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Abstract 

This paper presents a model and an implemen- 
tation of a run-time environment for specifying and 
monitoringproperties of real-time systems. Thepro- 
posed approach supports annotating real-time pro- 
grams with events that are recorded and examined 
at run-time. It provides two general methods for 
synchronous or asynchronous monitoring o f  real- 
time constraints. In  the synchronous case, a system 
constraint is embedded inside a program; thus the 
constraint is examined at a particular point in the 
execution of a real-time task. In  the asynchronous 
case, a constraint is monitored by a separate task 
during the entire execution of real-time tasks. 

1 Introduction 

In designing real-time systems, we often make 
assumptions about the behavior of the system and 
its environment. These assumptions take many 
forms: upper bounds on interprocess communica- 
tion delay, deadlines on the execution of tasks, or 
minimum separations between occurrences of two 
events. They are often made to deal with the un- 
predictability of the external environment or to 
simplify a problem that is otherwise intractable or 
very hard to solve. Such assumptions may be ex- 
pressed as part of the formal specification of the 
system or as scheduling requirements on the real- 
time tasks. Despite the contribution of formal ver- 
ification methods and recent real-time scheduling 
results, the need to perform run-time monitoring of 
these systems is not diminished for several reasons: 
the execution environment of most systems is im- 
perfect and the interaction with the external world 
introduces additional unpredictability; design as- 
sumptions can be violated at run-time due to un- 
expected conditions such as transient overload; ap- 
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plication of formal techniques or scheduling algo- 
rithms in turn requires assumptions about the un- 
derlying system; and it may be infeasible (or impos- 
sible) to verify formally some properties at design 
time, thus further necessitating run-time checks. 

This paper presents a model, based on [61 [l l ,  
for formal specification and monitoring of run-time 
constraints for time-critical systems. The objective 
is to specify complex system constraints including 
timing requirements and to provide a general frame 
work for monitoring time-critical systems at  run- 
time. One can envision a system in which run-time 
monitoring can provide feedback so that the sys- 
tem can adapt to a changing environment or an 
exception condition. In  particular, the information 
collected by the monitoring facility can be used to 
detect a violation of system constraints or to  man- 
age resources a t  run-time. The paper also describes 
an implementation of a run-time monitoring toolkit 
as a set of library function calls in C. The current 
implementation on the IBM RS/6000 workstations 
running AIXv.3 takes advantage of several real- 
time features of the operating system. The under- 
lying model views a system computation as a se- 
quence of event occurrences. The observable events 
in a real-time system are specified by annotating 
real-time programs with those events that are to be 
monitored a t  run-time. Examples of these events 
include start or completion of a program segment, 
and an  assignment to  a state variable. A system 
constraint can be viewed as an assertion on the re- 
lationship between the occurrences of these observ- 
able events. The proposed approach distinguishes 
between a system constraint that is embedded in 
a real-time program and a constraint that is moni- 
tored asynchronously by a separate task. Our pro- 
totype implementation allows the specification and 
monitoring of both types of system constraints. In 
particular, the implementation supports annotat- 
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ing C programs with events and specifying system the operating system dependent issues of the im- 
constraints. I t  also provides the mechanisms for plementation. The last section contains the con- 
asynchronous or synchronous monitoring of those cluding remarks and the future direction of this 
constraints a t  run-time. work. 

Despite extensive work on monitoring and de- 
bugging facilities for parallel and distributed sys- 
tems, run-time monitoring of real-time systems has 
received little attention with a few exceptions. Spe- 
cial hardware support for collecting run-time data 
in real-time applications has been considered in a 
number of recent works [41 [lo]. These approaches 
introduce specialized co-processors for the collec- 
tion and analysis of run-time information. A re- 
lated work studies the use of monitoring infor- 
mation to aid in scheduling task in a real-time 
environment[31. The underutilization of a CPU 
due to the use of scheduling methods based on the 
worst-case execution times of tasks is addressed 
by the use of a hardware real-time monitor which 
measures the task execution times and delays due 
to resource sharing. The monitored information is 
fed back to  the operating system for achieving an 
adaptive behavior. A work closer to the approach in 
this paper is a system for collection m d  analysis of 
distributedparallel (real-time) programs [SI. The 
work is based on an earlier system for exploring 
the use of an  extended E-R model for the specifi- 
cation and the access to monitoring information a t  
run-time [9]. The assumption is that the relational 
model is an  appropriate formalism for structuring 
the information generated by a distributed system. 
[ l l ]  presents a real-time monitor that is developed 
for the ARTS distributed operating system. The 
proposed monitor requires certain support from the 
kernel. In particular, the ARTS kernel records cer- 
tain events that are seen by the operating system 
as the state changes of a process, e.g., waking-up, 
being scheduled. These events are sent periodi- 
cally by the local host to a remote host for display- 
ing the execution history. The invasiveness of the 
monitoring facility is included in the schedulability 
analysis. 

