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On the Constrution of Monitors for TemporalLogi PropertiesM.C.W. Geilen 1Setion of Information and Communiation SystemsFaulty of Eletrial EngineeringEindhoven University of TehnologyEindhoven, The NetherlandsAbstratTemporal logi is a valuable tool for speifying orretness properties of reativeprograms. With the advent of temporal logi model hekers, it has beome animportant aid for the veri�ation of onurrent and reative systems. In modelheking the temporal logi properties are veri�ed against models expressed in thetool's modelling language. In addition, model-heking tehniques are useful to testatual implementations or to verify models of the system that are too detailed tobe analysed by a model heker, by means of, for instane, simulation.A tableau onstrution is an algorithm that translates a temporal logi formulainto a �nite-state automaton that aepts preisely all the models of the formula. Itis a key ingredient to heking satis�ability of a formula as well as to the automata-theoreti approah to model heking. An improvement to the eÆieny of tableauonstrutions has been the development of on-the-y versions.In this paper, we present a partiular tableau onstrution for the inrementalanalysis of exeution traes during test, simulation or model-heking. The automa-ton forms the basis of a monitor that detets both good and bad pre�x of a partiularkind, namely those that are informative for the property under investigation. Weelaborate on the onstrution of the monitor and demonstrate its orretness.1 IntrodutionTemporal logi, introdued in [11℄, is a popular formalism to express dynamiproperties of reative and onurrent systems. When the (abstration of the)system is �nite-state, model heking proedures an be used to verify its or-retness automatially. A tableau onstrution is an algorithm that translatesa temporal logi formula into a �nite-state automaton (possibly on in�nite1 Email: M.C.W.Geilen�tue.nlThis is a preliminary version. The �nal version will be published inEletroni Notes in Theoretial Computer SieneURL: www.elsevier.nl/loate/ents



Geilenwords) that aepts preisely all the models of the formula. The automata-theoreti approah to model heking ([10,13℄) relies on tableau algorithms toturn a temporal formula into an observer of a model's behaviours. Driven bypratial needs, tableau onstrutions are being ontinuously improved andreimplemented (e.g. [7,3,5℄). One suh improvement has been the develop-ment of on-the-y versions of tableau onstrutions. In general this meansthat the tableau automaton is onstruted in a lazy way, generating statesand transitions as they are needed.Model-heking has gained a reputation for automati veri�ation of theorretness of (models of) real-life systems. At the same time it is reognisedthat similar tehniques an be applied in other ways as well. One may usethem not only for the veri�ation of the formal abstrat models, but also foratual software implementations or detailed simulation models and analysetheir behaviour for the desired orretness properties during run-time. Onepartiular reason to do so is to ounter the e�ets of the state-spae explosion,that makes that traditional veri�ation tehniques do not sale up well. Animportant aspet of traditional model-hekers is a systemati searh througha system's state spae. During the veri�ation of a running system, this ontrolover the state-spae exploration is not available. Baktraking is impossible orextremely ostly. Therefore monitors for the analysis of the behaviour exposedby the running system, must be able to analyse the behaviour inrementallyand deterministially. Moreover, as yles go undeteted, properties annot beinferred diretly about in�nite traes. For this reason, run-time model hek-ing requires modi�ations to the veri�ation approah. Suh modi�ations aredisussed in this paper.Contribution of this paperIn this paper we present the (automati) onstrution of run-time moni-tors for properties expressed in linear temporal logi. These monitors allowthe (simultaneous) detetion of both (informative) good and bad pre�xes of anexeution and an thus serve to monitor temporal logi properties inremen-tally and deterministially at run-time. We show that the transition systemsbelonging to a tableau automaton on in�nite state sequenes, the �nite stateautomaton for informative good pre�xes and the �nite state automaton forinformative bad pre�xes (almost) oinide. The automata di�er only in a-eptane onditions and we show how they an be ombined into a singlemonitor.Related WorkThis work builds on the work of Kupferman and Vardi [9℄. Whereas theirmain objetive is to simplify the model-heking proedure for safety proper-ties using alternating automata, we study the use of their notion of informativepre�xes for the onstrution of tableau automata and run-time monitors in79



