
RV'01 Preliminary Version
On the Constru
tion of Monitors for TemporalLogi
 PropertiesM.C.W. Geilen 1Se
tion of Information and Communi
ation SystemsFa
ulty of Ele
tri
al EngineeringEindhoven University of Te
hnologyEindhoven, The NetherlandsAbstra
tTemporal logi
 is a valuable tool for spe
ifying
orre
tness properties of rea
tiveprograms. With the advent of temporal logi
 model
he
kers, it has be
ome animportant aid for the veri�
ation of
on
urrent and rea
tive systems. In model
he
king the temporal logi
 properties are veri�ed against models expressed in thetool's modelling language. In addition, model-
he
king te
hniques are useful to testa
tual implementations or to verify models of the system that are too detailed tobe analysed by a model
he
ker, by means of, for instan
e, simulation.A tableau
onstru
tion is an algorithm that translates a temporal logi
 formulainto a �nite-state automaton that a

epts pre
isely all the models of the formula. Itis a key ingredient to
he
king satis�ability of a formula as well as to the automata-theoreti
 approa
h to model
he
king. An improvement to the eÆ
ien
y of tableau
onstru
tions has been the development of on-the-
y versions.In this paper, we present a parti
ular tableau
onstru
tion for the in
rementalanalysis of exe
ution tra
es during test, simulation or model-
he
king. The automa-ton forms the basis of a monitor that dete
ts both good and bad pre�x of a parti
ularkind, namely those that are informative for the property under investigation. Weelaborate on the
onstru
tion of the monitor and demonstrate its
orre
tness.1 Introdu
tionTemporal logi
, introdu
ed in [11℄, is a popular formalism to express dynami
properties of rea
tive and
on
urrent systems. When the (abstra
tion of the)system is �nite-state, model
he
king pro
edures
an be used to verify its
or-re
tness automati
ally. A tableau
onstru
tion is an algorithm that translatesa temporal logi
 formula into a �nite-state automaton (possibly on in�nite1 Email: M.C.W.Geilen�tue.nlThis is a preliminary version. The �nal version will be published inEle
troni
 Notes in Theoreti
al Computer S
ien
eURL: www.elsevier.nl/lo
ate/ent
s

Geilenwords) that a

epts pre
isely all the models of the formula. The automata-theoreti
 approa
h to model
he
king ([10,13℄) relies on tableau algorithms toturn a temporal formula into an observer of a model's behaviours. Driven bypra
ti
al needs, tableau
onstru
tions are being
ontinuously improved andreimplemented (e.g. [7,3,5℄). One su
h improvement has been the develop-ment of on-the-
y versions of tableau
onstru
tions. In general this meansthat the tableau automaton is
onstru
ted in a lazy way, generating statesand transitions as they are needed.Model-
he
king has gained a reputation for automati
 veri�
ation of the
orre
tness of (models of) real-life systems. At the same time it is re
ognisedthat similar te
hniques
an be applied in other ways as well. One may usethem not only for the veri�
ation of the formal abstra
t models, but also fora
tual software implementations or detailed simulation models and analysetheir behaviour for the desired
orre
tness properties during run-time. Oneparti
ular reason to do so is to
ounter the e�e
ts of the state-spa
e explosion,that makes that traditional veri�
ation te
hniques do not s
ale up well. Animportant aspe
t of traditional model-
he
kers is a systemati
 sear
h througha system's state spa
e. During the veri�
ation of a running system, this
ontrolover the state-spa
e exploration is not available. Ba
ktra
king is impossible orextremely
ostly. Therefore monitors for the analysis of the behaviour exposedby the running system, must be able to analyse the behaviour in
rementallyand deterministi
ally. Moreover, as
y
les go undete
ted, properties
annot beinferred dire
tly about in�nite tra
es. For this reason, run-time model
he
k-ing requires modi�
ations to the veri�
ation approa
h. Su
h modi�
ations aredis
ussed in this paper.Contribution of this paperIn this paper we present the (automati
)
onstru
tion of run-time moni-tors for properties expressed in linear temporal logi
. These monitors allowthe (simultaneous) dete
tion of both (informative) good and bad pre�xes of anexe
ution and
an thus serve to monitor temporal logi
 properties in
remen-tally and deterministi
ally at run-time. We show that the transition systemsbelonging to a tableau automaton on in�nite state sequen
es, the �nite stateautomaton for informative good pre�xes and the �nite state automaton forinformative bad pre�xes (almost)
oin
ide. The automata di�er only in a
-
eptan
e
onditions and we show how they
an be
ombined into a singlemonitor.Related WorkThis work builds on the work of Kupferman and Vardi [9℄. Whereas theirmain obje
tive is to simplify the model-
he
king pro
edure for safety proper-ties using alternating automata, we study the use of their notion of informativepre�xes for the
onstru
tion of tableau automata and run-time monitors in79

Geilenparti
ular. We fo
us on the
onstru
tion of �nite state and ultimately deter-ministi
 �nite state automata. [9℄ also elaborates on the
lassi�
ation of pre-�xes and
omplexity results. Other related work in
ludes the the papers [2,8℄whi
h give a more pragmati
 treatment of run-time temporal logi
 veri�
ation.In [2℄, the basi
 unfolding prin
iple of the
onstru
tion of a tableau automa-ton is used, the main disadvantage is that formulas are manipulated dire
tlyduring simulation, whi
h may not be very eÆ
ient. Also in [8℄, the observa-tion of LTL properties in simulations of System-C des
riptions is dis
ussed.Formulas are interpreted over �nite state sequen
es and given a three-valuedinterpretation. Work on on-the-
y tableau
onstru
tions in
ludes [7,4,3℄.Overview of the paperThe paper is stru
tured as follows. Se
tion 2 introdu
es some generalpreliminaries and informative pre�xes in parti
ular. In se
tion 3, we dis
uss anormal form, based on the notion of informativeness that will form the heartof the tableau
onstru
tions. The tableau
onstru
tion itself is dis
ussed inse
tion 4. How to make run-time monitors from these tableaux is the topi
 ofse
tion 5, where it is also shown to be
orre
t. Se
tion 6
on
ludes.2 PreliminariesFinite and In�nite WordsA word �w = �0�1�2 : : : �n�1 (of length n) over an alphabet � is a sequen
eof symbols from �; An in�nite word (!-word) �w = �0�1�2 : : : over an alphabet� is an in�nite sequen
e of symbols from �; �w(k) denotes �k and �wk refersto the tail �k�k+1�k+2 : : :. We use the latter notations for other kinds ofsequen
es as well. The
on
atenation of a �nite word �w1 and a �nite orin�nite word �w2 is denoted as �w1 � �w2. A �nite word �w1 is said to be a pre�xof a �nite or in�nite word �w2 if there is some word �w3 su
h that �w2 = �w1 � �w3.For a �nite word �w, j �wj denotes the number of symbols in the word. For anin�nite word �w over �, inf(�w) denotes the symbols of � that o