The organization of this paper is as follows. Sec- 
tion 2 describes two main classes of events and an 
annotation system for specifying observable events 
in a system execution. Section 3 presents two gen- 
eral methods for specifying assertions that describe 
the system constraints to be monitored a t  run-time. 
The underlying model and the corresponding im- 
plementation is described for each method. Section 
4 describes the implementation of a satisfiability 
checker which is invoked by the monitoring facil- 
ity. The satisfiability checker detects the violations 
of a certain class of system constraints as specified 
by the programmer. Section 5 discusses some of 

2 Events 

The run-time monitor model in this paper is 
based on the model proposed in [l]. A computation 
of a real-time system can be viewed as a sequence 
of event occurrences. Informally, events represent 
things that happen in a system. An event occur- 
rence defines a point in time in a computation a t  
which a particular instance of an event happens. 
Thus, timing properties can be expressed as rela- 
tionships among event occurrences in a computa- 
tion. 

We distinguish between two classes of observ- 
able events in this model: label events and tran- 
sition events. Label events are used to denote the 
initiation and completion of a sequence of program 
statements. (They correspond to start‘stop events 
in RTL.) They are defined by inserting labels in 
appropriate places in the code. In figure 1, two 

Ei : 
s; 
< -  E2 

Figure 1. Code fragment with event labels. 

event labels are defined, E l  and E2. The right- 
pointing-arrow is a syntactic marker that specifies 
E l  as the event that denotes the start of state- 
ment S .  The left-pointing-arrow associates event 
E2 with the end of statement S. Two events may be 
placed between a pair of statements, one bound to 
the end of the first statement and the other bound 
to the beginning of the second. This can be used to 
make preemption between two consecutive state- 
ments observable in an execution. 

Transition events capture assignments of val- 
ues to a particular type of variable referred to as 
a watchable variable. The term “watchable vari- 
able” is borrowed from the ORE language [21. An 
assignment to a watchable variable denotes a po- 
tential change in a system state and it is observable 
as an event occurrence when monitoring a system. 
The state of a program execution can be character- 
ized by the values of of its program counter and 
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its state variables. The state changes in a compu- 
tation that must be monitored can be captured by 
the two types of events in the proposed model, label 
and transition events. Hence, run-time monitoring 
of a real-time program is achieved by examining 
the observable events a t  run-time. 

Run-time monitoring of a system requires 
recording of earlier event occurrence in a system 
computation. If it is sufficient to remember only 
the last occurrence of each event, then a bound can 
be imposed a priori on the the number of event 
occurrences that must be kept at any given time. 
Furthermore, the algorithms for recording and dis- 
carding the event occurrences in a system compu- 
tation are very simple. However, since examining 
a property at  run-time may involve multiple occur- 
rences of the same event, i t  may be necessary to 
remember more than one occurrence of an event to  
detect the violation of a timing property. We pro- 
vide event histories that store the times (and Val- 
ues, for transition events) of a number of previous 
occurrences. Although one can attempt to keep the 
entire history for each event, it is impractical to do 
so in most nontrivial systems. As described in the 
next section, the size of the event history for each 
event is either specified by the system designer or is 
determined by examining the assertion to be mon- 
itored at run-time. 

We also provide two RTL-like [71 functions for ac- 
cessing the event histories: the occurrence function 
@(el i) which returns the time of the ith occurrence 
of event e, and @val(v, i), which returns the value of 
the ith occurrence of watchable variable v’s transi- 
tion event. A positive occurrence index is absolute 
with respect to the beginning of the computation se- 
quence. @(e, 5) refers to the 5th occurrence of event 
e. When the index i is negative, i t  refers to the ith 
most recent occurrence of the event in a computa- 
tion. For example, @(el -1) denotes the time of the 
most recent occurrence of e. An occurrence index of 
0 is undefined. An additional function, @indez(e,  i), 
returns the absolute index of an occurrence of event 
e, given an index i relative to  the beginning or end 
of the sequence. 