Geilenpartiular. We fous on the onstrution of �nite state and ultimately deter-ministi �nite state automata. [9℄ also elaborates on the lassi�ation of pre-�xes and omplexity results. Other related work inludes the the papers [2,8℄whih give a more pragmati treatment of run-time temporal logi veri�ation.In [2℄, the basi unfolding priniple of the onstrution of a tableau automa-ton is used, the main disadvantage is that formulas are manipulated diretlyduring simulation, whih may not be very eÆient. Also in [8℄, the observa-tion of LTL properties in simulations of System-C desriptions is disussed.Formulas are interpreted over �nite state sequenes and given a three-valuedinterpretation. Work on on-the-y tableau onstrutions inludes [7,4,3℄.Overview of the paperThe paper is strutured as follows. Setion 2 introdues some generalpreliminaries and informative pre�xes in partiular. In setion 3, we disuss anormal form, based on the notion of informativeness that will form the heartof the tableau onstrutions. The tableau onstrution itself is disussed insetion 4. How to make run-time monitors from these tableaux is the topi ofsetion 5, where it is also shown to be orret. Setion 6 onludes.2 PreliminariesFinite and In�nite WordsA word �w = �0�1�2 : : : �n�1 (of length n) over an alphabet � is a sequeneof symbols from �; An in�nite word (!-word) �w = �0�1�2 : : : over an alphabet� is an in�nite sequene of symbols from �; �w(k) denotes �k and �wk refersto the tail �k�k+1�k+2 : : :. We use the latter notations for other kinds ofsequenes as well. The onatenation of a �nite word �w1 and a �nite orin�nite word �w2 is denoted as �w1 � �w2. A �nite word �w1 is said to be a pre�xof a �nite or in�nite word �w2 if there is some word �w3 suh that �w2 = �w1 � �w3.For a �nite word �w, j �wj denotes the number of symbols in the word. For anin�nite word �w over �, inf( �w) denotes the symbols of � that our in�nitelyoften in �w. A set of words is alled a language.Finite State AutomataLet alphabet � be a set of symbols. A labelled transition system L =hQ;Q0; V; Æi over � onsists of a �nite set Q of loations; a �nite set Q0 � Qof initial loations; a mapping V : Q! 2� labelling every loation with a setof symbols from the alphabet and a set Æ � Q�Q of edges. A run desribes apath through the transition system. It provides the loation of the transitionsystem at any moment, by reording the sequene of loations. A run of alabelled transition system L = hQ;Q0; V; Æi is a (�nite or in�nite) sequene �qof loations �q(k) 2 Q suh that for all k � 0 (and k < j�qj�1 if �q is �nite), thereis an edge (�q(k); �q(k + 1)) 2 Æ. In this ase we also say that �q is a run fromloation �q(0), or a �q(0)-run for short. A run �q is alled initial if �q(0) 2 Q0.80



GeilenGiven a word �w and a run �q of equal length, �q is a run for �w (or �w mathes�q) if 2 for all k � 0, �w(k) 2 V (�q(k)).A �nite state automaton A = hQ;Q0; V; Æ; fi over � onsists of a labelledtransitions system over � and a set f of �nal loations. Automaton A aeptsa �nite word �w (of length n) if it has an initial run �q for �w ending in a �nalloation (�q(n�1) 2 f). A (generalised) B�uhi automaton A = hQ;Q0; V; Æ; F iover � on the other hand is an automaton on in�nite words and onsists ofa labelled transition system over � and a set F of aeptane sets f � Q. Ageneralised B�uhi automaton A aepts an in�nite word �w if it has an initialrun �q for �w suh that for every f 2 F , inf(�q) \ f 6= ?. For a �nite stateautomaton or B�uhi automaton A, the language L(A) of A is the set of allwords that it aepts.Linear Temporal logiWe use the standard de�nition of Linear Temporal Logi and assume theexistene of a �nite set Prop of atomi propositions. The syntax of LTL isgiven by the following grammar (p 2 Prop): ::= true j p j : j  1 _  2 j   j  1U 2:We let  , ',  0, '0,  1, '1,  2, '2, etetera range over LTL. We use l(')to denote the subformula losure of '. In the remainder we use the dualsof the operators w.r.t. negation (false = :true, '1 ^ '2 = :((:'1) _ (:'2))and '1V'2 = :((:'1)U(:'2))) to push negations inward until they ouronly in front of atomi propositions, and write formulas in positive normalform. We shall identify formulas with the orresponding formulas in positivenormal form 3 . Moreover, if � is a set of formulas, we write V� to denote theonjuntion of these formulas and we write �� j= � to denote that �� j= V�.The language P' of (in�nite) state sequenes that satisfy the formula ' isreferred to as the property expressed by LTL formula '.Certain properties an be quali�ed as safety properties (stating that `some-thing bad will never happen') or liveness properties (stating that `somethinggood will eventually happen'). A property P is a liveness property if for every�nite state sequene �� there exists some in�nite state sequene ��0 suh that�� � ��0 2 P (although other de�nitions are possible [1,12℄). A property is asafety property if every in�nite state sequene �� =2 P , has a pre�x ��0 suhthat ��0 � ��00 =2 P for every state sequene ��00. The latter kind of pre�x is alleda bad pre�x ; a pre�x �� is alled a bad pre�x for a property P if there is nostate sequene ��0 suh that �� � ��0 2 P . A good pre�x for a property P , on theother hand, is a pre�x �� suh that for every ��0, �� � ��0 2 P [9℄.2 As loations are labelled with sets of symbols, a single run orresponds in general to aset of words.3 Using l(: ) = :l( ) rather than l(: ) = : [ l( ) to make l insensitive to aformula's representation. 81



