
Refinement: An Overview

Ana Cavalcanti1, Augusto Sampaio2, and Jim Woodcock1

1 Department of Computer Science
University of York

York, UK
2 Centro de Informática

Universitates Federal de Pernambuco
Recife - PE, Brazil

The purpose of this initial chapter is to introduce concepts and techniques
assumed as general background in the remaining chapters of this book. The
relevant notions are introduced using a simple and well-known programming
notation: Dijkstra’s language of guarded commands [81], presented in
Section 1.

Three classical approaches to assigning semantic meaning to programs are
then explored. In Section 2 we discuss the annotation of programs with assertions
and the associated reasoning framework (Hoare Logic). Section 3 is dedicated to
a calculational style where the behaviour of a program is defined in terms of a
predicate transformer: its weakest precondition. Partial and total correctness of
programs are contrasted in these two sections. The important notion of program
refinement is introduced in Section 4. We start with some intuition and then
we give a weakest precondition based definition, followed by an alternative (but
equivalent) definition in terms of nondeterminism.

In Section 5, we explore another approach to program semantics, known as
refinement algebra, which is based on equations and inequations (laws) relating
programming constructs; algebraic laws allow a term rewriting style of program
transformation. We then show, in Section 6, how the programming constructs
can be embedded into a more abstract space of specifications; we introduce
Morgan’s specification statement and illustrate Morgan’s refinement calculus
concerning both algorithmic and data refinement. In Section 7 we discuss how
a programming (or specification) language with a refinement ordering can be
regarded as a lattice. This allows using well-established results of lattice theory
in programming methodologies. We conclude this chapter with a brief discussion
of refinement in other programming paradigms and the importance of tools to
support program refinement in practice.

1 A Simple Programming Notation

The version of Dijkstra’s Guarded Command Language (GCL) adopted here is
summarised below; c stands for a command, x for a list of variables, e for a list
of expressions, and ψ for a predicate.

, LNCS 3167, pp. 1–17, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
A. Cavalcanti, A. Sampaio, and J. Woodcock (Eds.): PSSE 2004

2 A. Cavalcanti, A. Sampaio, and J. Woodcock

c::=skip | abort do nothing, abortion
| x := e | c; c assignment, sequence
| if []i • ψi → ci fi conditional
| do []i • ψi → ci od iteration
| c " c nondeterminism
| var x : T • c local variable block

The primitive constructs are standard. The command skip has no effect and,
when executed, terminates immediately. In contrast, the command abort has a
completely arbitrary behaviour; rather than being deliberately written by a pro-
grammer, it may arise as a result of some undesirable computation like division
by zero, or an infinite loop without any externally visible effect.

The remaining primitive command of GCL is assignment. The program x := e
is a multiple (or simultaneous) assignment, where x is a list of distinct variables
and e an equal-length list of expressions. The components of e are evaluated
and assigned to the corresponding components of x in the same position. All the
contributing chapters of this book assume that expressions have no side-effect.
In this chapter we further assume that expressions are always well-defined (their
evaluation is always successful). In Chapter 2, on refinement of object-oriented
programs, we consider assignments whose expressions might fail when evaluated,
and the impact of side effects in expressions is discussed. As a simple example
of a multiple assignment, the command

x , y := y, x

swaps the values of x and y.
In GCL, the body of the conditional is a guarded command set. A guarded

command takes the form ψ → c, where ψ, the guard, is a predicate. The choice
of which command executes is between those whose guards evaluate to true.
If more than one guard is satisfied, the choice is nondeterministic; if no guard
evaluates to true, the conditional behaves like abort. As an example, we consider
the following command that assigns to z the greatest value held by x or y.

if (x ≤ y) → z := y
[] (y ≤ x) → z := x
fi

When x = y, the choice of which assignment executes is nondeterministic.
The body of an iteration (do []i • ψi → ci od) is also a guarded command

set. Similarly to the conditional, the choice of which guarded command executes
depends on the evaluation of the guards. If more than one guard is satisfied, the
choice is nondeterministic; if no guard evaluates to true, the iteration terminates
successfully, behaving like skip. In the program fragment below, the final value
of r is the factorial of the natural number assigned to n.

r := 1 ; do (n > 1) → r := r ∗ n; n := n − 1 od

Refinement: An Overview 3

The program c1 " c2 denotes an arbitrary (also known as demonic) choice be-
tween the commands c1 and c2 , in the sense that either one can be selected for
execution. For instance, consider the program fragment below.

x := 1 " x := 2 ;
if (x = 1) → skip
[] (x = 2) → abort
fi

In this context, either x := 1 or x := 2 will be selected, so that is possible
that the execution of the conditional leads to abortion. It is important to ob-
serve, however, that, according to equality and refinement notions that reflect
total correctness, any program that might abort (like the one above) is actually
identified with abort.

