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Abstract

We present a model checker for verifying distributed progga
written in the Erlang programming language. Providing a etod
checker for Erlang is especially rewarding since the lagguia

by now being seen as a very capable platform for developing in

dustrial strength distributed applications with excdilfilure tol-
erance characteristics. In contrast to most other Erlamiioze
tion attempts, we provide support for a very substantiat pér

the language. The model checker has full Erlang data type sup

port, support for general process communication, node isersa
(inter-process behave subtly different from intra-precgsmmuni-
cation), fault detection and fault tolerance through pssdeking,
and can verify programs written using the OTP Erlang compbne
library (used by most modern Erlang programs).

As the model checking tool is itself implemented in Erlang we
benefit from the advantages that a (dynamically typed) fanat
programming language offers: easy prototyping and expariaz
tion with new verification algorithms, rich executable misdinat
use complex data structures directly programmed in Erlémg,
ability to treat executable models interchangeably asrarog (to
be executed directly by the Erlang interpreter) and datd, reot
least the possibility to cleanly structure and to cleanimbmne var-
ious verification sub-tasks. In the paper we discuss thgdedithe
tool and provide early indications on its performance.

Categories and Subject Descriptors  D.2.4 [Software Engineer-
ing]: Software/Program Verification—Model checking

General Terms Verification

1. Introduction
To model check a modern distributed functional programnteamg
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formalism, or (2) implement the verification algorithmseditly for

the language to be model checked. (In fact there is also @ ahir
ternative, namely to translate into a formalism which hanbeon-
structed for this particular task and implement tools fas thrmal-

ism. This approach is briefly discussed in section 7.)

There are advantages (as well as weaknesses) with both ap-
proaches; Existing tools are probably optimized, and tlffiient
to use. Translating into an existing formalism means thatyev
thing in the language has to be modeled, including data.ifgnal
suitable formalism might not be easy. Implementing modekkh
ing algorithms efficiently is hard and time consuming. Havihe
model checker in the language itself means that the pureifunad
part can be handled in a simple and efficient way.

One existing model checking tool for Erlang is teeomcrl
tool set (Arts et al. 2004b), which consists of a translatonf
Erlang touCRL, a state space generator fo€RL specifications,
and theCADP state space analysis tools. Thus it is an example of
the first alternative above, however early in the develognoén
etomcrl its principal authors (Thomas Arts and Clara Benac Earle)
were thinking of an implementation in Erlang itself. In thedehe
Erlang route was rejected because it was thought that itdvoel
more efficient to reuse existing tools.

In this paper we describe the development and implementatio
of the McErlang model checker which follows the second imple
mentation alternative above. The development of McErlarg w
started for several reasons. One reason was the curiodifdtout
just how well an implementation in Erlang would work in piiaet
The main reason however was the wish to model check distidbut
as well as fault tolerant Erlang programs. (Both distribatand
fault tolerance are missing in tkeomcrl tool set). It was deemed
too hard to extend thetomcrl tool set with the concepts of distri-
bution and fault tolerance. The importance of supportire dis-

guage is by no means a small task and there are many design decitfibuted parts of Erlang is illustrated by Claessen and Ssem

sions that have to be taken. One of the largest decisionswimse
between: (1) translating the program into some existinmédism
and use (or possibly extend) existing model checking tamisHis
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(2005). In their paper they show that it easy to overlookrsrdue
to the loose synchronisation between processes in thébdistd
setting. They also demonstrate the presence of such err@s i
open source Erlang implementation.

One significant advantage that the implementation in Ering
self brings is that we can model check a larger fragment ofative
guage than is normally achievable. There is for instanceparsite
step to compile the data sub-language of the source spéicifica
language to the often restrictive data language availatdennodel
checker. Instead supporting the (purely functional) data @f Er-
lang is completely trivial; we can simply reuse the existiErgang
run-time system unchanged. It is in our opinion crucial tppsrt
a large fragment of Erlang in order to achieve some measure of
acceptance of our tool by Erlang programmers.

The Erlang language contains many features not found in most
normal programming languages (unless add-on librariessed):



dynamic types (i.e., no static type system), concurreney ai
process concept, inter-process communication using osyy-a
chronous message passing, distribution by mapping presesgo
(remote) processing nodes, fault tolerance via a failuteatier
mechanism, and a standardized set of high-level compobeiits
on top of this foundation. As Erlang programmers frequenthke
use of all these features we think it is vital that the vertfaratool
supports them too.

strong 2007). It provides a functional sub-language, @edcwith
constructs for dealing with side effects such as procesatiore
and inter—process communication via message passing.ovire
Erlang has support for writing distributed programeycessesan
be distributed over physically separated procesaindes

Today several commercially available products developgd b
Ericsson and other companies are at least partly progranimed
Erlang, an example is the AXD 301 ATM switch (Blau and Rooth

Nevertheless, by choosing to implement a model checker in a 1998). The software of such products is typically organizgd

functional programming language we risk paying a price wéth
gards to loss of execution performance and increased stosag
quirements; there is clearly a trade-off between easy exper
tation and expressive power on one hand, and implementatfien
ciency on the other. With the McErlang tool we want to explbiie
trade-off, and we hope that by not having to simulate thetfanal
parts of Erlang this model checking approach is rather efiici

Since we had access to a prototype implementation of the dis-

tributed Erlang semantics in Haskell, we also did some éxyarts
with implementing a model checker for Erlang in Haskell. Vig: d
not implement a full model checker, but the experiments geve

many, relatively small, source modules, which at run-timecete
as a dynamically varying number of processes operatingrilpa
and communicating through asynchronous message pasgieg. T
highly concurrent and dynamic nature of such software mitkes
particularly hard to debug and test.

Erlang programmers, of course, mostly work with ready-made
higher-level language components rather than the basigiéaye.
In practice programmers predominantly use the OTP compdiren
brary (Torstendahl 1997), which offers a number of usefttisre
components such as: a generic server component for ckengrs
communication, a finite-state machine component, and aggpe

some insight in the strengths and weaknesses with such an ap-component that restarts failed processes. Our approactotizim

proach. In section 7 we briefly discuss these results to géfeaaht
perspective on the McErlang implementation.

One of the design goals with McErlang was that it should be
easy to use. All that is needed to use McErlang is a prograestp t
a specification of the environmental constraints and a ptppe
check. All three are written entirely in Erlang. The envinpental
constraints describe how the program is executed in thesimgh-
tation of the run-time system provided by McErlang. The prbp
is given in the form of a monitor/automaton that is executeplar-
allel with the program, checking for errors along the exiecupath.
This work flow is discussed further in section 4 and sectiomé& a
is illustrated in Fig. 7.

Contributions The main contribution of the paper is a presen-
tation of the tool McErlang. The paper is not so much about the
theory behind model checking or the semantics of Erlangeauts
we focus on design choices, implementation decisions,tablép

ity and usability. McErlang is a model checker for Erlang iexp
mented in Erlang, it supports a large subset of the Erlangrpro-
ming language. In particular it supports all of the disttézliand
fault-tolerant parts of Erlang. This is especially impattsince dis-
tributed and fault-tolerant implementations are known eoebror
prone and hard to test and debug. McErlang is also easy to us
and should be accessible to an ordinary Erlang programnier. F
nally McErlang is designed in a very modular way and can asil
be adapted to support other target languages.

