
Sarah E. Chodrow

Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712

Abstract

This paper presents a model and an implemen-
tation of a run-time environment for specifying and
monitoringproperties of real-time systems. Thepro-
posed approach supports annotating real-time pro-
grams with events that are recorded and examined
at run-time. It provides two general methods for
synchronous or asynchronous monitoring o f real-
time constraints. In the synchronous case, a system
constraint is embedded inside a program; thus the
constraint is examined at a particular point in the
execution of a real-time task. In the asynchronous
case, a constraint is monitored by a separate task
during the entire execution of real-time tasks.

1 Introduction

In designing real-time systems, we often make
assumptions about the behavior of the system and
its environment. These assumptions take many
forms: upper bounds on interprocess communica-
tion delay, deadlines on the execution of tasks, or
minimum separations between occurrences of two
events. They are often made to deal with the un-
predictability of the external environment or to
simplify a problem that is otherwise intractable or
very hard to solve. Such assumptions may be ex-
pressed as part of the formal specification of the
system or as scheduling requirements on the real-
time tasks. Despite the contribution of formal ver-
ification methods and recent real-time scheduling
results, the need to perform run-time monitoring of
these systems is not diminished for several reasons:
the execution environment of most systems is im-
perfect and the interaction with the external world
introduces additional unpredictability; design as-
sumptions can be violated at run-time due to un-
expected conditions such as transient overload; ap-

Run-Time Monitoring of Real-Time Systems

0-8186-2450-7D 1 $1.0001991 IEEE

Farnam Jahanian
Marc Donner

IBM T. J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

plication of formal techniques or scheduling algo-
rithms in turn requires assumptions about the un-
derlying system; and it may be infeasible (or impos-
sible) to verify formally some properties at design
time, thus further necessitating run-time checks.

This paper presents a model, based on [61 [l l ,
for formal specification and monitoring of run-time
constraints for time-critical systems. The objective
is to specify complex system constraints including
timing requirements and to provide a general frame
work for monitoring time-critical systems at run-
time. One can envision a system in which run-time
monitoring can provide feedback so that the sys-
tem can adapt to a changing environment or an
exception condition. In particular, the information
collected by the monitoring facility can be used to
detect a violation of system constraints or to man-
age resources a t run-time. The paper also describes
an implementation of a run-time monitoring toolkit
as a set of library function calls in C. The current
implementation on the IBM RS/6000 workstations
running AIXv.3 takes advantage of several real-
time features of the operating system. The under-
lying model views a system computation as a se-
quence of event occurrences. The observable events
in a real-time system are specified by annotating
real-time programs with those events that are to be
monitored a t run-time. Examples of these events
include start or completion of a program segment,
and an assignment to a state variable. A system
constraint can be viewed as an assertion on the re-
lationship between the occurrences of these observ-
able events. The proposed approach distinguishes
between a system constraint that is embedded in
a real-time program and a constraint that is moni-
tored asynchronously by a separate task. Our pro-
totype implementation allows the specification and
monitoring of both types of system constraints. In
particular, the implementation supports annotat-

i%Y6000 %d AIX are trademarks of IBM Corporation

14

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on January 7, 2009 at 13:47 from IEEE Xplore. Restrictions apply.

ing C programs with events and specifying system the operating system dependent issues of the im-
constraints. I t also provides the mechanisms for plementation. The last section contains the con-
asynchronous or synchronous monitoring of those cluding remarks and the future direction of this
constraints a t run-time. work.