Some specification languages (like the one introduced in the next chapter)
include a complementary notion of nondeterminism known as angelic choice. In
this case the most suitable command for a given context is selected for execution.
If the choice in the above example were angelic, the assignment x := 1 would
have been selected. Operationally, the view is that of backtracking in the search
for the best possible execution of the program. For further considerations on
demonic and angelic choices see, for instance, [17].

The program (var x : T • c) declares the variable x of type T for use in
the command c. Local blocks of this form may appear anywhere a command is
expected. The occurrence of a variable x in the scope of a local declaration is
bound, and free otherwise. For example, y is bound in var y : T • x := y , but
free in x := y. The program fragment that computes the factorial of n, previously
presented, can be redesigned to leave n untouched, using a local variable.

r := 1 ; var t : N • t := n; do (n > 1) → r := r ∗ t ; t := t − 1 od

In the following two sections we discuss two well-established approaches to
define a formal semantics to programming languages; the guarded command
language introduced in this section is used as illustration.

2 Assertions and Hoare Logic

A classical approach to assigning formal meaning to (and reasoning about) pro-
grams, well-known as Hoare logic, is presented in [114]. Like in other branches
of mathematics, the basis of this approach is to define the behaviour of pro-
gramming constructs in terms of axioms and inference rules. Axioms define the
semantics of the primitive commands like skip, abort and assignment. Each ax-
iom takes the form of a Hoare triple, P {c} Q , where c is a command and P and
Q are logical assertions, playing the role of pre- and postcondition, respectively.
A Hoare triple is interpreted as follows: if P is true and c terminates successfully,
then Q must be established. The semantics of language operators like sequential
composition and conditional is defined by inference rules which assume that a
Hoare triples hold for the arguments.

4 A. Cavalcanti, A. Sampaio, and J. Woodcock

The original formulation of Hoare logic is for partial correctness, which means
that the axioms and inference rules assume successful termination of a program,
as can be inferred from the above interpretation. Nevertheless, several subsequent
formulations of Hoare logic as, for instance, [74, 106, 203], address total correct-
ness. In this case, the interpretation of a triple P {c} Q is: if P is true, then
c must terminate successfully and establish Q . While the semantics described
here regards partial correctness, the weakest precondition semantics defined in
the next section embodies termination.

The Hoare triples for the language presented in the previous section are sum-
marised in Table 1.

Table 1. Hoare triples for GCL

P {skip}P
true {abort} false
P [e/x] {x := e}P
If P {c1 }Q andQ {c2}R then P {c1 ; c2}R
If, for all i , (ψi ∧ P) {ci} Q then P {(if []i • ψi → ci fi)}Q
If, for all i , (ψi ∧ P) {ci} P then P {do []i • ψi → ci od} (P ∧ (

∧
i • ¬ψi))

If P {c1 }Q and P {c2 }Q then P {c1 # c2} Q
If P {c} Q then (∀ x : T • P) {var x : T • c} (∃ x : T • Q)

As skip has no effect, any logical assertion that is true before its execution,
remains true after it terminates. Being totally unpredictable, nothing can be
guaranteed concerning what abort could establish as postcondition, if it termi-
nates. The axiom for assignment formalises that if P is to be established after
the assignment of e to x , then the assertion obtained from P , by replacing all
free occurrences of x with e, must be true before the assignment.

The semantics of the remaining constructs is defined by inference rules. For
c1 ; c2 , the precondition is that of c1 , and the postcondition is that established
by c2 ; furthermore, the postcondition established by c1 coincides with the pre-
condition of c2 . Concerning the conditional, each of its guarded commands must
establish the expected postcondition, provided the corresponding guard is true.
In the case of a nondeterministic execution of c1 and c2 , the expected result can
only be ensured if both produce such a result.

The semantics of iteration is based on an invariant P that is assumed to hold
for each guarded command in the body of the loop, whenever the corresponding
guard is true. This invariant is also assumed to hold before the entire iteration
starts executing. Then, P must also hold after (possible) termination of the
iteration, when none of the guards holds any longer.

Assuming that an assertion holds for the body of a local declaration block
(where occurrences of a variable, say x , might be free), the precondition for the
entire block is assumed to hold for all possible values of x . Then there must be
at least one possible value of x such that the postcondition holds. When P and
Q do not mention x the quantifiers have no effect and can be eliminated.

Refinement: An Overview 5

Apart from the axioms and inference rules that define the semantics of the
programming constructs, Hoare logic includes additional rules for reasoning, like
the rules of consequence [114] displayed below.

If Q {c} R and P ⇒ Q then P {c} R
If Q {c} R and R ⇒ S then P {c} S

As an example of the application of these rules, we can observe that the
behaviour of abort is really unpredictable, since a Hoare triple such as

x = 1 {abort} x = 2

holds. The proof follows from the fact that x = 1 ⇒ true and false ⇒ x = 2 .