Paper organization The next section contains an introduction to
the most important features of the Erlang programming laggu
and section 3 contains a description of the most prominemt fe
tures of the Erlang semantics. In section 4 the parametsigde
of McErlang is described and section 5 presents the modekehe
itself, i.e., essentially an on-the-fly model checker whéslecutes
Buichi automatons (coded in Erlang) in parallel with theaBg pro-
gram under study. In section 6 we show some results and egampl
of using the model checker. Section 7 discuss a number ofalesi
choices in more detail, and section 8 summarises relatekl. \wor
nally section 9 draws conclusions, and outline future neteaork.

Download McErlang McErlang can be downloaded at
http://babel.ls.fi.upm.es/ fred/McErlang/.

2. TheErlang Programming L anguage

Erlang is a programming language developed at Ericssomioler
menting telecommunication systems (Armstrong et al. 19967-

checking Erlang programs can verify software that is busihg
both the core message passing language and with these hajh le
components.

A key feature of the systems for which Erlang was primarily
created is fault-tolerance. Erlang implements faultsiniee in a
simple way. Links between two processes A and B can be set up so
that process B is eventually notified of the termination afqaiss
A and vice versa (using the normal message-passing maghiner
The default behavior of a process that is informed of the ehab
termination of a linked process is to terminate abnormédigif. Al-
ternatively the linked process can specify that it wishegteive a
message with a notification that its linked process has tetad.
This process linking feature can be used to build hieraathgmo-
cess structures where some processes are supervisingpother
cesses, and can take corrective action (e.qg., restartmg)tti they
terminate abnormally. In order to create such fault-hagdéitruc-
tures, Erlang/OTP provides the supervisor behavior.

Another key feature of Erlang systems, which is particylarl
useful for 24/7 systems, is the mechanism for hot code repiaat.

In short it is possible to phase out old code and replace t wit
new code, having both old and new code running simultangousl
This feature enables bugs to be corrected and features tideel a

Cwithout stopping the system.

In summary, the Erlang/OTP programming environment is a
comparatively rich programming environment for programgni
systems composed of (possibly) distributed processesctirat
municate by message passing. Fault tolerance is implechéyte
means of failure detectors (the linking mechanism), a stahd
mechanism in the distributed algorithms community. Moegov
there is a process fairness notion, something which oftetema
unnecessary to explicitly specify fairness in correctn@sgerties.
Moreover the language provides explicit control of disition, and
a clean model of distribution semantics. For distributeatpsses
(processes executing on separate nodes) the communigaidon
antees are far weaker than for processes co-existing orathe s
processor node. This gives, in a clean way, considerableipeith
regards to checking a program under different environnheata:
straints (simply changing the mapping of processes to nptat
on the other hand there is a requirement on implementinguthie r
time system with different guarantees for inter-node atichinode
communication.

Multi-coreprogramming The concurrency oriented nature (Arm-
strong 2003) and the (almost) transparent distributionendlang
a really good candidate for writing efficient distributedta@re.



With the latest version of the Erlang Run-time System (Eylan
5.5/0TP R11B) this is taken even further, as it includesthnil
support for SMP (Symmetric Multi Processing). SMP is todagy-s

two processes being spawned (B and C). Thereafter A willdésd
the messageello directly to C and then send the messageld
to B. Process B is very simple, once it receives a messagél| it w

ported by most modern operating systems and becomes more andorward it to process C. Process C just receives two messagds

more important with the introduction of dual/quad/. .. gssors,
multi-core systems and hyper-threading technology. Th& Skp-
port in Erlang is transparent since most problems occuritng
multi-threaded programs are solved by the Erlang VM. The SMP
version of the VM can have many process schedulers running in
side each OS thread, the default is to have as many schedslers
there are processors (or processor cores) in the systene Bia
SMP support is completely transparent we get 'for free’ dicieft
multi-core implementation if we have a correct distributeble-
mentation. This shows another benefit of having a workingehod
checker for distributed Erlang.

3. Semantics

Erlang is at the same time both a simple language, having ediie
a fairly uncomplicated dynamically typed functional laage with
eager evaluation, and a fairly complicated one. The conityléx
due to the addition of language layers proving support forcoo-
rency (processes and message passing), and distributimre§s-
ing nodes that encapsulate processes) and fairly elabaie
process fault detection and fault handling mechanismsppdeess
links and process monitors).

The intuitive picture of the distributed semantics is ratsien-
ple, the guarantees given are simplgobfnmunication between a
pair of processes is assumed to be ordér@sldescribed by Arm-
strong (2003). The semantics of links and monitors are asty f
easy to get an intuitive understanding of. However, thedeithan-
tics for distributed Erlang is indeed complex. It consistsame
rather long and technical transition rules. Especially toener
cases, such as using the link mechanism on a dead process mak
a presentation somewhat lengthy and less intuitive tharnconkl
wish. Nevertheless, our formal description of the semaritiday-
ered in three layers in a very clear way.

¢ Functional Semantics - consists of the pure functional part of
Erlang (function evaluation, pattern matching, etc). tyaam-
ically typed and fairly straight forward.

¢ Process Semantics - is above the functional semantics, and
consists of process evaluation rules (sending and recgings-
sages and links, starting/terminating processes, anmt siben-
putation steps) as well as process communication rules¢pso
interleaving and process communication). This is all fergin-
gle node case, that is all the involved processes are ergdunti
the same run-time system.

¢ Node Semantics - is placed on top of the process semantics,
and adds the concepts of nodes and full distribution to the
semantics. Similarly to the process semantics it consistede
evaluation rules and node communication rules.

prints the result. {MODULE is a built-in macro which is replaced
by the name of the current module by the compif®QDE; are
ordinary macros defined elsewhere.)

worldhello() ->
spawn (?NODE1, 7MODULE, procA, [1) .

procA() ->
PidC = spawn(?NODE3, ?MODULE,procC, [1),
PidB = spawn(?NODE2,?MODULE,procB, [PidC]),
PidC ! hello,
PidB ! world.

procB(PidC) ->
receive world -> PidC ! world end.

procC() ->
receive X -> ok end,
receive Y -> ok end,
io:format(""p “p\n", [X,Y]).

Figure 1. 'World Hello’-program

A C

4?
world

B 3

Figure2. Possible message sequences

The interesting aspect of this program is that the resultiof r
ning the program depends on the distributed environmerttidf
program is running on a single node (tha?i®DE1 = ?NODE2 =
?NODE3), the result is alwayshiello world. However if the pro-
gram is running in a distributed environment (that?MODE1 #
?NODE2 # ?7NODE3), the result could be eithetello world or
world hello. The reason for this is that there are different com-
munication guarantees at the distributed level. In shar@ sin-
gle run-time system message delivery is instantaneousigtitiae
message is immediately put in the receivers in-box), while dis-
tributed system the only guarantee is that messages betwggin
of processes are ordered. The possible message sequeribes in
distributed case is shown in Fig. 2.

The etomcrl tool for example (and the same goes for many
other Erlang verification efforts) does not have a notionarfes at

The functional semantics and the process semantics are de-all, and therefore this aspect cannot be checked. It is thadthis

scribed in detail in Fredlund (2001) and the node semargias-i
troduced in Claessen and Svensson (2005). The layeringledc
here is, as we see later, clearly mirrored in the implemizmtadf
the model checker. Since it is not feasible to cover all aspafche
semantics in this paper, we just highlight a few importartaite
With the following example we show the importance of having t
node semantics layer and that our intuitive understandintpe
semantics is not sufficient in all cases.