3 Embedded and 
Constraints 

We have constructed 

Monitored Timing 

a run-time environment 
that supports two methods of expressing timing 
properties: embedded constraints and monitored 
constraints. With embedded constraints, a pro- 
grammer can actively check for the satisfiability 
of a timing property at  particular points in the ex- 

ecution of a program, and modify the computation 
accordingly. An example of an embedded constraint 
is an acceptance test in a recovery block. The pri- 
mary advantage of this approach is that it permits 
the programmer to manipulate the Q functions and 
to access event histories directly, through C con- 
structs. The constraint applies only when it  is 
checked, and at  no other time in the execution se- 
quence. For example, suppose temp is a watchable 
variable denoting the temperature reading from a 
sensor. Each assignment to temp is a new instance 
of the corresponding event. The code segment in 
figure 2 specifies an assertion which requires con- 
secutive readings of new temperature values to be 
within a specific tolerance. 

temp = read-sensor ( ) ; 

if(@val(temp,-~) - @val(temp, 2) 1 200) { 
shutdown-reactor ( ) ; 

I 

1 

else { 
raise rods ( ) ; 

Figure 2: An embedded constraint. 

A complementary approach to embedded con- 
straints is to make the timing specification inde- 
pendent of the program. A separate monitoring 
process runs concurrently with the real-time appli- 
cation tasks and checks the satisfiability of the con- 
straints. The constraints are enforced at  all times 
in the execution of the program. This approach 
serves two purposes: it separates the timing con- 
cerns from the functional specification of the pro- 
gram; and it allows the expression of deadline and 
delay properties that cannot be checked at  a specific 
point in the execution sequence. An exception that 
must be raised when a task misses a deadline is an 
example of a monitored constraint. The formula in 
figure 3 illustrates a deadline constraint which re- 
quires every send message to be acknowledged by 
a corresponding message within 5ms. 

@ ( s e n d ,  i) 5 @(ack,k) A 
@(a&, i) 5 @ ( s e n d ,  z )  + 5 

Figure 3: A deadline constraint. 

Below we elaborate on the two approaches to han- 
dling system constraints. The first section dis- 
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cusses the model and implementation of embedded 
constraints. The second section discusses moni- 
tored constraints. In both models, the following as- 
sumptions hold: (1) Two occurrences of the same 
event cannot happen simultaneously; (2) Event 
names are unique across the system of tasks. The 
same name in two different tasks refers to the same 
event; and (3) There exists a single monotonically 
increasing clock, accessible by all tasks. 

3.1 Embedded Constraints 

Under the model of embedded constraints, tim- 
ing properties are enforced at  a particular point 
in the execution sequence, providing synchronous 
monitoring of constraints. This is done by allowing 
direct manipulation of the Q functions and occur- 
rence indices through C constructs. 

3.L1 Model 

For embedded constraints, our  model consists of a 
set of application tasks and shared event histories 
(see figure 4). The model provides for communi- 

P 
Figure 4: Embedded model. 

cating the event occurrences among tasks through 
the histories. Event occurrences are recorded by 
tasks in the shared history. The satisfiability of 
an embedded constraint is tested by retrieving the 
appropriate values from the history for the corre- 
sponding event occurrences. 

Each event data structure consists of a finite 
length circular queue of times (and values), with a 
relative index pointing to the most recent event. An 
absolute index counts the number of occurrences of 
the event. The name field identifies each event 
uniquely in the system of tasks. (See figure 5.)  

Event Name 

Absolute Index 

Figure 5: Event history data structure. 

During program execution, application tasks 
write the event histories by noting event occur- 
rences (both label events and watchable variable 
assignments), and read event histories by using the 
Q and Qval functions to  retrieve the time and value 
of an event occurrence. Q and QvaI map relative 
and absolute indices into a location in the event 
history, and return the requested time or value, or  
an error, since an expired or non-existent event can 
be detected easily. 