ur in�nitelyoften in �w. A set of words is
alled a language.Finite State AutomataLet alphabet � be a set of symbols. A labelled transition system L =hQ;Q0; V; Æi over �
onsists of a �nite set Q of lo
ations; a �nite set Q0 � Qof initial lo
ations; a mapping V : Q! 2� labelling every lo
ation with a setof symbols from the alphabet and a set Æ � Q�Q of edges. A run des
ribes apath through the transition system. It provides the lo
ation of the transitionsystem at any moment, by re
ording the sequen
e of lo
ations. A run of alabelled transition system L = hQ;Q0; V; Æi is a (�nite or in�nite) sequen
e �qof lo
ations �q(k) 2 Q su
h that for all k � 0 (and k < j�qj�1 if �q is �nite), thereis an edge (�q(k); �q(k + 1)) 2 Æ. In this
ase we also say that �q is a run fromlo
ation �q(0), or a �q(0)-run for short. A run �q is
alled initial if �q(0) 2 Q0.80

GeilenGiven a word �w and a run �q of equal length, �q is a run for �w (or �w mat
hes�q) if 2 for all k � 0, �w(k) 2 V (�q(k)).A �nite state automaton A = hQ;Q0; V; Æ; fi over �
onsists of a labelledtransitions system over � and a set f of �nal lo
ations. Automaton A a

eptsa �nite word �w (of length n) if it has an initial run �q for �w ending in a �nallo
ation (�q(n�1) 2 f). A (generalised) B�u
hi automaton A = hQ;Q0; V; Æ; F iover � on the other hand is an automaton on in�nite words and
onsists ofa labelled transition system over � and a set F of a

eptan
e sets f � Q. Ageneralised B�u
hi automaton A a

epts an in�nite word �w if it has an initialrun �q for �w su
h that for every f 2 F , inf(�q) \ f 6= ?. For a �nite stateautomaton or B�u
hi automaton A, the language L(A) of A is the set of allwords that it a

epts.Linear Temporal logi
We use the standard de�nition of Linear Temporal Logi
 and assume theexisten
e of a �nite set Prop of atomi
 propositions. The syntax of LTL isgiven by the following grammar (p 2 Prop): ::= true j p j : j 1 _ 2 j
 j 1U 2:We let , ', 0, '0, 1, '1, 2, '2, et
etera range over LTL. We use
l(')to denote the subformula
losure of '. In the remainder we use the dualsof the operators w.r.t. negation (false = :true, '1 ^ '2 = :((:'1) _ (:'2))and '1V'2 = :((:'1)U(:'2))) to push negations inward until they o

uronly in front of atomi
 propositions, and write formulas in positive normalform. We shall identify formulas with the
orresponding formulas in positivenormal form 3 . Moreover, if � is a set of formulas, we write V� to denote the
onjun
tion of these formulas and we write �� j= � to denote that �� j= V�.The language P' of (in�nite) state sequen
es that satisfy the formula ' isreferred to as the property expressed by LTL formula '.Certain properties
an be quali�ed as safety properties (stating that `some-thing bad will never happen') or liveness properties (stating that `somethinggood will eventually happen'). A property P is a liveness property if for every�nite state sequen
e �� there exists some in�nite state sequen
e ��0 su
h that�� � ��0 2 P (although other de�nitions are possible [1,12℄). A property is asafety property if every in�nite state sequen
e �� =2 P , has a pre�x ��0 su
hthat ��0 � ��00 =2 P for every state sequen
e ��00. The latter kind of pre�x is
alleda bad pre�x ; a pre�x �� is
alled a bad pre�x for a property P if there is nostate sequen
e ��0 su
h that �� � ��0 2 P . A good pre�x for a property P , on theother hand, is a pre�x �� su
h that for every ��0, �� � ��0 2 P [9℄.2 As lo
ations are labelled with sets of symbols, a single run
orresponds in general to aset of words.3 Using
l(:) = :
l() rather than
l(:) = : [
l() to make
l insensitive to aformula's representation. 81

GeilenDe�nition 2.1 [9℄ A �nite word �u 2 �� is
alled a good pre�x for the languageL � �! i� for every in�nite word �w 2 �!, �u � �w 2 L. Similarly, �u is
alled abad pre�x for the language L i� for every in�nite word �w 2 �!, �u � �w =2 L. 2This paper deals with the veri�
ation of safety properties expressed byLTL formulas, however, not all safety formulas are alike. In [9℄, safety formulasare
lassi�ed into three kinds, the intentionally safe, the a

identally safe andthe pathologi
ally safe, depending on the kinds of pre�xes their propertiespossess. A pre�x �� is
alled informative for a formula if it \tells the wholestory"[9℄ of why the formula holds for every in�nite state sequen
e of whi
h�� is a pre�x. This is made pre
ise below. Intentionally safe formulas areformulas of whi
h every bad pre�x is informative (e.g. 2p), an a