3.1 World Hello?

Consider the small Erlang program in Fig. 1. When we run the
function worldhello() it will spawn A, which in turn results in

is a problem, since the difference in communication guaests

a definite source of errors in Erlang systems (see for exaste

et al. (2005)). It was therefore a strong requirement on Nécter
that it should handle the node semantics. In fact, it is tagay that

the major part of the implementation effort of the model dteec
has been devoted to an accurate treatment of the oftensinrpyi
complex semantics of the node semantics part of the run-time
system.

3.2 Semanticsimplemented in McErlang

The McErlang tool has a full implementation of the distribat
part of Erlang (i.e., explicit programmatic mapping of peses



to explicit nodes), and thus provides the possibility tafyerode
based on either the assumption that all process are locahéon
same node), or remote (all processes reside on differemtshoor
a mix of the disciplines. Thus it is possible to verify a pragr
under quite weak communication guarantees and be sureathat |
processes can be freely mapped on distributed nodes. Howlewe
drawback of the distributed semantics is that it greatlyeases
the state space of the verified programs; essentially theldited
semantics non-deterministically delays the delivery ofsages to
a receiving process.

4. Structureof the Implementation

The model checker implementation is parametric, using the E
lang/OTP style of behaviors to specify particular compadriza:
haviors that provide services to the model checking algorit

The basic task of the model checker is of course to check a
program against a correctness propertynanitor module that
implements the correctness property to check.

Except specifying which program to check (a specific Erlang
function), and which Erlang module that implements the exirr
ness property, a user of the tool can also choose:

¢ the name of danguagemodule providing an operational se-
mantics,

¢ the particulawverification algorithnmto use, (e.g., a safety prop-
erty checker, a liveness property checker or just testing + i
simulation of the program in conjunction with a correctness

property),

¢ the name of atate tabldmplementation, that records encoun-
tered program states (typically a hash table), and

¢ the name of aabstraction moduléhat abstracts program states,

The modular composition of McErlang is illustrated in Fig. 3
and in the following sections we describe the functionadityhese

modules in turn.
Algorithm

McErlang
Abstraction

State
table

Figure 3. McErlang modular structure

Source
Language

4.1 Sourcel anguage

The language module should provide two functions impleingnt
an operational semantics for the languaget{Bnsitions which
given a state returns a list of all next actions executablehiey
program, and (ii) the functiomommit which given an action re-
turns a concrete program state. Theansitions function may
not cause side effects outside the model checker enviranfaen,
really writing out a file to the file system) whereasmmit may (if
used by the simulation algorithm). The language module st
monly used is clearly the one providing an operational séitgn
for Erlang, however, we have also implemented an operdtgma
mantics for the WS-CDL web choreography language (W3C 2005)
Although the effort is less mature than the Erlang model kbec
it is interesting that the basic framework of the model cleeaan
be reused in a different language setting (Fredlund 2006 XML

and XPath constitutes integral parts of the WS-CDL definjtiav-

ing good support libraries available for these languagesrig use-

ful when representing their operational semantics. Asrigrlaas
seen considerable industrial usage, the language alreatigdod
library support for working with XML based documents; we egp

the same kind of advantages from using Erlang when providing
model checkers for other target languages.

4.2 Correctness Properties

Correctness properties are encoded as automata programiged
lang. A safety monitor is a function which is checked in every
reachable program state, and which returns an error if aaithv
state is seen. Blichi monitor(automaton) is a monitor that addi-
tionally may mark certain states as accepting. A prograrnatgs a
Buchi monitor if a cycle can be found in the combined stacsp
of the program and the monitor, which contains an acceptaig s
As is well known (Vardi and Wolper 1986), linear temporalitog
formulas can be automatically translated to Biichi autamat

The memory aspect of monitors is implemented by send-
ing along the old monitor state as an argument to the Erlang
function implementing the monitor. Concretely a monitor
defines two callback functions:init(parameters) and
stateChange (programState,monitorState). The init
function returns{ok,monState } wheremonState is the initial
state of the monitor.

The stateChange function is called when the model checker
encounters a new program stateogramState and the current
monitor state ismonitorState. If a safety monitor finds that
the combination of program and current monitor state is tece
able, it should return a tupl§ok, newMonState} containing
the new monitor state. If future states along this branchuare
interesting the monitor can returskip (e.g., to implement a
search path depth limit), any other value signals a viotatd
the correctness property implemented by the monitor. AhBlic
automatons should return a set of states, each state edtepta
ing {accepting, state } or not{nonaccepting, state }. Nor-
mally we expect a “sounditateChange function to be without
side effects.

As an example, the code fragment in Fig. 4 implements a simple
safety monitor that guards against program deadlocks:deegs
is considered deadlocked if its execution state as recdogiatie
process data structure in the run-time systebliscked).

stateChange (State,MonState) ->
case lists:any
(fun (P) -> P#process.status =/= blocked end,
State#fstate.processes) of
true -> {ok, MonStatel};
false -> {deadlock, MonState}
end.

Figure4. Simple safety monitor

The syntaxvariable #recordName. field is used to access the
field field of the record variabl@ariable, of type recordame.

4.3 Algorithms

The McErlang tool currently offers two basic on-the—fly dept
first state traversal model checking algorithms, one tokisafety
properties and the other to check Biichi automatons (tleadiss
checking algorithm adapted from Holzmann et al. (1996))giVe
an intuition to the coding of these algorithms in Erlang, laesnatic
representation of the algorithm for safety property cheghs de-
picted in Fig. 5 (we have abstracted out the parameter gasgin
modules implementing languagkafg), monitors {lon), abstrac-
tion (Abs) and table implementatiorrb)).



check([]) -> ok;
check([[]|Earlier]) -> check(Earlier);

check([[State|Alts] |[Earlier]) ->
{ProgState,MonState,StateTab,AState} = State,

% Check monitor
{ok,NewMonState} =
apply (Mon,stateChange, [ProgState,MonState]),

% Abstract state
{ok, {AbsState,NewAState}} =
apply (Abs,abstractState,
[{ProgState,NewMonState},AState]),

% Check whether state already seen
case apply(Tab,addState, [AbsState,StateTab]) of
no ->
check([Alts|Earlier]);

{ok, NewStateTab} ->
NewStates
[{S,NewMonState,NewStateTab,NewAState} ||
S <-
lists:map
(fun (Action) -> apply(Lang,commit,Action),
apply(Lang,transitions, [ProgState]))],
check([NewStates,Alts|Earlier]])
end
end.

Figure5. Safety property checking algorithm

To check an Erlang function catk: f (p1,...,pn), given an
initial monitor statemonState and an empty state tablg, and
abstraction state, the checking algorithm should be invoked with:

check ([[{mkProc(m, f, [p1,...,pn]) ,monState, t,a}11)

wheremkProc constructs a model checking process executing the
function call argument.

As seen in the listing, model checking states are composed of
a program state, a monitor state, a state table, and an ctizstra
state. Program states are checked against the monitorf aaed i
cepted, are abstracted using an abstraction function gedvby
the moduleAbs. The abstracted states are checked against mem-
bership in the state table. If the program state is new, thefsext
states is computed using the functiotansitions. Note that the
particular choice of abstraction and table storage is atistd out
from the algorithm itself.

In addition there is a simplsimulatoravailable, which by de-
fault chooses the next program state randomly, but in addiias
some debugging functionality, e.g., next states can beicitkpl
chosen, transitions can be single or multiple stepped kpeats
can be set, and backtracking to previous states is suppdrhed
simulator is also used to explore safety model checking tevex-
amples (traces).