Despite extensive work on monitoring and de-
bugging facilities for parallel and distributed sys-
tems, run-time monitoring of real-time systems has
received little attention with a few exceptions. Spe-
cial hardware support for collecting run-time data
in real-time applications has been considered in a
number of recent works [41 [lo]. These approaches
introduce specialized co-processors for the collec-
tion and analysis of run-time information. A re-
lated work studies the use of monitoring infor-
mation to aid in scheduling task in a real-time
environment[31. The underutilization of a CPU
due to the use of scheduling methods based on the
worst-case execution times of tasks is addressed
by the use of a hardware real-time monitor which
measures the task execution times and delays due
to resource sharing. The monitored information is
fed back to the operating system for achieving an
adaptive behavior. A work closer to the approach in
this paper is a system for collection m d analysis of
distributedparallel (real-time) programs [SI. The
work is based on an earlier system for exploring
the use of an extended E-R model for the specifi-
cation and the access to monitoring information a t
run-time [9]. The assumption is that the relational
model is an appropriate formalism for structuring
the information generated by a distributed system.
[l l] presents a real-time monitor that is developed
for the ARTS distributed operating system. The
proposed monitor requires certain support from the
kernel. In particular, the ARTS kernel records cer-
tain events that are seen by the operating system
as the state changes of a process, e.g., waking-up,
being scheduled. These events are sent periodi-
cally by the local host to a remote host for display-
ing the execution history. The invasiveness of the
monitoring facility is included in the schedulability
analysis.

The organization of this paper is as follows. Sec-
tion 2 describes two main classes of events and an
annotation system for specifying observable events
in a system execution. Section 3 presents two gen-
eral methods for specifying assertions that describe
the system constraints to be monitored a t run-time.
The underlying model and the corresponding im-
plementation is described for each method. Section
4 describes the implementation of a satisfiability
checker which is invoked by the monitoring facil-
ity. The satisfiability checker detects the violations
of a certain class of system constraints as specified
by the programmer. Section 5 discusses some of

2 Events

The run-time monitor model in this paper is
based on the model proposed in [l]. A computation
of a real-time system can be viewed as a sequence
of event occurrences. Informally, events represent
things that happen in a system. An event occur-
rence defines a point in time in a computation a t
which a particular instance of an event happens.
Thus, timing properties can be expressed as rela-
tionships among event occurrences in a computa-
tion.

We distinguish between two classes of observ-
able events in this model: label events and tran-
sition events. Label events are used to denote the
initiation and completion of a sequence of program
statements. (They correspond to start‘stop events
in RTL.) They are defined by inserting labels in
appropriate places in the code. In figure 1, two

Ei :
s;
< - E2

Figure 1. Code fragment with event labels.

event labels are defined, E l and E2. The right-
pointing-arrow is a syntactic marker that specifies
E l as the event that denotes the start of state-
ment S . The left-pointing-arrow associates event
E2 with the end of statement S. Two events may be
placed between a pair of statements, one bound to
the end of the first statement and the other bound
to the beginning of the second. This can be used to
make preemption between two consecutive state-
ments observable in an execution.

Transition events capture assignments of val-
ues to a particular type of variable referred to as
a watchable variable. The term “watchable vari-
able” is borrowed from the ORE language [21. An
assignment to a watchable variable denotes a po-
tential change in a system state and it is observable
as an event occurrence when monitoring a system.
The state of a program execution can be character-
ized by the values of of its program counter and

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on January 7, 2009 at 13:47 from IEEE Xplore. Restrictions apply.

its state variables. The state changes in a compu-
tation that must be monitored can be captured by
the two types of events in the proposed model, label
and transition events. Hence, run-time monitoring
of a real-time program is achieved by examining
the observable events a t run-time.

Run-time monitoring of a system requires
recording of earlier event occurrence in a system
computation. If it is sufficient to remember only
the last occurrence of each event, then a bound can
be imposed a priori on the the number of event
occurrences that must be kept at any given time.
Furthermore, the algorithms for recording and dis-
carding the event occurrences in a system compu-
tation are very simple. However, since examining
a property at run-time may involve multiple occur-
rences of the same event, i t may be necessary to
remember more than one occurrence of an event to
detect the violation of a timing property. We pro-
vide event histories that store the times (and Val-
ues, for transition events) of a number of previous
occurrences. Although one can attempt to keep the
entire history for each event, it is impractical to do
so in most nontrivial systems. As described in the
next section, the size of the event history for each
event is either specified by the system designer or is
determined by examining the assertion to be mon-
itored at run-time.