identallysafe formula is a safety formula that is not intentionally safe, but of whi
hall state sequen
es that violate it, do have some informative bad pre�x (e.g.2(p _ (
q ^
:q))). Pathologi
ally safe safety formulas are formulas thathave
omputations that violate it without any informative bad pre�x (e.g.((2(q _23p)) ^ (2(r _ 23:p))) _2q _ 2r, examples from [9℄).A set of formulas is said to be lo
ally informative if it is `informative' in thesense that every
ompound formula in the set is supported by one or more ofits dire
t subformulas. Together the formulas
onstitute an explanation whya requirement will hold. If a set
ontains the formula '1 ^ '2, then it mustalso
ontain both '1 and '2 to demonstrate this. Similarly if a set
ontains'1U'2 then it must
ontain '1 or '2 as well (this only pertains to the
urrentstate, not
ontaining '2 leads to extra
onstraints on the formulas that holdat the following moment). In the remainder of the paper we let � range oversets of LTL formulas.De�nition 2.2 A set � of formulas is lo
ally informative if� false =2 �;� if '1 _ '2 2 � then '1 2 � or '2 2 �;� if '1 ^ '2 2 � then '1 2 � and '2 2 �;� if '1U'2 2 � then '1 2 � or '2 2 �;� if '1V'2 2 � then '2 2 �.Lo
al informativeness
onstrains the formulas that are required to hold fora parti
ular state sequen
e. In the
ase of Until or Release operators however,
onstraints may also need to be imposed on the remainder of the state sequen
e(for instan
e if the set
ontains '1U'2 and '1, but not '2). If the truth ofan Until or Release formula follows dire
tly from the other formulas in theset, then su
h a set is said to be trivial for that Until or Release formula (ifthe set
ontains both '1U'2 and '2, or both '1V'2 and '1). It is said tobe non-trivial otherwise. (Non-)trivial sets will play an important role in thetableau
onstru
tions, be
ause they pose
onstraints on the remainder of thestate sequen
e, and thus determine `temporal informative su

essors'.82

GeilenDe�nition 2.3 A set � of formulas is non-trivial for� the Until formula '1U'2, if '1U'2 2 � and '2 =2 �, let Next('1U'2) ='1U'2;� the Release formula '1V'2, if '1V'2 2 � and '1 =2 �, let Next('1V'2) ='1V'2;� the formula
', if
' 2 �, let Next(
') = '. 2A set �0 of formulas is a temporally informative su

essor of the set � offormulas if for every formula su
h that � is non-trivial for , �0
ontainsNext(). Another way to formulate temporal informativeness, is to say thatfor �0 to be a temporally informative su

essor of �, it must
ontain at least
ertain formulas that are determined by �. This is
aptured by the followingde�nition.De�nition 2.4 Let � be a set of formulas. Then the set Next(�) of temporalinformativeness
onstraints is the set :fNext() j 2 � su
h that � is non-trivial for g:�0 is a temporally informative su

essor of � if Next(�) � �0. This is denotedas �! �0. 2In some of the proofs we use Next(�1;�2) to denote fNext() j 2�2 su
h that �1[�2 is non-trivial for g. We have, for instan
e, that fpUq; pg! fpUq; qg and fpUq; qg ! ?, but not fpUq; pg ! fpg and not f
qg ! fpg.We
an now de�ne the notion of an informative good (bad) pre�x.De�nition 2.5 ([9℄ 4) Let �� be a �nite state sequen
e. �� is informative for 'i� there exists a �nite sequen
e IS 2 (2LTL)� of sets of formulas, say of lengthn+ 1 � j�� j+ 1, su
h that� ' 2 IS(0);� IS (n) = ?;� for all 0 � i < n and 2 IS(i),� if is an atomi
 proposition p, then p 2 ��(i);� if is a negated atomi
 proposition :p, then p =2 �� (i);� IS(i) is lo
ally informative;� IS(i+ 1) is a temporally informative su

essor of IS(i). 2We
all su
h a sequen
e IS an informative sequen
e. If su
h an informativesequen
e exists, it tells us why ' holds for any extension of the pre�x �� . Itindi
ates what formulas hold at what moment of the pre�x and why. Sin
eIS(i) is at some point empty, this reasoning is
omplete and thus applies toany extension of the pre�x. For instan
e, if 1 _ 2 2 IS (i), then by the4 we rephrase the de�nition of [9℄ in terms of our notions of lo
al and temporal informa-tiveness. 83

Geileninformativeness requirements, 1 2 IS(i) or 2 2 IS(i), whi
h tells us that 1 _ 2 holds for any extension of �� i (the part of �� from state i to the end)sin
e at least one of 1 and 2 holds for any extension of �� i. If 1U 2 2 IS(i), 1 2 IS(i), and 2 =2 IS (i), then a

ording to temporal informativeness, 1U 2 2 IS(i + 1). This signi�es that 1U 2 must hold for any extension of�� i, be
ause 1 holds for any extension of �� i and 1U 2 holds for any extensionof �� i+1. Sin
e IS (n) = ?, su
h a reasoning does not depend on any part ofthe state sequen
e beyond position n. It is
omplete and \tells the wholestory"[9℄. Thus, �� is an informative good pre�x for ' if it is informative for 'and �� is an informative bad pre�x for ' if it is informative for :'.3 Informative Normal Form(On-the-
y) tableau
onstru
tions for linear temporal logi
 are often intro-du
ed using a rewriting pro
edure that rewrites formulas into `disjun
tivetemporal normal form' in order to separate
onstraints on the
urrent statefrom
onstraints upon the rest of the state sequen
e [7,4,3℄. In this paper weintrodu
e an on-the-
y tableau
onstru
tion based on informativeness. No-ti
e that although this
onstru
tion is not identi
al, it
losely resembles su
h
onstru
tions.In
orresponden
e with the disjun
tive temporal normal form of traditionalon-the-
y tableau
onstru
tions we de�ne an `informative normal form'.De�nition 3.1 A set � of sets of LTL formulas is in informative normal formif every set in � is lo
ally informative.We now introdu
e a number of rewrite rules, that transform any set intonormal form. In the rewriting rules we represent the set of sets of formulas asa set of pairs hNew ;Oldi (we
all them terms) of sets of formulas, in order todis
riminate the formulas that have been pro
essed (Old) from the formulasthat still need to be pro
essed (New). The rules are presented in �gure 1,whi
h is interpreted as follows. Consider a set � [fhNew [f g;Oldig ofterms. The row in the table in whi
h the Case �eld
oin
ides with the shapeof the LTL formula determines how the set is rewritten.De�nition 3.2 The (informative) normal form pro
edure starts with a set �of formulas. It maintains a set �n of terms hNew;Oldi that is initialised to�0 = fh�;?ig. Then as long as some redu
tion rule of table 1 applies, a ruleis applied to �n to obtain �n+1. The pro
edure terminates when no moreredu
tion rules apply to �k for some k � 0. The result of the pro
edure is theset fOld j h?;Oldi 2 �kg.It is easy to show that the pro
edure terminates and that all terms in �kare then of the form h?;�ii for some set �i of formulas. Depending on theorder in whi
h terms from � and formulas from New are sele
ted, di�erentnormal forms may be obtained. In the sequel, we assume the existen
e of a84