Fairness Constraints on Executions The Erlang language stan-
dard requires that process schedulers must be fair. The ItaiEr
tool accordingly implements (weak) process fairness tlirdén
its (liveness) model checking algorithm by omitting noir-faops
(i.e., ones that constantly bypass some enabled process)tfre
accepting runs.

4.4 Tables

A state table records pairs of program and monitor statesugnc
tered during model checking, to detect recurring states. Sthte
table implementations used are normally imperative (egdates

-module (hashAbs) .
-export([init/1, abstractState/2]).

init(Size) ->
{ok,Size}.

abstractState(State,Size) ->
{ok,{erlang:phash2(State,Size),Size}}.

Figure 6. Abstraction module for hashing

to them are destructive) for performance reasons; howeawelyp
functional implementations of the tables are available.

45 Abstractions

An abstraction abstracts a concrete program state into stnaab
representation. It can be used to drastically reduce thekelestate
space of a program. The idea is inspired by the use of abistnact
in Arts and Fredlund (2002). A typical abstraction used indelo
checking is to compute a hash value from the state, and tchese t
hash value as the abstract state when checking for mempeénshi
the state table. However, program specific abstractiortifumecan
also be implemented. For example, an abstraction couldftrem
an integer variable into a boolean value, signaling whether
integer is less than zero. Clearly, there is in general noagiee
that such an abstraction is safe, i.e., that it does not Gapsagram
failure to escape undetected (false positive).

As a second example we have implemented the usual abstrac-
tion of collapsing a whole state to a single integer (throbghh-
ing), and using a bit array table module to implement theestdile.
Thus, in a modular fashion, we have obtained an implementati
of Holzmann'’s bit-state hashing verification algorithm (#oann
1991). An implementation of a hashing abstraction thus iveso
as simple as Fig. 6, whererlang:phash?2 is a built-in function
which computes a hash value betweers{xe for its term argu-
ment. Note that is an unsafe abstraction, although as pioyeac-
tise in many verifications, also a highly useful one.

5. Executing Erlang Programsin McErlang

The model checking capability for Erlang programs is predithy
executing Erlang programs directly in the existing Erlang time
system. This enables an easy and reasonably efficient hgrafii
computations that act solely on data (the purely functisoatpart
of Erlang). However, the existing Erlang run time systemsdoet
provide a method to capture the combined system state oféngin
program (check-pointing). This is unavoidable, since inegal an
Erlang computation could be distributed and so the combitete:
cannot be efficiently, or even reliably, collected.

For this reason we have implemented in Erlang a new run-time
system for the concurrent and distributed part of the lagguthat
implements easy access to the combined system state ofagErl
program. This run-time system simply simulates distritautand
concurrency, all computations take place inside a singlefdang
process. Structurally the new run-time system is layeretbprof
the old one, replacing only the process handling and thewenc
rency part of the old system. This layered structure also amym
ways resemble the layered structure of the Erlang semantses-
tion 3.

Essentially a complete verification model consists of three
parts: (1) an Erlang program containing the original progita
be checked, (2) a re-usable implementation of the run-tiystem
(also written in Erlang) and (3) a specification of the envimen-
tal constraints (e.g., which process/node failures aridfilures
occur). See section 6.2 for a concrete example of such enviro



mental constraints. By separating the model cleanly ingséh
three parts we can independently experiment with diffeisit
sumptions/implementations. The workflow is illustratedrig. 7.

Program

Property
(monitor)

Environmental
constraints

N

McErlang

Counter Property
example holds

Figure7. McErlang workflow
5.1 Run-timeOrganization

The state of the run-time system, e.g., recording processsst
communication queues and so on (see section 5.3 for details)
stored in the imperative Erlang process dictionary; ath(dated)
model checking processes run, interleaved, in a singleng pao-
cess. All state updates and queries are thus implementedessas
to the process dictionary. We have also experimented withia s
tion where the state of the run-time system is kept in a sépara
process, a solution more in the spirit of the Erlang desigiogh
ophy. Unfortunately, that solution severly impacts on theesl of
model checking, slowing down a typical verification with atfar
of three compared to the process dictionary solution. Aricas/
alternative would be to pass along the global state as a pdeam
everywhere in the verifier code. In e.g. Haskell cleaner dtage
more efficient solutions are obviously possible.

5.2 Trandation

A vital part of the model checker is a compiler that trandza
Erlang program to be verified to a modified Erlang program that
uses the new run-time system.

Actually we still use the old runtime system to execute even
the translated functions (this is to avoid having to re-iempént
any part of the data handling in Erlang). However, calls tizufy
functions with side effects in the old runtime system haverbe
replaced with calls to Erlang functions with side effectstlie
model checker instead.

The principal goal of the translation is to transform Erl&umgc-
tions that use theeceive construct so that instead of executing
that construct, which would immediately hang the executibtine
model checker as there would be no value to be received, tde mo
fied function instead returns a special return value. Thametalue
indicates the desire to receive a message, and a contindatio-
tion coding the normal execution of the function after theeggtion
of the message.

The translation takes a set of modules as input and retureis a s
of translated ones. The resulting Erlang modules can be iteanp
by the normal Erlang compiler (which is a requirement fomgsi
the model checker).

in the compilation the source code of tailored versions eséh
libraries, written in Erlang of course.

Replacing API calls Apart from transforming code that uses the
receive construct, the translation does a very simple transforma-
tion of other API calls such as e.g. sending a value to a psoces

As the Erlang language lacks a good reflection capabiliy, th
new run-time system is provided as a new application library
ev0S. For example, an application that used to send a message
{request,22}? to a process with process identifietd using the
send construckid ! {request, 22} should instead call the library
function ev0S:send(pid,{request,22}). The functions that
implement the new API calls are implemented in Erlang itaatd
operate directly on the global system state (nodes, ettmresgses,
links, and a register map as discussed in section 5.3 below).

Handling Reception of Messages The mapping of calls to Er-
lang API functions to the new run-time system works for albg
constructs except theeceive statement which is used by a pro-
cess to retrieve a value from its mailbox (or process quasie
receive call suspends until a matching value is available.

Instances ofeceive statements in the Erlang code to be model
checked are instead replaced with code that returns a tikgle |
{recv,{module, fun, context}, where the contained inner tuple
{module, fun, contezt } identifies a function that implements the
logic of the particular receive statement.

When an invoked Erlang function, in an Erlang process, nstur
such arecv tuple the new run-time system recognizes the special
return value and marks the processbascked, and then checks
whether there is any receivable value in the process maiflmox
which case the process status is upgradetkt@ivable). In any
case, the run-time system can schedule another enablegsproc

The transformation of an Erlang program containingaeive
statement into one returningracv expression is explained by the
small example in Fig. 8 and Fig.9.

server(State) ->
receive
{new_state, NewState, Pid} ->
Pid!{reply,State},
server (NewState)
end.

Figure 8. Receive statement — before translation

The code fragment in Fig. 8 defines a functiserver which
guards some private state. The state can be changed by gendin
a call message to the server process, containing a proeagiet
and a new state. The server replies with the old state. Thsl&a
tion of the server function is shown in Fig. 9. In the transfed
code, a call toserver(state) will immediately return a tuple
{recv,{?MODULE,f_0, [statel}} which is a special form rec-
ognizes by the model checker.

In general the function referenced iecv should accept two
parameters, a message in the queue to be tested whetheckiisr
able, and a list of variables needed in the evaluationegkive.