3.12 Implementation 

Event occurrence annotations are expanded to a 
code fragment that locks the event history, obtains 
a timestamp for the event, inserts the time (and 
value) of the occurrence into the history, and then 
unlocks the event history. Appropriate operating 
system support for atomically obtaining a times- 
tamp with an acceptable granularity is explored in 
section 5. The locking of an event history during 
an event occurrence forces additional synchrony on 
tasks, as it may cause other tasks to block while 
attempting to write to the same history. However, 
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the recording of event occurrences is very quick, 
so a contention for the lock on an event history is 
very unlikely. Furthermore, the programmer can 
redefine the lock and unlock utilities if he chooses 
to trade the guaranteed accuracy of the history for 
speed. This will be discussed in more detail in sec- 
tion 5. There are no locks encoded into the read 
accesses to the histories: the decision of whether to 
use read locks is left to the programmer. 

The application tasks are AIX processes. Event 
histories are kept in file-mapped shared memory. 
An initialization process allocates the shared mem- 
ory and a semaphore to protect it, then divides it 
into history structures for each event and exits. The 
type and history length for each event in the system 
are read a t  compile time from a file provided by the 
programmer. 

--c 

Event Name 

History 

Event Name 

History 

Figure 6: Shared history data structure. 

~~ ~~ 

Each history structure in shared memory con- 
tains the string corresponding to the event name; a 
circular queue to store the time and value data; a 
pointer to the most recent event in the queue (the 
relative index); the absolute index within the com- 
putation of the most recent event; and a pointer 
to the beginning of the next history. This last 
pointer is used as part of the task initialization 
process. (Figure 6 illustrates how histories for dif- 
ferent events are chained together.) 

A long constraint embedded in a task can in- 

clude multiple references to the same event. How- 
ever, the meaning of a relative index may change 
during the evaluation of the constraint, due to the 
occurrence of the same event in a concurrent tasks. 
For this reason the @indez function is provided, so 
that the programmer may fix the absolute indices 
to which she refers before checking the constraint. 

3.2 Monitored Constraints 

Under this model, timing properties may be en- 
forced during the entire execution, providing asyn- 
chronous monitoring of the constraints. Thus the 
timing information can be separated from the func- 
tion specification of the program. Asynchronous 
monitoring is required to correctly implement dead- 
line and delay constraints. One may attempt to 
enforce the property in figure 3 by inserting the 
condition to be checked at  a specific point in the 
execution of a task, after an  acknowledgement is 
received, for example. However, there are two po- 
tential problems. If the acknowledgement is not 
received within the required deadline, the violation 
is not detected until after the acknowledgement. If 
the acknowledgement is never received, due to a 
failure, the violation of the property may not be de- 
tected a t  all. Hence, the constraint may be viewed 
as a property to be enforced when a send occurs, 
until either an acknowledgement is received, or 5 
time units have passed. The latter test can be trig- 
gered by a timer interrupt associated with the send 
event. 

3.2.1 Model 

For monitored constraints, our model consists of a 
set of application tasks (tasks) generating events 
and a monitoring task (the monitor). A queue 
provides interprocess communication between each 
task and the monitor. Event histones are local to 
the monitor rather than shared among all tasks. 
(See figure 7.) During task execution, as events 
occur, they are sent to the monitor. The monitor 
processes each event occurrence and records i t  in a 
local repository. As events are recorded, the mon- 
itor checks the satisfiability of the corresponding 
formulas. Unlike the embedded case, there is no 
need to lock event histones, because there is a sep- 
arate queue between each task and the monitor. 
The monitor maintains the event histories for the 
tasks, and arbitrates simultaneous occurrences. 

3.2.2 Implementation 

Initializing tasks that utilize monitored constraints 
is somewhat more involved than in the embedded 
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Event 
History 

MONITOR 

-0 
Figure 7: Monitored model. 

case. (See figure 8.) Each task registers with the 
monitor to set up an  interprocess communication 
queue. During execution, the task sends the mon- 
itor event occurrences and requests to initiate or 
cancel the monitoring of given constraints. If a 
constraint monitored for the task is violated, the 
task is notified by a software signal and a message 
in its queue from the monitor. The programmer can 
modify the signal handler to respond to failures as 
she wishes; the default behavior is to terminate the 
process on failure. 

Under the monitored model, a shared count field 
for each event determines whether an occurrence 
is enqueued on the process queue to  the monitor. 
The value of the field corresponds to the number of 
formulas being monitored that involve the event. 