GeilenDe�nition 2.1 [9℄ A �nite word �u 2 �� is alled a good pre�x for the languageL � �! i� for every in�nite word �w 2 �!, �u � �w 2 L. Similarly, �u is alled abad pre�x for the language L i� for every in�nite word �w 2 �!, �u � �w =2 L. 2This paper deals with the veri�ation of safety properties expressed byLTL formulas, however, not all safety formulas are alike. In [9℄, safety formulasare lassi�ed into three kinds, the intentionally safe, the aidentally safe andthe pathologially safe, depending on the kinds of pre�xes their propertiespossess. A pre�x �� is alled informative for a formula if it \tells the wholestory"[9℄ of why the formula holds for every in�nite state sequene of whih�� is a pre�x. This is made preise below. Intentionally safe formulas areformulas of whih every bad pre�x is informative (e.g. 2p), an aidentallysafe formula is a safety formula that is not intentionally safe, but of whihall state sequenes that violate it, do have some informative bad pre�x (e.g.2(p _ (q ^ :q))). Pathologially safe safety formulas are formulas thathave omputations that violate it without any informative bad pre�x (e.g.((2(q _23p)) ^ (2(r _ 23:p))) _2q _ 2r, examples from [9℄).A set of formulas is said to be loally informative if it is `informative' in thesense that every ompound formula in the set is supported by one or more ofits diret subformulas. Together the formulas onstitute an explanation whya requirement will hold. If a set ontains the formula '1 ^ '2, then it mustalso ontain both '1 and '2 to demonstrate this. Similarly if a set ontains'1U'2 then it must ontain '1 or '2 as well (this only pertains to the urrentstate, not ontaining '2 leads to extra onstraints on the formulas that holdat the following moment). In the remainder of the paper we let � range oversets of LTL formulas.De�nition 2.2 A set � of formulas is loally informative if� false =2 �;� if '1 _ '2 2 � then '1 2 � or '2 2 �;� if '1 ^ '2 2 � then '1 2 � and '2 2 �;� if '1U'2 2 � then '1 2 � or '2 2 �;� if '1V'2 2 � then '2 2 �.Loal informativeness onstrains the formulas that are required to hold fora partiular state sequene. In the ase of Until or Release operators however,onstraints may also need to be imposed on the remainder of the state sequene(for instane if the set ontains '1U'2 and '1, but not '2). If the truth ofan Until or Release formula follows diretly from the other formulas in theset, then suh a set is said to be trivial for that Until or Release formula (ifthe set ontains both '1U'2 and '2, or both '1V'2 and '1). It is said tobe non-trivial otherwise. (Non-)trivial sets will play an important role in thetableau onstrutions, beause they pose onstraints on the remainder of thestate sequene, and thus determine `temporal informative suessors'.82



GeilenDe�nition 2.3 A set � of formulas is non-trivial for� the Until formula '1U'2, if '1U'2 2 � and '2 =2 �, let Next('1U'2) ='1U'2;� the Release formula '1V'2, if '1V'2 2 � and '1 =2 �, let Next('1V'2) ='1V'2;� the formula ', if ' 2 �, let Next(') = '. 2A set �0 of formulas is a temporally informative suessor of the set � offormulas if for every formula  suh that � is non-trivial for  , �0 ontainsNext( ). Another way to formulate temporal informativeness, is to say thatfor �0 to be a temporally informative suessor of �, it must ontain at leastertain formulas that are determined by �. This is aptured by the followingde�nition.De�nition 2.4 Let � be a set of formulas. Then the set Next(�) of temporalinformativeness onstraints is the set :fNext( ) j  2 � suh that � is non-trivial for  g:�0 is a temporally informative suessor of � if Next(�) � �0. This is denotedas �! �0. 2In some of the proofs we use Next(�1;�2) to denote fNext( ) j  2�2 suh that �1[�2 is non-trivial for  g. We have, for instane, that fpUq; pg! fpUq; qg and fpUq; qg ! ?, but not fpUq; pg ! fpg and not fqg ! fpg.We an now de�ne the notion of an informative good (bad) pre�x.De�nition 2.5 ([9℄ 4 ) Let �� be a �nite state sequene. �� is informative for 'i� there exists a �nite sequene IS 2 (2LTL)� of sets of formulas, say of lengthn+ 1 � j�� j+ 1, suh that� ' 2 IS(0);� IS (n) = ?;� for all 0 � i < n and  2 IS(i),� if  is an atomi proposition p, then p 2 ��(i);� if  is a negated atomi proposition :p, then p =2 �� (i);� IS(i) is loally informative;� IS(i+ 1) is a temporally informative suessor of IS(i). 2We all suh a sequene IS an informative sequene. If suh an informativesequene exists, it tells us why ' holds for any extension of the pre�x �� . Itindiates what formulas hold at what moment of the pre�x and why. SineIS(i) is at some point empty, this reasoning is omplete and thus applies toany extension of the pre�x. For instane, if  1 _  2 2 IS (i), then by the4 we rephrase the de�nition of [9℄ in terms of our notions of loal and temporal informa-tiveness. 83



