
Workshop on Generative Technologies 2010

Generating correct and efficient equality and
hashing methods using JEqualityGen

Neville Grech1,4,5 Julian Rathke2,5 Bernd Fischer3,6,5

School of Electronics and Computer Science
University of Southampton

United Kingdom

Abstract

Determining equality of objects in Java requires the implementation of equals and hashCode methods. Such
an implementation has to follow a specific object contract, making it a very tedious and error-prone process.
Many equality and hashing methods implemented in Java applications violate this contract and are faulty,
due to complexity arising from field shadowing, comparisons between different types, object cycles, etc.
Equality and hashing implementations are conceptually simple, and can be derived automatically from
information obtained statically from the program. However, existing systems that generate equality imple-
mentations use reflection and are consequently inefficient. Here we describe JEqualityGen, a source code
generator that seamlessly integrates with the build process of typical Java projects: the programmer only
needs to indicate for which classes implementations should be generated. JEqualityGen produces correct
and efficient code which on a typical large-scale Java application exhibits a typical performance improve-
ment of 162× in the equality operations generated by existing reflective systems. This was made possible
through the use of optimised code generation and runtime profiling of these methods.

Keywords: meta-programming, equality, equals, hashCode, code generation, Java, AOP.

1 Introduction

Equality of objects in an object-oriented language is semantically defined as an
equivalence relation, but often it does not have a straightforward implementation.
The default equality operation in these languages merely compares references, how-
ever, it is common to have multiple objects in memory that are equivalent. In
theory, two objects are equivalent if they are indiscernible. In practice, equivalence
relations are specified through a supported interface in the object contract (such as
the equals and hashCode methods in Java). Even though an informal equivalence

1 Email: n.grech@ecs.soton.ac.uk
2 Email: jr2@ecs.soton.ac.uk
3 Email: b.fischer@ecs.soton.ac.uk
4 Supported by a STEPS (Strategic Educational Pathways Scholarships) scholarship (ESF 1.25)
5 This work was supported by EPSRC, grant EP/F052669/1. We thank Y. Smaragdakis for feedback and
D. Rayside for making his system available for testing.
6 This paper was written while visiting the University of Auckland

mailto:n.grech@ecs.soton.ac.uk
mailto:jr2@ecs.soton.ac.uk
mailto:b.fischer@ecs.soton.ac.uk

Grech et al.

contract is specified [1], the implementation and verification of this contract is left
to the user.

A number of studies [2] [3], together with our research, suggest that equality
methods in many applications are buggy and violate the object contract. This
should be quite worrying since equality bugs such as symmetry and transitivity
violations tend to cause errors that are hard to track down. However, equals and
hashCode methods are conceptually simple operations, and their implementations
can be derived automatically. Rayside et al. [3] describe and evaluate a generic,
reflective implementation of these methods. We developed a similar system, but
one that actually generates code, instead of using reflection. This makes it possible
to use static analysis and verification tools on the generated operations. It is far
easier to verify, and to prove properties about generated code, than generic (and
hence complex) code that makes use of reflection. Apart from facilitating further
work on verifying correctness, this yields significant performance improvements:
typically 162× for equality and 31× for hashing.

Throughout this paper we illustrate and tackle a number of challenges with
equality implementations such as cyclic object structures, which our code generator
overcomes. It is also designed with performance in mind, and profiles the equality
methods in order to generate optimised equality operations. We demonstrate the
effectiveness of code generation and our optimisations by running benchmarks on
JEqualityGen (see http://sourceforge.net/projects/jequalitygen/) and related sys-
tems that make use of reflection. These benchmarks, together with other test cases,
are based on a popular Java charting library, JFreeChart [15] .

2 Equality Definitions

2.1 Object identity

It is important to distinguish between object equality and object identity. The latter
is tackled extensively in [4]. Two references to an object are said to be identical if
they point to the same object. In Java, this is handled by the == operator.

A taxonomy of different object identity implementation strategies is also defined
in [4]. The simplest form of identity test is a comparison of the physical memory ad-
dresses of the objects. Other implementations compare virtual addresses, structural
identifiers or user-specified identifier keys. In other systems such as PostgreSQL,
objects contain a system-generated object identifier unique for every relation. Iden-
tity using surrogates is the most powerful type of implementation [4]. Surrogates
are also system-generated identifiers, however these are guaranteed to be unique to
the whole system. Adding a surrogate to each object allows the identity implemen-
tation to use these identifiers rather than memory locations to compare identity,
which is therefore unaffected if the object is moved in memory.