3 Weakest Preconditions

The seminal work [81] presented an alternative technique to reason about pro-
grams: weakest preconditions calculus. In this approach, the semantics of a pro-
gram is characterised by a predicate transformer: a function from predicates to
predicates usually called wp. When applied to a program p and to predicate ψ,
wp gives a predicate that defines all states in which execution of p terminates
and leads to a state in which ψ holds. The predicate ψ is called a postcondition,
and wp.p.ψ is the weakest precondition that guarantees that the program estab-
lishes ψ; a period is used here to denote function application. In contrast with
the previous chapter, here we consider total correctness.

The weakest precondition semantics of the simple language presented in Sec-
tion 1 is shown in Table 2. The semantics of a loop is given in terms of the
semantics of recursion, which is discussed in Section 7.

Table 2. Weakest precondition semantics of GCL

wp.skip.ψ ψ
wp.abort.ψ false
wp.x := e.ψ ψ[e/x]
wp.(c1 ; c2).ψ wp.c1 .(wp.c2 .ψ)
wp.(if []i • ψi → ci fi).ψ (

∨
i • ψ i) ∧ (

∧
i • ψi ⇒ wp.ci .ψ)

wp.(c1 # c2).ψ (wp.c1 .ψ) ∧ (wp.c2 .ψ)
wp.(var x : T • c).ψ ∀ x : T • wp.c.ψ

Since skip terminates, but does not affect any variables, the only way in which
it can establish a postcondition ψ is if it already holds. Because abort may not
even terminate, it can never provide a guarantee to establish any postcondition.
The assignment x := e establishes a postcondition ψ if it holds when the variables
x take the values e (and all other variables are not changed).

6 A. Cavalcanti, A. Sampaio, and J. Woodcock

The semantics of sequence is function composition. The weakest precondition
for c1 ; c2 to establish ψ is the weakest precondition for c1 to establish the
weakest precondition for c2 to establish ψ.

For a conditional to be guaranteed at least to terminate, one of its guards
has to be true. Moreover, if it is to be guaranteed that it establishes ψ, then
the weakest precondition for each of the commands ci associated with guards ψi
that are true have to be satisfied. This is because any of these commands may
be chosen for execution.

This also explains the semantics of the choice c1 " c2 . If it is to be guaran-
teed that it establishes ψ, then both c1 and c2 have to provide the guarantee.
Finally, arbitrary choice is also embedded in the semantics of a variable block
(var x : T • c); the initial value of x is nondeterministically chosen. It is only
guaranteed to establish ψ, if c does, for every value that x may take.

4 Refinement Notions

During development, sometimes the resulting program does not behave exactly
as the original program, but is possibly better, from the point of view of the
user. In this case, we say that we have a refinement of the original program.
Formally, an ordering relation on programs is used: c1 ' c2 holds when c2 is at
least as good as c1 in the sense that it will meet every purpose and satisfy every
specification satisfied by c1 .

A refinement relation is a pre-order: it is reflexive and transitive.

Law 1 (Refinement reflexive). c ' c

Law 2 (Refinement transitive). (c1 ' c2) ∧ (c2 ' c3) ⇒ (c1 ' c3)

Often, and in this book, ' is a partial ordering, further satisfying the antisym-
metry law.

Law 3 (Refinement antisymmetric). (c1 ' c2) ∧ (c2 ' c1) ⇒ (c1 = c2)

While the transitivity property of the refinement relation supports stepwise re-
finement, antisymmetry reduces proofs of equivalence to proofs of mutual re-
finement, just like equivalence of predicates in the predicate calculus can be
established using mutual implication.

Apart from these properties, to allow compositional transformations (inde-
pendent refinement of subcomponents of compound programs) the language op-
erators should preferably be monotonic with respect to '. For example, c1 ' c2
must imply c1 ; c3 ' c2 ; c3 . In general, we have the result below, where F is a
context: a function on programs built from the language operators.

Law 4 (Refinement compositional). (c1 ' c2) ⇒ (F (c1) ' F (c2))

Ideally, this must hold for all valid contexts F . Some languages, nevertheless,
allow constructs which are not monotonic with respect to ', and therefore re-

Refinement: An Overview 7

strictions must be imposed on F so that the above law holds. This is the case,
for instance, of private attributes in object-oriented languages. They cannot be
used to build contexts since an improved class does not necessarily has the same
private attributes of the original class.

A formal definition of the refinement relation can be given in the weakest
precondition model, in a simple and intuitive way. A refined program must work
in at least the same set of states as the original program, but possibly in a larger
set. The stronger a predicate is, the smaller is the set of elements it defines.
Therefore, for all postconditions ψ, the weakest precondition of a refined program
must be no stronger than that of the original program.

