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Abstract
We present a model checker for verifying distributed programs
written in the Erlang programming language. Providing a model
checker for Erlang is especially rewarding since the language is
by now being seen as a very capable platform for developing in-
dustrial strength distributed applications with excellent failure tol-
erance characteristics. In contrast to most other Erlang verifica-
tion attempts, we provide support for a very substantial part of
the language. The model checker has full Erlang data type sup-
port, support for general process communication, node semantics
(inter-process behave subtly different from intra-process communi-
cation), fault detection and fault tolerance through process linking,
and can verify programs written using the OTP Erlang component
library (used by most modern Erlang programs).

As the model checking tool is itself implemented in Erlang we
benefit from the advantages that a (dynamically typed) functional
programming language offers: easy prototyping and experimenta-
tion with new verification algorithms, rich executable models that
use complex data structures directly programmed in Erlang,the
ability to treat executable models interchangeably as programs (to
be executed directly by the Erlang interpreter) and data, and not
least the possibility to cleanly structure and to cleanly combine var-
ious verification sub-tasks. In the paper we discuss the design of the
tool and provide early indications on its performance.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Model checking

General Terms Verification

1. Introduction
To model check a modern distributed functional programminglan-
guage is by no means a small task and there are many design deci-
sions that have to be taken. One of the largest decisions is tochoose
between: (1) translating the program into some existing formalism
and use (or possibly extend) existing model checking tools for this
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formalism, or (2) implement the verification algorithms directly for
the language to be model checked. (In fact there is also a third al-
ternative, namely to translate into a formalism which has been con-
structed for this particular task and implement tools for this formal-
ism. This approach is briefly discussed in section 7.)

There are advantages (as well as weaknesses) with both ap-
proaches; Existing tools are probably optimized, and thus efficient
to use. Translating into an existing formalism means that every-
thing in the language has to be modeled, including data. Finding a
suitable formalism might not be easy. Implementing model check-
ing algorithms efficiently is hard and time consuming. Having the
model checker in the language itself means that the pure functional
part can be handled in a simple and efficient way.

One existing model checking tool for Erlang is theetomcrl
tool set (Arts et al. 2004b), which consists of a translator from
Erlang toµCRL, a state space generator forµCRL specifications,
and theCADP state space analysis tools. Thus it is an example of
the first alternative above, however early in the development of
etomcrl its principal authors (Thomas Arts and Clara Benac Earle)
were thinking of an implementation in Erlang itself. In the end the
Erlang route was rejected because it was thought that it would be
more efficient to reuse existing tools.

In this paper we describe the development and implementation
of the McErlang model checker which follows the second imple-
mentation alternative above. The development of McErlang was
started for several reasons. One reason was the curiosity tofind out
just how well an implementation in Erlang would work in practice.
The main reason however was the wish to model check distributed
as well as fault tolerant Erlang programs. (Both distribution and
fault tolerance are missing in theetomcrl tool set). It was deemed
too hard to extend theetomcrl tool set with the concepts of distri-
bution and fault tolerance. The importance of supporting the dis-
tributed parts of Erlang is illustrated by Claessen and Svensson
(2005). In their paper they show that it easy to overlook errors due
to the loose synchronisation between processes in the distributed
setting. They also demonstrate the presence of such errors in an
open source Erlang implementation.

One significant advantage that the implementation in Erlangit-
self brings is that we can model check a larger fragment of thelan-
guage than is normally achievable. There is for instance no separate
step to compile the data sub-language of the source specification
language to the often restrictive data language available in a model
checker. Instead supporting the (purely functional) data part of Er-
lang is completely trivial; we can simply reuse the existingErlang
run-time system unchanged. It is in our opinion crucial to support
a large fragment of Erlang in order to achieve some measure of
acceptance of our tool by Erlang programmers.

The Erlang language contains many features not found in most
normal programming languages (unless add-on libraries areused):



dynamic types (i.e., no static type system), concurrency via a
process concept, inter-process communication using only asyn-
chronous message passing, distribution by mapping processes onto
(remote) processing nodes, fault tolerance via a failure detector
mechanism, and a standardized set of high-level componentsbuilt
on top of this foundation. As Erlang programmers frequentlymake
use of all these features we think it is vital that the verification tool
supports them too.

Nevertheless, by choosing to implement a model checker in a
functional programming language we risk paying a price withre-
gards to loss of execution performance and increased storage re-
quirements; there is clearly a trade-off between easy experimen-
tation and expressive power on one hand, and implementationeffi-
ciency on the other. With the McErlang tool we want to explorethis
trade-off, and we hope that by not having to simulate the functional
parts of Erlang this model checking approach is rather efficient.

Since we had access to a prototype implementation of the dis-
tributed Erlang semantics in Haskell, we also did some experiments
with implementing a model checker for Erlang in Haskell. We did
not implement a full model checker, but the experiments gaveus
some insight in the strengths and weaknesses with such an ap-
proach. In section 7 we briefly discuss these results to get a different
perspective on the McErlang implementation.

One of the design goals with McErlang was that it should be
easy to use. All that is needed to use McErlang is a program to test,
a specification of the environmental constraints and a property to
check. All three are written entirely in Erlang. The environmental
constraints describe how the program is executed in the implemen-
tation of the run-time system provided by McErlang. The property
is given in the form of a monitor/automaton that is executed in par-
allel with the program, checking for errors along the execution path.
This work flow is discussed further in section 4 and section 5 and
is illustrated in Fig. 7.

Contributions The main contribution of the paper is a presen-
tation of the tool McErlang. The paper is not so much about the
theory behind model checking or the semantics of Erlang, instead
we focus on design choices, implementation decisions, adaptabil-
ity and usability. McErlang is a model checker for Erlang imple-
mented in Erlang, it supports a large subset of the Erlang program-
ming language. In particular it supports all of the distributed and
fault-tolerant parts of Erlang. This is especially important since dis-
tributed and fault-tolerant implementations are known to be error
prone and hard to test and debug. McErlang is also easy to use
and should be accessible to an ordinary Erlang programmer. Fi-
nally McErlang is designed in a very modular way and can easily
be adapted to support other target languages.

Paper organization The next section contains an introduction to
the most important features of the Erlang programming language
and section 3 contains a description of the most prominent fea-
tures of the Erlang semantics. In section 4 the parametric design
of McErlang is described and section 5 presents the model checker
itself, i.e., essentially an on-the-fly model checker whichexecutes
Büchi automatons (coded in Erlang) in parallel with the Erlang pro-
gram under study. In section 6 we show some results and examples
of using the model checker. Section 7 discuss a number of design
choices in more detail, and section 8 summarises related work. Fi-
nally section 9 draws conclusions, and outline future research work.

Download McErlang McErlang can be downloaded at
http://babel.ls.fi.upm.es/~fred/McErlang/.

2. The Erlang Programming Language
Erlang is a programming language developed at Ericsson for imple-
menting telecommunication systems (Armstrong et al. 1996;Arm-

strong 2007). It provides a functional sub-language, enriched with
constructs for dealing with side effects such as process creation
and inter–process communication via message passing. Moreover
Erlang has support for writing distributed programs;processescan
be distributed over physically separated processingnodes.