We also provide two RTL-like [71 functions for ac-
cessing the event histories: the occurrence function
@(el i) which returns the time of the ith occurrence
of event e, and @val(v, i), which returns the value of
the ith occurrence of watchable variable v’s transi-
tion event. A positive occurrence index is absolute
with respect to the beginning of the computation se-
quence. @(e, 5) refers to the 5th occurrence of event
e. When the index i is negative, i t refers to the ith
most recent occurrence of the event in a computa-
tion. For example, @(el -1) denotes the time of the
most recent occurrence of e. An occurrence index of
0 is undefined. An additional function, @indez(e, i),
returns the absolute index of an occurrence of event
e, given an index i relative to the beginning or end
of the sequence.

3 Embedded and
Constraints

We have constructed

Monitored Timing

a run-time environment
that supports two methods of expressing timing
properties: embedded constraints and monitored
constraints. With embedded constraints, a pro-
grammer can actively check for the satisfiability
of a timing property at particular points in the ex-

ecution of a program, and modify the computation
accordingly. An example of an embedded constraint
is an acceptance test in a recovery block. The pri-
mary advantage of this approach is that it permits
the programmer to manipulate the Q functions and
to access event histories directly, through C con-
structs. The constraint applies only when it is
checked, and at no other time in the execution se-
quence. For example, suppose temp is a watchable
variable denoting the temperature reading from a
sensor. Each assignment to temp is a new instance
of the corresponding event. The code segment in
figure 2 specifies an assertion which requires con-
secutive readings of new temperature values to be
within a specific tolerance.

temp = read-sensor () ;

if(@val(temp,-~) - @val(temp, 2) 1 200) {
shutdown-reactor () ;

I

1

else {
raise rods () ;

Figure 2: An embedded constraint.

A complementary approach to embedded con-
straints is to make the timing specification inde-
pendent of the program. A separate monitoring
process runs concurrently with the real-time appli-
cation tasks and checks the satisfiability of the con-
straints. The constraints are enforced at all times
in the execution of the program. This approach
serves two purposes: it separates the timing con-
cerns from the functional specification of the pro-
gram; and it allows the expression of deadline and
delay properties that cannot be checked at a specific
point in the execution sequence. An exception that
must be raised when a task misses a deadline is an
example of a monitored constraint. The formula in
figure 3 illustrates a deadline constraint which re-
quires every send message to be acknowledged by
a corresponding message within 5ms.

@ (s e n d , i) 5 @(ack,k) A
@(a&, i) 5 @ (s e n d , z) + 5

Figure 3: A deadline constraint.

Below we elaborate on the two approaches to han-
dling system constraints. The first section dis-

76

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on January 7, 2009 at 13:47 from IEEE Xplore. Restrictions apply.

cusses the model and implementation of embedded
constraints. The second section discusses moni-
tored constraints. In both models, the following as-
sumptions hold: (1) Two occurrences of the same
event cannot happen simultaneously; (2) Event
names are unique across the system of tasks. The
same name in two different tasks refers to the same
event; and (3) There exists a single monotonically
increasing clock, accessible by all tasks.

3.1 Embedded Constraints

Under the model of embedded constraints, tim-
ing properties are enforced at a particular point
in the execution sequence, providing synchronous
monitoring of constraints. This is done by allowing
direct manipulation of the Q functions and occur-
rence indices through C constructs.

3.L1 Model

For embedded constraints, our model consists of a
set of application tasks and shared event histories
(see figure 4). The model provides for communi-

P
Figure 4: Embedded model.

cating the event occurrences among tasks through
the histories. Event occurrences are recorded by
tasks in the shared history. The satisfiability of
an embedded constraint is tested by retrieving the
appropriate values from the history for the corre-
sponding event occurrences.

Each event data structure consists of a finite
length circular queue of times (and values), with a
relative index pointing to the most recent event. An
absolute index counts the number of occurrences of
the event. The name field identifies each event
uniquely in the system of tasks. (See figure 5.)