(c1 ' c2) =̂ wp.c1 .ψ ⇒ wp.c2 .ψ

Refinement can also be understood as a reduction of nondeterminism. Therefore,
if the nondeterministic choice between c1 and c2 always yields c1 , this means
that c2 refines c1 . This gives an alternative characterisation of '.

(c1 ' c2) =̂ (c1 " c2 = c1)

Nondeterminism is used in specifications to provide abstraction: choices that are
better made during design or implementation are left open.

Exercise 1. Derive the above definition of refinement from the previous one and
the weakest precondition semantics of " given in Section 2.

5 Refinement Algebra

Program transformation with the preservation of semantics can be formally jus-
tified in terms of a semantic model like weakest precondition or Hoare logic, as
discussed in previous sections. For instance, a program c1 can be safely trans-
formed into a program c2 provided c1 and c2 have the same weakest precon-
dition; the transformation is also valid if c2 is a refinement of c1 (the weakest
precondition of c1 implies that of c2).

In an algebraic style of reasoning, the properties of the programming con-
structs are captured by equations and inequations (laws) that directly relate
these constructs. An attractiveness of algebraic reasoning, therefore, is that it
is entirely conducted at the programming level; at least in principle, this seems
more appealing for programmers. In this approach, given that the algebraic laws
are sound, transformations based on their application are also correct by con-
struction. Soundness of the laws is considered a separate issue; this is done by
proving the laws in a mathematical model, like weakest precondition. The focus
here is on the presentation of the laws, rather than on their proofs.

First we consider simple properties of skip, assignment and sequential com-
position. For example, the following law states that the assignment of the value
of a variable to itself has no effect.

8 A. Cavalcanti, A. Sampaio, and J. Woodcock

Law 5 (Void assignment). (x := x) = skip

Such a vacuous assignment can also occur as part of a multiple assignment.

Law 6 (Identity assignment). (x , y := e, y) = (x := e)

The list of variables and expressions may be subjected to the same permutation,
without changing the effect of the assignment.

Law 7 (Assignment symmetry). (x , y := e, f) = (y, x := f , e)

Two assignments to the same variables can be readily combined into a single
assignment.

Law 8 (Combine assignments). (x := e; x := f) = (x := f [e/x])

The notation f [e/x] denotes the substitution of e the free occurrences of x in f .
As skip has no effect, it is both the left and the right identity of sequence.

Law 9 (Composition identity). (skip; c) = c = (c; skip)

A comprehensive set of laws for imperative programming can be found in [116].
The purpose here is to illustrate the algebraic reasoning style. As a simple ex-
ample, we prove that assignments can be swapped when there is no interference.

Example 1 (Swap assignments). Consider x , y, w and z are distinct identifiers.
Then (x := y; w := z) = (w := z ; x := y)

Proof.

x := y; w := z [Law 6]
x ,w := y,w ; w , x := z , x [Law 7]
w , x := w , y; w , x := z , x [Law 8]
w , x := z , y [Law 8]
w , x := z , x ; w , x := w , y [Law 7]
w , x := z , x ; x ,w := y,w [Law 6]
w := z ; x := y

The laws allow us to prove that the two sequences of assignments (although syn-
tactically different) behave the same and, therefore, are semantically equivalent.

A nice feature of the algebraic style is modularity. One can explore program
properties incrementally, considering one construct at a time. For example, let
us now deal with variable declaration. A simple property is that, if the declared
variable is not used in its scope, then the declaration has no effect.

Law 10 (Void declaration). (var x : T • c) = c provided x is not free in c

Recall that an occurrence of a variable x in c is bound (or local) if it is in the
scope of a declaration of x in c, and free (or global) otherwise.

Refinement: An Overview 9

Another property of local variable declaration is that assigning to a variable
at the end of its scope has no effect.

Law 11 (Assignment elimination).

(var x : T • c; x , y := e, f) = (var x : T • c; y := f)

As is usual in an algebraic presentation, the introduction of the new laws for
declaration has no impact on the previous laws; actually they contribute to
the set of properties that hold of our simple programming language. Therefore,
the proof of Example 1 does not need to be revised. Transformations involving
declarations can now be performed using the previous and the new laws. The
following exercise serves as an illustration.

Exercise 2. Assuming that z is not free in x := y, and that these variables have
type T , prove the following equivalence:

(var z : T • z := y; x := z) = (x := y)

As previously discussed, during program transformation, sometimes the re-
sulting program does not behave exactly as the original program, but is possibly
better than (a refinement of) it. The following is an example of a refinement
law.

Law 12 (Declaration initialisation).

(var x : T • c) ' (var x : T • x := e; c)

Since the initial value of a declared variable is totally arbitrary, initialisation of
a variable may reduce nondeterminism, leading to a more predictable program.