Today several commercially available products developed by
Ericsson and other companies are at least partly programmedin
Erlang, an example is the AXD 301 ATM switch (Blau and Rooth
1998). The software of such products is typically organizedinto
many, relatively small, source modules, which at run-time execute
as a dynamically varying number of processes operating in parallel
and communicating through asynchronous message passing. The
highly concurrent and dynamic nature of such software makesit
particularly hard to debug and test.

Erlang programmers, of course, mostly work with ready-made
higher-level language components rather than the basic language.
In practice programmers predominantly use the OTP component li-
brary (Torstendahl 1997), which offers a number of useful software
components such as: a generic server component for client-server
communication, a finite-state machine component, and a supervisor
component that restarts failed processes. Our approach to model
checking Erlang programs can verify software that is built using
both the core message passing language and with these high level
components.

A key feature of the systems for which Erlang was primarily
created is fault-tolerance. Erlang implements fault-tolerance in a
simple way. Links between two processes A and B can be set up so
that process B is eventually notified of the termination of process
A and vice versa (using the normal message-passing machinery).
The default behavior of a process that is informed of the abnormal
termination of a linked process is to terminate abnormally itself. Al-
ternatively the linked process can specify that it wishes toreceive a
message with a notification that its linked process has terminated.
This process linking feature can be used to build hierarchical pro-
cess structures where some processes are supervising otherpro-
cesses, and can take corrective action (e.g., restarting them) if they
terminate abnormally. In order to create such fault-handling struc-
tures, Erlang/OTP provides the supervisor behavior.

Another key feature of Erlang systems, which is particularly
useful for 24/7 systems, is the mechanism for hot code replacement.
In short it is possible to phase out old code and replace it with
new code, having both old and new code running simultaneously.
This feature enables bugs to be corrected and features to be added
without stopping the system.

In summary, the Erlang/OTP programming environment is a
comparatively rich programming environment for programming
systems composed of (possibly) distributed processes thatcom-
municate by message passing. Fault tolerance is implemented by
means of failure detectors (the linking mechanism), a standard
mechanism in the distributed algorithms community. Moreover
there is a process fairness notion, something which often makes it
unnecessary to explicitly specify fairness in correctnessproperties.
Moreover the language provides explicit control of distribution, and
a clean model of distribution semantics. For distributed processes
(processes executing on separate nodes) the communicationguar-
antees are far weaker than for processes co-existing on the same
processor node. This gives, in a clean way, considerable power with
regards to checking a program under different environmental con-
straints (simply changing the mapping of processes to nodes), but
on the other hand there is a requirement on implementing the run-
time system with different guarantees for inter-node and intra-node
communication.

Multi-core programming The concurrency oriented nature (Arm-
strong 2003) and the (almost) transparent distribution makes Erlang
a really good candidate for writing efficient distributed software.



With the latest version of the Erlang Run-time System (Erlang
5.5/OTP R11B) this is taken even further, as it includes built-in
support for SMP (Symmetric Multi Processing). SMP is today sup-
ported by most modern operating systems and becomes more and
more important with the introduction of dual/quad/. . . processors,
multi-core systems and hyper-threading technology. The SMP sup-
port in Erlang is transparent since most problems occurringin
multi-threaded programs are solved by the Erlang VM. The SMP
version of the VM can have many process schedulers running in-
side each OS thread, the default is to have as many schedulersas
there are processors (or processor cores) in the system. Since the
SMP support is completely transparent we get ’for free’ an efficient
multi-core implementation if we have a correct distributedimple-
mentation. This shows another benefit of having a working model
checker for distributed Erlang.

3. Semantics
Erlang is at the same time both a simple language, having at its core
a fairly uncomplicated dynamically typed functional language with
eager evaluation, and a fairly complicated one. The complexity is
due to the addition of language layers proving support for concur-
rency (processes and message passing), and distribution (process-
ing nodes that encapsulate processes) and fairly elaborateinter-
process fault detection and fault handling mechanisms (viaprocess
links and process monitors).

The intuitive picture of the distributed semantics is rather sim-
ple, the guarantees given are simply: “communication between a
pair of processes is assumed to be ordered” as described by Arm-
strong (2003). The semantics of links and monitors are also fairly
easy to get an intuitive understanding of. However, the fullseman-
tics for distributed Erlang is indeed complex. It consists of some
rather long and technical transition rules. Especially thecorner
cases, such as using the link mechanism on a dead process, makes
a presentation somewhat lengthy and less intuitive than onecould
wish. Nevertheless, our formal description of the semantics is lay-
ered in three layers in a very clear way.

• Functional Semantics - consists of the pure functional part of
Erlang (function evaluation, pattern matching, etc). It isdynam-
ically typed and fairly straight forward.

• Process Semantics - is above the functional semantics, and
consists of process evaluation rules (sending and receiving mes-
sages and links, starting/terminating processes, and silent com-
putation steps) as well as process communication rules (process
interleaving and process communication). This is all for the sin-
gle node case, that is all the involved processes are executing in
the same run-time system.

• Node Semantics - is placed on top of the process semantics,
and adds the concepts of nodes and full distribution to the
semantics. Similarly to the process semantics it consists of node
evaluation rules and node communication rules.

The functional semantics and the process semantics are de-
scribed in detail in Fredlund (2001) and the node semantics is in-
troduced in Claessen and Svensson (2005). The layering described
here is, as we see later, clearly mirrored in the implementation of
the model checker. Since it is not feasible to cover all aspects of the
semantics in this paper, we just highlight a few important details.
With the following example we show the importance of having the
node semantics layer and that our intuitive understanding of the
semantics is not sufficient in all cases.

3.1 World Hello?

Consider the small Erlang program in Fig. 1. When we run the
function worldhello() it will spawn A, which in turn results in

two processes being spawned (B and C). Thereafter A will firstsend
the messagehello directly to C and then send the messageworld
to B. Process B is very simple, once it receives a message, it will
forward it to process C. Process C just receives two messages, and
prints the result. (?MODULE is a built-in macro which is replaced
by the name of the current module by the compiler,?NODEi are
ordinary macros defined elsewhere.)

worldhello() ->
spawn(?NODE1,?MODULE,procA,[]).

procA() ->
PidC = spawn(?NODE3,?MODULE,procC,[]),
PidB = spawn(?NODE2,?MODULE,procB,[PidC]),
PidC ! hello,
PidB ! world.

procB(PidC) ->
receive world -> PidC ! world end.

procC() ->
receive X -> ok end,
receive Y -> ok end,
io:format("~p ~p\n",[X,Y]).

Figure 1. ’World Hello’-program
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Figure 2. Possible message sequences

The interesting aspect of this program is that the result of run-
ning the program depends on the distributed environment! Ifthe
program is running on a single node (that is?NODE1 = ?NODE2 =
?NODE3), the result is always:hello world. However if the pro-
gram is running in a distributed environment (that is?NODE1 6=
?NODE2 6= ?NODE3), the result could be eitherhello world or
world hello. The reason for this is that there are different com-
munication guarantees at the distributed level. In short; in a sin-
gle run-time system message delivery is instantaneous (that is the
message is immediately put in the receivers in-box), while in a dis-
tributed system the only guarantee is that messages betweena pair
of processes are ordered. The possible message sequences inthe
distributed case is shown in Fig. 2.