If the message is receivable, the function should returiple twith

a new anonymous function; if ndalse should be returned. The
anonymous function receives the same parameters as theabrig
function, and contains the body of theceive clause. The sep-
aration of receive into two functions serves to separatedsing
whether a message is receivable from the actual retrievétheof
message from the queue (as the process could continue loymerf

In case the compiled application makes use of OTP componentsing some side effect).

(generic server, supervisor, etc...) the McErlang tool initlude

lreceive is a process construct to retrieve a value sent to the ingokin

process.

2 A tuple containing a literal symbalequest and the number 22. In Erlang
variables begin with a capital letter and atoms (literalghva lowercase
letter.



server(State) -> {recv, {?MODULE, £_0, [Statell}}. pingOrpong(Logger) ->
receive

f_0({new_state, NewState, Pid}, [State]) —> {ping,V,Sender} ->
{true, Sender!{Msg=pong,NewV=V+1,self () };
fun ({new_state, NewState, Pid}, [State]) -> {pong,V,Sender} ->
ev0S:send(Pid,{reply,State}), server(NewState) Sender!{Msg=ping,NewV=V+1,self ()}
end}; end,
£_0(_, _) —-> false. Logger ! {Msg,NewV},
pingOrPong(Logger) .

Figure9. Receive statement — after translation

Figure 12. Migrating variable bindings

Handling a non tail-recursive receive The translation of the  what drink the user chooses (the model checker automatiesi|

receive construct sketched above is correct only when it occurs plores both possibilities).

in a tail-recursive position. For the general case, whassestially Finally {pause,{module, fun, contezt }} is short hand for a

a run-time stack is used instead. choice with a single continuation function; it is used toilitate
The run-time stack is implemented using another speciaimet  detection of interesting states in correctness properties

value: {letexp, {ezpr,{module, f,parameters }}}, which is

used in the situation when a receive statement occurs in@esx 5.3 Data Structuresin the Run-time System

sion context (i.e. not in a tail-recursive position). Catesifor ex- An Erlang state in our run-time system is a hierarchicalcstme
ample the recursive functiogerver in Fig. 10 which repeatedly and mimics to a large extent the organization of the realtime-

calls a functiordoRequest which in turn contains a receive state- system (and the structure of the layered Erlang semantios!)

ment. Erlang, except, of course the state is physically centseliz
server(State) -> The top level of the hierarchical structure is composed apéet
{ok, NewState} = doRequest(State),
server (NewState) . (nodes, ether),

combining a data structure containing the nodes of the ngnni
Figure 10. Non tail-recursive receive — before translation system and aetherdata structure containing messages in transit
between nodes. Each message is identified by the followjpig:tu
The example in Fig. 10 is translated inta@texp return value
as seen in Fig. 11. The function referenced in Iheexp special (receivingNode, sendingNode, messageContent).

expression is called when the inner function has returne@l@®y  1he ether data structure essentially has a separate quenesef
and receives as arguments the returned value as first argyamen sages, sorted by sending time, for each pair of sending and re

as second argument a list of variables necessary in thencedti  .oing nodes. This is needed since the language guaratitees
computation. In general all non tail recursive calls to tios that communication between any two nodes is FIFO-like, i.e.,-mes
contain areceive in their body will have to be similarly guarded sages are delivered in order, if they are delivered at ale Th

uSIr(;gIalete};]p. We ulse afglobal ana_lly5|shover the sel:mof Tput messageContent contains the message itself (e.g., a normal mes-
mf?' Lﬁ?s to the transfator for computing the transitive weso sage sent between two processes or a run-time event suah as e.
which functions may executex@ceive statement. notification of a process termination).

server (State) -> A node tuple

letexp, {doR t(State), {?MODULE, f_1, . . . . .
{letexp, {doRequest(State), { U1 (name, processes, registered, monitors, node_monitors, links),
f_1({ok,NewState}, [1) -> is on the second hierarchical level. Thecesses field contains the

server (NewState) . processes executing on the nogg;stered implements the Erlang
- - - - - name server which maps (on a node basis) pids to symbolicsiame
Figure11. Non tail-recursive receive — after translation The fieldsmonitors, node_monitors andlinks is used in the three

o ) different process linking mechanisms available in Erlang.
The translation is somewhat complicated by the need to stippo Each process is a tuple

the Erlang “feature” of permitting variable bindings to méte out
of their scope. The Erlang example in Fig. 12, which compiles (status, expr, pid, queue, dict, flags).
without warning and does not cause run-time errors, ilaiss the
translation difficulty Logger is assumed to be bound to a process
identifier). Note that the variableésg and NewV are bound in
different branches of theeceive construct, but may still be used
outside of it.

The field status records the execution status of the process, e.g.,
whether it is blocked waiting on incoming messages, readwrip

or ready to receive an existing message. ther field describes
the next piece of code to execute, concretely a named ufieede
Erlang function and a set of actual parameters to invokeuhe-f
Non-determinism in Erlang Another special return value is tion with. Thepid field is the system-wide unique process identi-
{choice, [{module, fun,contezt},...1} which introduces fier of the processjueue contains the messages sent to the process
explicit non-determinism in Erlang; the model checker waitin- that are available for reading (inter-node messages reidram
deterministically select the continuation function frohetlist of the ether data structure to theueue whereas intra-node messages
function alternatives. This construct is needed to usengrkes a are directly put in thejueue data structure, mimicking the differ-
specification language rather as a programming one. As an-exa ent communication guarantees provided by the run-timesy&br

ple, suppose that we have implementing a drink machine snirl inter-node compared to intra-node communication). Rnaikt
offering either coffee or tea. Using the choice construistéasy to contains a process dictionary (the equivalent of impegatiari-
model a machine user that non-deterministically seletieecof- ables in Erlang), anflags describes the setting of various process

fee or tea, and to verify that the program works correcthardess options.



Although the exact manner in which states are physicallsesto
or represented (e.g., on the stack of 'choice points’ andhé t
table of states previously seen) during a model checkinglig f
configurable, the normal exact representation of a stataress
that states ar@ormalized i.e., nodes are sorted in some order,
as are processes within an nodes, as are links (pairs of gaexe
identifiers in a node) and so on, to ensure a rapid check fte sta
equality.

5.4 Mode Checker Semantics

The tool implements a major part of the carelang module in

the Erlang/OTP distribution omitting mainly functions taspect
the run-time system itself, to obtain process status, tinfimc-

tions, and ports (which are used to interface with foreign,non—
Erlang, code). In total we provide around 40 such API funijo
the implementation of which constitutes a significant porif the

lines of code of the model checker.

The operational semantics implemented by McErlang comapris
an interleaving transition relation between Erlang stategse ac-
tions are decorated by sequences of actions (i.e., a ljgegter-
ational semantics). States are comprised by stable sygeims
where all processes are waiting in receive statements @ juav
spawned) and transitions are caused by invoking a singlelesha
process to run which may cause many side effects until itnagai
becomes stable (waiting in a receive statement).

The use of a big—step semantics means that some errors will go
undetected which would be caught using a smaller-step g@san
For the typically large scale systems that we are interested
verifying with McErlang there is a trade-off here. One optis to
have a very detailed execution model with all the possibitibn-
determinism inherent in the programming languadéis quickly
leads to enormous state spaces with the result that onlyyaingr
part of such state spaces can be explored by a model checkigre O
other hand, we can reduce the non-determinism in the spatoific
language by slightly changing its semantics. The resulinaler
state spaces, which we can verify a bigger part of, but thexe a
possibly states that we can never check because they widlrnev
be generated by the model checker. In future work we aim to
implement a more finely-grained semantics for intra-nodarty
to explore this issue in further detail.