The monitor can be divided into two phases. In 
the initialization phase, the monitor uses the event 
declaration file to  create event histories in its own 
memory. Pointers to the histones are stored in a 
hash table, keyed by the event name. The t.iming 
constraints to be monitored, also specified in a file, 
are parsed into an  internal representation that is 
also hashed, keyed by the string corresponding to 

- - - - - -  
Formula 

I 
I 
I 
I 
I 
I 
I 

i 
PARSER 

(LEX/YACC) 

I 
I 

f 
Graph - - - 

- - - - -  

Enable/ Event 

NOTIFICATION I 
Figure 8: Monitored implementation. 

the formula. After the formulas have been parsed, 
it is possible to determine which formulas are asso- 
ciated with which events, and to infer the lengths 
of the event histories, which are then allocated. 
Before entering the second, operational phase, the 
monitor sets up an  area of shared memory through 
which the application tasks can request a process 
queue, and creates a “timer queue” to store timer 
interrupt events. 

The second phase consists of an infinite loop. If 
there is a queue allocation request from a new task, 
then the monitor allocates a piece of shared mem- 
ory for the task queue, returns a pointer to the new 
queue to the requesting task, and adds the queue to 
its list. The monitor then cycles through its list of 
queues (including the timer queue), and selects the 
entry with the earliest timestamp. If the entry is 
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an event occurrence, then the time and data values 
are added to the corresponding history. The event 
occurrence may cause a constraint to be checked a t  
some future time. If so, then a timer is set. All 
the formulas associated with that event are then 
checked for satisfiability. In case of a constraint 
violation, the monitor notifies each task that moni- 
tored the constraint by a signal and a message in its 
process queue. If the entry is a request to monitor 
or unmonitor a formula, then the list of processes 
interested in the formula is modified accordingly, 
as are the count fields of the events in the formula. 
The entry may be a timer interrupt associated with 
an event. In this case, the corresponding formulas 
are sent to the satisfiability checker, but no further 
information is added to the event history. 

It is possible that a task may write to its process 
queue (which is of finite length) faster than the 
monitor is able to remove entries, resulting in a 
queue overflow. The overflow is detected by the run- 
time library, and the task is notified. The method 
of handling the error is left up to the programmer. 

4 A Satisfiability Checker 

In the previous section, we described a monitor- 
ing task that examines events received from ap- 
plication tasks, and determines whether the given 
constraints have been violated. However, we did 
not discuss how the constraints are specified. [ l l  
defines a specification language based on RTL. In 
particular, it introduces three expressive classes 
of (RTL) properties that meet the requirements of 
the system as stated in section 2: bounded his- 
tory lengths can be derived from constraint formu- 
las, and satisfiability can be checked in polynomial 
time. In our prototype, we implemented the first 
class of properties. 

This class consists of properties (expressed as 
RTL-like formulas) that explicitly identify the oc- 
currence index of each event in the formula rela- 
tive to  the first or last occurrence of the event in a 
computation prefix. The RTL formulas in this class 
allow 8 functions of the form: 

@ ( e ,  a), or 
@ ( e ,  -a) 

where e is @ event and a is a positive integer con- 
stant. In particular, if the occurrence index of an @ 
function is a positive integer constant, the @ func- 
tion is interpreted as defined in section 3. For ex- 
ample, @(SIGNAL, 1) refers to the time of the first 
Occurrence of event SIGN AL. Alternatively, the 

occurrence index can refer to a particular most re- 
cent occurrence of an event. We use the notation 
@(e, -U) to denote the ath most recent occurrence of 
event e. For example, @(SIGNAL, -1)  is the time 
of the last occurrence of event SIGNAL. 

Example: Consider a system that executes the 
action RESPONSE when a SIGNAL event oc- 
curs. An exception condition must be raised if an- 
other SIGNAL occurs during the execution of a 
RESPONSE action: 

@(TRESPONSE, -1) 5 @(SIGNAL,  -1) + 
@(TRESPONSE, -1) 5 @(J .RESPONSE,  -1) A 
@(J.RESPONSE, -1) < @(SIGNAL,  -1) 

The above formula specifies that if the last occur- 
rence of action RESPONSE starts before the last 
occurrence of a SIGNAL event, the action must 
also complete before that SIGNAL event. 