The etomcrl tool for example (and the same goes for many
other Erlang verification efforts) does not have a notion of nodes at
all, and therefore this aspect cannot be checked. It is clearthat this
is a problem, since the difference in communication guarantees is
a definite source of errors in Erlang systems (see for exampleArts
et al. (2005)). It was therefore a strong requirement on McErlang
that it should handle the node semantics. In fact, it is fair to say that
the major part of the implementation effort of the model checker
has been devoted to an accurate treatment of the often surprisingly
complex semantics of the node semantics part of the run-time
system.

3.2 Semantics implemented in McErlang

The McErlang tool has a full implementation of the distribution
part of Erlang (i.e., explicit programmatic mapping of processes



to explicit nodes), and thus provides the possibility to verify code
based on either the assumption that all process are local (onthe
same node), or remote (all processes reside on different nodes), or
a mix of the disciplines. Thus it is possible to verify a program
under quite weak communication guarantees and be sure that later
processes can be freely mapped on distributed nodes. However, the
drawback of the distributed semantics is that it greatly increases
the state space of the verified programs; essentially the distributed
semantics non-deterministically delays the delivery of messages to
a receiving process.

4. Structure of the Implementation
The model checker implementation is parametric, using the Er-
lang/OTP style of behaviors to specify particular component be-
haviors that provide services to the model checking algorithm.

The basic task of the model checker is of course to check a
program against a correctness property, amonitor module, that
implements the correctness property to check.

Except specifying which program to check (a specific Erlang
function), and which Erlang module that implements the correct-
ness property, a user of the tool can also choose:

• the name of alanguagemodule providing an operational se-
mantics,

• the particularverification algorithmto use, (e.g., a safety prop-
erty checker, a liveness property checker or just testing – i.e.,
simulation of the program in conjunction with a correctness
property),

• the name of astate tableimplementation, that records encoun-
tered program states (typically a hash table), and

• the name of anabstraction modulethat abstracts program states,

The modular composition of McErlang is illustrated in Fig. 3,
and in the following sections we describe the functionalityof these
modules in turn.

Figure 3. McErlang modular structure

4.1 Source Language

The language module should provide two functions implementing
an operational semantics for the language: (i)transitions which
given a state returns a list of all next actions executable bythe
program, and (ii) the functioncommit which given an action re-
turns a concrete program state. Thetransitions function may
not cause side effects outside the model checker environment (e.g.,
really writing out a file to the file system) whereascommit may (if
used by the simulation algorithm). The language module mostcom-
monly used is clearly the one providing an operational semantics
for Erlang, however, we have also implemented an operational se-
mantics for the WS-CDL web choreography language (W3C 2005).
Although the effort is less mature than the Erlang model checker,
it is interesting that the basic framework of the model checker can
be reused in a different language setting (Fredlund 2006). As XML

and XPath constitutes integral parts of the WS-CDL definition, hav-
ing good support libraries available for these languages isvery use-
ful when representing their operational semantics. As Erlang has
seen considerable industrial usage, the language already had good
library support for working with XML based documents; we expect
the same kind of advantages from using Erlang when providing
model checkers for other target languages.

4.2 Correctness Properties

Correctness properties are encoded as automata programmedin Er-
lang. A safety monitor is a function which is checked in every
reachable program state, and which returns an error if an invalid
state is seen. ABüchi monitor(automaton) is a monitor that addi-
tionally may mark certain states as accepting. A program violates a
Büchi monitor if a cycle can be found in the combined state space
of the program and the monitor, which contains an accepting state.
As is well known (Vardi and Wolper 1986), linear temporal logic
formulas can be automatically translated to Büchi automata.

The memory aspect of monitors is implemented by send-
ing along the old monitor state as an argument to the Erlang
function implementing the monitor. Concretely a monitor
defines two callback functions:init(parameters ) and
stateChange(programState,monitorState ). The init
function returns{ok,monState } wheremonState is the initial
state of the monitor.

The stateChange function is called when the model checker
encounters a new program stateprogramState and the current
monitor state ismonitorState . If a safety monitor finds that
the combination of program and current monitor state is accept-
able, it should return a tuple{ok, newMonState } containing
the new monitor state. If future states along this branch areun-
interesting the monitor can returnskip (e.g., to implement a
search path depth limit), any other value signals a violation of
the correctness property implemented by the monitor. A Büchi
automatons should return a set of states, each state either accept-
ing {accepting,state } or not{nonaccepting,state }. Nor-
mally we expect a “sound”stateChange function to be without
side effects.

As an example, the code fragment in Fig. 4 implements a simple
safety monitor that guards against program deadlocks: (a process
is considered deadlocked if its execution state as recordedby the
process data structure in the run-time system isblocked).

stateChange(State,MonState) ->
case lists:any

(fun (P) -> P#process.status =/= blocked end,
State#state.processes) of

true -> {ok, MonState};
false -> {deadlock, MonState}

end.

Figure 4. Simple safety monitor

The syntaxvariable #recordName.field is used to access the
field field of the record variablevariable , of typerecordName .

4.3 Algorithms

The McErlang tool currently offers two basic on–the–fly depth-
first state traversal model checking algorithms, one to check safety
properties and the other to check Büchi automatons (the liveness
checking algorithm adapted from Holzmann et al. (1996)). Togive
an intuition to the coding of these algorithms in Erlang, a schematic
representation of the algorithm for safety property checking is de-
picted in Fig. 5 (we have abstracted out the parameter passing of
modules implementing language (Lang), monitors (Mon), abstrac-
tion (Abs) and table implementation (Tab)).



check([]) -> ok;
check([[]|Earlier]) -> check(Earlier);

check([[State|Alts]|Earlier]) ->
{ProgState,MonState,StateTab,AState} = State,

% Check monitor
{ok,NewMonState} =
apply(Mon,stateChange,[ProgState,MonState]),

% Abstract state
{ok, {AbsState,NewAState}} =
apply(Abs,abstractState,

[{ProgState,NewMonState},AState]),

% Check whether state already seen
case apply(Tab,addState,[AbsState,StateTab]) of
no ->

check([Alts|Earlier]);

{ok, NewStateTab} ->
NewStates =
[{S,NewMonState,NewStateTab,NewAState} ||
S <-
lists:map
(fun (Action) -> apply(Lang,commit,Action),
apply(Lang,transitions,[ProgState]))],

check([NewStates,Alts|Earlier]])
end

end.

Figure 5. Safety property checking algorithm

To check an Erlang function callm :f (p1,...,pn ), given an
initial monitor statemonState and an empty state tablet , and
abstraction statea , the checking algorithm should be invoked with:

check([[{mkProc(m,f,[p1,...,pn ]),monState,t,a }]])

wheremkProc constructs a model checking process executing the
function call argument.

As seen in the listing, model checking states are composed of
a program state, a monitor state, a state table, and an abstraction
state. Program states are checked against the monitor, and if ac-
cepted, are abstracted using an abstraction function provided by
the moduleAbs. The abstracted states are checked against mem-
bership in the state table. If the program state is new, the set of next
states is computed using the functiontransitions. Note that the
particular choice of abstraction and table storage is abstracted out
from the algorithm itself.

In addition there is a simplesimulatoravailable, which by de-
fault chooses the next program state randomly, but in addition has
some debugging functionality, e.g., next states can be explicitly
chosen, transitions can be single or multiple stepped, breakpoints
can be set, and backtracking to previous states is supported. The
simulator is also used to explore safety model checking counterex-
amples (traces).