Geileninformativeness requirements,  1 2 IS(i) or  2 2 IS(i), whih tells us that 1 _  2 holds for any extension of �� i (the part of �� from state i to the end)sine at least one of  1 and  2 holds for any extension of �� i. If  1U 2 2 IS(i), 1 2 IS(i), and  2 =2 IS (i), then aording to temporal informativeness, 1U 2 2 IS(i + 1). This signi�es that  1U 2 must hold for any extension of�� i, beause  1 holds for any extension of �� i and  1U 2 holds for any extensionof �� i+1. Sine IS (n) = ?, suh a reasoning does not depend on any part ofthe state sequene beyond position n. It is omplete and \tells the wholestory"[9℄. Thus, �� is an informative good pre�x for ' if it is informative for 'and �� is an informative bad pre�x for ' if it is informative for :'.3 Informative Normal Form(On-the-y) tableau onstrutions for linear temporal logi are often intro-dued using a rewriting proedure that rewrites formulas into `disjuntivetemporal normal form' in order to separate onstraints on the urrent statefrom onstraints upon the rest of the state sequene [7,4,3℄. In this paper weintrodue an on-the-y tableau onstrution based on informativeness. No-tie that although this onstrution is not idential, it losely resembles suhonstrutions.In orrespondene with the disjuntive temporal normal form of traditionalon-the-y tableau onstrutions we de�ne an `informative normal form'.De�nition 3.1 A set � of sets of LTL formulas is in informative normal formif every set in � is loally informative.We now introdue a number of rewrite rules, that transform any set intonormal form. In the rewriting rules we represent the set of sets of formulas asa set of pairs hNew ;Oldi (we all them terms) of sets of formulas, in order todisriminate the formulas that have been proessed (Old) from the formulasthat still need to be proessed (New). The rules are presented in �gure 1,whih is interpreted as follows. Consider a set � [ fhNew [ f g;Oldig ofterms. The row in the table in whih the Case �eld oinides with the shapeof the LTL formula  determines how the set is rewritten.De�nition 3.2 The (informative) normal form proedure starts with a set �of formulas. It maintains a set �n of terms hNew;Oldi that is initialised to�0 = fh�;?ig. Then as long as some redution rule of table 1 applies, a ruleis applied to �n to obtain �n+1. The proedure terminates when no moreredution rules apply to �k for some k � 0. The result of the proedure is theset fOld j h?;Oldi 2 �kg.It is easy to show that the proedure terminates and that all terms in �kare then of the form h?;�ii for some set �i of formulas. Depending on theorder in whih terms from � and formulas from New are seleted, di�erentnormal forms may be obtained. In the sequel, we assume the existene of a84



GeilenCase � [ fhNew [ f g;Old ig redues to:1  = false �2  = true � [ fhNew ;Old [ f gig3  = p � [ fhNew ;Old [ f gig4  = :p � [ fhNew ;Old [ f gig5  =  1 _  2 � [ fhNew [ f 1g;Old [ f gi; hNew [ f 2g;Old [ f gig6  =  1 ^  2 � [ fhNew [ f 1;  2g;Old [ f gig7  = 0 � [ fhNew ;Old [ f gig8  =  1U 2 � [ fhNew [ f 2g;Old [ f gi; hNew [ f 1g;Old [ f gig9  =  1V 2 � [ fhNew [ f 1;  2g;Old [ f gi; hNew [ f 2g;Old [ f gigTable 1Loal informativeness proeduredeterministi proedure NF that omputes a partiular normal form for anygiven set of formulas. We use NF (') to denote NF (f'g).Lemma 3.3 Let � be a set of LTL formulas. Then, NF (�) is in informativenormal form and furthermore, if �� is a state sequene, suh that �� j= �, thenthere exists a set �0 2 NF (�) suh that (i) �� j= �0, (ii) ��1 j= Next(�0) and(iii) for every Until formula  = '1U'2 2 � suh that �� j= '2, '2 2 �0.Proof. The fat that �0 is loally informative an be shown by an invarianton the sets �n stating that the terms hNew ;Oldi in �n are loally informativew.r.t. the formulas in Old . (This means that the rules of loal informativenessare interpreted as: `false =2 Old ' and `if  2 Old , then : : : 2 Old [ New '.)When the proedure ends, all formulas are in the Old sets and the sets inNF (�) are loally informative. The seond part is proved using an invariantsaying that there exists a term hNew ;Oldi 2 �n suh that (i) �� j= New [Old ,(ii) ��1 j= Next(New ;Old) and (iii) for every Until formula  = '1U'2 2 Oldsuh that �� j= '2, '2 2 �0. 2ExampleConsider the LTL formula 3p = trueUp. In terms of the normal form pro-edure, the rewriting proess of trueUp proeeds as follows (we write �1 ) �2to express that �2 is obtained from �1 by one or more steps in the proedure).fhftrueUpg;?ig)fhfpg; ftrueUp; gi; hftrueg; ftrueUpgig )fh?; ftrueUp; pgi; h?; ftrueUp; truegig85



GeilenNew := NF ('), Q := ?, Q0 := New, Æ := ?while New 6= ? doLet � 2 NewNew := Newnf�gQ := Q [ f�gfor every �0 2 NF (Next(�)) doÆ := Æ [ f(�;�0)gif �0 =2 Q then New := New [ f�0gododFig. 1. Algorithm for onstruting loations and edges of the on-the-y tableauautomatonThe normal form suggests that there are two ways to demonstrate that trueUpholds. Either demonstrate that p holds, or demonstrate that true holds (triv-ial) and (sine Next(ftrueUp; trueg) = ftrueUpg) that trueUp holds at thenext moment.ComplexityOne an show that the worst-ase omplexity of the normal form proe-dure NF (�) is O(2n) where n = P 2� j j. Sine at every step, P 2New j jdereases for the new terms that replae hNew ;Oldi in the redution and itis replaed by at most two new terms. If we further know that every  2 � isan element of l(') for some formula ', then it follows that the omplexity ofNF is O(2j'j2). In that ase however, a lever seletion of the formula used forredution (selet the largest formulas �rst) redues the omplexity to O(2j'j).This an be seen by onsidering that on any path leading from the initial termhNew ;?i to a �nal term h?;Oldi every formula  2 l(') an be used forredution at most one, hene suh a path is of length at most j'j and thetotal number of redutions applied is O(2j'j).4 Tableau Constrution4.1 The tableau algorithmThe onstrution of a tableau automaton for an LTL formula ', is based uponthe normal form introdued in the previous setion. The onstrution is loselyrelated to the onstrution of [7℄. Next formulas however are representedimpliitly rather than expliitly. The number of formulas that may our inthe sets of the normal form terms is limited to syntati subformulas of '.The tableau automaton of an LTL formula ' is omputed in the followingway. 86
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p

