is equally likely. We exclude approaches which
involve looking ahead, using structural information of each P

i

and each Q
j

to
try to infer a match, as these can be highly complex. Then we are left to try
each matching, of which there are n!.

D Examples

D.1 9A.8P.9B.(PAB _ ¬PBA)

We prove 9A.8P.9B.(PAB _ ¬PBA) in a `C-style system based on Leo-II’s
calculus, then reconstruct it in a `V-style system embedded in Isabelle/HOL.

1. {¬(9A.8P.9B.(PAB _ ¬PBA))} `C ¬(8P.9B.(PX
A

B _ ¬PBX
A

))
2. {. . . ,¬(8P.9B.(PX

A

B_¬PBX
A

))} `C ¬(9B.((sk
P

X
A

)X
A

B_¬(sk
P

X
A

)BX
A

))
3. {. . . ,¬(9B.((sk

P

X
A

)X
A

B_¬(sk
P

X
A

)BX
A

))} `C ¬((sk
P

X
A

)X
A

X
B

_¬(sk
P

X
A

)X
B

X
A

)
4. {. . . ,¬((sk

P

X
A

)X
A

X
B

_ ¬(sk
P

X
A

)X
B

X
A

)} `C ¬((sk
P

X
A

)X
A

X
B

)
5. {. . . ,¬((sk

P

X
A

)X
A

X
B

_ ¬(sk
P

X
A

)X
B

X
A

)} `C ¬(¬(sk
P

X
A

)X
B

X
A

)
6. {. . . ,¬((sk

P

X
A

)X
A

X
B

),¬(¬(sk
P

X
A

)X
B

X
A

)} `C (sk
P

X
A

)X
B

X
A

7. {. . . ,¬((sk
P

X
A

)X
A

X
B

), (sk
P

X
A

)X
B

X
A

} `C ((sk
P

X
A

)X
A

X
B

) 6= ((sk
P

X
A

)X
B

X
A

)
8. {. . . , ((sk

P

X
A

)X
A

X
B

) 6= ((sk
P

X
A

)X
B

X
A

)} `C ⇤

In Isabelle/HOL we start the proof o↵ by applying the proof-by-contradiction
rule:

[[¬P] =) False] =) P

then proceed as follows:

1. [¬(9A.8P.9B.(PAB _ ¬PBA))] =) False

2.
h
. . . ;¬(8P.9B.(PÂ()B _ ¬PBÂ()))

i
=) False

3.
h
. . . ;¬(9B.(PÂ()B _ ¬PBÂ()))

i
=) False

4.
h
. . . ;¬(PÂ()B̂(P) _ ¬PB̂(P)Â())

i
=) False

5.
h
. . . ;¬(PÂ()B̂(P));¬(¬PB̂(P)Â())

i
=) False

6.
h
. . . ;¬(PÂ()B̂(P));PB̂(P)Â()

i
=) False

7.
h
. . . ; (PÂ()B̂(P)) 6= (PB̂(P))Â()

i
=) False

8. [. . . ;False] =) False

E Isabelle/HOL examples

E.1 Header

theory Example
imports HOL
begin

E.2 Calculus embedding

subsection "Calculus"

lemma extcnf_or_pos:
"[|C | ((A | B) = True);

[|C | ((A | B) = True);
C | (A = True) | (B = True)|] ==> False|] ==> False"

by auto

lemma extcnf_or_neg1:
"[|C | ((A | B) = False);

[|C | ((A | B) = False);
C | (A = False)|] ==> False|] ==> False"

by auto
lemma extcnf_or_neg2:
"[|C | ((A | B) = False);

[|C | ((A | B) = False);
C | (B = False)|] ==> False|] ==> False"

by auto

lemma extcnf_not_pos:
"[|C | ((~ A) = True);

[|C | ((~ A) = True);
C | (A = False)|] ==> False|] ==> False"

by auto

lemma extcnf_not_neg:
"[|C | ((~ A) = False);

[|C | ((~ A) = False);
C | (A = True)|] ==> False|] ==> False"

by auto

lemma extcnf_forall_pos:
"[|C | ((All A) = True);

[|C | ((All A) = True);
C | ((A X) = True)|] ==> False|] ==> False"

"[|C | ((Ex A) = False);
[|C | ((Ex A) = False);
C | ((A X) = False)|] ==> False|] ==> False"

by auto

lemma extcnf_forall_neg:
"[|C | ((All A) = False);

!! sk. [|C | ((All A) = False);
C | ((A sk) = False)|] ==> False|] ==> False"

by auto

lemma func_pos:
"[|C | ((M = N) = True);

[|C | ((M = N) = True);
C | (((M X) = (N X)) = True)|] ==> False|] ==> False"

by auto

lemma bool_pos:
"[|C | ((M = N) = True);