GeilenCase � [fhNew [f g;Old ig redu
es to:1 = false �2 = true � [fhNew ;Old [f gig3 = p � [fhNew ;Old [f gig4 = :p � [fhNew ;Old [f gig5 = 1 _ 2 � [fhNew [f 1g;Old [f gi; hNew [f 2g;Old [f gig6 = 1 ^ 2 � [fhNew [f 1; 2g;Old [f gig7 =
 0 � [fhNew ;Old [f gig8 = 1U 2 � [fhNew [f 2g;Old [f gi; hNew [f 1g;Old [f gig9 = 1V 2 � [fhNew [f 1; 2g;Old [f gi; hNew [f 2g;Old [f gigTable 1Lo
al informativeness pro
eduredeterministi
 pro
edure NF that
omputes a parti
ular normal form for anygiven set of formulas. We use NF (') to denote NF (f'g).Lemma 3.3 Let � be a set of LTL formulas. Then, NF (�) is in informativenormal form and furthermore, if �� is a state sequen
e, su
h that �� j= �, thenthere exists a set �0 2 NF (�) su
h that (i) �� j= �0, (ii) ��1 j= Next(�0) and(iii) for every Until formula = '1U'2 2 � su
h that �� j= '2, '2 2 �0.Proof. The fa
t that �0 is lo
ally informative
an be shown by an invarianton the sets �n stating that the terms hNew ;Oldi in �n are lo
ally informativew.r.t. the formulas in Old . (This means that the rules of lo
al informativenessare interpreted as: `false =2 Old ' and `if 2 Old , then : : : 2 Old [New '.)When the pro
edure ends, all formulas are in the Old sets and the sets inNF (�) are lo
ally informative. The se
ond part is proved using an invariantsaying that there exists a term hNew ;Oldi 2 �n su
h that (i) �� j= New [Old ,(ii) ��1 j= Next(New ;Old) and (iii) for every Until formula = '1U'2 2 Oldsu
h that �� j= '2, '2 2 �0. 2ExampleConsider the LTL formula 3p = trueUp. In terms of the normal form pro-
edure, the rewriting pro
ess of trueUp pro
eeds as follows (we write �1) �2to express that �2 is obtained from �1 by one or more steps in the pro
edure).fhftrueUpg;?ig)fhfpg; ftrueUp; gi; hftrueg; ftrueUpgig)fh?; ftrueUp; pgi; h?; ftrueUp; truegig85

GeilenNew := NF ('), Q := ?, Q0 := New, Æ := ?while New 6= ? doLet � 2 NewNew := Newnf�gQ := Q [f�gfor every �0 2 NF (Next(�)) doÆ := Æ [f(�;�0)gif �0 =2 Q then New := New [f�0gododFig. 1. Algorithm for
onstru
ting lo
ations and edges of the on-the-
y tableauautomatonThe normal form suggests that there are two ways to demonstrate that trueUpholds. Either demonstrate that p holds, or demonstrate that true holds (triv-ial) and (sin
e Next(ftrueUp; trueg) = ftrueUpg) that trueUp holds at thenext moment.ComplexityOne
an show that the worst-
ase
omplexity of the normal form pro
e-dure NF (�) is O(2n) where n = P 2� j j. Sin
e at every step, P 2New j jde
reases for the new terms that repla
e hNew ;Oldi in the redu
tion and itis repla
ed by at most two new terms. If we further know that every 2 � isan element of
l(') for some formula ', then it follows that the
omplexity ofNF is O(2j'j2). In that
ase however, a
lever sele
tion of the formula used forredu
tion (sele
t the largest formulas �rst) redu
es the
omplexity to O(2j'j).This
an be seen by
onsidering that on any path leading from the initial termhNew ;?i to a �nal term h?;Oldi every formula 2
l(')
an be used forredu
tion at most on
e, hen
e su
h a path is of length at most j'j and thetotal number of redu
tions applied is O(2j'j).4 Tableau Constru
tion4.1 The tableau algorithmThe
onstru
tion of a tableau automaton for an LTL formula ', is based uponthe normal form introdu
ed in the previous se
tion. The
onstru
tion is
loselyrelated to the
onstru
tion of [7℄. Next formulas however are representedimpli
itly rather than expli
itly. The number of formulas that may o

ur inthe sets of the normal form terms is limited to synta
ti
 subformulas of '.The tableau automaton of an LTL formula ' is
omputed in the followingway. 86

Geilen
1
p

2Fig. 2. Example tableau automaton of the formula 23pDe�nition 4.1 Let ' be an LTL formula. The tableau automaton A' of 'is the automaton hQ;Q0; V; Æ; F i over the alphabet 2Prop , where� The lo
ations (Q), initial lo
ations (Q0) and transitions (Æ) are
omputedby the pro
edure depi
ted in Figure 1. The lo
ations q 2 Q are sets of LTLformulas;� V (q) = f� 2 2Prop j 8p2Propp 2 q) p 2 �;:p 2 q) p =2 �g. That is,a lo
ation q is labelled with all states that are
onsistent with the atomi
propositions and the negated atomi
 propositions in q;� F
ontains for every Until formula = '1U'2 2
l('), a set f = fq 2 Q j 2 q) '2 2 qg.ExampleIf we take the formula 23p = falseV (trueUp) and apply the tableaualgorithm, we arrive at the automaton represented in Figure 2. Only theatomi
 propositions in the lo
ations have been depi
ted. Lo
ation 1 is the setf23p;3p; pg and lo
ation 2 is the set f23p;3p; trueg. Initial lo
ations arerepresented by a small arrow not originating from any lo
ation leading to theinitial lo
ation. There is only one a