To simplify the task of parsing the language, the 
prototype accepts input constraint formulas in dis- 
junctive normal form. This does not limit the ex- 
pressibility of the language, although it places a 
larger burden on the programmer. The formulas 
of this class consist of a disjunct of conjuncts of 
predicates, where each predicate is an inequality 
of the form @(e,  & t i )  5 @(f, ij) t C, where i and 
1 are positive integer constants, and C is an in- 
teger constant. C corresponds to an offset time 
value-a delay or deadline. The history length of 
each event is bounded by the absolute value of the 
largest negative index associated with the event in 
all constraints, plus the number of explicitly de- 
fined positive indices. The disjunctive normal form 
of the formula in the preceding example is shown 
below: 

@ ( S I G N A L ,  -1) -I- 1 5 @(TRESPONSE, - l ) V  
[@(TRESPONSE, -1) 5 @(J .RESPONSE,  -1) A 
@(J .RESPONSE,  -1) + 1 5 @(SIGNAL,  -1)] 

The scanner and parser for the language were 
constructed using the UNIX facilities LEX and 
YACC. A formula string is translated by YACC 
into a parse tree whose leaves are the inequalities, 
whose root is V, and whose internal nodes are A’s. 
The parse tree for the example above is given in 
figure 9. Each conjunct subtree can be transformed 
into an equivalent weighted directed graph. (See 
figure 10.) Each unique occurrence function call 
corresponds to a node on the graph. The predicate 
@(SIGNAL,  -1) 5 @(TRESPONSE, -1) - 1 becomes 
an edge @(TRESPONSE, -1) 5 @(SIGNAL,  -1). 
A predicate of the form @(SIGNAL,  1) 5 G where 
C is an absolute time value is translated to an edge 
0 -% @ ( S I G N A L ,  1) where 0 is a special “zero node” 
designed to take care of constants. Similarly, a 
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V 

@(TR,-1) 5 a( lRl -1)  @(lR, - - l )  5 @(SI 1) 
Figure 10: Uninstantiated constraint graph. 

Figure 9: Parse tree for example. 

juncts and causes a negative cycle to appear in both 
graphs. Observe that since 1 RESPONSE has not 
occurred before time 3, the corresponding node in 
the graph has no value associated with it. Hence, a 
dashed edge from the node 1 RESPONSE to “node 
zero” with the value -3 is added during instantia- 
tion, as shown in figure 14. (The constraint remains 
unsatisfiable at  time 4, after the 1 RESPONSE 

predicate of the form C 5 @(SIGNAL, 1)  is repre- 
sented by an edge @(SIGNAL, 1) 2 0. 

When the satisfiability checker is invoked on 
a Constraint, each Conjunct graph is instantiated 
from the current event histories. If a negative CY- 
cle is found in the instantiated graph, then the con- 
junct is unsatisfiable. The (DNF) constraint has event occurs.) 
been violated if all its graphs are not satisfied. 

Graph instantiation is based on the event his- 
tones. Every edge with weight w incoming to a 

- - -. . .. . - - ~~ - _____ 

0 1 2 3 4 

node, to which a time value t has been assigned, is 
replaced with an edge with weight w - t incident 
on the “zero node.” Conversely, every edge with 
weight w outgoing from a node, to whch a time 
value t has been assigned, is replaced with an edge 
with weight w + t outgoing from the “zero node.” 
Furthermore, for each node that has no time value 
associated with it, i.e., the corresponding event has 
not happened yet, an edge from that node to the 
“zero node” is added with the weight -NOW where 
NOW is the current time. This edge denotes that 
the corresponding event may happen a t  or after 
time NOW. 

In figures 11-14, we present an example of an 
erroneous event sequence leading to constraint vi- 
olation. Figure 11 shows an execution prefix over 
which we test the constraint formula given above. 
At  time 1 (figure 121, no cycles exist in either graph, 
so the constraint is satisfiable. A t  time 2 (figure 
131, a negative cycle is found in the second con- 
junct. Since the first conjunct has a valid instan- 
tiation, the formula remains satisfiable. At time 3 
(figure 141, a S I G N A L  event occurs before the end 
of the RESPONSE action. This violates both con- 

k 
S TR S 1R 
Figure 11: Execution prefix. 

The Floyd-Warshall shortest path algorithm is 
used to search for negative cycles on the instanti- 
ated graph: if such a cycle is found, the conjunct 
is unsatisfiable. The complexity of the negative cy- 
cle detection algorithm is O(n3)  in the number of 
nodes in the graph. In many cases, however, it is 
not necessary to call the algorithm because a one- 
node negative cycle is detected on the “zero node” 
during instantiation. 