Interestingly it turns out that we can recover a more finely-
grained semantics in case each process communicates ahly wi
other remote processes (located on other nodes). Then aaend
well as any other side effect, will be arbitrarily delayeth¢e the
nodeether data-structure is used, which essentially have separates
queues for all pairs of communicating processes, see set8dor
details) compared to side effects caused by other processgso
all interleavings of side effects are recovered.

5.5 Run-timeEnvironment Modeling

Probably the most challenging part of developing a modetkre
for Erlang is to accurately model the environmental comstsgout
on a running Erlang program. For example: constraints oadidh
ing Erlang processes, the semantic impact of mapping pseses

3 As an extreme case, Erlang, for instance, does not fix the ofdalua-

tion of arguments to functions, so a totally faithful seni@mtvould gener-
ate all such orderings. As Erlang programmers can happitg wode that
cause side effects in the evaluation of function call argus)generating all
such orderings may be highly important in model checkingweieer, the

number of extra states could be huge, although part of thehead could
be eliminated through use of intelligent reductions. Ircpse, however, the
only available Erlang language implementatdoesfix the order of argu-
ment evaluation, and in our opinion this is very unlikely t@echange in
the future of Erlang.

onto remote processing nodes, the basic communicatiogtess
of Erlang, and on the frequency of failures in a running syste

Moreover the Erlang API has quite a few functions with side ef
fects, whose actions cannot be understood as simply asrsszsie
of lower-level primitives (send and receive) but are filsiss citi-
zens in any operational semantics.

As an example we consider below the implementation, which
is a form of operational semantics, of teelang API function
exit/2. In Erlang,exit (Pid,Reason) is used to send a termi-
nation signal to the process referencedpliy, which may be ter-
minated as a result. The implementation has to handle therrat
subtle interplay between fault-handling mechanisms ittigkmon-
itors) and take into account process locality (on the sange nor
not), etc. Moreover, its behaviour is very different degagdon
whether the process to terminate resides on the same notle as t
process executing the call or not.

Although the function may seem complicated, it is an infans
part of the Erlang language, which is used by programmetsell
time (as invoked in through higher-level functions), and hese
no choose but to model it faithfully if we wish to verify restiic
Erlang software.

Implementation sketch:

. First the arguments are checkedpifd is not a process identi-
fier an exception is raised.

2. The code then checksHtd is a local pid (i.e., the correspond-

ing process resides on the same node as the process which exe-
cutes theexit/2 call. If the process is remote, a signal (a mes-
sage) is sent to the node on which the process resides dogtain

arequest to issue aixit/2 call, and the function returns.

If it is a local process, the process flags are retrieve@& Th
process traps exit messages if the flaghp_exit is set. If
trap_exit is set, and the&keason argument is nokill, a
message{’EXIT’,self () ,Reason}, iS put into its mailbox
(whereself () evaluates to the pid of the process that called
exit/2), and the function returns.

3.

4. If the process is local, and it is not trapping exits, and th
Reason argument isnormal, the process is not terminated
(and no message is put in its message queue), and the function

returns.

5. Otherwise (the process is local, the reasokiisl, or...) the
process is terminated, i.e., it is removed from the procaset

6. Moreover any registered names for the process are renfoyed

modifying theregisteredelement in thanode.

7. And any monitors the now terminated process has set up are
removed (all nodes are searched for such monitors), and mes-
sages concerning terminated processes due to such moggori

are removed (from thetherelement).

. Then every process that has requested to monitor thertateai
process (information present in tieonitor field of the node
structure) are sent a message informing them of the terimimat
of the process they monitored, and the reason for termimatio

. Then all the links mentioning the terminated process xaene
ined (recorded in thénks field of thenodestructure). If a link
mentions a remote process, then the remote process is sent a
signal (message) informing it that one of its linked prodess
terminated. If the process is local, the linked processsidfia
candidate to terminate immediately, and execution cost@in
the linked process with roughly step 3 above.

As is indicated in the last step, in Erlang the termination of
a process can, through the link concept, cause the termmafi
more processes, and so on, in a chain reaction. Althoughsat fir



counter-intuitive, the idea is to use this behavior of theihg
mechanism to write fault tolerant code. Essentially sonoegsses
are designated as supervisor processes, which are rdsigofusi
starting processes, and handling their termination byooptly
restarting them. Such supervisor processes setthp exit flag
to have termination message delivered to their messageegueu
Their clients on the other hand generally do not setcttp_exit
flag, since they do not contain programming logic to handiétga
Many Erlang programs are written to be fault-tolerant, gshre
linking or monitoring mechanism, and although using reathde
componentsmake the task easier, programming fault tolerant ap-
plications is stillhard, and being able to check code under adverse
run-time conditions using a tool such as our model checker is
significant help.

Ensuring FiniteModels  Clearly the efficacy of the model check-
ing algorithm depends crucially on whether the checkedrigrla
program is finite state or not. However, note that for chegkian-
compliance this is not always necessary. For instance, weas-
ily code a monitor that raises an alarm whenever a procedbonai
contains more than, saff, messages. Similarly, an abstraction (see
the discussion in section 4.5) could simply cut the mailbdvewvit
has grown too large.

Still, in model checking Erlang there are at least two saairce
of trivially infinite models that we need to avoid: the assign

here focus on checking a single propeértig the locker safe with
regards to mutual exclusion? That is, if a client requestiusive
access to a resource, and is granted access, then no otmemall
access the resource.

The source code of the example is split into four Erlang mod-
ules (files): (1) a module implementing a (parametric) ¢liepeat-
edly accessing the locker using then_server OTP client-server
component, (2) the source of a fault—tolerant locker, (3)calne
implementing a supervisor process for starting the cliéusing
the supervisor OTP component), and (4) a supervisor that starts
both the server and the client supervisor. In total arour@®ll4i®s
of Erlang code.

The mutual exclusion monitor is provided in a separate grlan
module (around 60 additional lines of code); it checks wéeth
multiple clients think they have access to the same resparm
at least one client has exclusive access (a mutual excldgibn
ure). In the client source we make visible the property of-hav
ing access to resource by introducing a state usingpthese
value: {pause, {7MODULE, inUse, [Resources ]}} which docu-
ments the resources and lock types the client thinks it hqsieed.

Results As a comparison witktomcrl we present some figures
for the checking of the locker example in table 1 below. Thefige
uration column indicates, in a schematic manner, the mdusdic
ing scenario used. For instance aEaEaEaEasS is a configuwatio

of process identifiers to new processes, and the use of uniquefour clients requesting exclusive access to the resouraacapne

references to uniquely identify (generic server) calls.9bee both
problems by consistently choosing the Ifasshprocess identifier
(or communication tag) absent from both the current progstate
and the correctness monitor.

6. Evaluation

To evaluate the use of McErlang we have used it on several non-
trivial examples, ranging from a resource locker to a Videe—
demand server. Here we focus on two examples, first a simgplifie
resource manager (or locker) originally implemented anified

by Arts et al. (2004b). Their locker is based on a real impletae
tion in the control software of the AXD 301 ATM switch devetap

by Ericsson. The second example is an implementation ofdetea
election algorithm. The implementation is (loosely) imsgiby an
algorithm presented by Singh (1996). Also this exampleioaitgs
from the AXD 301 ATM switch, but the particular implementati
we studied here (and which have been studied before by Aals et
(2005)) is an open source version written by Wiger.