Nondeterminism can be understood as allowing choices to be made. Program
development usually starts with abstract specifications which leave several de-
sign decisions for the programmer to take. One important issue in refining a
specification into a program is reducing nondeterminism. This is addressed in
further detail in the next section.

6 Specification and Program Development

While the notation introduced so far exemplifies well-known (executable) pro-
gramming constructs, it is not suitable for writing abstract specifications. In the
view followed by consolidated approaches to program development, a mathe-
matical trick is applied: the programming language is embedded within a more
general specification notation. In this way, a single notation is used both for
programming and for specification; programs appear as a special kind of speci-
fication. Therefore, program development reduces to transformations of specifi-
cations within a uniform framework. Examples of approaches which adopt this
view are the refinement calculi by Back [14], Morgan [192] and Morris [199].

10 A. Cavalcanti, A. Sampaio, and J. Woodcock

A distinguishing feature of Morgan’s calculus is the specification statement:

w : [pre, post]

which describes a program that, when executed in a state satisfying the pre-
condition pre, terminates in a state satisfying the postcondition post , possibly
modifying the values of variables in the list (frame) w .

As an example, consider the specification statement

s , r : [e)∈ s , s = s0 ∪ {e} ∧ r = "Okay"]

whose effect is to add a new element e to a set s , and assign to r the con-
stant "Okay", indicating successful execution of the operation. By convention,
occurrence of framed variables in the precondition refer to their initial values,
whereas in the postcondition such occurrences refer to the final values of the
framed variables. To reference initial values of framed variables in the postcon-
dition, a subscript is adopted. Therefore, s0 stands for the initial value of s in
the postcondition above.

This specification can be refined into executable code, as discussed in the
sequel. In this way, the language allows us to start with an abstract specification
of a program and progressively refine it by mixing code and specifications, and
then finally obtain a program with executable constructs only.

Some extreme specifications are of particular interest for reasoning. For ex-
ample, we can write abort as a specification.

abort = x : [false, true]

It is the worst possible specification. It is never guaranteed to terminate (precon-
dition false), and even when it does, its outcome is completely arbitrary (post-
condition true). It allows any refinement; for instance, programs setting x to
arbitrary values. At the other extreme, we have the best possible specification

miracle = x : [true, false]

which can execute in any state (precondition true) and establishes as outcome
the impossible postcondition false. This is an infeasible specification; it cannot
be realised as an executable program. In fact, it is not refined by any other spec-
ification or code. So, arriving at this specification during development indicates
that the developer should return to a previous development step and make alter-
native design choices in order to be able to implement the initial specification.

It is also useful in program derivation or transformation to assume that a
condition b holds at a given point in the program text. This can be written as
{b}, and defined as follows.

{b} =̂ : [b, true]

If b is false, {b} reduces to abort. Otherwise, it behaves like skip: always termi-
nates and does nothing. In [192], and in this book, this is called an assumption;
it coincides with the concept of assertion in the setting of Hoare logic.

Refinement: An Overview 11

We can also give a simple specification to skip.

skip = : [true, true]

The empty frame guarantees that no variables are changed.

6.1 Algorithmic Refinement

Morgan’s calculus is perhaps the most appealing to practising programmers,
since it includes several laws that allow transforming specification statements
into executable programs. Some laws relate specification statements. Two of
these capture the notion of refinement in program development. The first states
that a program can be made more applicable (defined for a larger domain or set
of states) when refined; in other words, its precondition can be weakened.

Law 13 (Precondition weakening). w : [pre, post] ' w : [pre′, post]
provided pre ⇒ pre′

Concerning the effect (postcondition), refinement might lead to a more deter-
ministic or predictable program, as already discussed in the previous section.

Law 14 (Postcondition strengthening). w : [pre, post] ' w : [pre, post ′]
provided pre[w0/w] ∧ post ′ ⇒ post

This states that strengthening the postcondition, in states which satisfy the
precondition, leads to refinement. The substitution of w0 for w in the proviso
is necessary due to the convention that initial values of framed variables in the
postcondition are subscripted.

A refinement of our example specification is to increase its applicability,
recording an error message in r when the element is already in the set.

s , r : [true,(e)∈ s0 ∧ s = s0 ∪ {e} ∧ r = "Okay "]) ∨
(e ∈ s0 ∧ s = s0 ∧ r = "AlreadyMember")]

Whenever the precondition of the original specification is satisfied (the ele-
ment is not in the set), the refined version exhibits exactly the same behaviour.
When the element is already in the set, the values of z and r are not defined in
the original specification, and therefore totally arbitrary. In the refined
version, when this happens, s is not modified and r takes the defined value
"AlreadyMember".