2.2 Types of equality

Khoshafian and Copeland [4] define different types of equality, namely shallow and
deep equality while Grogono and Sakkinen [5] refine this concept. These types of
equality naturally correspond to different types of copying such as deep and shallow

2

Grech et al.

copying. Reference equality (or depth-0 equality) holds for a and b iff a and b both
point to the same objects. For primitive types such as integers, this is the only
type of equality we are interested in. Shallow equality (or depth-1 equality), like
shallow copying, implies that for each field in a and b, reference equality holds.
Depth-k equality holds on objects a and b if all fields in a are depth-k′ equal to
the corresponding fields in b, for all k′ < k. If k = ω, we also refer to this type of
equality as deep equality. Objects a and b are thus deeply equal if all fields in a are
deeply equal to the fields in b.

An elegant property of reference, shallow, depth-k and deep equality is that one
type of equality implies the next. For example, reference equality implies all other
aforementioned types of equality since if two objects are identical they are obviously
equal in all possible aspects.

2.3 The Java object contract

The Java object contract [1] explicitly states that the equals method implements
an equivalence relation that has to be reflexive, symmetric and transitive. Equality
has to be consistent, implying that it only takes into consideration the object’s state
and is side-effect free. Equality in [1] is only defined for non-null objects.

3 Equality implementation pitfalls

3.1 Comparing objects of different types

Vaziri et al. [2] claim that the Java object contract [1] cannot be adhered to in order
to be able to compare two objects of different types. This is because one cannot have
an implementation that is symmetric and transitive when two objects of different
types might have a different interface as well as a different implementation.

It is, however, desirable to allow, for example, TreeSet and HashSet objects to
be comparable since they can be interchanged while maintaining the same behaviour
of the system. A pragmatic way around this limitation is to assign the same equality
types to different classes. In practice, this presents a number of issues. For example,
Hovenmeyer et al. [6] note that one common mistake is to have equality methods that
return true even though the object types under consideration are incomparable.
Another issue is that access to some private members is impeded.

3.1.1 Field shadowing when sub-classing
Java permits the overriding of fields throughout a class hierarchy. Unfortunately,
this presents a number of challenges when implementing our equality methods.
Such issues only happen when comparing objects of different types. For a simple
example, consider a Point class containing two integer numbers and a FancyPoint
class that extends Point and shadows its fields. We will initialise a Point object
and a FancyPoint object and try to write an equality method that works for both.
The naive implementation of equality in this situation is an equals method in the
Point class that directly accesses both fields of the objects being compared.

public class Shadowing {
public static void main(String [] args) {

3

Grech et al.

Point p1=new Point ();
FancyPoint p2=new FancyPoint ();
p1.x=5; p1.y=5; p2.x=5; p2.y=5;

}
}
class Point {

public int x, y;
public boolean equals(Object o) {

Point that=(Point)o;
return this.x==that.x && this.y==that.y;

}
}
class FancyPoint extends Point {

public int x, y; // shadows x and y in the Point class
}

Listing 1: Direct field access and inherited equality

However, Java dispatching mechanism does not use the dynamic type of an ob-
ject when dispatching fields. In the main method, p2.equals(p1) is thus dispatched
to Point.equals and instead of operating on the FancyPoint fields, we are oper-
ating on the Point fields, which are set to zero. p2.equals(p1) therefore evaluates
to false, even though the two points are created with the same co-ordinates.

public class Shadowing {
public static void main(String [] args) {

Point p1=new Point ();
FancyPoint p2=new FancyPoint ();
p1.x=5; p1.y=5; p2.x=5; p2.y=5;

}
}
class Point {

public int x, y;
public boolean equals(Object o) {

Point that=(Point)o;
return this.x==that.x && this.y==that.y;

}
}
class FancyPoint extends Point {

public int x, y; // shadows x and y in the Point class
public boolean equals(Object o) {

Point that=(Point)o;
return this.x==that.x && this.y==that.y;

}
}

Listing 2: Direct field access and overridden equality

In Listing 2, we override equals in FancyPoint in the hope of accessing the cor-
rect fields when making the comparisons. With this modification, even though
p2.equals(p1) is true, p1.equals(p2) is false and therefore symmetry is vi-
olated. This happens because the equals method in p2 is FancyPoint.equals
and uses FancyPoint.x and FancyPoint.y while the equals method in p1 is
Point.equals, which only sees Point.x and Point.y.