The two examples aims to show different aspects of McErlang,
the locker example is comparing McErlang wéttbmcrl and does
not use the distributed features of McErlang. On the othedha
the leader election example is distributed (and faultrgoig and
the example shows that it is possible to find errors in a tisteid
application with McErlang.

Other case studies realized using McErlang include théicari
tion of an implementation of the Chord peer—to—peer prdt(sio-
ica et al. 2001), another implementation of a leader elediigo-
rithm namely Stoller’s leader election algorithm (Stoll®&97), and
of the above mentioned Video—on—demand server (Fredludd an
Sanchez Penas 2007).

6.1 Resource manager

The locker is responsible for a number of resources, to which
can give clients exclusive or shared access, and which qaivesu
client failures. To compare performance with #temncrl tool we

4Such as, for example, the OTP supervisor pattern and the @fhérig
server that are prepared to handle errors.

client requesting shared access. The timing column shosvsrtte
for generating the transition system (fetomcrl, via the instan-
tiator tool) and both the time to generate the transitionesysand
check the mutex property for McErlang. The states columnerep
sents the number of states in the generated models. Notéothat
McErlang we use a non-lossy hash-table to store the stdte tab

etomcrl McErlang
configuration time states| time states
aEaEaEaEaH 52s | 34282 17s| 52197
aEaEaEaEa$ 36s | 28014 17s| 50805
aEaEaEaSa$ 39s| 30814 18s| 56313
aEaEaSaSa$ 1m4s| 51928 25s | 75801
aEaSaSaSa$ 2m 49s| 135038 42s | 130101
aSaSaSaSa59m 29s| 466702 | 1m39s | 284277

Table 1. Comparison oktomcrl and McErlang

The table shows that in less complex scenarasmcrl cre-
ates smaller state spaces than McErlang. However, in carapke
narios (a scenario with more sharing is more complex, sirnmeym
processes can request and succeed in getting a sharingraek o
resource at the same time) the difference in number of statrs
out. The tool experiments were performed on a HP xw6400 work-
station with four Intel Xeon CPUS each running at 1.60GHz (al
though neither tool made us of more than one CPU) and with 2 GB
of memory, running Ubuntu 7.04.

Itis hard to draw firm conclusions from the performance figure
although it is a promising sign that the time needed to gead¢ha
transition system using McErlang is competitive with thetamtia-
tor tool (Wouters 2001), as the instantiator is written inr@ @an
be expected to be heavily optimized by ndw.

5Sinceetomcrl in contrast with McErlang does not support checking fault
tolerance we did not introduce failures in the checked mdtid was done
in a separate experiment.

6Version 2.17.13 of the.CRL toolset was used.



6.2 Leader election
The objective of the leader election algorithm is to eleceader

among a fixed set of participants. This may seem trivial at, firs

but in a distributed and fault tolerant setting there are yrarbtle

things that makes it a hard problem (and a well studied proble

(Lynch 1996; Dolev et al. 1997) as well). Eanbdehas a single
leader election process, and the processes communicétenad-
sages and also uses monitors to detect failures of otheegses.
There are two basic properties for leader election:

e Safety — two processes can never be elected as leaders at the

same time.

current system state. The property monitor is listed in Fy.One

-module (monNotTwoLeaders) .

init(State) ->
{ok,{safety,Statel}}.

stateChange (State,MonState,_) ->
case notTwolLeaders(stRecords(allProcs(State))) of
true -> {ok,State};
false -> {error,stRecords(allProcs(State))}
end.

e Liveness—eventually a process must be elected as the leader (ora2l1Procs(State) ->

there is an infinite sequence of processes dying and resfarti

Both can easily be expressed as LTL-formulas (and hencecsiB~

automatons). Here we focus mainly on the safety property.

To illustrate the typical organization of a verification weyide
some details regarding the concrete files involved. Thecgotwde
of the example is split into three Erlang modules (files):athod-
ule implementing the leader election algorithm, (2) an emvinent
for the leader election algorithm, and (3) a module thataiostthe
monitor for the safety property. The test scenario is schieally
illustrated in Fig. 13.

|:| - node

test
XCZ - controller
nodel node2

(] -LE process
Idr, C Idr, C
node3

ng node4

Figure 13. Leader election example organization

The environment module consists of code that initiates afset
nodes and starts a leader election process on each nodenviihe e

ronment also spawn controller processes (one for each tiode)
are responsible for killing and restarting the local leaglection
process. The controller processes in turn are dictated Bntad
stimuli generator (located on a separate node). The cectral

lists:flatmap
(fun (Node) -> Node#node.processes end,
State#fstate.nodes) .

stRecords([]1) -> [];
stRecords ([P|Rest]) ->
case P#process.expr of
{recv,{ev_gen_server2,_,{Rec,_}}} ->
[Rec|stRecords(Rest)];
->
stRecords (Rest)
end.

isLeader ({P,{_,State}}) ->
Ldr = State#data.leader,
P#process.pid == Ldr.

notTwoLeaders(States) ->
length(lists:filter(fun isLeader/1,States)) < 2.

Figure 14. Safety property monitor — NotTwolLeaders

thing that is clear from the listing in Fig. 14 is the need fosed
of convenience functions for accessing the states andevitg
information from the state.

Results If the example is run in McErlang using the safety al-
gorithm, and theélotTwoLeaders monitor the result is a counter

example. The time it takes to reach a counter example is only a

few seconds (depending on the seed choosen it can take longer
shorter time) on a fairly modest workstation. The size/thrgf the
counter example includes around 50 transitions. The exdstef a
counter example is not surprising, since other studiesetdme
algorithm (Arts et al. 2005) have revealed errors. (The tauex-

troller sends messages to the local controller processgshwhen
enforces the order from the central controller (i.e., eiti#ing

or restarting the leader election process). All commuidcabe-
tween conrollers are normal Erlang communication and itllis a
part of the model checking experiment. The reason for thiseso
what strange stimuli generation structure stems fromexadsting,
where we usettacingin a way which worked best with this struc-
ture. However, this is a good example of one of the strengttiseo
everything—in—Erlang approach, where the code from tgstim be

ample described below is actually exactly the same as thdasne
beled 'The first serious bug’ in that paper)

The counter example scenario is described in Fig. 15. THe pro
lem in the scenario is that some communication is slower than
other. Since in the protocol only a majority of the involvep
cesses needs to accept a candidate it is possible that dimgxis
leader (B in the scenario) could be outnumbered by newlyestar
and fast communicating processes (A and C in the scenario).

What is important to note is that the error found is only preése

re-used (almost as is) as the environment description ificatron.
Also, the flexibility of having the environment in a sepanatedule
(which consists of ordinary Erlang code) is that we couldlgae
a verification of only the start-up phase (or some other piattie
state space, such as just killing the process with highéstty) by
just changing the module with the stimuli code. Originathg test
code provides random stimuli, which is not very suitablerfadel

in a distributed and fault tolerant semantics. That is, wectaot
have found this error using a model checker (or other vetifina
tool) that does not support the distributed semantics afrigrl We
also have the possibility to search for the shortest patligao an
error (again what is the shortest vary due to the introduaedom-
ness). Having the shortest counter example is often désisiice
it includes the least amount of unnecessary informatione@ch

checking. The randomness is removed in our example by gettin for the shortest path to an error is of course slower, sonestisev-
the pseudo-random generator seed to a fixed value. eral order of magnitudes slower. In one of our examples abkear

The monitor for the safety property is not very complicated, took about 30 minutes, and explored somewhere around li@mill
it only consists of a check if there are two leaders electetthén states.