Exercise 3. Prove the refinement:

s , r : [e)∈ s ,s = s0 ∪ {e} ∧ r = "Okay"]
'

s , r : [true, (e)∈ s0 ∧ s = s0 ∪ {e} ∧ r = "Okay"]) ∨
(e ∈ s0 ∧ s = s0 ∧ r = "AlreadyMember")]

Most of the laws of Morgan’s refinement calculus relate particular forms of speci-
fication statements to programming constructs, serving as tools to refine abstract

12 A. Cavalcanti, A. Sampaio, and J. Woodcock

specifications into code which can be effectively executed. The process is known
as algorithmic or control refinement. For example, the law below allows the in-
troduction of an assignment.

Law 15 (Assignment introduction). w , v : [pre, post] ' v := e
provided (v = v0) ∧ pre ⇒ post [e/v]

It states that if the value of the assigned expression is suitable to establish
the postcondition, in contexts where the precondition holds, then the assign-
ment is a valid implementation of such a specification. In the proviso, the con-
dition (v = v0) is necessary due to the convention that initial values of framed
variables in the postcondition are subscripted. For example, in a specification
statement of the form v : [true, v = v0 + 1], v0 denotes the initial value of
v in the postcondition, whereas in an assignment of the form v := v + 1
no subscript variables are used. Identifying v = v0 in the formulation allows
to justify this kind of refinement. For this example, the proof obligation is
v = v0 ∧ true ⇒ v + 1 = v0 + 1 , which clearly holds.

As another example, consider the following law.

Law 16 (Following assignment).

w , v : [pre, post] ' w , v : [pre, post [e/v]]; v := e

It allows the extraction of an assignment from a specification statement , but
still keeps the remaining behaviour as a (modified) specification statement.

Exercise 4. Prove the following refinement:

s , r : [e)∈ s , s = s0 ∪ {e} ∧ r = "Okay"] ' (s := s ∪ {e}; r := "Okay")

6.2 Data Refinement

Complementarily to algorithmic refinement, program development normally in-
volves change of data representation. A typical development starts with a spec-
ification whose data structures are abstract and, possibly, not even available in
the target programming language. As the development progresses, the abstract
data types give rise to more concrete representations.

As a simple example, consider a specification statement similar to that of the
previous section, which adds a new element to a set.

s : [e)∈ s , s = s0 ∪ {e}]

Then consider a possible implementation using a sequence, as a concrete repre-
sentation of a set.

t : [e)∈ set t , t = t0 ! 〈e〉]

We use set t to denote the set with the elements of the sequence t ; 〈e〉 stands for
the singleton sequence with element e, and ! represents sequence concatenation.

Refinement: An Overview 13

Intuitively, the latter specification refines the former, since sequences (lists
or arrays) are well-known structures used for implementing sets. Furthermore,
both operations have the same observable effect of adding a new element to
the relevant data structure. Nevertheless, attempting to prove this refinement
using the laws for weakening precondition and strengthening postcondition soon
reveals that a direct comparison between the two statements is not possible
at all. The reason is that they operate on different data spaces: a set s and a
sequence t .

The missing connection is a relation between the abstract and the concrete
states. For the particular example,

s = set t

Based on this relation, it is possible to prove this data refinement. In general,
relations between abstract and concrete states can be arbitrary. In many cases of
practical interest, nevertheless, these relations are functional, and are called ab-
straction functions. In our example, the relation is functional and the abstraction
function is set.

In Morgan’s calculus, data refinement is formulated at the level of program-
ming modules. A module includes state variables, a state initialisation, and pro-
cedures which act on the module state. Broadly, the technique involves adding
the concrete variables to the module being data refined, making the abstract
variables auxiliary, and then removing the auxiliary (abstract) variables. When
the relation between abstract and concrete states is functional, these steps are
combined into a single step.

In this view, our abstract module would include the declaration of the variable
s (say, a set of natural numbers), a state initialisation (say, the empty set), and
several operations, including the one to insert new elements into the set, as
presented above. To proceed with the data refinement, several transformations
are proposed by Morgan to deal with initialisation, assignments, specification
statements, and so on.

To illustrate the technique, we present a transformation for specification state-
ments. A specification statement

w , x : [pre, post]

becomes

w , z : [pre[af z/x], post [af z0 , af z/x0 , x]]

where af stands for the relevant abstraction function, x for the abstract variables,
and z for the concrete variables. Observe that this transformation replaces x with
z in the frame, and occurrences of x in the pre and in the postcondition with af z .
In the postcondition, both the initial and final values of x need to be replaced.

Exercise 5. Formalise the data transformation of the statement previously pre-
sented: s : [e)∈ s , s = s0 ∪ {e}] into t : [e)∈ set t , t = t0 ! 〈e〉] considering the
abstraction function: s = set t .

14 A. Cavalcanti, A. Sampaio, and J. Woodcock

7 Refinement and Lattices

We have not given a semantics for recursion yet, and presented only a partial
semantics for iteration in Section 2. In this section, we come to this point as
part of a discussion of refinement as a partial order in a lattice of monotonic
predicate transformers [199, 97, 16]. A partial order is a reflexive, anti-symmetric
and transitive relation between elements of a set. If, given any two elements of
the set, they are always related by the order in some way, then we have a total
order. Refinement, however, is a partial order between programs.