Implementing getter methods and using them in the equality operations solves
this problem. Care must be taken however, as the getter methods operate on the
fields that are visible at that level in the class hierarchy. Therefore these accessor
methods must be overridden together with all equality methods.

3.2 Symmetry, transitivity and reflexivity

It is common that equals implementations start with an instance check that short-
circuits the entire operation. This tends to cause problems if we compare two objects
whose respective types are subclasses of each other. Odersky et al. [7] note that

4

Grech et al.

class Point { class FancyPoint extends Point {
public int x, y; public int x, y;
public int getX() { return x; } public int getX() { return x; }
public int getY() { return y; } public int getY() { return y; }
public boolean equals(Object o) { public boolean equals(Object o) {

Point that=(Point)o; Point that=(Point)o;
return getX()==that.getX() return getX()==that.getX() &&

&& getY()==that.getY(); getY()==that.getY();
} }

} }

Listing 3: Correct implementation. Overriding equality methods and accessors

the instance check fails depending on whether equals is called on one object or the
other, which violates symmetry. For example, a FancyPoint object is an instance
of Point but a Point is not necessarily an instance of FancyPoint. A more “clever”
equals design, as for example presented both in [7] and [8], dispatches on the type
of its parameter and has different implementations for different types. Even though
symmetry is not violated, transitivity is.

In order to ensure both symmetry and transitivity, Odersky et al. [7] suggest
that each class should implement another method, canEqual(Object o), which in-
dicates whether the object on the right hand side of the comparison can compare
itself with the object on the left hand side. The result from this method is con-
joined to the equality expression. This guarantees that instance checks are always
symmetrical if every class in the hierarchy defines this method. Its use can be seen
in the generated code (cf. Listing 5).

A reference check at the beginning of an equality operation that can short-circuit
the entire process not only enhances performance but also ensures reflexivity of the
operation. This check can also be applied to individual fields.

3.3 Cyclic object graphs

A cyclic object graph can occur easily when objects are referencing each other. If
the developer writing the equals or hashCode methods is not aware of this, an
invocation to such methods would never return and would consequently overflow
the call stack. Ignoring fields that may be involved in a cycle would make the
method terminate without overflowing the stack, but this would make the equality
method unfaithful to the abstract state of the original object [3].

It is however possible to write equals and hashCode methods that can deal with
cycles. Rayside et al. [3] use an approach similar to the one in Eiffel [9] whereby two
objects are assumed to be equal. Evidence is searched and checked to refute this
assumption by traversing the cyclic object graph. If a cycle is encountered, no more
evidence can be obtained by traversing the cycle multiple times. For hashCode,
whenever a cycle is encountered, the object structure cycle’s hash is substituted by
a constant number.

3.4 Consistency of key fields

Vaziri et al. [2] note that the object contract does not require that key fields be
immutable. There are, however, undesirable consequences in allowing key fields
that make up the abstract state of an object to mutate during runtime. A minor

5

Grech et al.

consequence is that equality and hash results cannot be cached. A more serious con-
sequence is that if an object is placed into a collection, the operations add, remove
and contains will produce unexpected behaviour. For example, in the case of a
HashSet, if an object is added, it is stored in a hash bucket determined by the value
of its hash-code. Mutating one of the key fields in this object effectively changes
the object’s hash-code. This object cannot be retrieved since it resides in a different
bucket that does not correspond to its new hash-code.

Countering this problem entails that equality should be based on fields that
are immutable. The Java specification, however, does not enforce this constraint.
Ideally the Java runtime system would check whether an object’s fields are mutated
after the invocation of the first equals or hashCode and issue a runtime exception
or warning.

3.5 Incorrect override

A number of authors [3] [2] [6] [8] [7] agree that a common mistake that can typically
go undetected is that of specifying an equals method with an incorrect signature.