[|C | ((M = N) = True);
C | (((M --> N) & (N --> M)) = True)|] ==> False|] ==> False"

by auto

lemma func_neg:
"[|C | ((M = N) = False);

!! sk. [|C | ((M = N) = False);
C | (((M sk) = (N sk)) = False)|] ==> False|] ==> False"

by auto

lemma bool_neg:
"[|C | ((M = N) = False);

[|C | ((M = N) = False);
C | (((M --> N) & (N --> M)) = False)|] ==> False|] ==> False"

by auto

lemma triv:
"[|C | ((A = A) = False);

[|C | ((A = A) = False);
C|] ==> False|] ==> False"

by auto

lemma dec1:
"[|C | ((h U = h V) = False);

[|C | ((h U = h V) = False);
C | ((U = V) = False) |] ==> False|] ==> False"

by auto

lemma flexrigid:
"[|C | ((F U = h V) = False);

[|C | ((F U = h V) = False);
C | (F = G) | ((F U = h V) = False)|] ==> False|] ==> False"

by auto

lemma res:
"[|C | (A = True);

D | (B = False);
[|C | (A = True);
D | (B = False);
C | D | ((A = B) = False)|] ==> False|] ==> False"

by auto

lemma fac_restr:
"[|(A = p) | (B = p);

[|(A = p) | (B = p);
(A = p) | ((A = B) = False)|] ==> False|] ==> False"

by auto

E.3 Helper code and lemmas

subsection "Helpers"

lemma unfold_def:
"(A --> B) = (~ A | B)"
"(A & B) = (~ (~ A | ~ B))"

by auto

ML {*
fun resolve_unify thm = HEADGOAL (rtac thm THEN’ atac)

*}

lemma collapse_false:
"(False | (False | P)) = (False | P)"
"((False | False) | P) = (False | P)"

by auto

E.4 Isabelle/HOL-reconstructed examples

subsection "Examples"

lemma "False | (! P. P | ~ P) = False ==> False"
apply (tactic {*resolve_unify @{thm extcnf_forall_neg}*})
apply (tactic {*resolve_unify @{thm extcnf_or_neg1}*})
apply (tactic {*resolve_unify @{thm extcnf_or_neg2}*})
apply (tactic {*resolve_unify @{thm extcnf_not_neg}*})
apply (thin_tac "False | (! P. P | ~ P) = False")
apply (thin_tac "False | (! P. P | ~ P) = False")
apply (thin_tac "False | (sk | ~ sk) = False")
apply (thin_tac "False | (sk | ~ sk) = False")
apply (thin_tac "False | (sk | ~ sk) = False")
apply (thin_tac "False | (~ sk) = False")
apply (thin_tac "False | (~ sk) = False")
apply (rule res[of "False" _ "False"])
apply assumption
apply assumption
apply (simp only: collapse_false)
apply (rule triv)
apply assumption
apply assumption
done

lemma "False | (! A . ? X . ! B. (A X & B X) --> (B X & A X)) = False ==> False"
apply (tactic {*resolve_unify @{thm extcnf_forall_neg}*})
apply (thin_tac "False | (ALL A. EX X. ALL B. A X & B X --> B X & A X) = False")
apply (thin_tac "False | (ALL A. EX X. ALL B. A X & B X --> B X & A X) = False")
apply (erule extcnf_forall_pos)
apply (tactic {*resolve_unify @{thm extcnf_forall_neg}*})
apply (thin_tac "False | (EX X. ALL B. sk X & B X --> B X & sk X) = False")
apply (thin_tac "False | (ALL B. sk (?X5 sk) & B (?X5 sk) -->
B (?X5 sk) & sk (?X5 sk)) = False")

apply (thin_tac "False | (ALL B. sk (?X5 sk) & B (?X5 sk) -->
B (?X5 sk) & sk (?X5 sk)) = False")

apply (simp only: unfold_def)
apply (erule extcnf_or_neg1)
apply (erule extcnf_or_neg2)
apply (thin_tac "False | (~ ~ (~ sk (?X15 sk sk) | ~ ska (?X15 sk sk)) |

~ (~ ska (?X15 sk sk) | ~ sk (?X15 sk sk))) = False")
apply (erule extcnf_not_neg)
apply (rotate_tac 2)
apply (erule extcnf_not_neg)
apply (rotate_tac -1)
apply (erule extcnf_or_pos)

apply (erule extcnf_not_pos)
apply (rotate_tac -1)
apply (erule extcnf_or_neg1)
apply (rotate_tac -2)
apply (erule extcnf_or_neg2)

(*very unwieldy to control reconstruction manually from here*)
apply auto
done

	Interpreting Leo-II's proofs in Isabelle/HOL