2Fig. 2. Example tableau automaton of the formula 23pDe�nition 4.1 Let ' be an LTL formula. The tableau automaton A' of 'is the automaton hQ;Q0; V; Æ; F i over the alphabet 2Prop , where� The loations (Q), initial loations (Q0) and transitions (Æ) are omputedby the proedure depited in Figure 1. The loations q 2 Q are sets of LTLformulas;� V (q) = f� 2 2Prop j 8p2Propp 2 q ) p 2 �;:p 2 q ) p =2 �g. That is,a loation q is labelled with all states that are onsistent with the atomipropositions and the negated atomi propositions in q;� F ontains for every Until formula  = '1U'2 2 l('), a set f = fq 2 Q j 2 q ) '2 2 qg.ExampleIf we take the formula 23p = falseV (trueUp) and apply the tableaualgorithm, we arrive at the automaton represented in Figure 2. Only theatomi propositions in the loations have been depited. Loation 1 is the setf23p;3p; pg and loation 2 is the set f23p;3p; trueg. Initial loations arerepresented by a small arrow not originating from any loation leading to theinitial loation. There is only one aeptane set f3p, the loations of whihare denoted with an extra irle around them.ComplexityAs all loations of the tableau automaton are subsets of l('), there are atmost 2j'j di�erent loations. For every loation �, the normal form proedureis applied on Next(�). The proedure was shown to be O(2j'j) in setion 3.Thus the omplexity of the tableau algorithm is 2O(j'j).4.2 CorretnessHere, we give a brief sketh of the proof that the tableau onstrution is or-ret, i.e. that for any LTL formula ', the tableau automaton of ' aeptspreisely those state sequenes that satisfy '. The algorithm based on infor-mativeness onstraints is very lose to the algorithm of [7℄ and also the proofresembles those of [4,7,3℄.Theorem 4.2 Let ' be an LTL formula and let A' be the orrespondingtableau automaton. Then for every state sequene ��, A' aepts �� i� �� j= '.87



GeilenThis theorem follows from soundness (every state sequene aepted by A'satis�es ') and ompleteness (every state sequene satisfying ' is aepted byA') of the onstrution as expressed by lemmas 4.4 and 4.7 below. In theremainder of this setion, we assume that A' = hQ;Q0; V; Æ; F i is the tableauautomaton of the formula '.SoundnessWe demonstrate that the automaton aepts only state sequenes thatsatisfy '. The main lemma is the following, laiming that any formula in apartiular loation is dealt with orretly.Lemma 4.3 Let �� be a state sequene, let �q be a run of A' mathing �� andlet  2 �q(0). Then �� j=  .Proof. By indution on the struture of  . We only show the ase relatedto the Until formula. If '1U'2 2 �q(0), then it an be shown by the redu-tion of '1U'2 in the normal form proedure and by the onstrution of theautomaton, that '1U'2 propagates at least until some loation ontains '2(suh a loation is eventually reahed sine the run satis�es the aeptaneondition related to f'1U'2), by loal informativeness, up to that point everyloations ontains '1. Thus, there is some k, suh that '2 2 �q(k) and forevery 0 � m < k, '1 2 �q(m). By the indution hypothesis it follows that�� j= '1U'2. 2One an furthermore easily show that every initial loation ontains theformula '. From this and lemma 4.3, it follows immediately that every statesequene aepted by the tableau automaton A' satis�es '.Lemma 4.4 If A' aepts the state sequene ��, then �� j= '.CompletenessHere we demonstrate that every state sequene that satis�es ' is aeptedby the tableau automaton. The normal form proedure guarantees that if astate sequene �� satis�es a formula  , then there is a term in the normal formof  , that is satis�ed by ��. Sine the remainder of the state sequene satis�esthe formulas in the orresponding Next set, there is a transition that an betaken by the automaton. This argument an be repeated to onstrut a runof the automaton for ��. Moreover, one an show that the suessor loationan be hosen so as to satisfy the aeptane onditions.The following lemma is the rux to the inremental onstrution of anaepting run for any state sequene �� that satis�es '.Lemma 4.5 Let q 2 Q and let �� be a state sequene suh that �� j= Next(q).Then there exists an edge (q; q0) 2 Æ suh that (i) �� j= q0, (ii) ��1 j= Next(q0)and (iii) for every Until formula  = '1U'2 2 Next(q) suh that �� j= '2,q0 2 f . 88