The Object class already defines a default equals method as one that computes
object identity. This method could get called by a collection, and in case the
method is not overridden, the default Object.equals method is used. This default
implementation only performs a reference equality check. It is easy to imagine
cases where calling a collection’s contains method with an object returns false
even though an identical object is in the collection.

3.6 The relationship between equals and hashCode

Rayside et al. [3] analyse three different Java projects and conclude that simple
errors are all too common. One of the simplest errors is when equals is implemented
but hashCode is not. A number of tools [6] [10] can easily spot this trivial mistake
and enforce implementation of both methods at once. A human inspector however
can easily miss this mistake because the mistake lies in what is missing [6].

Although not enforced by the compiler, the Object contract [1] specifies a clear
relationship between the equals and hashCode methods. Mainly, if two objects
are equal, they need to have the same hash-code. The converse need not apply.
Similarly to equals, hashCode has to be side-effect free and consistent.

4 Overview of JEqualityGen

JEqualityGen is a code generator that automatically generates equals and
hashCode methods. It follows the aspect oriented programming (AOP) paradigm,
because object equality may be considered as a cross-cutting concern. In order to
generate the equality implementations we needed a meta-programming language.
Since we were working in Java, we chose Meta-AspectJ [11], a meta-programming
extension for AspectJ [12]. It leverages the program transformation capabilities
of AspectJ such as inter-type declarations. This enables the generated code to be
statically woven into the existing Java bytecode.

6

Grech et al.

JEqualityGen loads the user’s classes and, using reflection, statically analyses
each class and generates AspectJ aspects with the appropriate equality and hashing
implementations. These aspects are weaved into the user’s existing classes using
the AspectJ compiler. Therefore all operations can be carried out at bytecode level.
This makes it easier to integrate into the build process. JEqualityGen supports the
following features:

(i) The developer annotates classes for which equality needs to be generated using
JEqualityGen’s annotations. A super-type may also be specified so that objects
may be compared at that specific level. An example is shown in Listing 4.

(ii) The developer specifies which fields should not be considered as key fields.

(iii) Analysis is performed statically to see which keys might mutate throughout
the execution of the application. Warnings and errors are issued accordingly.
Various other checks are performed to ensure the correctness of the generated
methods.

(iv) Implementations for equals and hashCode methods are generated automat-
ically using the guidelines specified in Section 3. These are woven into the
existing Java bytecode.

(v) In the case of cyclic object graphs, an approach similar to the one in Eiffel [9]
is employed. To improve performance, the code concerned with cyclic graphs
is selectively inserted. This is done only if there is the possibility of having
such cycles.

(vi) Getters and setters are generated for each key field. Getters and setters are
bypassed if equivalent behaviour is guaranteed. This optimisation is performed
statically.

(vii) Optimisations based on dynamic run-time feedback are also performed. Fields
that differ most often, thus determining non-equality most often, can be used
to short circuit the equality operations, thus further increasing the efficiency
of the generated methods.

(viii) Generating equals and hashCode for types that are not accessible to the
weaver, as specified by the user.

Feature (viii) was added after we noticed that a number of classes in external
libraries that are used in the user’s code do not have a correct implementation of
equals. In order to declare AspectJ inter-type declarations with updated equality
and hashing implementations, it is necessary to have the library classes in the As-
pectJ inpath, something that is not always possible. For example, putting all JRE
classes in the inpath would crash the weaver. Instead, we automatically sub-class
these classes and add the actual equality logic in the sub-classes. All calls to the
constructor of the original class are intercepted and an instance of the extended class
is initialised instead. Any calls to the equals or hashCode methods are received by
the automatically extended classes.

7

Grech et al.

4.1 Generating equality and hashing logic

The equals methods follow a specific template. An example of a generated equals
method is given in Listing 5. In order to compute equality, two methods are gener-
ated, equals and canEqual, which perform the following:

• Determine whether the object to which it is comparing itself to is an instance of
the correct type.

• Coerce the object to the correct equality type.
• See whether the receiver object is comparable to the argument, and conversely

see whether the argument is comparable to receiver.
• Profile the uniqueness of each key field by recording how much difference is ob-

served in each field of different objects.
• Determine whether each key field in the receiver object is equal to each key field

in the other object.