Fairness Constraints on Executions The Erlang language stan-
dard requires that process schedulers must be fair. The McErlang
tool accordingly implements (weak) process fairness directly in
its (liveness) model checking algorithm by omitting non-fair loops
(i.e., ones that constantly bypass some enabled process) from the
accepting runs.

4.4 Tables

A state table records pairs of program and monitor states encoun-
tered during model checking, to detect recurring states. The state
table implementations used are normally imperative (e.g.,updates

-module(hashAbs).
-export([init/1, abstractState/2]).

init(Size) ->
{ok,Size}.

abstractState(State,Size) ->
{ok,{erlang:phash2(State,Size),Size}}.

Figure 6. Abstraction module for hashing

to them are destructive) for performance reasons; however purely
functional implementations of the tables are available.

4.5 Abstractions

An abstraction abstracts a concrete program state into an abstract
representation. It can be used to drastically reduce the checked state
space of a program. The idea is inspired by the use of abstractions
in Arts and Fredlund (2002). A typical abstraction used in model
checking is to compute a hash value from the state, and to use the
hash value as the abstract state when checking for membership in
the state table. However, program specific abstraction functions can
also be implemented. For example, an abstraction could transform
an integer variable into a boolean value, signaling whetherthe
integer is less than zero. Clearly, there is in general no guarantee
that such an abstraction is safe, i.e., that it does not causea program
failure to escape undetected (false positive).

As a second example we have implemented the usual abstrac-
tion of collapsing a whole state to a single integer (throughhash-
ing), and using a bit array table module to implement the state table.
Thus, in a modular fashion, we have obtained an implementation
of Holzmann’s bit-state hashing verification algorithm (Holzmann
1991). An implementation of a hashing abstraction thus becomes
as simple as Fig. 6, whereerlang:phash2 is a built-in function
which computes a hash value between 0..Size for its term argu-
ment. Note that is an unsafe abstraction, although as provenin prac-
tise in many verifications, also a highly useful one.

5. Executing Erlang Programs in McErlang
The model checking capability for Erlang programs is provided by
executing Erlang programs directly in the existing Erlang run time
system. This enables an easy and reasonably efficient handling of
computations that act solely on data (the purely functionalsub-part
of Erlang). However, the existing Erlang run time system does not
provide a method to capture the combined system state of a running
program (check-pointing). This is unavoidable, since in general an
Erlang computation could be distributed and so the combinedstate
cannot be efficiently, or even reliably, collected.

For this reason we have implemented in Erlang a new run-time
system for the concurrent and distributed part of the language, that
implements easy access to the combined system state of an Erlang
program. This run-time system simply simulates distribution and
concurrency, all computations take place inside a single real Erlang
process. Structurally the new run-time system is layered ontop of
the old one, replacing only the process handling and the concur-
rency part of the old system. This layered structure also in many
ways resemble the layered structure of the Erlang semanticsin sec-
tion 3.

Essentially a complete verification model consists of three
parts: (1) an Erlang program containing the original program to
be checked, (2) a re-usable implementation of the run-time system
(also written in Erlang) and (3) a specification of the environmen-
tal constraints (e.g., which process/node failures and link failures
occur). See section 6.2 for a concrete example of such environ-



mental constraints. By separating the model cleanly into these
three parts we can independently experiment with differentas-
sumptions/implementations. The workflow is illustrated inFig. 7.

Figure 7. McErlang workflow

5.1 Run-time Organization

The state of the run-time system, e.g., recording process states,
communication queues and so on (see section 5.3 for details), is
stored in the imperative Erlang process dictionary; all (simulated)
model checking processes run, interleaved, in a single Erlang pro-
cess. All state updates and queries are thus implemented as accesses
to the process dictionary. We have also experimented with a solu-
tion where the state of the run-time system is kept in a separate
process, a solution more in the spirit of the Erlang design philos-
ophy. Unfortunately, that solution severly impacts on the speed of
model checking, slowing down a typical verification with a factor
of three compared to the process dictionary solution. An obvious
alternative would be to pass along the global state as a parameter
everywhere in the verifier code. In e.g. Haskell cleaner as well as
more efficient solutions are obviously possible.

5.2 Translation

A vital part of the model checker is a compiler that translates an
Erlang program to be verified to a modified Erlang program that
uses the new run-time system.

Actually we still use the old runtime system to execute even
the translated functions (this is to avoid having to re-implement
any part of the data handling in Erlang). However, calls to Erlang
functions with side effects in the old runtime system have been
replaced with calls to Erlang functions with side effects inthe
model checker instead.

The principal goal of the translation is to transform Erlangfunc-
tions that use thereceive construct1 so that instead of executing
that construct, which would immediately hang the executionof the
model checker as there would be no value to be received, the modi-
fied function instead returns a special return value. The return value
indicates the desire to receive a message, and a continuation func-
tion coding the normal execution of the function after the reception
of the message.

The translation takes a set of modules as input and returns a set
of translated ones. The resulting Erlang modules can be compiled
by the normal Erlang compiler (which is a requirement for using
the model checker).

In case the compiled application makes use of OTP components
(generic server, supervisor, etc. . . ) the McErlang tool will include

1receive is a process construct to retrieve a value sent to the invoking
process.

in the compilation the source code of tailored versions of these
libraries, written in Erlang of course.

Replacing API calls Apart from transforming code that uses the
receive construct, the translation does a very simple transforma-
tion of other API calls such as e.g. sending a value to a process.

As the Erlang language lacks a good reflection capability, the
new run-time system is provided as a new application library
evOS. For example, an application that used to send a message
{request,22}2 to a process with process identifierpid using the
send constructpid !{request,22} should instead call the library
function evOS:send(pid,{request,22}). The functions that
implement the new API calls are implemented in Erlang itselfand
operate directly on the global system state (nodes, ether, processes,
links, and a register map as discussed in section 5.3 below).

Handling Reception of Messages The mapping of calls to Er-
lang API functions to the new run-time system works for all Erlang
constructs except thereceive statement which is used by a pro-
cess to retrieve a value from its mailbox (or process queue),as the
receive call suspends until a matching value is available.

Instances ofreceive statements in the Erlang code to be model
checked are instead replaced with code that returns a tuple like:
{recv,{module,fun,context}, where the contained inner tuple
{module,fun,context } identifies a function that implements the
logic of the particular receive statement.

When an invoked Erlang function, in an Erlang process, returns
such arecv tuple the new run-time system recognizes the special
return value and marks the process asblocked, and then checks
whether there is any receivable value in the process mailbox(in
which case the process status is upgraded toreceivable). In any
case, the run-time system can schedule another enabled process.

The transformation of an Erlang program containing areceive
statement into one returning arecv expression is explained by the
small example in Fig. 8 and Fig.9.

server(State) ->
receive

{new_state, NewState, Pid} ->
Pid!{reply,State},
server(NewState)

end.

Figure 8. Receive statement – before translation

The code fragment in Fig. 8 defines a functionserver which
guards some private state. The state can be changed by sending
a call message to the server process, containing a process identifier
and a new state. The server replies with the old state. The transla-
tion of the server function is shown in Fig. 9. In the transformed
code, a call toserver(state ) will immediately return a tuple
{recv,{?MODULE,f 0,[state ]}} which is a special form rec-
ognizes by the model checker.