Event Name

Absolute Index

Figure 5: Event history data structure.

During program execution, application tasks
write the event histories by noting event occur-
rences (both label events and watchable variable
assignments), and read event histories by using the
Q and Qval functions to retrieve the time and value
of an event occurrence. Q and QvaI map relative
and absolute indices into a location in the event
history, and return the requested time or value, or
an error, since an expired or non-existent event can
be detected easily.

3.12 Implementation

Event occurrence annotations are expanded to a
code fragment that locks the event history, obtains
a timestamp for the event, inserts the time (and
value) of the occurrence into the history, and then
unlocks the event history. Appropriate operating
system support for atomically obtaining a times-
tamp with an acceptable granularity is explored in
section 5. The locking of an event history during
an event occurrence forces additional synchrony on
tasks, as it may cause other tasks to block while
attempting to write to the same history. However,

77

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on January 7, 2009 at 13:47 from IEEE Xplore. Restrictions apply.

the recording of event occurrences is very quick,
so a contention for the lock on an event history is
very unlikely. Furthermore, the programmer can
redefine the lock and unlock utilities if he chooses
to trade the guaranteed accuracy of the history for
speed. This will be discussed in more detail in sec-
tion 5. There are no locks encoded into the read
accesses to the histories: the decision of whether to
use read locks is left to the programmer.

The application tasks are AIX processes. Event
histories are kept in file-mapped shared memory.
An initialization process allocates the shared mem-
ory and a semaphore to protect it, then divides it
into history structures for each event and exits. The
type and history length for each event in the system
are read a t compile time from a file provided by the
programmer.

--c

Event Name

History

Event Name

History

Figure 6: Shared history data structure.

~~ ~~

Each history structure in shared memory con-
tains the string corresponding to the event name; a
circular queue to store the time and value data; a
pointer to the most recent event in the queue (the
relative index); the absolute index within the com-
putation of the most recent event; and a pointer
to the beginning of the next history. This last
pointer is used as part of the task initialization
process. (Figure 6 illustrates how histories for dif-
ferent events are chained together.)

A long constraint embedded in a task can in-

clude multiple references to the same event. How-
ever, the meaning of a relative index may change
during the evaluation of the constraint, due to the
occurrence of the same event in a concurrent tasks.
For this reason the @indez function is provided, so
that the programmer may fix the absolute indices
to which she refers before checking the constraint.

3.2 Monitored Constraints

Under this model, timing properties may be en-
forced during the entire execution, providing asyn-
chronous monitoring of the constraints. Thus the
timing information can be separated from the func-
tion specification of the program. Asynchronous
monitoring is required to correctly implement dead-
line and delay constraints. One may attempt to
enforce the property in figure 3 by inserting the
condition to be checked at a specific point in the
execution of a task, after an acknowledgement is
received, for example. However, there are two po-
tential problems. If the acknowledgement is not
received within the required deadline, the violation
is not detected until after the acknowledgement. If
the acknowledgement is never received, due to a
failure, the violation of the property may not be de-
tected a t all. Hence, the constraint may be viewed
as a property to be enforced when a send occurs,
until either an acknowledgement is received, or 5
time units have passed. The latter test can be trig-
gered by a timer interrupt associated with the send
event.

3.2.1 Model

For monitored constraints, our model consists of a
set of application tasks (tasks) generating events
and a monitoring task (the monitor). A queue
provides interprocess communication between each
task and the monitor. Event histones are local to
the monitor rather than shared among all tasks.
(See figure 7.) During task execution, as events
occur, they are sent to the monitor. The monitor
processes each event occurrence and records i t in a
local repository. As events are recorded, the mon-
itor checks the satisfiability of the corresponding
formulas. Unlike the embedded case, there is no
need to lock event histones, because there is a sep-
arate queue between each task and the monitor.
The monitor maintains the event histories for the
tasks, and arbitrates simultaneous occurrences.

3.2.2 Implementation

Initializing tasks that utilize monitored constraints
is somewhat more involved than in the embedded

78

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on January 7, 2009 at 13:47 from IEEE Xplore. Restrictions apply.