eptan
e set f3p, the lo
ations of whi
hare denoted with an extra
ir
le around them.ComplexityAs all lo
ations of the tableau automaton are subsets of
l('), there are atmost 2j'j di�erent lo
ations. For every lo
ation �, the normal form pro
edureis applied on Next(�). The pro
edure was shown to be O(2j'j) in se
tion 3.Thus the
omplexity of the tableau algorithm is 2O(j'j).4.2 Corre
tnessHere, we give a brief sket
h of the proof that the tableau
onstru
tion is
or-re
t, i.e. that for any LTL formula ', the tableau automaton of ' a

eptspre
isely those state sequen
es that satisfy '. The algorithm based on infor-mativeness
onstraints is very
lose to the algorithm of [7℄ and also the proofresembles those of [4,7,3℄.Theorem 4.2 Let ' be an LTL formula and let A' be the
orrespondingtableau automaton. Then for every state sequen
e ��, A' a

epts �� i� �� j= '.87

GeilenThis theorem follows from soundness (every state sequen
e a

epted by A'satis�es ') and
ompleteness (every state sequen
e satisfying ' is a

epted byA') of the
onstru
tion as expressed by lemmas 4.4 and 4.7 below. In theremainder of this se
tion, we assume that A' = hQ;Q0; V; Æ; F i is the tableauautomaton of the formula '.SoundnessWe demonstrate that the automaton a

epts only state sequen
es thatsatisfy '. The main lemma is the following,
laiming that any formula in aparti
ular lo
ation is dealt with
orre
tly.Lemma 4.3 Let �� be a state sequen
e, let �q be a run of A' mat
hing �� andlet 2 �q(0). Then �� j= .Proof. By indu
tion on the stru
ture of . We only show the
ase relatedto the Until formula. If '1U'2 2 �q(0), then it
an be shown by the redu
-tion of '1U'2 in the normal form pro
edure and by the
onstru
tion of theautomaton, that '1U'2 propagates at least until some lo
ation
ontains '2(su
h a lo
ation is eventually rea
hed sin
e the run satis�es the a

eptan
e
ondition related to f'1U'2), by lo
al informativeness, up to that point everylo
ations
ontains '1. Thus, there is some k, su
h that '2 2 �q(k) and forevery 0 � m < k, '1 2 �q(m). By the indu
tion hypothesis it follows that�� j= '1U'2. 2One
an furthermore easily show that every initial lo
ation
ontains theformula '. From this and lemma 4.3, it follows immediately that every statesequen
e a

epted by the tableau automaton A' satis�es '.Lemma 4.4 If A' a

epts the state sequen
e ��, then �� j= '.CompletenessHere we demonstrate that every state sequen
e that satis�es ' is a

eptedby the tableau automaton. The normal form pro
edure guarantees that if astate sequen
e �� satis�es a formula , then there is a term in the normal formof , that is satis�ed by ��. Sin
e the remainder of the state sequen
e satis�esthe formulas in the
orresponding Next set, there is a transition that
an betaken by the automaton. This argument
an be repeated to
onstru
t a runof the automaton for ��. Moreover, one
an show that the su

essor lo
ation
an be
hosen so as to satisfy the a

eptan
e
onditions.The following lemma is the
rux to the in
remental
onstru
tion of ana

epting run for any state sequen
e �� that satis�es '.Lemma 4.5 Let q 2 Q and let �� be a state sequen
e su
h that �� j= Next(q).Then there exists an edge (q; q0) 2 Æ su
h that (i) �� j= q0, (ii) ��1 j= Next(q0)and (iii) for every Until formula = '1U'2 2 Next(q) su
h that �� j= '2,q0 2 f . 88

GeilenThe lemma follows straightforwardly from lemma 3.3 and the
onstru
-tion of the tableau automaton. Similarly we
an use lemma 3.3 to prove thefollowing lemma that tells us how to sele
t an appropriate initial lo
ation tostart the
onstru
tion of the run using the previous one.Lemma 4.6 Let �� be a state sequen
e su
h that �� j= '. Then there is someq 2 Q0 su
h that �� j= q and ��1 j= Next(q).From lemma 4.6 and repeatedly applying lemma 4.5 to
onstru
t an a
-
epting run, it follows that A' a

epts all state sequen
es that satisfy '.Lemma 4.7 If the state sequen
e �� j= ', then A' a

epts ��.5 Automata for Pre�xesIn this se
tion we dis
uss how the tableau method
an be adapted to theanalysis of pre�xes of state sequen
es. It is possible to e�e
tively
onstru
tan automaton on �nite words that a

epts all bad (good) pre�xes for a givenformula [9℄. We
on
entrate however on automata that re
ognise informa-tive pre�xes only, for two reasons. Firstly, the
onstru
tion of automata forall bad pre�xes is doubly exponential in the length of the formula, whereasthe
onstru
tion of automata for informative pre�xes is only singly exponen-tial [9℄. Se
ondly, the informative bad pre�xes
an be
onsidered as the onlyproper
ounterexamples, sin
e they demonstrate why the formula does nothold. Other bad pre�xes depend on some pe
uliarity of the formula. For ex-ample, if is a formula that is not satis�able, then every �nite state sequen
eis a bad pre�x of the formula 3 , but this �nite state sequen
e itself providesno information why the formula does not hold.The idea behind the
onstru
tion is very simple. One
reates the on-the-
y tableau automaton of the formula ', but interprets it as an automaton on�nite words. The original a

eptan
e
onditions
an be forgotten, sin
e theyrefer to in�nite state sequen
es. The automaton's transition system however,has the following property. If a �nite state sequen
e �� is an informative badpre�x, then there is no �nite run on the transition system that mat
hes it.If on the other hand, it is an informative good pre�x, then there is a run tothe lo
ation ?. To be pre
ise, for any extension of the pre�x, longer than thepre�x itself, there is a mat
hing run, the last lo
ation of whi
h is ?. As a
onsequen
e, if an automaton does not have a lo
ation ? then the formuladoes not have any informative good pre�xes.De�nition 5.1 Let A = hQ;Q0; V; Æ; F i be an !-automaton over the alpha-bet �. Then [A'℄ denotes the automaton hQ;Q0; V; Æ; Qi on �nite words overthe same alphabet, i.e. the same automaton interpreted as a safety automa-ton (all lo
ations are �nal) on �nite words. hA'i denotes the automatonhQ;Q0; V; Æ; Q \ f?gi on �nite words over �, i.e. the same automaton inter-preted as an automaton on �nite words with the lo
ation ? (if it exists) as its89