In general the function referenced inrecv should accept two
parameters, a message in the queue to be tested whether it is receiv-
able, and a list of variables needed in the evaluation ofreceive.
If the message is receivable, the function should return a tuple with
a new anonymous function; if notfalse should be returned. The
anonymous function receives the same parameters as the original
function, and contains the body of thereceive clause. The sep-
aration of receive into two functions serves to separate thetesting
whether a message is receivable from the actual retrieval ofthe
message from the queue (as the process could continue by perform-
ing some side effect).

2 A tuple containing a literal symbolrequest and the number 22. In Erlang
variables begin with a capital letter and atoms (literals) with a lowercase
letter.



server(State) -> {recv, {?MODULE, f_0, [State]}}.

f_0({new_state, NewState, Pid}, [State]) ->
{true,
fun ({new_state, NewState, Pid}, [State]) ->

evOS:send(Pid,{reply,State}), server(NewState)
end};

f_0(_, _) -> false.

Figure 9. Receive statement – after translation

Handling a non tail-recursive receive The translation of the
receive construct sketched above is correct only when it occurs
in a tail-recursive position. For the general case, what is essentially
a run-time stack is used instead.

The run-time stack is implemented using another special return
value: {letexp,{expr,{module,f,parameters }}}, which is
used in the situation when a receive statement occurs in an expres-
sion context (i.e. not in a tail-recursive position). Consider for ex-
ample the recursive functionserver in Fig. 10 which repeatedly
calls a functiondoRequest which in turn contains a receive state-
ment.

server(State) ->
{ok, NewState} = doRequest(State),
server(NewState).

Figure 10. Non tail-recursive receive – before translation

The example in Fig. 10 is translated into aletexp return value
as seen in Fig. 11. The function referenced in theletexp special
expression is called when the inner function has returned a value,
and receives as arguments the returned value as first argument and
as second argument a list of variables necessary in the continued
computation. In general all non tail recursive calls to functions that
contain areceive in their body will have to be similarly guarded
using aletexp. We use a global analysis over the set of input
modules to the translator for computing the transitive closure of
which functions may execute areceive statement.

server(State) ->
{letexp, {doRequest(State), {?MODULE, f_1, []}}}.

f_1({ok,NewState}, []) ->
server(NewState).

Figure 11. Non tail-recursive receive – after translation

The translation is somewhat complicated by the need to support
the Erlang “feature” of permitting variable bindings to migrate out
of their scope. The Erlang example in Fig. 12, which compiles
without warning and does not cause run-time errors, illustrates the
translation difficulty (Logger is assumed to be bound to a process
identifier). Note that the variablesMsg and NewV are bound in
different branches of thereceive construct, but may still be used
outside of it.

Non-determinism in Erlang Another special return value is
{choice,[{module, fun,context },...]} which introduces
explicit non-determinism in Erlang; the model checker willnon-
deterministically select the continuation function from the list of
function alternatives. This construct is needed to use Erlang as a
specification language rather as a programming one. As an exam-
ple, suppose that we have implementing a drink machine in Erlang,
offering either coffee or tea. Using the choice construct itis easy to
model a machine user that non-deterministically selects either cof-
fee or tea, and to verify that the program works correctly regardless

pingOrpong(Logger) ->
receive

{ping,V,Sender} ->
Sender!{Msg=pong,NewV=V+1,self()};

{pong,V,Sender} ->
Sender!{Msg=ping,NewV=V+1,self()}

end,
Logger!{Msg,NewV},
pingOrPong(Logger).

Figure 12. Migrating variable bindings

what drink the user chooses (the model checker automatically ex-
plores both possibilities).

Finally {pause,{module,fun,context }} is short hand for a
choice with a single continuation function; it is used to facilitate
detection of interesting states in correctness properties.

5.3 Data Structures in the Run-time System

An Erlang state in our run-time system is a hierarchical structure
and mimics to a large extent the organization of the real run-time
system (and the structure of the layered Erlang semantics!)for
Erlang, except, of course the state is physically centralized.

The top level of the hierarchical structure is composed of a tuple

〈nodes , ether〉,

combining a data structure containing the nodes of the running
system and anetherdata structure containing messages in transit
between nodes. Each message is identified by the following tuple:

〈receivingNode , sendingNode ,messageContent 〉.

The ether data structure essentially has a separate queue ofmes-
sages, sorted by sending time, for each pair of sending and re-
ceiving nodes. This is needed since the language guaranteesthat
communication between any two nodes is FIFO-like, i.e., mes-
sages are delivered in order, if they are delivered at all. The
messageContent contains the message itself (e.g., a normal mes-
sage sent between two processes or a run-time event such as e.g. a
notification of a process termination).

A node tuple

〈name, processes , registered ,monitors ,node monitors , links〉,

is on the second hierarchical level. Theprocesses field contains the
processes executing on the node,registered implements the Erlang
name server which maps (on a node basis) pids to symbolic names.
The fieldsmonitors , node monitors andlinks is used in the three
different process linking mechanisms available in Erlang.

Each process is a tuple

〈status , expr , pid , queue , dict ,flags〉.

The fieldstatus records the execution status of the process, e.g.,
whether it is blocked waiting on incoming messages, ready torun,
or ready to receive an existing message. Theexpr field describes
the next piece of code to execute, concretely a named user-defined
Erlang function and a set of actual parameters to invoke the func-
tion with. Thepid field is the system-wide unique process identi-
fier of the process,queue contains the messages sent to the process
that are available for reading (inter-node messages migrate from
theether data structure to thequeue whereas intra-node messages
are directly put in thequeue data structure, mimicking the differ-
ent communication guarantees provided by the run-time system for
inter-node compared to intra-node communication). Finally dict
contains a process dictionary (the equivalent of imperative vari-
ables in Erlang), andflags describes the setting of various process
options.



Although the exact manner in which states are physically stored
or represented (e.g., on the stack of ’choice points’ and in the
table of states previously seen) during a model checking is fully
configurable, the normal exact representation of a state ensures
that states arenormalized, i.e., nodes are sorted in some order,
as are processes within an nodes, as are links (pairs of processes
identifiers in a node) and so on, to ensure a rapid check for state
equality.

5.4 Model Checker Semantics

The tool implements a major part of the coreerlang module in
the Erlang/OTP distribution omitting mainly functions to inspect
the run-time system itself, to obtain process status, timing func-
tions, and ports (which are used to interface with foreign, i.e. non–
Erlang, code). In total we provide around 40 such API functions,
the implementation of which constitutes a significant portion of the
lines of code of the model checker.

The operational semantics implemented by McErlang comprise
an interleaving transition relation between Erlang stateswhose ac-
tions are decorated by sequences of actions (i.e., a big-step oper-
ational semantics). States are comprised by stable systems(e.g.,
where all processes are waiting in receive statements or have just
spawned) and transitions are caused by invoking a single enabled
process to run which may cause many side effects until it again
becomes stable (waiting in a receive statement).

The use of a big–step semantics means that some errors will go
undetected which would be caught using a smaller-step semantics.
For the typically large scale systems that we are interestedin
verifying with McErlang there is a trade-off here. One option is to
have a very detailed execution model with all the possibility non-
determinism inherent in the programming language.3 This quickly
leads to enormous state spaces with the result that only a very tiny
part of such state spaces can be explored by a model checker. On the
other hand, we can reduce the non-determinism in the specification
language by slightly changing its semantics. The result is smaller
state spaces, which we can verify a bigger part of, but there are
possibly states that we can never check because they will never
be generated by the model checker. In future work we aim to
implement a more finely-grained semantics for intra-node Erlang
to explore this issue in further detail.