Event
History

MONITOR

-0
Figure 7: Monitored model.

case. (See figure 8.) Each task registers with the
monitor to set up an interprocess communication
queue. During execution, the task sends the mon-
itor event occurrences and requests to initiate or
cancel the monitoring of given constraints. If a
constraint monitored for the task is violated, the
task is notified by a software signal and a message
in its queue from the monitor. The programmer can
modify the signal handler to respond to failures as
she wishes; the default behavior is to terminate the
process on failure.

Under the monitored model, a shared count field
for each event determines whether an occurrence
is enqueued on the process queue to the monitor.
The value of the field corresponds to the number of
formulas being monitored that involve the event.

The monitor can be divided into two phases. In
the initialization phase, the monitor uses the event
declaration file to create event histories in its own
memory. Pointers to the histones are stored in a
hash table, keyed by the event name. The t.iming
constraints to be monitored, also specified in a file,
are parsed into an internal representation that is
also hashed, keyed by the string corresponding to

- - - - - -
Formula

I
I
I
I
I
I
I

i
PARSER

(LEX/YACC)

I
I

f
Graph - - -

- - - - -

Enable/ Event

NOTIFICATION I
Figure 8: Monitored implementation.

the formula. After the formulas have been parsed,
it is possible to determine which formulas are asso-
ciated with which events, and to infer the lengths
of the event histories, which are then allocated.
Before entering the second, operational phase, the
monitor sets up an area of shared memory through
which the application tasks can request a process
queue, and creates a “timer queue” to store timer
interrupt events.

The second phase consists of an infinite loop. If
there is a queue allocation request from a new task,
then the monitor allocates a piece of shared mem-
ory for the task queue, returns a pointer to the new
queue to the requesting task, and adds the queue to
its list. The monitor then cycles through its list of
queues (including the timer queue), and selects the
entry with the earliest timestamp. If the entry is

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on January 7, 2009 at 13:47 from IEEE Xplore. Restrictions apply.

an event occurrence, then the time and data values
are added to the corresponding history. The event
occurrence may cause a constraint to be checked a t
some future time. If so, then a timer is set. All
the formulas associated with that event are then
checked for satisfiability. In case of a constraint
violation, the monitor notifies each task that moni-
tored the constraint by a signal and a message in its
process queue. If the entry is a request to monitor
or unmonitor a formula, then the list of processes
interested in the formula is modified accordingly,
as are the count fields of the events in the formula.
The entry may be a timer interrupt associated with
an event. In this case, the corresponding formulas
are sent to the satisfiability checker, but no further
information is added to the event history.

It is possible that a task may write to its process
queue (which is of finite length) faster than the
monitor is able to remove entries, resulting in a
queue overflow. The overflow is detected by the run-
time library, and the task is notified. The method
of handling the error is left up to the programmer.

4 A Satisfiability Checker

In the previous section, we described a monitor-
ing task that examines events received from ap-
plication tasks, and determines whether the given
constraints have been violated. However, we did
not discuss how the constraints are specified. [l l
defines a specification language based on RTL. In
particular, it introduces three expressive classes
of (RTL) properties that meet the requirements of
the system as stated in section 2: bounded his-
tory lengths can be derived from constraint formu-
las, and satisfiability can be checked in polynomial
time. In our prototype, we implemented the first
class of properties.

This class consists of properties (expressed as
RTL-like formulas) that explicitly identify the oc-
currence index of each event in the formula rela-
tive to the first or last occurrence of the event in a
computation prefix. The RTL formulas in this class
allow 8 functions of the form:

@ (e , a), or
@ (e , -a)

where e is @ event and a is a positive integer con-
stant. In particular, if the occurrence index of an @
function is a positive integer constant, the @ func-
tion is interpreted as defined in section 3. For ex-
ample, @(SIGNAL, 1) refers to the time of the first
Occurrence of event SIGN AL. Alternatively, the

occurrence index can refer to a particular most re-
cent occurrence of an event. We use the notation
@(e, -U) to denote the ath most recent occurrence of
event e. For example, @(SIGNAL, -1) is the time
of the last occurrence of event SIGNAL.