Three processes A,B,C (with priority A > B > C):
is started

: Send ’capture’ to A,C and monitor A,C.

: Receive ’Down’ from A.

: Receive ’Down’ from C, broadcast ’elected’.
is the leader

is started

is started

: Send ’capture’ to B,C and monitor B,C.

: Receive ’capture’ from A, Send ’accept’ to A.
: Receive ’accept’ from C, broadcast ’elected’.

B
B
B
B
B
A
¢
A
¢
A
A is the leader

Figure 15. Counter example from leader election

7. Discussion

In this section we want to discuss some alternative impleatiem
aspects. As mentioned in the introduction we made some iexper
ments with a prototype implementation of the distributethfy
semantics in Haskell. The prototype consisted of an Erlamggy
and a layered run-time system with flexible control of patbich,
etc. It supported all the distributed features of Erlang,ailot of
the more basic pure functional things were missing.

We asked ourselves if it would be possible to use such an
implementation as the starting point for a model checkeEftang
as well. Much of the work with McErlang has gone into accuyate
modeling the node level semantics of Erlang. Starting atsteith
an implementation of the distributed semantics that tasklavbe
much simpler. We also think that a lot of the modular struetoir
McErlang could be the same in a Haskell implementation.

which however is more of a testing tool than a verificatiorl &
it cannot detect recurring states.

The work on tracing for Erlang, in particular the approadhes
have usedbstractiongo handle the size of the traces, by Arts and
Fredlund (2002) and by Arts et al. (2005) was also a source-of i
spiration for the abstraction part of the McErlang impletagon.

A lot of the inspiration for this work naturally comes from
the work on the SPIN tool by Holzmann (1991) and the CADP
toolset (Fernandez et al. 1996), as they both constitutecarable
language based platforms for the verification of softwanel for
testing new verification algorithms.

The VeriSoft tool by Godefroid (1997) is one of the earlier ex
amples of providing a verification functionality to a reabneplex,
programming language (such as C or C++) instead of a simpler
specification language. Another successful example of audr-
ification project is the Modex tool (Holzmann and Smith 2002)
which is closely connected to SPIN. A recent work on the verifi
cation of complex concurrent program code is the work on hode
checking file system implementations by Yang et al. (2004): A
other recent work is the Zing model checker by Andrews et al.
(2004) which aims at checking concurrent systems.

9. Conclusion and Future Work

As we have seen, adopting an “everything-in-Erlang” apgida
model checking has certain advantages. It is easy to pravidsh
specification language, and to use the same language foulatrm
ing correctness properties as for programming is convéeriidore-
over much of the basic execution machinery can be reused (e.g
McErlang uses the normal Erlang run-time system extengivel

We have identified some advantages with a Haskell approach The result is a model checker for Erlang, which supports sl a
as well as some drawbacks. One of the major drawbacks is thatpects of distribution and fault tolerance. This is espéciahpor-

one looses the ability to re-use the existing evaluationhaeisms
for the purely functional part. This means that every loesel
built-in pure function and data structure has to be deal witthe
implementation. To implement this is perhaps not a very domp
cated task, however we deemed it as far too time-consuming fo
research project. On the other hand, by having full contfdhe
whole run-time system we could omit the Erlang—-to—Erlang-co
pilation phase discussed in section 5.2. It would also btatrto
switch from abig-stepsemantics to amall-stepgsemantics since we
could easily turn other syntactic constructions into chgioints.
A final drawback is of course also that we miss the “all-inalag”
aspect, since we involve Haskell. This could be a hinder fiopya
perienced Erlang programmer with limited Haskell knowkedg

Our conclusion is that it is certainly possible to implemte
same type of model checker in Haskell. However, it seems @ be
lot more time-consuming, and it is not obvious that the ersdilte
would be any better than McErlang.

8. Related Work

Software model checking is a very active research field, whic
means that there exist an overwhelming amount of relatedswor
We try to mention the most important and the ones which have
provided inspiration for McErlang.

For Erlang thestomcrl toolset (Arts et al. 2004a) already pro-
vides a model checking capability. Although it is more rieséd,
covering a smaller subset of Erlang, for instance lackirgadbn-
cept of distribution and fault tolerance (i.e. nodes, psses, links,
monitors, ...). Other verification tools for Erlang inclubleich’s
abstract interpretation model checker (Huch 1999) whias wb-
stract interpretations to reduce the size of the state spéealso
have the Verification of Erlang Programisproject (Fredlund et al.
2003) which uses theorem proving technology. Further theeitee
interesting QuickCheck tool for Erlang by Arts and Hughe30@),

tant since distributed and fault-tolerant implementagiare known

to be error prone and hard to test and debug. It is our hope that
McErlang is also simple enough to use, such that it can be lnged
the ordinary Erlang programmer.

With two examples we have compared McErlang with the ex-
isting etomcrl tool set and also showed that it is indeed possible
to find errors in a distributed program using McErlang. The pe
formance of McErlang looks promising, and the trade-offisan
expressive power and efficiency seems positive. Howevere mo
case studies are needed before we can be certain about duitgap
of McErlang.

Another good property of McErlang, is the clearly separated
input. We can easily experiment with different environmean-
straints for a program under test. This is particularly usébne is
only interested in part of the complete state space, siresdhrch
space could easily be altered by changing the environmemt co
straints as we saw in the leader election example in sectin 6

We have also experimented with an alternative implemeontati
approach using Haskell. There we concluded that althoughait
possible alternative it is far from obvious that the resutidd be
better than McErlang.

During the development of the McErlang tool we also realized
that a (dynamically typed) functional language offers salvad-
vantages over traditional languages like C as a generakframk
for implementing formal verification tools (e.g., quick pstyping,
clean higher-order functions, separating functionaligaaly into
modules, seamless composition of modules, and so on). Thus w
have started experimenting with the use of the McErlang asch
general framework for building model checkers for varioaigét
languages. Essentially this involves provides an exetritzera-
tional semantics for the target language in question, tegewith
the glue necessary (state parsers and unparsers, and Jssam).
small experiment we implemented a simple interpreter andaino
checker for the WS-CDL web choreography language (W3C 2005)



Futurework The tool is far from finished, there are many things
that we want to investigate further, the following list indtes some
of these areas:

e We would like to experiment with partial-order verification
algorithms for the model checker. Clearly such reductiaes a
normally quite language specific, and it will be instructtee

see whether we can express their enabling conditions gleanl
in Erlang. Moreover we can hope to benefit from the fact that
standard components are heavily used in Erlang, which dhoul

results in more regular communication exchanges, i.e.chvhi
are more amenable to partial order reductions.

e To use McErlang on a larger body of programs we need to

support a slightly richer Erlang fragment (e.g. thert con-
struct for communicating with the external world). In paniiar

it would be interesting to have a normal Erlang node communi-

cate with nodes in our “modeled” Erlang environment.

¢ We should provide the option of changing the Erlang semsntic
implemented in the tool to re-schedule processes not ongnwh
a receive statement is encountered, but to do so for eveey sid
effect inducing operation (e.g. message sends). This eslilt

in a small-step semantics option that may detect new program L.

bugs.

rich error detection mechanisms and process fairnessglglos
match standard implementation environments for disteithiad-
gorithms. Therefore, it seems reasonable to think that Mcigr
can be really useful also for verification of general disttéul
algorithms. Thdeader election algorithnexample, presented

in section 6, could be seen as one example of such an algorithm

e We would like to develop a library of useful state abstragtor
for Erlang to enable this part of the tool to see wider use.
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