Geilen
p V q
p q

p V q
qFig. 3. Automaton for pre�xes of the formula pVqonly �nal lo
ation.Note that sin
e the automata [A'℄ and hA'i for non-bad and good pre�xesrespe
tively, are slight modi�
ations to the B�u
hi tableau automaton, the
omplexity of their
onstru
tion is the same, i.e. 2O(j'j).ExampleFigure 3 shows the labelled transition system of the automaton ApVq.The state sequen
e fqgfqgfp; qg is an (informative) good pre�x of pVq. The
orresponding run to the lo
ation ? (the right lo
ation) is fpVq; qgfpVq; qgfpVq; p; qg?. The run itself forms the informative sequen
e that establishesthis. An informative bad pre�x is fqgfpg. It
an be veri�ed that this sequen
ehas no mat
hing �nite initial run on the transition system. A
orrespondinginformative sequen
e demonstrating that the pre�x is informative for :(pVq)is f:(pVq);:pgf:(pVq);:qg?. The informative sequen
e
an be interpretedas follows. It
laims (:(pVq) 2 IS(0)) that there is no mat
hing run startingfrom any lo
ation
ontaining the formula pVq (and all initial lo
ations of thetransition system
ontain it). The reason for this is that the �rst state of thepre�x does not satisfy p (:p 2 IS (0)) and the remainder does not satisfy pVq(:(pVq) 2 IS (1)). There is no mat
hing run starting from the middle lo
a-tion, sin
e it
ontains p. Any su

essor lo
ation of the left lo
ation
ontainspVq again. A

ording to the informative sequen
e, a run from su
h a su

es-sor lo
ation (left and middle) for the remainder fpg does not exist sin
e these
ond state of the pre�x does not satisfy q (:q 2 IS(1)). This immediatelyrules out both lo
ations as possible lo
ations for a mat
hing run and thus amat
hing run does not exist.5.1 Corre
tnessThe above example illustrates that for an informative bad pre�x, there is nomat
hing run on the tableau automaton. Vi
e versa, if there is no mat
hingrun for a pre�x on an automaton [A'℄, then the pre�x is informative for :'.This relationship between a �nite state sequen
e being an informative badpre�x and the existen
e of a mat
hing run is formalised in theorem 5.6 ofthis se
tion. The example also showed the relationship between good pre�xesand �nite runs on the tableau automaton ending in the lo
ation ?. Every�nite run on hA'i ending in ?
onstitutes an informative sequen
e mat
hing90

Geileninformative good pre�xes. Conversely, for any informative good pre�x su
h arun
an be found. This is demonstrated with theorem 5.8. For the proof of
orre
tness, we extend the notion of bad pre�x to sets of formulas and to setsof su
h sets (su
h as the normal forms NF).De�nition 5.2 A �nite state sequen
e �� is an informative bad pre�x of aset � of formulas if there is some 2 � su
h that �� is an informative badpre�x for or there is some 2 Next(�), su
h that �� 1 is an informative badpre�x for . It is an informative bad pre�x for a set � of su
h sets, if it is aninformative bad pre�x for every � 2 �.Automaton for Bad Pre�xesThe normal form pro
edure preserves informative bad pre�xes. If a pre-�x is informatively bad for a normal form of some formula, then it is alsoinformatively bad for the formula itself.Lemma 5.3 If �� is an informative bad pre�x for NF (�), then �� is an infor-mative bad pre�x for V�.For the proof, see appendix A. Next follows the main lemma to show thatpre�xes for whi
h there is no mat
hing run on the tableau automaton startingfrom some lo
ation �, are informatively bad for the formula
orresponding tothe lo
ation �.Lemma 5.4 Let A' be a tableau automaton, let � be a lo
ation of A' and let�� be a �nite state sequen
e for whi
h there is no run on A' starting from �.Then �� is an informative bad pre�x for �.Proof. By indu
tion on the length of the pre�x �� .� If j�� j = 1 then there is some 2 �, either an atomi
 proposition or thenegation of an atomi
 proposition, su
h that �� (0) 6j= and thus f: g? isan informative sequen
e showing that �� is an informative bad pre�x for �.� If j�� j > 1 then either� the �rst symbol does not mat
h the lo
ation �, whi
h is similar to the�rst
ase, or� the �rst symbols mat
hes the lo
ation �, but there is no su

essor lo
ationfor whi
h there is a run. By indu
tion we have that �� 1 is an informativebad pre�x for every su

essor lo
ation �i, and thus for NF (Next(�)), andby lemma 5.3 it is an informative bad pre�x for VNext(�). From this itfollows that �� is an informative bad pre�x for �. 2The following lemma is the main ingredient to show the
onverse, i.e. thatinformative bad pre�xes have no mat
hing run on the tableau automaton.Lemma 5.5 Let 2 � and let IS be an informative sequen
e demonstrating: for �� . Then there is no run for �� on [A'℄ starting from �.91