Example: Consider a system that executes the
action RESPONSE when a SIGNAL event oc-
curs. An exception condition must be raised if an-
other SIGNAL occurs during the execution of a
RESPONSE action:

@(TRESPONSE, -1) 5 @(SIGNAL, -1) +
@(TRESPONSE, -1) 5 @(J .RESPONSE, -1) A
@(J.RESPONSE, -1) < @(SIGNAL, -1)

The above formula specifies that if the last occur-
rence of action RESPONSE starts before the last
occurrence of a SIGNAL event, the action must
also complete before that SIGNAL event.

To simplify the task of parsing the language, the
prototype accepts input constraint formulas in dis-
junctive normal form. This does not limit the ex-
pressibility of the language, although it places a
larger burden on the programmer. The formulas
of this class consist of a disjunct of conjuncts of
predicates, where each predicate is an inequality
of the form @(e, & t i) 5 @(f, ij) t C, where i and
1 are positive integer constants, and C is an in-
teger constant. C corresponds to an offset time
value-a delay or deadline. The history length of
each event is bounded by the absolute value of the
largest negative index associated with the event in
all constraints, plus the number of explicitly de-
fined positive indices. The disjunctive normal form
of the formula in the preceding example is shown
below:

@ (S I G N A L , -1) -I- 1 5 @(TRESPONSE, - l) V
[@(TRESPONSE, -1) 5 @(J .RESPONSE, -1) A
@(J .RESPONSE, -1) + 1 5 @(SIGNAL, -1)]

The scanner and parser for the language were
constructed using the UNIX facilities LEX and
YACC. A formula string is translated by YACC
into a parse tree whose leaves are the inequalities,
whose root is V, and whose internal nodes are A’s.
The parse tree for the example above is given in
figure 9. Each conjunct subtree can be transformed
into an equivalent weighted directed graph. (See
figure 10.) Each unique occurrence function call
corresponds to a node on the graph. The predicate
@(SIGNAL, -1) 5 @(TRESPONSE, -1) - 1 becomes
an edge @(TRESPONSE, -1) 5 @(SIGNAL, -1).
A predicate of the form @(SIGNAL, 1) 5 G where
C is an absolute time value is translated to an edge
0 -% @ (S I G N A L , 1) where 0 is a special “zero node”
designed to take care of constants. Similarly, a

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on January 7, 2009 at 13:47 from IEEE Xplore. Restrictions apply.

V

@(TR,-1) 5 a(lRl -1) @(lR, - - l) 5 @(SI 1)
Figure 10: Uninstantiated constraint graph.

Figure 9: Parse tree for example.

juncts and causes a negative cycle to appear in both
graphs. Observe that since 1 RESPONSE has not
occurred before time 3, the corresponding node in
the graph has no value associated with it. Hence, a
dashed edge from the node 1 RESPONSE to “node
zero” with the value -3 is added during instantia-
tion, as shown in figure 14. (The constraint remains
unsatisfiable at time 4, after the 1 RESPONSE

predicate of the form C 5 @(SIGNAL, 1) is repre-
sented by an edge @(SIGNAL, 1) 2 0.

When the satisfiability checker is invoked on
a Constraint, each Conjunct graph is instantiated
from the current event histories. If a negative CY-
cle is found in the instantiated graph, then the con-
junct is unsatisfiable. The (DNF) constraint has event occurs.)
been violated if all its graphs are not satisfied.

Graph instantiation is based on the event his-
tones. Every edge with weight w incoming to a

- - -. - - ~~ - _____

0 1 2 3 4

node, to which a time value t has been assigned, is
replaced with an edge with weight w - t incident
on the “zero node.” Conversely, every edge with
weight w outgoing from a node, to whch a time
value t has been assigned, is replaced with an edge
with weight w + t outgoing from the “zero node.”
Furthermore, for each node that has no time value
associated with it, i.e., the corresponding event has
not happened yet, an edge from that node to the
“zero node” is added with the weight -NOW where
NOW is the current time. This edge denotes that
the corresponding event may happen a t or after
time NOW.