Interestingly it turns out that we can recover a more finely-
grained semantics in case each process communicates only with
other remote processes (located on other nodes). Then a send, as
well as any other side effect, will be arbitrarily delayed (since the
nodeether data-structure is used, which essentially have separates
queues for all pairs of communicating processes, see section 5.3 for
details) compared to side effects caused by other processes, and so
all interleavings of side effects are recovered.

5.5 Run-time Environment Modeling

Probably the most challenging part of developing a model checker
for Erlang is to accurately model the environmental constraints put
on a running Erlang program. For example: constraints on schedul-
ing Erlang processes, the semantic impact of mapping processes

3 As an extreme case, Erlang, for instance, does not fix the order of evalua-
tion of arguments to functions, so a totally faithful semantics would gener-
ate all such orderings. As Erlang programmers can happily write code that
cause side effects in the evaluation of function call arguments, generating all
such orderings may be highly important in model checking. However, the
number of extra states could be huge, although part of the overhead could
be eliminated through use of intelligent reductions. In practise, however, the
only available Erlang language implementationdoesfix the order of argu-
ment evaluation, and in our opinion this is very unlikely to ever change in
the future of Erlang.

onto remote processing nodes, the basic communication guarantees
of Erlang, and on the frequency of failures in a running system.

Moreover the Erlang API has quite a few functions with side ef-
fects, whose actions cannot be understood as simply as sequences
of lower-level primitives (send and receive) but are first-class citi-
zens in any operational semantics.

As an example we consider below the implementation, which
is a form of operational semantics, of theerlang API function
exit/2. In Erlang,exit(Pid,Reason) is used to send a termi-
nation signal to the process referenced byPid, which may be ter-
minated as a result. The implementation has to handle the rather
subtle interplay between fault-handling mechanisms (linking, mon-
itors) and take into account process locality (on the same node, or
not), etc. Moreover, its behaviour is very different depending on
whether the process to terminate resides on the same node as the
process executing the call or not.

Although the function may seem complicated, it is an intrinsic
part of the Erlang language, which is used by programmers allthe
time (as invoked in through higher-level functions), and wehave
no choose but to model it faithfully if we wish to verify realistic
Erlang software.

Implementation sketch:

1. First the arguments are checked; ifPid is not a process identi-
fier an exception is raised.

2. The code then checks ifPid is a local pid (i.e., the correspond-
ing process resides on the same node as the process which exe-
cutes theexit/2 call. If the process is remote, a signal (a mes-
sage) is sent to the node on which the process resides containing
a request to issue anexit/2 call, and the function returns.

3. If it is a local process, the process flags are retrieved. The
process traps exit messages if the flagtrap exit is set. If
trap exit is set, and theReason argument is notkill, a
message,{’EXIT’,self(),Reason}, is put into its mailbox
(whereself() evaluates to the pid of the process that called
exit/2), and the function returns.

4. If the process is local, and it is not trapping exits, and the
Reason argument isnormal, the process is not terminated
(and no message is put in its message queue), and the function
returns.

5. Otherwise (the process is local, the reason iskill, or. . . ) the
process is terminated, i.e., it is removed from the process table.

6. Moreover any registered names for the process are removed(by
modifying theregisteredelement in thenode).

7. And any monitors the now terminated process has set up are
removed (all nodes are searched for such monitors), and mes-
sages concerning terminated processes due to such monitorings
are removed (from theetherelement).

8. Then every process that has requested to monitor the terminated
process (information present in themonitor field of the node
structure) are sent a message informing them of the termination
of the process they monitored, and the reason for termination.

9. Then all the links mentioning the terminated process are exam-
ined (recorded in thelinks field of thenodestructure). If a link
mentions a remote process, then the remote process is sent a
signal (message) informing it that one of its linked processhas
terminated. If the process is local, the linked process is itself a
candidate to terminate immediately, and execution contains for
the linked process with roughly step 3 above.

As is indicated in the last step, in Erlang the termination of
a process can, through the link concept, cause the termination of
more processes, and so on, in a chain reaction. Although at first



counter-intuitive, the idea is to use this behavior of the linking
mechanism to write fault tolerant code. Essentially some processes
are designated as supervisor processes, which are responsible for
starting processes, and handling their termination by optionally
restarting them. Such supervisor processes set thetrap exit flag
to have termination message delivered to their message queues.
Their clients on the other hand generally do not set thetrap exit
flag, since they do not contain programming logic to handle faults.

Many Erlang programs are written to be fault-tolerant, using the
linking or monitoring mechanism, and although using ready-made
components4 make the task easier, programming fault tolerant ap-
plications is stillhard, and being able to check code under adverse
run-time conditions using a tool such as our model checker isa
significant help.

Ensuring Finite Models Clearly the efficacy of the model check-
ing algorithm depends crucially on whether the checked Erlang
program is finite state or not. However, note that for checking non-
compliance this is not always necessary. For instance, we can eas-
ily code a monitor that raises an alarm whenever a process mailbox
contains more than, say,N messages. Similarly, an abstraction (see
the discussion in section 4.5) could simply cut the mailbox when it
has grown too large.

Still, in model checking Erlang there are at least two sources
of trivially infinite models that we need to avoid: the assigning
of process identifiers to new processes, and the use of unique
references to uniquely identify (generic server) calls. Wesolve both
problems by consistently choosing the leastfreshprocess identifier
(or communication tag) absent from both the current programstate
and the correctness monitor.

6. Evaluation
To evaluate the use of McErlang we have used it on several non-
trivial examples, ranging from a resource locker to a Video–on–
demand server. Here we focus on two examples, first a simplified
resource manager (or locker) originally implemented and verified
by Arts et al. (2004b). Their locker is based on a real implementa-
tion in the control software of the AXD 301 ATM switch developed
by Ericsson. The second example is an implementation of a leader
election algorithm. The implementation is (loosely) inspired by an
algorithm presented by Singh (1996). Also this example originates
from the AXD 301 ATM switch, but the particular implementation
we studied here (and which have been studied before by Arts etal.
(2005)) is an open source version written by Wiger.

The two examples aims to show different aspects of McErlang,
the locker example is comparing McErlang withetomcrl and does
not use the distributed features of McErlang. On the other hand,
the leader election example is distributed (and fault-tolerant) and
the example shows that it is possible to find errors in a distributed
application with McErlang.

Other case studies realized using McErlang include the verifica-
tion of an implementation of the Chord peer–to–peer protocol (Sto-
ica et al. 2001), another implementation of a leader election algo-
rithm namely Stoller’s leader election algorithm (Stoller1997), and
of the above mentioned Video–on–demand server (Fredlund and
Sánchez Penas 2007).

6.1 Resource manager

The locker is responsible for a number of resources, to whichit
can give clients exclusive or shared access, and which can survive
client failures. To compare performance with theetomcrl tool we

4 Such as, for example, the OTP supervisor pattern and the OTP generic
server that are prepared to handle errors.

here focus on checking a single property5: is the locker safe with
regards to mutual exclusion? That is, if a client requests exclusive
access to a resource, and is granted access, then no other client will
access the resource.

The source code of the example is split into four Erlang mod-
ules (files): (1) a module implementing a (parametric) client repeat-
edly accessing the locker using thegen server OTP client-server
component, (2) the source of a fault–tolerant locker, (3) a module
implementing a supervisor process for starting the clients(using
thesupervisor OTP component), and (4) a supervisor that starts
both the server and the client supervisor. In total around 430 lines
of Erlang code.