GeilenThis lemma is proved by indu
tion on the length of �� and the stru
tureof . The proof is in appendix A. Now we
an show that our tableau au-tomata a

ept all �nite sequen
es ex
ept the ones that are informative for :'(Kupferman and Vardi show a similar result for alternating automata in [9℄).Theorem 5.6 Let ' be an LTL formula and let A' be a tableau automatonfor '. Then [A'℄ a

epts �nite state sequen
e �� i� �� is not an informative badpre�x of '.Proof. ()) Assume towards a
ontradi
tion that �� is an informative badpre�x for '. Any initial run starts from a lo
ation � su
h that ' 2 �. Butby lemma 5.5 su
h a run
annot exist.(() Again by
ontradi
tion. Assume that �� is not a

epted by [A'℄. Thenby lemma 5.4, for every � 2 NF (f'g) (the initial lo
ations of the automaton),�� is an informative bad pre�x for �. Thus by lemma 5.3, �� is an informativebad pre�x for '. 2Automaton for Good Pre�xesNext, we show that informative good pre�xes are re
ognised by the au-tomaton hA'i.Lemma 5.7 Let � be a set of formulas and let IS be an informative sequen
ewith � � IS (0). Then there is some �0 2 NF (�) su
h that �0 � IS (0) andNext(�0) � IS(1).The proof is given in appendix A. As a
onsequen
e, a �nite state sequen
eis an informative good pre�x i� there is a mat
hing run leading to the lo
ation?.Theorem 5.8 Let A' be the on-the-
y tableau automaton of the formula '.A �nite state sequen
e �� is an informative good pre�x of ' i� hA'i a

epts �� .Proof. ()) Let IS be an informative sequen
e with ' 2 IS(0). By lemma5.7, there is some � 2 NF (') su
h that � � IS(0) and Next(�) � IS (1).Repeating the argument, we
an show that there is a run �q su
h that �q(k) �IS(k) for all 0 � k � jIS j. Thus �q(jIS j) = ?.(() Let �q be su
h a run. Then �q itself is an informative sequen
e for ' sin
eall lo
ations are lo
ally informative and all edges are temporally informative.25.2 Pra
ti
al Use of the Pre�x AutomataWe have seen how we
an
onstru
t �nite state automata that re
ognise theinformative good and bad pre�xes of a parti
ular formula '. It has beenshown that both automata share the same transition system but di�er only ina

eptan
e
onditions. On the basis of these automata one
an
onstru
t anobserver that is linked to a running model in su
h a way that it
an evaluate its92

Geilenatomi
 propositions de�ned as boolean properties of the model and is run inlo
k step or alternatingly with the (relevant) transitions of the model. As themonitor is made deterministi
 (possibly using an on-the-
y determinisation),the analysis of the in
reasing run
an be performed in
rementally. Dete
tionof informative good or bad pre�xes
an be reported, possibly halting theexe
ution of the model.If an exe
ution is halted without en
ountering either of both
onditions, theen
ountered pre�x is in
on
lusive w.r.t. the formula '. Yet, further analysisof the pre�x might still reveal interesting (statisti
al) information. How thisinformation may be obtained however, requires further study. One would needto know what subformulas of ' have been informatively ful�lled and possibly,how many times.6 Con
lusions and Future WorkThe use of temporal logi
 model-
he
king te
hniques on running implementa-tions or simulations of detailed system models
alls for the on-the-
y in
re-mental analysis of �nite exe
ution tra
es. In this paper we have shown howto
onstru
t from a linear temporal logi
 formula, a �nite state automatonthat
an a
t as a monitor to perform this type of analysis for the dete
tion of(informative) satisfa
tion as well as violation of the formula by a �nite exe
u-tion of the system. These �nite state automata
an be determinised (possiblyon-the-
y as well), to remove their non-determinism.We are further investigating the use of similar te
hniques to
onstru
t run-time monitors (in the form of timed-automata) for real-time temporal logi
.We will further implement the te
hnique in a simulator for
on
urrent systems
alled SHESim[6℄.Referen
es[1℄ Alpern, B. and F. S
hneider, De�ning liveness, Information pro
essing letters21 (1985), pp. 181{185.[2℄ Can�eld, W., E. Emerson and A. Saha, Che
king formal spe
i�
ations undersimulation, in: Pro
eedings International Conferen
e on Computer Design.VLSI in Computers and Pro
essors (1997), pp. 455{460.[3℄ Daniele, M., F. Giun
higlia and M. Y. Vardi, Improved automata generation forlinear temporal logi
, in: N. Halbwa
hs and D. Peled, editors, Computer AidedVeri�
ation: 11th International Conferen
e Pro
eedings, CAV'99, Trento, Italy,July 6-10, 1999 (LNCS 1633) (1999), pp. 249{260.[4℄ D'Souza, D., \On-the-Fly Veri�
ation for Linear Time Temporal Logi
,"Master's thesis, SPIC Mathemati
al Institute, Madras (1997).93

Geilen[5℄ Etessami, K. and G. Holzman, Optimising b�u
hi automata, in: Pro
eedings ofthe 11th Int. Conf. On Con
urren
y Theory (CONCUR'2000) (2000), pp. 153{167.[6℄ Geilen, M., J. Voeten, P. van der Putten, L. van Bokhoven and M. Stevens,Obje
t-Oriented modelling and spe
i�
ation using SHE, Journal of ComputerLanguages, spe
ial issue for VFM'99 (to be published) (2000).[7℄ Gerth, R., D. Peled, M. Vardi and P. Wolper, Simple on-the-Fly automati
veri�
ation of linear temporal logi
, in: Pro
. IFIP/WG6.1 Symp. Proto
olSpe
i�
ation Testing and Veri�
ation (PSTV95), Warsaw Poland (1995), pp.3{18.[8℄ Ho�mann, D., J. Ruf, T. Kropf andW. Rosenstiel, Simulation meets veri�
ation-
he
king temporal properties in SystemC, in: F. Vajda, editor, Pro
eedings ofthe 26th EUROMICRO Conferen
e - Volume I, Maastri
ht, the Netherlands,Sept 5-7, 2000 (2000), pp. 435{438.[9℄ Kupferman, O. and M. Y. Vardi, Model
he
king of safety properties, in:N. Halbwa
hs and D. Peled, editors, Computer Aided Veri�
ation: 11thInternational Conferen
e Pro
eedings, CAV'99, Trento, Italy, July 6-10, 1999(LNCS 1633) (1999), pp. 172{183.[10℄ Li
htenstein, O. and A. Pnueli, Che
king that �nite state
on
urrent programssatisfy their linear spe
i�
ation, in: Pro
. Of Twelfth Annual ACM Symposiumon Prin
iples of Programming Languages (1985), pp. 97{107.[11℄ Pnueli, A., The temporal logi
 of programs, in: Pro
. Of the 18th AnnualSymposium on Foundations of Computer S
ien
e (1977), pp. 46{57.[12℄ Sistla, A., Safety, liveness and fairness in temporal logi
, Formal Aspe
ts ofComputing 6 (1994), pp. 495{511.[13℄ Vardi, M. and P. Wolper, An Automata-Theoreti
 approa
h to automati
program veri�
ation, in: Pro
. Of Logi
 in Computing S
ien
e, 1986.A ProofsProof of lemma 5.3Lemma 5.3 states that informativeness of pre�xes is preserved by the nor-mal form
onstru
tion. To prove it, we need to de�ne when a pre�x is
onsid-ered to be informative for the artifa
ts used during the normal form pro
edure.De�nition A.1 A �nite state sequen
e �� is an informative bad pre�x for aterm hNew ;Oldi if there is some 2 New [Old su
h that �� is an informativebad pre�x for or there is some 2 Next(New ;Old) su
h that �� 1 is aninformative bad pre�x for .De�nition A.2 A �nite state sequen
e �� is an informative bad pre�x for aset � of terms if �� is an informative bad pre�x for every hNew ;Oldi 2 �.94