@Equality @Equality(class=Point)
class Point { class FancyPoint extends Point {

public int x, y; public int x, y;
} }

Listing 4: Annotated Point and FancyPoint classes with equality performed at the
Point level.

private int test.Point.__get_x () { return this.x; }
private int test.FancyPoint.__get_x () { return this.x; }
private int test.Point.__get_y () { return this.y; }
private int test.FancyPoint.__get_y () { return this.y; }
public boolean test.Point.equals(Object other) {

if (this == other) return true;
if (other instanceof test.Point) {

test.Point that = (test.Point)(other);
return that.canEqual(this) && this.__get_x () == that.__get_x () &&

this.__get_y () == that.__get_y ();
}
return false;

}
public boolean test.Point.canEqual(Object other) {

return other instanceof test.Point;
}
public boolean test.FancyPoint.equals(Object other) {

if (this == other) return true;
if (other instanceof test.Point) {

test.Point that = (test.Point)(other);
return that.canEqual(this) && this.__get_x () == that.__get_x () &&
this.__get_y () == that.__get_y () && this.__get_x () == that.__get_x ()
&& this.__get_y () == that.__get_y ();

}
return false;

}
public boolean test.FancyPoint.canEqual(Object other) {

return other instanceof test.Point;
}
public int test.Point.hashCode () {

return this.__get_x () * 1 + this.__get_y () * 31;
}
public int test.FancyPoint.hashCode () {

return this.__get_x () * 1 + this.__get_y () * 31 +
this.__get_x () * 961 + this.__get_y () * 29791;

}

Listing 5: Generated equality and hashing methods and accessors for the Point and
FancyPoint classes in Listing 4

8

Grech et al.

The actual logic which compares each field from the the receiver to each field
in the argument is a conjoined equality expression. For this expression the code
generation task is split into multiple parts. For each field, we see whether it is
a primitive type or a simple reference type that requires only pointer equality (a
class annotated with @ReferenceEquality). In such a case, the Java == operator is
used for equality. An expression that evaluates to the value of the field is generated
(for example this.__get_x() for field x). The process depending on whether the
field can be accessed without the need of an accessor, whether it needs a custom
accessor, or whether it requires the use of a standard Java accessor. In the case
of hashCode we use a similar approach; however, we generate a Kernighan and
Ritchie’s multiplicative hash expression [13] instead of an equality expression. The
following listing shows part of a generated equality expression for various field types.

(this.p2 == that.p2 || (this.p2 != null && this.p2.equals(that.p2))) &&
Double.doubleToLongBits(this.d1) == Double.doubleToLongBits(that.d1) &&
Float.floatToIntBits(this.f1) == Float.floatToIntBits(that.f1) &&
this.c1 == that.c1 && Arrays.equals(this.s, that.s) &&
Arrays.deepEquals(this.s22 , that.s22)

Listing 6: Generated equality expression for different types p2:Object, d1:double,
f1:float, c1:char, s:1d array, s22:2d array

4.2 Handling Cycles

The code generated in Listing 5 does not take into consideration potential cycles
in the object graph. In order to reduce the size and increase the speed of the gen-
erated code, JEqualityGen makes use of a simple algorithm that statically detects
whether cycles are possible at all. Given a particular container class and a containee
(initially the same class), the algorithm goes through each of the container class’s
fields (one parent class at a time) and sees whether any of the fields is assignable
from the containee. If the field being tested is not a primitive type, the algorithm
checks whether the containee may be contained in this field. This process is invoked
recursively until all fields in the class hierarchy are tested.

Cycles are handled by generating advice that uses a point-cut descriptor as
shown in Listing 7. The executing advice uses stacks containing the visited objects,
one for every different class that may be involved in cycles. If the current target
of the point-cut is present in the stack, then the execution has reached a cycle. In
such a case, the equality check whose path caused the cycle must be true since
it would have short circuited otherwise. This would have terminated our equality
computation, returning false. On the other hand, if the target object is not found
on the stack, it is pushed on the stack. The execution then proceeds with the
original equality computation and removes our target from the stack when the
computation returns. We finally return the result of the equality computation.