5 OS Dependent Features 

The implementation of our system hides the op- 
erating system dependent features in a layer which 
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sits between the operating system and the mon- 
itoring facility. The current implementation on 
RS/6000 running AIX v.3 imposes certain condi- 
tions on the run-time environment. The most in- 
trusive of these was the lack of support for threads 
in the native operating system. As a result, we 
were forced to use heavyweight processes to im- 
plement tasks, and file-mapped shared memory to 
maintain event histories. This added certain com- 
plications which lightweight processes with shared 
address space would have avoided. We defined two 
special calls, lock and unlock, to hide the operating 
system dependencies in providing mutual exclusive 
access to shared data structures. We guarantee the 
atomicity of history updates by using semaphores 
in implementing the lock function. However, an al- 
ternative solution is to use the compare and swap 
function in AIX v3. This second solution is more 
efficient because it does not require a system call. 

Since run-time monitoring of a system involves 
examining sequences of time stamped events, gran- 
ularity and atomicity of event timestamps may re- 
quire special support from the run-time system. 
The granularity of event timestamps directly af- 
fects the satisfiability checks as a new event or a 
timer interrupt occurs. Suppose reading the sys- 
tem clock takes 30 microseconds (not an  unreason- 
able assumption if a system call is required), then 
the ordering of events in two processes may be in- 
determinate if the timestamps are closer than 30 
microseconds. A similar problem arises if the clock 
being read is updated infrequently, e.g., updates to 
the clock may occur at 60Hz intervals. In many 
operating systems, the system clock is accessible to 
a program through system calls. Fortunately, the 
RS/6000 provides very fine granularity, and using 
the POSIX system calls, can differentiate between 
events that occur tens of microseconds apart [51. An 
alternative solution is to obtain the timestamps by 
examing the hardware registers directly. Certain 
processors support special hardware clocks that can 
be examined by a process without the overhead of a 
system call. This allows a much finer granularity. 
The hardware clock registers of the RS/6000 can 
be read directly providing a granularity of 100s of 
nanoseconds. 

6 Concluding Remarks 

This paper presented a model and an implemen- 
tation of a run-time environment for specifying and 
monitoring timing properties of real-time systems. 
The run-time environment supports two general 
methods for synchronous or asynchronous monitor- 

ing of real-time constraints. In the synchronous 
case, a system constraint is embedded inside a pro- 
gram; the constraint is examined a t  a particular 
point in the execution of the program. In the asyn- 
chronous case, a constraint is expected to be moni- 
tored by a separate task during the entire execution 
of the program. 

There are several directions for extending this 
work. In the short term, several enhancements to 
the toolkit can be made. We would like to add a 
front-end to the library to allow programmers to 
code with the RTL-like notation for the 8 func- 
tions and label events. [61 identifies two additional 
classes of RTL formulas with polynomial satisfiabil- 
ity algorithms and inferrable finite history lengths. 
Implementing the parsers and satisfiability check- 
ers for these classes would allow us to experiment 
further with the system. It  is also desirable to in- 
corporate the proposed run-time monitoring system 
into the ORE run-time environment. This provides 
a powerful mechanism for expressing temporal as- 
sertions in ORE. 

For the long term, several research directions 
require further investigation. The first is that of 
adaptive scheduling. I t  should be possible to use 
the timing information generated by the tasks to 
determine whether a task will meet its deadline or 
other constraints. Given such timing information, 
the scheduler can choose to give an at-risk task 
higher priority, or terminate it gracefully. A related 
problem involves integrating run-time monitoring 
with scheduling real-time tasks. The requirement 
for monitoring system constraints and taking ap- 
propriate actions when a violation is detected can 
intrude upon normal activities of a system. Quan- 
tifying the intrusiveness of run-time monitoring on 
other tasks requires further exploration. 

The second research direction is that of moni- 
toring a distributed set of application tasks run- 
ning on distinct processors. Even when clocks on 
different processors are synchronized within a spe- 
cific bound, the model must take into account de- 
viations between clocks and message delays in ex- 
changing timing information on events on different 
nodes. Another possible direction is to investigate 
provisions for an extensible monitor. One can envi- 
sion an environment in which an application task 
specifies a user-defined function that is invoked by 
the run-time monitor in response to an event oc- 
currence. Arbitrary constraints can be specified as 
user-defined functions that are invoked a t  run-time 
to examine event histories and to detect violations 
of these constraints as new events occur. 
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Figure 13: Graph instantiation, time = 2. 
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Figure 14: Graph instantiation, time = 3. 
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