GeilenThe lemma follows straightforwardly from lemma 3.3 and the onstru-tion of the tableau automaton. Similarly we an use lemma 3.3 to prove thefollowing lemma that tells us how to selet an appropriate initial loation tostart the onstrution of the run using the previous one.Lemma 4.6 Let �� be a state sequene suh that �� j= '. Then there is someq 2 Q0 suh that �� j= q and ��1 j= Next(q).From lemma 4.6 and repeatedly applying lemma 4.5 to onstrut an a-epting run, it follows that A' aepts all state sequenes that satisfy '.Lemma 4.7 If the state sequene �� j= ', then A' aepts ��.5 Automata for Pre�xesIn this setion we disuss how the tableau method an be adapted to theanalysis of pre�xes of state sequenes. It is possible to e�etively onstrutan automaton on �nite words that aepts all bad (good) pre�xes for a givenformula [9℄. We onentrate however on automata that reognise informa-tive pre�xes only, for two reasons. Firstly, the onstrution of automata forall bad pre�xes is doubly exponential in the length of the formula, whereasthe onstrution of automata for informative pre�xes is only singly exponen-tial [9℄. Seondly, the informative bad pre�xes an be onsidered as the onlyproper ounterexamples, sine they demonstrate why the formula does nothold. Other bad pre�xes depend on some peuliarity of the formula. For ex-ample, if  is a formula that is not satis�able, then every �nite state sequeneis a bad pre�x of the formula 3 , but this �nite state sequene itself providesno information why the formula does not hold.The idea behind the onstrution is very simple. One reates the on-the-y tableau automaton of the formula ', but interprets it as an automaton on�nite words. The original aeptane onditions an be forgotten, sine theyrefer to in�nite state sequenes. The automaton's transition system however,has the following property. If a �nite state sequene �� is an informative badpre�x, then there is no �nite run on the transition system that mathes it.If on the other hand, it is an informative good pre�x, then there is a run tothe loation ?. To be preise, for any extension of the pre�x, longer than thepre�x itself, there is a mathing run, the last loation of whih is ?. As aonsequene, if an automaton does not have a loation ? then the formuladoes not have any informative good pre�xes.De�nition 5.1 Let A = hQ;Q0; V; Æ; F i be an !-automaton over the alpha-bet �. Then [A'℄ denotes the automaton hQ;Q0; V; Æ; Qi on �nite words overthe same alphabet, i.e. the same automaton interpreted as a safety automa-ton (all loations are �nal) on �nite words. hA'i denotes the automatonhQ;Q0; V; Æ; Q \ f?gi on �nite words over �, i.e. the same automaton inter-preted as an automaton on �nite words with the loation ? (if it exists) as its89
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qFig. 3. Automaton for pre�xes of the formula pVqonly �nal loation.Note that sine the automata [A'℄ and hA'i for non-bad and good pre�xesrespetively, are slight modi�ations to the B�uhi tableau automaton, theomplexity of their onstrution is the same, i.e. 2O(j'j).ExampleFigure 3 shows the labelled transition system of the automaton ApVq.The state sequene fqgfqgfp; qg is an (informative) good pre�x of pVq. Theorresponding run to the loation ? (the right loation) is fpVq; qgfpVq; qgfpVq; p; qg?. The run itself forms the informative sequene that establishesthis. An informative bad pre�x is fqgfpg. It an be veri�ed that this sequenehas no mathing �nite initial run on the transition system. A orrespondinginformative sequene demonstrating that the pre�x is informative for :(pVq)is f:(pVq);:pgf:(pVq);:qg?. The informative sequene an be interpretedas follows. It laims (:(pVq) 2 IS(0)) that there is no mathing run startingfrom any loation ontaining the formula pVq (and all initial loations of thetransition system ontain it). The reason for this is that the �rst state of thepre�x does not satisfy p (:p 2 IS (0)) and the remainder does not satisfy pVq(:(pVq) 2 IS (1)). There is no mathing run starting from the middle loa-tion, sine it ontains p. Any suessor loation of the left loation ontainspVq again. Aording to the informative sequene, a run from suh a sues-sor loation (left and middle) for the remainder fpg does not exist sine theseond state of the pre�x does not satisfy q (:q 2 IS(1)). This immediatelyrules out both loations as possible loations for a mathing run and thus amathing run does not exist.5.1 CorretnessThe above example illustrates that for an informative bad pre�x, there is nomathing run on the tableau automaton. Vie versa, if there is no mathingrun for a pre�x on an automaton [A'℄, then the pre�x is informative for :'.This relationship between a �nite state sequene being an informative badpre�x and the existene of a mathing run is formalised in theorem 5.6 ofthis setion. The example also showed the relationship between good pre�xesand �nite runs on the tableau automaton ending in the loation ?. Every�nite run on hA'i ending in ? onstitutes an informative sequene mathing90