... execution(boolean equals(Object))
&& target(self)
&& cflowbelow(execution(boolean equals(Object))
&& target(org.jfree.chart.ChartRenderingInfo)) ...

Listing 7: Point-cut descriptor of the cycle handler advice

9

Grech et al.

JEqualityGen JEqualityGen w/profiling optimisations Rayside et al. [3]

equals 2297 1108 179856

hashCode 3602 2760 86683

Table 1
Time to run benchmark in ms

4.3 Other features

We implemented a performance optimisation by generating getters only if we have
to. Fields that need getters are found by going up the class hierarchy to see which
fields are declared at every level. If a field is found to be declared at more than
one level, these fields are added to a result set. This data structure is later used to
generate the appropriate getters. Whenever we refer to any field in a class that has
the same name as the fields we have found, we do so using our custom getters.

In order to deter the mutation of key fields, we give warnings at compilation
time indicating any locations where the mutation might occur after instantiation.
This is possible thanks to AspectJ’s static join-point model, which allows warnings
to be issued if a point-cut descriptor can be matched statically.

Optimisations based on run-time feedback are done by generating code with data
gathering statements. These simply compare each field in an object to the object
being compared to. If two corresponding fields are different, then a “false” tally
for that field is incremented, otherwise the “true” tally is incremented. The results
are then used to sort the fields according to the tally ratio false/true and the
generated equality expression is more likely to shortcut early on in the computation
when invoked.

5 Experimental Evaluation

5.1 Performance analysis

Since we were making use of code generation over reflection, an expected increase in
performance was expected. To assess our performance claims, we wrote a benchmark
that exercises the equals and hashCode methods of a number of classes from the
JFreeChart project [15]. The closest system we could find to JEqualityGen is the
one presented by Rayside et al. [3]. Hence, benchmarks were run on both of these
systems. It should be noted that [3] makes use of caching to enhance performance.
The benchmark loop is run several times before starting the timer. This enabled
both the JVM and the implementation of [3] to “warm up”.

Table 1 lists the results of running these benchmarks on a Lenovo T500 2.4GHz
under 64-bit Debian running sun-java-6. JEqualityGen is able to produce equals
methods that are about 162× times faster than [3] and hashCode methods that are
about 31× times faster.

We note that given the sheer size of JFreeChart and the complexity of its class
structure, invoking reflection on an entire object graph is much slower than a direct
field access. Another reason why the solution in [3] is slower is that a lot of dis-
patching and analysis is carried out at runtime, while in our case this is carried out

10

Grech et al.

at code-generation time. A case in point is the cycle detection optimisation that
is done at code-generation time. Runtime feedback and re-ordering the equality
expression also helps to boost the performance of JEqualityGen’s generated code.

5.2 Correctness analysis

In order to assess the correctness of JEqualityGen, we modified the JFreeChart
project to utilise our code generator for the equality and hashing implementations
rather than using the manual implementations. Given the size of the project, this
served as a good test case for JEqualityGen and it also influenced some of our
design decisions. There were some problems we encountered throughout our testing,
namely:

Hard-coded hash-codes Since our auto-generated hash functions are different
(but still correct), test cases expecting a specific hash value for some objects
would obviously fail.

Incorrect equality implementations Some equality test cases are not faithful
to the state of the object. For example, serialising and de-serialising the object
would change the object. Other implementations were buggy for other reasons.
Some test cases were written in such a way that a correct implementation would
fail.

Key mutation Whenever a key field is mutated in an object after the hashCode
method is called, an exception is raised. Unfortunately, this runtime check caused
some tests to fail. It was shown in Section 2 why key fields should not be allowed
to mutate.

6 Conclusion and Future Work

Implementing equality and hashing operations is both tedious and error-prone. JE-
qualityGen was developed specifically to address the pitfalls associated with these
operations and to relieve the developer of the burden of implementing them. Code
generation technology can be employed to address this problem, making the result-
ing implementations fast, efficient, and easier to verify. Our prototypical implemen-
tation is expressive enough as a drop-in replacement in the context of large Java
applications. It can be integrated into the build systems of these applications with
relative ease.