The mutual exclusion monitor is provided in a separate Erlang
module (around 60 additional lines of code); it checks whether
multiple clients think they have access to the same resource, and
at least one client has exclusive access (a mutual exclusionfail-
ure). In the client source we make visible the property of hav-
ing access to resource by introducing a state using thepause
value:{pause,{?MODULE,inUse,[Resources ]}} which docu-
ments the resources and lock types the client thinks it has acquired.

Results As a comparison withetomcrl we present some figures
for the checking of the locker example in table 1 below. The config-
uration column indicates, in a schematic manner, the model check-
ing scenario used. For instance aEaEaEaEaS is a configuration with
four clients requesting exclusive access to the resource a,and one
client requesting shared access. The timing column shows the time
for generating the transition system (foretomcrl, via the instan-
tiator tool) and both the time to generate the transition system and
check the mutex property for McErlang. The states column repre-
sents the number of states in the generated models. Note thatfor
McErlang we use a non-lossy hash-table to store the state table.

etomcrl McErlang
configuration time states time states
aEaEaEaEaE 52s 34282 17s 52197
aEaEaEaEaS 36s 28014 17s 50805
aEaEaEaSaS 39s 30814 18s 56313
aEaEaSaSaS 1m 4s 51928 25s 75801
aEaSaSaSaS 2m 49s 135038 42s 130101
aSaSaSaSaS 9m 29s 466702 1m39s 284277

Table 1. Comparison ofetomcrl and McErlang

The table shows that in less complex scenarios,etomcrl cre-
ates smaller state spaces than McErlang. However, in complex sce-
narios (a scenario with more sharing is more complex, since many
processes can request and succeed in getting a sharing lock on a
resource at the same time) the difference in number of statesevens
out. The tool experiments were performed on a HP xw6400 work-
station with four Intel Xeon CPUS each running at 1.60GHz (al-
though neither tool made us of more than one CPU) and with 2 GB
of memory, running Ubuntu 7.04.

It is hard to draw firm conclusions from the performance figures,
although it is a promising sign that the time needed to generate the
transition system using McErlang is competitive with the instantia-
tor tool (Wouters 2001), as the instantiator is written in C and can
be expected to be heavily optimized by now.6

5 Sinceetomcrl in contrast with McErlang does not support checking fault
tolerance we did not introduce failures in the checked model; this was done
in a separate experiment.
6 Version 2.17.13 of theµCRL toolset was used.



6.2 Leader election

The objective of the leader election algorithm is to elect a leader
among a fixed set of participants. This may seem trivial at first,
but in a distributed and fault tolerant setting there are many subtle
things that makes it a hard problem (and a well studied problem
(Lynch 1996; Dolev et al. 1997) as well). Eachnodehas a single
leader election process, and the processes communicate with mes-
sages and also uses monitors to detect failures of other processes.
There are two basic properties for leader election:

• Safety – two processes can never be elected as leaders at the
same time.

• Liveness – eventually a process must be elected as the leader (or
there is an infinite sequence of processes dying and restarting).

Both can easily be expressed as LTL-formulas (and hence as B¨uchi
automatons). Here we focus mainly on the safety property.

To illustrate the typical organization of a verification we provide
some details regarding the concrete files involved. The source code
of the example is split into three Erlang modules (files): (1)a mod-
ule implementing the leader election algorithm, (2) an environment
for the leader election algorithm, and (3) a module that contains the
monitor for the safety property. The test scenario is schematically
illustrated in Fig. 13.

Figure 13. Leader election example organization

The environment module consists of code that initiates a setof
nodes and starts a leader election process on each node. The envi-
ronment also spawn controller processes (one for each node)that
are responsible for killing and restarting the local leaderelection
process. The controller processes in turn are dictated by a central
stimuli generator (located on a separate node). The centralcon-
troller sends messages to the local controller processes, which then
enforces the order from the central controller (i.e., either killing
or restarting the leader election process). All communication be-
tween conrollers are normal Erlang communication and it is all
part of the model checking experiment. The reason for this some-
what strange stimuli generation structure stems from earlier testing,
where we usedtracing in a way which worked best with this struc-
ture. However, this is a good example of one of the strengths of the
everything–in–Erlang approach, where the code from testing can be
re-used (almost as is) as the environment description in verification.
Also, the flexibility of having the environment in a separatemodule
(which consists of ordinary Erlang code) is that we could easily do
a verification of only the start-up phase (or some other part of the
state space, such as just killing the process with highest priority) by
just changing the module with the stimuli code. Originally,the test
code provides random stimuli, which is not very suitable formodel
checking. The randomness is removed in our example by setting
the pseudo-random generator seed to a fixed value.

The monitor for the safety property is not very complicated,
it only consists of a check if there are two leaders elected inthe

current system state. The property monitor is listed in Fig.14. One

-module(monNotTwoLeaders).

init(State) ->
{ok,{safety,State}}.

stateChange(State,MonState,_) ->
case notTwoLeaders(stRecords(allProcs(State))) of

true -> {ok,State};
false -> {error,stRecords(allProcs(State))}

end.

allProcs(State) ->
lists:flatmap

(fun (Node) -> Node#node.processes end,
State#state.nodes).

stRecords([]) -> [];
stRecords([P|Rest]) ->
case P#process.expr of

{recv,{ev_gen_server2,_,{Rec,_}}} ->
[Rec|stRecords(Rest)];

_ ->
stRecords(Rest)

end.

isLeader({P,{_,State}}) ->
Ldr = State#data.leader,
P#process.pid == Ldr.

notTwoLeaders(States) ->
length(lists:filter(fun isLeader/1,States)) < 2.

Figure 14. Safety property monitor – NotTwoLeaders

thing that is clear from the listing in Fig. 14 is the need for aset
of convenience functions for accessing the states and retrieving
information from the state.

Results If the example is run in McErlang using the safety al-
gorithm, and theNotTwoLeaders monitor the result is a counter
example. The time it takes to reach a counter example is only a
few seconds (depending on the seed choosen it can take longeror
shorter time) on a fairly modest workstation. The size/length of the
counter example includes around 50 transitions. The existence of a
counter example is not surprising, since other studies of the same
algorithm (Arts et al. 2005) have revealed errors. (The counter ex-
ample described below is actually exactly the same as the onela-
beled ’The first serious bug’ in that paper)

The counter example scenario is described in Fig. 15. The prob-
lem in the scenario is that some communication is slower than
other. Since in the protocol only a majority of the involved pro-
cesses needs to accept a candidate it is possible that an existing
leader (B in the scenario) could be outnumbered by newly started
and fast communicating processes (A and C in the scenario).

What is important to note is that the error found is only present
in a distributed and fault tolerant semantics. That is, we could not
have found this error using a model checker (or other verification
tool) that does not support the distributed semantics of Erlang. We
also have the possibility to search for the shortest path leading to an
error (again what is the shortest vary due to the introduced random-
ness). Having the shortest counter example is often desirable since
it includes the least amount of unnecessary information. A search
for the shortest path to an error is of course slower, sometimes sev-
eral order of magnitudes slower. In one of our examples a search
took about 30 minutes, and explored somewhere around 10 million
states.