To give the semantics and reason about simple (non-recursive) procedures,
we can use a copy rule: basically, it allows calls to the procedures to be replaced
with their bodies. As an example, we consider the program below, which defines
a procedure Inc, and calls it twice.

proc Inc =̂ x := x + 1 • Inc; Inc

It is equivalent to x := x + 1 ; x := x + 1 . In the case of a recursive procedure,
however, this approach does not work. As a second example, we take a procedure
Sum that adds the value of x to that of another variable y (and sets x to 0).

proc Sum =̂ if (x = 0) → skip
[] (x > 0) → y := y + 1 ; x := x − 1 ; Sum
fi

• y := 5 ; x := 10 ; Sum

In the main program, we call Sum; if we replace this call by the body of Sum,
another call of Sum is introduced, so the copy rule does not really sort out the
reasoning problem.

The declaration of Inc can be seen as a definition of this procedure through
the equation

Inc = x := x + 1 ; x := x + 1

In the case of Sum, this equation is

Sum = if (x = 0) → skip [] (x > 0) → y := y + 1 ; x := x − 1 ; Sum fi

The body of Sum can be regarded as a context: a function from programs to
programs, which can be defined as follows using the λ notation.

λX • if (x = 0) → skip [] (x > 0) → y := y + 1 ; x := x − 1 ; X fi

Therefore, the equation that defines Sum requires that it is a program that, when
given as argument to the above function, the result is itself. For any function
F , the arguments X for which F (X) = X are called fixed points of F . So, the
equation for Sum requires it to be a fixed point of the function on programs
characterised by its body.

The problem is that fixed points may not exist, or there may be lots of them.
So, for the equation characterised by the declaration of a recursive procedure to

Refinement: An Overview 15

be a valid definition, we need to guarantee that there is at least one fixed point,
and that, when there are several, we have a way of choosing one. With this end,
it is usual taking lattices with various properties as semantic models.

A lattice is a set S with a partial order ≤ that satisfies a few extra properties.
They are based on the existence of lower and upper bounds for certain subsets
of S . For any subset T of S , an upper bound u of T is an element of S such
that t ≤ u for every t in T . Similarly, a lower bound l is such that l ≤ t , for
every t ∈ T . The least upper-bound is an upper bound that is smaller than all
others; likewise, the greatest lower-bound is a lower bound that is bigger than
all others.

Definition 1 (Lattice and complete lattice). A lattice is a partially ordered
set, in which all non-empty finite subsets have both a least upper-bound (join)
and a greatest lower bound (meet). A complete lattice is a lattice in which all
subsets have both a join and a meet. !

Every complete lattice has a bottom (smallest element) and a top (biggest
element).

Example 2 (Complete lattices). Complete lattices are often found in mathemat-
ics and computer science. We give two examples drawn from mathematics.

1. The power set of a given set S ordered by inclusion forms a complete lattice.
The least element is the empty set and the greatest element is S itself. Join
is union and meet is intersection of subsets.

2. The set of natural numbers ordered by divisibility forms a complete lattice.
Divisibility gives m ' n exactly when (∃ k • k × m = n), and so forms a
partial order. The bottom of this lattice is the number 1 , since it exactly
divides every other number. The top element of the lattice is 0 , since it can
be divided exactly by every other number. The join of finite sets is given
by the least common multiple; for infinite sets, the join will always be 0 .
The meet is the greatest common divisor, and for infinite sets this may well
be greater than 1 . For example, the set of all even numbers has 2 as the
greatest common divisor. !

An example of a complete lattice drawn from the area of refinement is the
set of monotonic predicate transformers ordered by refinement. A discussed in
Section 3, we can use a function wp to characterise (the semantics of) programs.
For a program p, wp.p is a predicate transformer; the set of all such predicate
transformers pt is a convenient model for programs. The partial order ' for
predicate transformers defined as

pt1 ' pt2 =̂ pt1 .ψ ⇒ pt2 .ψ, for all predicatesψ

corresponds to the refinement relation defined in Section 4.
A function f from a set S with a partial order ≤S to a set T with a partial

order ≤T is monotonic if, for every x and y in S , if x ≤S y, then f (x) ≤T f (y).

16 A. Cavalcanti, A. Sampaio, and J. Woodcock

For every program p, the function wp.p is monotonic. The partial order consid-
ered for the set of predicates is implication. If a postcondition ψ1 implies another
postcondition ψ2 , we say that ψ1 is stronger than ψ2 , because less states satisfy
ψ1 , and every state that satisfies ψ1 also satisfies ψ2 . In this case, for every
program p, wp.p.ψ1 implies wp.p.ψ2 ; this is because if from a particular initial
state p is guaranteed to establish ψ1 , then it is also guaranteed to establish ψ2 .