In figures 11-14, we present an example of an
erroneous event sequence leading to constraint vi-
olation. Figure 11 shows an execution prefix over
which we test the constraint formula given above.
At time 1 (figure 121, no cycles exist in either graph,
so the constraint is satisfiable. A t time 2 (figure
131, a negative cycle is found in the second con-
junct. Since the first conjunct has a valid instan-
tiation, the formula remains satisfiable. At time 3
(figure 141, a S I G N A L event occurs before the end
of the RESPONSE action. This violates both con-

k
S TR S 1R
Figure 11: Execution prefix.

The Floyd-Warshall shortest path algorithm is
used to search for negative cycles on the instanti-
ated graph: if such a cycle is found, the conjunct
is unsatisfiable. The complexity of the negative cy-
cle detection algorithm is O(n3) in the number of
nodes in the graph. In many cases, however, it is
not necessary to call the algorithm because a one-
node negative cycle is detected on the “zero node”
during instantiation.

5 OS Dependent Features

The implementation of our system hides the op-
erating system dependent features in a layer which

X I

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on January 7, 2009 at 13:47 from IEEE Xplore. Restrictions apply.

sits between the operating system and the mon-
itoring facility. The current implementation on
RS/6000 running AIX v.3 imposes certain condi-
tions on the run-time environment. The most in-
trusive of these was the lack of support for threads
in the native operating system. As a result, we
were forced to use heavyweight processes to im-
plement tasks, and file-mapped shared memory to
maintain event histories. This added certain com-
plications which lightweight processes with shared
address space would have avoided. We defined two
special calls, lock and unlock, to hide the operating
system dependencies in providing mutual exclusive
access to shared data structures. We guarantee the
atomicity of history updates by using semaphores
in implementing the lock function. However, an al-
ternative solution is to use the compare and swap
function in AIX v3. This second solution is more
efficient because it does not require a system call.

Since run-time monitoring of a system involves
examining sequences of time stamped events, gran-
ularity and atomicity of event timestamps may re-
quire special support from the run-time system.
The granularity of event timestamps directly af-
fects the satisfiability checks as a new event or a
timer interrupt occurs. Suppose reading the sys-
tem clock takes 30 microseconds (not an unreason-
able assumption if a system call is required), then
the ordering of events in two processes may be in-
determinate if the timestamps are closer than 30
microseconds. A similar problem arises if the clock
being read is updated infrequently, e.g., updates to
the clock may occur at 60Hz intervals. In many
operating systems, the system clock is accessible to
a program through system calls. Fortunately, the
RS/6000 provides very fine granularity, and using
the POSIX system calls, can differentiate between
events that occur tens of microseconds apart [51. An
alternative solution is to obtain the timestamps by
examing the hardware registers directly. Certain
processors support special hardware clocks that can
be examined by a process without the overhead of a
system call. This allows a much finer granularity.
The hardware clock registers of the RS/6000 can
be read directly providing a granularity of 100s of
nanoseconds.

6 Concluding Remarks

This paper presented a model and an implemen-
tation of a run-time environment for specifying and
monitoring timing properties of real-time systems.
The run-time environment supports two general
methods for synchronous or asynchronous monitor-

ing of real-time constraints. In the synchronous
case, a system constraint is embedded inside a pro-
gram; the constraint is examined a t a particular
point in the execution of the program. In the asyn-
chronous case, a constraint is expected to be moni-
tored by a separate task during the entire execution
of the program.

There are several directions for extending this
work. In the short term, several enhancements to
the toolkit can be made. We would like to add a
front-end to the library to allow programmers to
code with the RTL-like notation for the 8 func-
tions and label events. [61 identifies two additional
classes of RTL formulas with polynomial satisfiabil-
ity algorithms and inferrable finite history lengths.
Implementing the parsers and satisfiability check-
ers for these classes would allow us to experiment
further with the system. It is also desirable to in-
corporate the proposed run-time monitoring system
into the ORE run-time environment. This provides
a powerful mechanism for expressing temporal as-
sertions in ORE.