Three processes A,B,C (with priority A > B > C):
B is started
B: Send ’capture’ to A,C and monitor A,C.
B: Receive ’Down’ from A.
B: Receive ’Down’ from C, broadcast ’elected’.
B is the leader
A is started
C is started
A: Send ’capture’ to B,C and monitor B,C.
C: Receive ’capture’ from A, Send ’accept’ to A.
A: Receive ’accept’ from C, broadcast ’elected’.
A is the leader

Figure 15. Counter example from leader election

7. Discussion
In this section we want to discuss some alternative implementation
aspects. As mentioned in the introduction we made some experi-
ments with a prototype implementation of the distributed Erlang
semantics in Haskell. The prototype consisted of an Erlang parser
and a layered run-time system with flexible control of path choice,
etc. It supported all the distributed features of Erlang, but a lot of
the more basic pure functional things were missing.

We asked ourselves if it would be possible to use such an
implementation as the starting point for a model checker forErlang
as well. Much of the work with McErlang has gone into accurately
modeling the node level semantics of Erlang. Starting instead with
an implementation of the distributed semantics that task would be
much simpler. We also think that a lot of the modular structure of
McErlang could be the same in a Haskell implementation.

We have identified some advantages with a Haskell approach
as well as some drawbacks. One of the major drawbacks is that
one looses the ability to re-use the existing evaluation mechanisms
for the purely functional part. This means that every lower-level
built-in pure function and data structure has to be dealt with in the
implementation. To implement this is perhaps not a very compli-
cated task, however we deemed it as far too time-consuming for a
research project. On the other hand, by having full control of the
whole run-time system we could omit the Erlang–to–Erlang com-
pilation phase discussed in section 5.2. It would also be trivial to
switch from abig-stepsemantics to asmall-stepsemantics since we
could easily turn other syntactic constructions into choice points.
A final drawback is of course also that we miss the “all-in-Erlang”
aspect, since we involve Haskell. This could be a hinder for an ex-
perienced Erlang programmer with limited Haskell knowledge.

Our conclusion is that it is certainly possible to implementthe
same type of model checker in Haskell. However, it seems to bea
lot more time-consuming, and it is not obvious that the end result
would be any better than McErlang.

8. Related Work
Software model checking is a very active research field, which
means that there exist an overwhelming amount of related works.
We try to mention the most important and the ones which have
provided inspiration for McErlang.

For Erlang theetomcrl toolset (Arts et al. 2004a) already pro-
vides a model checking capability. Although it is more restricted,
covering a smaller subset of Erlang, for instance lacking the con-
cept of distribution and fault tolerance (i.e. nodes, processes, links,
monitors, . . . ). Other verification tools for Erlang includeHuch’s
abstract interpretation model checker (Huch 1999) which uses ab-
stract interpretations to reduce the size of the state space. We also
have the “Verification of Erlang Programs”-project (Fredlund et al.
2003) which uses theorem proving technology. Further thereis the
interesting QuickCheck tool for Erlang by Arts and Hughes (2003),

which however is more of a testing tool than a verification tool as
it cannot detect recurring states.

The work on tracing for Erlang, in particular the approachesthat
have usedabstractionsto handle the size of the traces, by Arts and
Fredlund (2002) and by Arts et al. (2005) was also a source of in-
spiration for the abstraction part of the McErlang implementation.

A lot of the inspiration for this work naturally comes from
the work on the SPIN tool by Holzmann (1991) and the CADP
toolset (Fernandez et al. 1996), as they both constitute very capable
language based platforms for the verification of software, and for
testing new verification algorithms.

The VeriSoft tool by Godefroid (1997) is one of the earlier ex-
amples of providing a verification functionality to a real, complex,
programming language (such as C or C++) instead of a simpler
specification language. Another successful example of sucha ver-
ification project is the Modex tool (Holzmann and Smith 2002)
which is closely connected to SPIN. A recent work on the verifi-
cation of complex concurrent program code is the work on model
checking file system implementations by Yang et al. (2004). An-
other recent work is the Zing model checker by Andrews et al.
(2004) which aims at checking concurrent systems.

9. Conclusion and Future Work
As we have seen, adopting an “everything-in-Erlang” approach to
model checking has certain advantages. It is easy to providea rich
specification language, and to use the same language for formulat-
ing correctness properties as for programming is convenient. More-
over much of the basic execution machinery can be reused (e.g.,
McErlang uses the normal Erlang run-time system extensively).
The result is a model checker for Erlang, which supports all as-
pects of distribution and fault tolerance. This is especially impor-
tant since distributed and fault-tolerant implementations are known
to be error prone and hard to test and debug. It is our hope that
McErlang is also simple enough to use, such that it can be usedby
the ordinary Erlang programmer.

With two examples we have compared McErlang with the ex-
isting etomcrl tool set and also showed that it is indeed possible
to find errors in a distributed program using McErlang. The per-
formance of McErlang looks promising, and the trade-off between
expressive power and efficiency seems positive. However, more
case studies are needed before we can be certain about the capacity
of McErlang.

Another good property of McErlang, is the clearly separated
input. We can easily experiment with different environmentcon-
straints for a program under test. This is particularly useful if one is
only interested in part of the complete state space, since the search
space could easily be altered by changing the environment con-
straints as we saw in the leader election example in section 6.2.

We have also experimented with an alternative implementation
approach using Haskell. There we concluded that although itis a
possible alternative it is far from obvious that the result would be
better than McErlang.

During the development of the McErlang tool we also realized
that a (dynamically typed) functional language offers several ad-
vantages over traditional languages like C as a general framework
for implementing formal verification tools (e.g., quick prototyping,
clean higher-order functions, separating functionality cleanly into
modules, seamless composition of modules, and so on). Thus we
have started experimenting with the use of the McErlang toolas a
general framework for building model checkers for various target
languages. Essentially this involves provides an executable opera-
tional semantics for the target language in question, together with
the glue necessary (state parsers and unparsers, and so on).As a
small experiment we implemented a simple interpreter and model
checker for the WS-CDL web choreography language (W3C 2005).



Future work The tool is far from finished, there are many things
that we want to investigate further, the following list indicates some
of these areas:

• We would like to experiment with partial-order verification
algorithms for the model checker. Clearly such reductions are
normally quite language specific, and it will be instructiveto
see whether we can express their enabling conditions cleanly
in Erlang. Moreover we can hope to benefit from the fact that
standard components are heavily used in Erlang, which should
results in more regular communication exchanges, i.e., which
are more amenable to partial order reductions.

• To use McErlang on a larger body of programs we need to
support a slightly richer Erlang fragment (e.g. theport con-
struct for communicating with the external world). In particular
it would be interesting to have a normal Erlang node communi-
cate with nodes in our “modeled” Erlang environment.

• We should provide the option of changing the Erlang semantics
implemented in the tool to re-schedule processes not only when
a receive statement is encountered, but to do so for every side-
effect inducing operation (e.g. message sends). This will result
in a small-step semantics option that may detect new program
bugs.

• Since many aspects of Erlang (asynchronous message passing,
rich error detection mechanisms and process fairness) closely
match standard implementation environments for distributed al-
gorithms. Therefore, it seems reasonable to think that McErlang
can be really useful also for verification of general distributed
algorithms. Theleader election algorithmexample, presented
in section 6, could be seen as one example of such an algorithm.

• We would like to develop a library of useful state abstractors
for Erlang to enable this part of the tool to see wider use.
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