Apart from the substantial performance improvement we registered in our bench-
marks, an advantage of code generation is that static analysis tools can work with
the generated code to infer some properties from the system. It is also possible for
tools such as AspectJ to weave advice directly into the generated code. Another
advantage of the static analysis of code is that we can issue warnings and errors at
code generation time while other run-time systems would throw exceptions at run-
time, which is much less convenient. A main motivation why we generate Java code
is to verify the correctness of the generated code using formal methods. We plan
to use these formal methods in our future work and any further effort on verifying
correctness will be done using such methods. We therefore chose to devote less time
on experimental testing and only tackle a subset of the JFreeChart test cases.

11

Grech et al.

Apart from the usual object contract issues, we have addressed other practical
issues such as field shadowing, which simple tools such as the generate hashCode()
and equals() feature in Eclipse [14] fail to handle. This code generator is also naive
in the sense that it does not concern itself with the object model, but rather with
individual classes. As a result, inheritance and cyclic structures are not handled
well. We are not aware of any other system that generates equality methods and
takes field shadowing into consideration. Another big advantage of JEqualityGen
is that even though it generates code, it can still be used with languages other than
Java that run on the JVM such as Scala.

We did not try to tackle concurrency issues. If for example, an object is mu-
tated while it is being compared, the behaviour of our equality methods would be
undefined. A possible area of improvement would be to offer the user thread-safe
versions of equality and hashing methods. In its current form, it is up to the user
to take care of concurrency.

Lastly, other object’s methods can be generated using the same techniques.
These are, for example, the clone method and the toString method. The latter
is catered for in Eclipse [14]. Functionality responsible for serialising objects could
also be automatically generated. Using code-generation, serialisation is known to
run faster [16].

References

[1] Sun Microsystems Inc. Java Platform Standard Ed. 6. Available online at:
http://java.sun.com/javase/6/docs/api/.

[2] M. Vaziri, F. Tip, S. Fink, and J. Dolby. Declarative object identity using relation types. ECOOP,
LNCS 4609, pp. 54–78. Springer, 2007.

[3] D. Rayside, Z. Benjamin, R. Singh, J. P. Near, A. Milicevic, and D. Jackson. Equality and hashing for
(almost) free: Generating implementations from abstraction functions. In ICSE, pp. 342–352. IEEE,
2009.

[4] S. Khoshafian and G. P. Copeland. Object identity. In OOPSLA, pp. 406–416, 1986.

[5] P. Grogono and M. Sakkinen. Copying and comparing: Problems and solutions. In ECOOP, LNCS
1850, pp. 226–250. Springer, 2000.

[6] D. Hovemeyer and W. Pugh. Finding bugs is easy. ACM SIGPLAN Notices, 39(12):92–106, 2004.

[7] M. Odersky, L. Spoon, and B. Venners. Programming in Scala: A Comprehensive Step-by-step Guide.
Artima, 2008.

[8] J. Bloch. Effective Java (2nd Edition) (The Java Series). Prentice Hall, 2008.

[9] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.

[10] J. Jones and R. Smith. Automated auditing of design principle adherence. In S.-M. Yoo and L. H.
Etzkorn, editors, ACM Southeast Regional Conference, pp. 158–159. ACM, 2004.

[11] D. Zook, S. S. Huang, and Y. Smaragdakis. Generating AspectJ programs with meta-AspectJ. In
GPCE, LNCS 3286, pp. 1–18. Springer, 2004.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview of AspectJ.
In ECOOP, LNCS 2072, pp. 327–353. Springer, 2001.

[13] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall, 1988.

[14] Eclipse IDE. http://www.eclipse.org/.

[15] JFreeChart. http://www.jfree.org/jfreechart/.

[16] B. Aktemur, J. Jones, S. N. Kamin, and L. Clausen. Optimizing marshalling by run-time program
generation. In GPCE, LNCS 3676, pp. 221–236. Springer, 2005.

12

	Introduction
	Equality Definitions
	Object identity
	Types of equality
	The Java object contract

	Equality implementation pitfalls
	Comparing objects of different types
	Symmetry, transitivity and reflexivity
	Cyclic object graphs
	Consistency of key fields
	Incorrect override
	The relationship between equals and hashCode

	Overview of JEqualityGen
	Generating equality and hashing logic
	Handling Cycles
	Other features

	Experimental Evaluation
	Performance analysis
	Correctness analysis

	Conclusion and Future Work
	References