GeilenTwo informative sequen
es
an be
ombined into a single new one, simplyby taking the union of the
orresponding sets. If IS 1 and IS 2 are both infor-mative sequen
es, then (IS 1 [IS 2)(k) = IS 1(k) [IS 2(k) for all k � 0 (takingIS(k) = ? if k > jIS j). It is easy to see that if IS 1 and IS 2 are informativesequen
es for �� , then IS 1 [IS 2 is an informative sequen
e for �� as well.The next lemma shows that redu
tions in the normal form pro
edure pre-serve informativeness of bad pre�xes.Lemma A.3 Let pre�x �� be an informative bad pre�x for �0 and let �) �0in the normal form pro
edure. Then �� is an informative bad pre�x for �.Proof. One
an prove this for the redu
tion
ases individually, whi
h is atedious
ase analysis. We only show
ase 5. � = �00[fhNew[f 1_ 2g;Oldigand �0 = �00 [fhNew [f 1g;Old [f 1 _ 2gi; hNew [f 2g;Old [f 1 _ 2; gig. If �� is an informative bad pre�x of �0, it is a bad pre�x of bothhNew [f 1g;Old [f 1 _ 2gi and hNew [f 2g;Old [f 1 _ 2; gi. If IS isan informative sequen
e demonstrating this (both), then IS [f:(1 _ 2)gis an informative sequen
e for hNew [f 1 _ 2g;Oldi. From this it followsstraightforwardly that �� is an informative bad pre�x for � (note that moving 1 _ 2 to Old does not add any informativeness
onstraints). 2From this it follows immediately that the entire normal form pro
edurepreserves informativeness of bad pre�xes.Lemma A.4 (Lemma 5.3) If �� is an informative bad pre�x for NF (�),then �� is an informative bad pre�x for V�.Proof of lemma 5.5This lemma says that an informative bad pre�x
annot have a run on theon-the-
y tableau automaton.Lemma A.5 (Lemma 5.5) Let 2 � and let IS be an informative sequen
edemonstrating : for �� . Then there is no �-run for �� on [A'℄.Proof. By indu
tion on the length of �� and the stru
ture of . We showthe
ase = 1U 2, then either 2 2 � or 1 2 � and 2 �q(1) for anyappropriate run �q. Sin
e :(1U 2) 2 IS (0), : 2 2 IS (0) and : 1 2 IS(0) or: 2 IS(1). That su
h a run �q
annot exist follows by indu
tion. Noti
e thatthe latter
ase
an only o

ur if j�� j > 1 sin
e IS(j�� j) = ?, i.e. :
annot bepostponed forever. 2Proof of lemma 5.7This lemma suggests how informative sequen
es
an be used to
onstru
ta run to the empty lo
ation. The lemma is proved using an invariant on thenormal form pro
edure, introdu
ed in the next de�nition.95

GeilenDe�nition A.6 In the following lemma, the predi
ate Inv(�; IS) holds i�there is some term hNew ;Oldi 2 � su
h that New [Old � IS (0) andNext(New ;Old) � IS (1).Inv(�; IS) states that IS is informative for at least one of the terms in� and thus for the set itself. We show that Inv(�; IS) is invariant underredu
tions in the normal form pro
edure.Lemma A.7 Let �) �0, let IS be an informative sequen
e and assume thatInv(�; IS) holds, then also Inv(�0; IS) holds.Proof. By
ase analysis of the pro
edure. We only show
ase 9. � = �00 [fhNew [f 1V 2g;Oldig and �0 = �00 [fhNew [f 1; 2g;Old [f 1V 2gi;hNew [f 2g;Old [f 1V 2gig. If there is some hNew 0;Old 0i 2 �00 su
h thatNew 0 [Old 0 � IS (0) and Next(New 0;Old 0) � IS(1) then the result is trivial.Otherwise, the term satisfying the property is hNew [f 1V 2g;Oldi. Then 1V 2 2 IS(0) and by lo
al informativeness 2 2 IS(0).� If 1 2 IS(0) then New[f 1; 2g[Old[f 1V 2g � IS(0) and Next(New[f 1; 2g;Old [f 1V 2g) � Next(New [f 1V 2g;Old) � IS(1).� If 1 =2 IS (0) then New [f 2g [Old [f 1V 2g � IS(0) and Next(New [f 2g;Old [f 1V 2g) � Next(New [f 1V 2g;Old) [f 1V 2g � IS (1)sin
e 1V 2 2 IS (1) by temporal informativeness. 2From the previous lemma it follows dire
tly that the following holds forthe entire normal form pro
edure.Lemma A.8 (Lemma 5.7) Let � be a set of formulas and let IS be an in-formative sequen
e with � � IS(0). Then there is some �0 2 NF (�) su
h that�0 � IS (0) and Next(�0) � IS(1).

96