For the long term, several research directions
require further investigation. The first is that of
adaptive scheduling. I t should be possible to use
the timing information generated by the tasks to
determine whether a task will meet its deadline or
other constraints. Given such timing information,
the scheduler can choose to give an at-risk task
higher priority, or terminate it gracefully. A related
problem involves integrating run-time monitoring
with scheduling real-time tasks. The requirement
for monitoring system constraints and taking ap-
propriate actions when a violation is detected can
intrude upon normal activities of a system. Quan-
tifying the intrusiveness of run-time monitoring on
other tasks requires further exploration.

The second research direction is that of moni-
toring a distributed set of application tasks run-
ning on distinct processors. Even when clocks on
different processors are synchronized within a spe-
cific bound, the model must take into account de-
viations between clocks and message delays in ex-
changing timing information on events on different
nodes. Another possible direction is to investigate
provisions for an extensible monitor. One can envi-
sion an environment in which an application task
specifies a user-defined function that is invoked by
the run-time monitor in response to an event oc-
currence. Arbitrary constraints can be specified as
user-defined functions that are invoked a t run-time
to examine event histories and to detect violations
of these constraints as new events occur.

X2

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on January 7, 2009 at 13:47 from IEEE Xplore. Restrictions apply.

References

[l] Me Donner and F. Jahanian. Rtl meets ore.
In 7th IEEE Workshop on Real-ltme Operat-
ing Systems and Software, pages 55-61, May
1990.

[21 Marc D. Donner and David H. Jameson.
Language and operating system features for
real-time programming. Computing Systems,
l(lk33-62, 1988.

[31 D. Haban and K Shin. Application of real-time
monitoring to scheduling tasks with random
execution times. In Proceedings of Real-Time
Systems Symposium, pages 172-181, Decem-
ber 1989.

[41 D. Haban and D. Wybranietz. A hybrid mon-
itor for behavior and performance analysis of
distributed systems. IEEE TSE, 16(2):197-
211, Feb. 1990.

[51 IBM Corporation. IBM AIX version 3.1 RISC
systed6000 as a real-time system. Technical
report, International Technical Support Cen-
ter, 1991.

161 F. Jahanian and A. Goyal. A formalism for
monitoring real-time constraints at run-time.
In Proc. of Fault-Tolerant Computing Sympo-
sium (FTCS-201, June 1990.

[71 Farnam Jahanian and Aloysius Ka-Lau Mok.
Safety analysis of timing properties in real-
time systems. IEEE Dansactions on Software
Engineering, SE-12(9), 1986.

[81 C. Kilpatrick, K Schwan, and D. Ogle. Us-
ing languages for capture, analysis and dis-
play of performace information for parallel or
distributed application. In International Con-
ference on Comp. Language '90, March 1990.

[91 R. Snodgrass. A relational approach to moni-
toring complex systems. ACM Dansactions on
Computer Systems, 6(2):157-196, May 1988.

[lo] J.P. Tasi, K-Y Fang, and H-Y Chen. A nonin-
vasive architecture to monitor real-time dis-
tributed systems. Computer, 23(3):11-23,
March 1990.

[l l l H. Tokuda, M. Koreta, and C.W. Mercer. A
real-time monitor for a distributed real-time
O.S. ACM SIGPlan Notices, 24(1):68-77, Jan-
uary 1989.

u$3 - 1 t l

1R = ?

Figure 12: Graph instantiation, time = 1. a . l ' l t 2
s - 1

TR = 2

] R E ?

0-2

' -1s1

Figure 13: Graph instantiation, time = 2.

TR = 2
1R = ?

~ . 0-2

Figure 14: Graph instantiation, time = 3.

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on January 7, 2009 at 13:47 from IEEE Xplore. Restrictions apply.