The bottom of the complete lattice of monotonic predicate transformers is
abort; the top is miracle. The join operator the demonic choice, and the meet
operator is angelic choice.

Well-known results establish the existence of fixed points for functions on
complete lattices. For example, we know that every monotonic function on a
complete lattice has a fixed point. Since the body of a recursive procedure is a
monotonic function on programs (see Law 4), this is in the direction of what we
need to give meaning to recursive procedures. What we still need to sort out is
the fact that such functions may have several fixed points. An extreme example
is an infinite recursion: proc Inf =̂ Inf • The function defined by its body
is the identity λX • X . Every program is a fixed point of this function.

In such situations, we take the least fixed point to be the definition of the
recursive procedure; it is denoted by µX • F (X), where F is the body of the
procedure written as a function of X . This is the least refined program that
satisfies the equation characterised by the definition of the recursive procedure.
From the point of view of program development, this is the natural solution,
since, as already explained, we want to impose as few restrictions as possible on
a specification, and leave design decisions open. The meaning of Inf , for example,
is taken to be the least refined program: abort.

The Knaster-Tarski fixed point theorem is very much used since it gives an
explicit characterisation for the least fixed point of a monotonic function on a
complete lattice; it is stated below.

Theorem 1 (Knaster-Tarski fixed point). For every monotonic function
F (X) on a complete lattice with order ≤

µX • F (X) = " { X : L | F (X) ≤ X }

We use " S to denote the greatest lower-bound of the set S .
The greatest fixed point of F also exists; it is denoted by νX • X , and it is

possible to prove that νX • F (X) =
⊔

{ X : L | X ≤ F (X) }. For a set S ,
⊔

S
is its least upper-bound.

As explained above, the top of the lattice of monotonic predicate transform-
ers is miracle, an infeasible program that is not implementable. Some seman-
tic models do not include this program, or any program that may behave like
miracle in some situations. In this case, it is usual that, instead of a complete
lattice, the semantic model is a CPO: complete partially ordered set.

Definition 2 (Complete partially ordered set). A CPO (complete partially
ordered set) is a partially ordered set, which has a bottom, and in which every
directed subset has a least upper-bound.

Refinement: An Overview 17

A set is directed if all its finite subsets have an upper bound as one of its own
elements. Monotonic functions on a CPO also have fixed points. If, in addition,
the function is continuous, then it has a least fixed point as characterised in the
theorem below. A function F is continuous if, and only if, it distributes over least
upper-bounds of directed sets: F (

⊔
D) =

⊔
{ d : D • F (d) }, for every directed

set D .

Theorem 2. For every continuous function F (X) on a CPO with order ≤ and
bottom element ⊥

µX • F (X) =
⊔

{ n : Z • Fn(⊥) }

For a function F , we define F 0 to be the identity function (F 0 (X) = X), and
Fn(X) = F (Fn−1 (X)), for n > 0 . Continuity can be a strong property, and
is not satisfied by many programs involving unbounded nondeterminism [31]. A
more comprehensive account of lattice theory, including proofs for the theorems
presented above, can be found in [77].

8 Final Considerations

There are several program and programming models. We have briefly discussed
here Hoare logic, refinement algebra, and weakest preconditions. Other models
are presented in later chapters of this book. Chapters 3 and 6 give different
relational models for the process algebra CSP, and Chapter 4 gives a weakest
precondition model for probabilistic programs. Chapter 5 adopts a more oper-
ational model (transition systems) and the TLA (Temporal logic of Actions)
notation to explore specification, verification and scheduling of real-time and
fault-tolerant systems. A common feature to all of them is a formal characteri-
sation of refinement; this is central to any model that supports a development
technique.

Potential applications of algebraic reasoning in the context of object-oriented
programming is the major objective of the next chapter. Laws of the process
algebra CSP are explored in Chapter 3. Laws of programming involving proba-
bility are explored in Chapter 4.

Typically, the use of refinement techniques is potentially a very error-prone
activity that involves copious formula manipulations. If the benefits of the use
of a rigorous programming approach are not to be lost, and are to be avail-
able for large-scale industrial systems, the use of tools is essential. Many prod-
ucts are available. Model checking techniques have been particularly attractive
to industry due to their high level of automation; they are discussed in de-
tail in Chapter 8. A set of tools that have been very successful in industry
for the verification of control system in the area of avionics is presented in
Chapter 7.

	A Simple Programming Notation
	Assertions and Hoare Logic
	Weakest Preconditions
	Refinement Notions
	Refinement Algebra
	Specification and Program Development
	Algorithmic Refinement
	Data Refinement

	Refinement and Lattices
	Final Considerations