Geileninformative good pre�xes. Conversely, for any informative good pre�x suh arun an be found. This is demonstrated with theorem 5.8. For the proof oforretness, we extend the notion of bad pre�x to sets of formulas and to setsof suh sets (suh as the normal forms NF ).De�nition 5.2 A �nite state sequene �� is an informative bad pre�x of aset � of formulas if there is some  2 � suh that �� is an informative badpre�x for  or there is some  2 Next(�), suh that �� 1 is an informative badpre�x for  . It is an informative bad pre�x for a set � of suh sets, if it is aninformative bad pre�x for every � 2 �.Automaton for Bad Pre�xesThe normal form proedure preserves informative bad pre�xes. If a pre-�x is informatively bad for a normal form of some formula, then it is alsoinformatively bad for the formula itself.Lemma 5.3 If �� is an informative bad pre�x for NF (�), then �� is an infor-mative bad pre�x for V�.For the proof, see appendix A. Next follows the main lemma to show thatpre�xes for whih there is no mathing run on the tableau automaton startingfrom some loation �, are informatively bad for the formula orresponding tothe loation �.Lemma 5.4 Let A' be a tableau automaton, let � be a loation of A' and let�� be a �nite state sequene for whih there is no run on A' starting from �.Then �� is an informative bad pre�x for �.Proof. By indution on the length of the pre�x �� .� If j�� j = 1 then there is some  2 �, either an atomi proposition or thenegation of an atomi proposition, suh that �� (0) 6j=  and thus f: g? isan informative sequene showing that �� is an informative bad pre�x for �.� If j�� j > 1 then either� the �rst symbol does not math the loation �, whih is similar to the�rst ase, or� the �rst symbols mathes the loation �, but there is no suessor loationfor whih there is a run. By indution we have that �� 1 is an informativebad pre�x for every suessor loation �i, and thus for NF (Next(�)), andby lemma 5.3 it is an informative bad pre�x for VNext(�). From this itfollows that �� is an informative bad pre�x for �. 2The following lemma is the main ingredient to show the onverse, i.e. thatinformative bad pre�xes have no mathing run on the tableau automaton.Lemma 5.5 Let  2 � and let IS be an informative sequene demonstrating: for �� . Then there is no run for �� on [A'℄ starting from �.91



GeilenThis lemma is proved by indution on the length of �� and the strutureof  . The proof is in appendix A. Now we an show that our tableau au-tomata aept all �nite sequenes exept the ones that are informative for :'(Kupferman and Vardi show a similar result for alternating automata in [9℄).Theorem 5.6 Let ' be an LTL formula and let A' be a tableau automatonfor '. Then [A'℄ aepts �nite state sequene �� i� �� is not an informative badpre�x of '.Proof. ()) Assume towards a ontradition that �� is an informative badpre�x for '. Any initial run starts from a loation � suh that ' 2 �. Butby lemma 5.5 suh a run annot exist.(() Again by ontradition. Assume that �� is not aepted by [A'℄. Thenby lemma 5.4, for every � 2 NF (f'g) (the initial loations of the automaton),�� is an informative bad pre�x for �. Thus by lemma 5.3, �� is an informativebad pre�x for '. 2Automaton for Good Pre�xesNext, we show that informative good pre�xes are reognised by the au-tomaton hA'i.Lemma 5.7 Let � be a set of formulas and let IS be an informative sequenewith � � IS (0). Then there is some �0 2 NF (�) suh that �0 � IS (0) andNext(�0) � IS(1).The proof is given in appendix A. As a onsequene, a �nite state sequeneis an informative good pre�x i� there is a mathing run leading to the loation?.Theorem 5.8 Let A' be the on-the-y tableau automaton of the formula '.A �nite state sequene �� is an informative good pre�x of ' i� hA'i aepts �� .Proof. ()) Let IS be an informative sequene with ' 2 IS(0). By lemma5.7, there is some � 2 NF (') suh that � � IS(0) and Next(�) � IS (1).Repeating the argument, we an show that there is a run �q suh that �q(k) �IS(k) for all 0 � k � jIS j. Thus �q(jIS j) = ?.(() Let �q be suh a run. Then �q itself is an informative sequene for ' sineall loations are loally informative and all edges are temporally informative.25.2 Pratial Use of the Pre�x AutomataWe have seen how we an onstrut �nite state automata that reognise theinformative good and bad pre�xes of a partiular formula '. It has beenshown that both automata share the same transition system but di�er only inaeptane onditions. On the basis of these automata one an onstrut anobserver that is linked to a running model in suh a way that it an evaluate its92



Geilenatomi propositions de�ned as boolean properties of the model and is run inlok step or alternatingly with the (relevant) transitions of the model. As themonitor is made deterministi (possibly using an on-the-y determinisation),the analysis of the inreasing run an be performed inrementally. Detetionof informative good or bad pre�xes an be reported, possibly halting theexeution of the model.If an exeution is halted without enountering either of both onditions, theenountered pre�x is inonlusive w.r.t. the formula '. Yet, further analysisof the pre�x might still reveal interesting (statistial) information. How thisinformation may be obtained however, requires further study. One would needto know what subformulas of ' have been informatively ful�lled and possibly,how many times.6 Conlusions and Future WorkThe use of temporal logi model-heking tehniques on running implementa-tions or simulations of detailed system models alls for the on-the-y inre-mental analysis of �nite exeution traes. In this paper we have shown howto onstrut from a linear temporal logi formula, a �nite state automatonthat an at as a monitor to perform this type of analysis for the detetion of(informative) satisfation as well as violation of the formula by a �nite exeu-tion of the system. These �nite state automata an be determinised (possiblyon-the-y as well), to remove their non-determinism.We are further investigating the use of similar tehniques to onstrut run-time monitors (in the form of timed-automata) for real-time temporal logi.We will further implement the tehnique in a simulator for onurrent systemsalled SHESim[6℄.Referenes[1℄ Alpern, B. and F. Shneider, De�ning liveness, Information proessing letters21 (1985), pp. 181{185.[2℄ Can�eld, W., E. Emerson and A. Saha, Cheking formal spei�ations undersimulation, in: Proeedings International Conferene on Computer Design.VLSI in Computers and Proessors (1997), pp. 455{460.[3℄ Daniele, M., F. Giunhiglia and M. Y. Vardi, Improved automata generation forlinear temporal logi, in: N. Halbwahs and D. Peled, editors, Computer AidedVeri�ation: 11th International Conferene Proeedings, CAV'99, Trento, Italy,July 6-10, 1999 (LNCS 1633) (1999), pp. 249{260.[4℄ D'Souza, D., \On-the-Fly Veri�ation for Linear Time Temporal Logi,"Master's thesis, SPIC Mathematial Institute, Madras (1997).93
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GeilenTwo informative sequenes an be ombined into a single new one, simplyby taking the union of the orresponding sets. If IS 1 and IS 2 are both infor-mative sequenes, then (IS 1 [ IS 2)(k) = IS 1(k) [ IS 2(k) for all k � 0 (takingIS(k) = ? if k > jIS j). It is easy to see that if IS 1 and IS 2 are informativesequenes for �� , then IS 1 [ IS 2 is an informative sequene for �� as well.The next lemma shows that redutions in the normal form proedure pre-serve informativeness of bad pre�xes.Lemma A.3 Let pre�x �� be an informative bad pre�x for �0 and let �) �0in the normal form proedure. Then �� is an informative bad pre�x for �.Proof. One an prove this for the redution ases individually, whih is atedious ase analysis. We only show ase 5. � = �00[fhNew[f 1_ 2g;Oldigand �0 = �00 [ fhNew [ f 1g;Old [ f 1 _  2gi; hNew [ f 2g;Old [ f 1 _ 2; gig. If �� is an informative bad pre�x of �0, it is a bad pre�x of bothhNew [ f 1g;Old [ f 1 _  2gi and hNew [ f 2g;Old [ f 1 _  2; gi. If IS isan informative sequene demonstrating this (both), then IS [ f:( 1 _  2)gis an informative sequene for hNew [ f 1 _  2g;Oldi. From this it followsstraightforwardly that �� is an informative bad pre�x for � (note that moving 1 _  2 to Old does not add any informativeness onstraints). 2From this it follows immediately that the entire normal form proedurepreserves informativeness of bad pre�xes.Lemma A.4 (Lemma 5.3) If �� is an informative bad pre�x for NF (�),then �� is an informative bad pre�x for V�.Proof of lemma 5.5This lemma says that an informative bad pre�x annot have a run on theon-the-y tableau automaton.Lemma A.5 (Lemma 5.5) Let  2 � and let IS be an informative sequenedemonstrating : for �� . Then there is no �-run for �� on [A'℄.Proof. By indution on the length of �� and the struture of  . We showthe ase  =  1U 2, then either  2 2 � or  1 2 � and  2 �q(1) for anyappropriate run �q. Sine :( 1U 2) 2 IS (0), : 2 2 IS (0) and : 1 2 IS(0) or: 2 IS(1). That suh a run �q annot exist follows by indution. Notie thatthe latter ase an only our if j�� j > 1 sine IS(j�� j) = ?, i.e. : annot bepostponed forever. 2Proof of lemma 5.7This lemma suggests how informative sequenes an be used to onstruta run to the empty loation. The lemma is proved using an invariant on thenormal form proedure, introdued in the next de�nition.95



GeilenDe�nition A.6 In the following lemma, the prediate Inv(�; IS) holds i�there is some term hNew ;Oldi 2 � suh that New [ Old � IS (0) andNext(New ;Old) � IS (1).Inv(�; IS) states that IS is informative for at least one of the terms in� and thus for the set itself. We show that Inv(�; IS) is invariant underredutions in the normal form proedure.Lemma A.7 Let �) �0, let IS be an informative sequene and assume thatInv(�; IS) holds, then also Inv(�0; IS) holds.Proof. By ase analysis of the proedure. We only show ase 9. � = �00 [fhNew [ f 1V 2g;Oldig and �0 = �00 [ fhNew [ f 1;  2g;Old [ f 1V 2gi;hNew [ f 2g;Old [ f 1V 2gig. If there is some hNew 0;Old 0i 2 �00 suh thatNew 0 [ Old 0 � IS (0) and Next(New 0;Old 0) � IS(1) then the result is trivial.Otherwise, the term satisfying the property is hNew [ f 1V 2g;Oldi. Then 1V 2 2 IS(0) and by loal informativeness  2 2 IS(0).� If  1 2 IS(0) then New[f 1;  2g[Old[f 1V 2g � IS(0) and Next(New[f 1;  2g;Old [ f 1V 2g) � Next(New [ f 1V 2g;Old) � IS(1).� If  1 =2 IS (0) then New [ f 2g [ Old [ f 1V 2g � IS(0) and Next(New [f 2g;Old [ f 1V 2g) � Next(New [ f 1V 2g;Old) [ f 1V 2g � IS (1)sine  1V 2 2 IS (1) by temporal informativeness. 2From the previous lemma it follows diretly that the following holds forthe entire normal form proedure.Lemma A.8 (Lemma 5.7) Let � be a set of formulas and let IS be an in-formative sequene with � � IS(0). Then there is some �0 2 NF (�) suh that�0 � IS (0) and Next(�0) � IS(1).
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