
Gradual Typing of Erlang Programs: A Wrangler Experience

Konstantinos Sagonas Daniel Luna
School of Electrical and Computer Engineering, National Technical University of Athens, Greece

Department of Information Technology, Uppsala University, Sweden
kostis@cs.ntua.gr daniel.luna@it.uu.se

Abstract
Currently most Erlang programs contain no or very little type in-
formation. This sometimes makes them unreliable, hard to use, and
difficult to understand and maintain. In this paper we describe our
experiences from using static analysis tools to gradually add type
information to a medium sized Erlang application that we did not
write ourselves: the code base of Wrangler. We carefully document
the approach we followed, the exact steps we took, and discuss
possible difficulties that one is expected to deal with and the effort
which is required in the process. We also show the type of soft-
ware defects that are typically brought forward, the opportunities
for code refactoring and improvement, and the expected benefits
from embarking in such a project. We have chosen Wrangler for
our experiment because the process is better explained on a code
base which is small enough so that the interested reader can retrace
its steps, yet large enough to make the experiment quite challeng-
ing and the experiences worth writing about. However, we have
also done something similar on large parts of Erlang/OTP. The re-
sult can partly be seen in the source code of Erlang/OTP R12B-3.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Programming by contract;
F.3.3 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs

General Terms Documentation, Languages, Reliability

Keywords Erlang, software defect detection, contracts, Dialyzer

1. Introduction
Almost all Erlang applications have so far been written without
type information being explicitly present in their code. Of course,
this is hardly surprising. After all, Erlang is a dynamically typed
language where type information is only implicit during program
development. Program testing typically uncovers many typos and
type errors and these are corrected in the process. In many cases,
type information in the form of (Edoc) comments is added in pro-
grams in order to document the intended interfaces of key functions
and modules which are part of the API.

In our experience, this mode of developing Erlang programs
is far from ideal. Even after extensive testing, many typos and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Erlang’08, September 27, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-60558-065-4/08/09. . . $5.00.

type errors remain in the code. Often these errors appear in the
not so commonly executed paths such as those handling serious
error situations. Also, type information in the form of comments is
often unreliable as it is not checked regularly by the compiler. Such
documentation sooner or later is bound to suffer from code rot.

For a number of years now we have been trying to amelio-
rate this situation by developing and releasing tools that support
and promote a different mode of program development in Erlang.
Namely, one where most typos, type errors, interface abuses and
other software defects are identified automatically using whole pro-
gram static analysis rather than testing, and where type information
is automatically added in the program code, becomes a part of the
code, is perhaps manually refined by the programmer and is sub-
sequently automatically checked for validity after program mod-
ifications. What’s interesting in our approach is that all these are
achieved without imposing any (restrictive) static type system in
the language. Instead, programs can be typed as gradually as de-
sired and the programmer has total control of the amount of type
information that she wishes to expose and publicly document.

During the last year, we have been practicing this approach
on a considerably large part of the Erlang/OTP system. Indeed,
nowadays the entire code of the Dialyzer and Typer tools, a large
part of the code of the High Performance native code compiler
for Erlang (HiPE), and many modules of the standard libraries of
Erlang/OTP R12B-3 come with explicit type information. The pro-
cess has uncovered many software defects, identified some dubi-
ous interfaces and a significant number of discrepancies between
the published documentation and the actual behavior of key func-
tions of the standard libraries. In the code of Erlang/OTP, the whole
process has often been slow and painful, partly because one has to
worry about maintaining backwards compatibility and partly be-
cause it involves a considerable amount of communication with the
Erlang/OTP developers. Nevertheless, overall it has been very re-
wording and clearly worth its while. The resulting code is cleaner,
easier to understand and maintain, more robust, and much better
documented.

This paper aims to document in detail the steps of the pro-
gram development mode we advocate and have been practicing
all this time; both on code produced by our group and on code
of Erlang/OTP. By doing so, others who are possibly interested
in gradually typing existing Erlang applications can explicitly see
what’s involved in the process. In particular, they can see both the
benefits and costs of using our tools as well as many pitfalls that
the more “traditional” mode of Erlang code development involves.

We decided to start with a handicap: we do this experiment on
code that we did not write ourselves and for that reason possibly not
fully grasp. Also, for the experiment to be interesting, we wanted
that the code should be of significant size and publicly available so
that others can retrace our steps. After looking around at a handful
of open source Erlang projects, we opted for the code of Wrangler,
a refactoring tool for Erlang [3].

73

refac_atom_info.erl:715: Guard test length(M::atom()) can never succeed
refac_batch_rename_mod.erl:161: The call erlang:exit(’error’,[1..255,...]) will fail

since it differs in argument position 1 from the success typing arguments: (pid() | port(),any())
refac_util.erl:921: Call to missing or unexported function refac_syntax:class_body/1
refac_util.erl:1322: The call erlang:’and’(bool(),[integer()]) will fail

since it differs in argument position 2 from the success typing arguments: (bool(),bool())

Figure 1. The main defects of Wrangler 0.1 as identified by Dialyzer

The code of Wrangler has various interesting characteristics
with respect to what we want to do. First, it has been developed
by researchers who are experts in typed functional programming.
For this reason, we expected that Wrangler’s code base would
be written in a type disciplined manner and would not contain
(m)any type errors. Second, we expected that its code base would
contain an interesting set of uses of higher order functions —
possibly more than in most Erlang code bases out there — and
this would be challenging for our tools and approach. Third, the
authors of Wrangler have been heavily involved in a project related
to testing Erlang programs and have used Wrangler in conjunction
with sophisticated testing technology such as QuviQ’s QuickCheck
tool for Erlang [2]. Finally, the authors of Wrangler are aware of the
tools of our group: as they acknowledge in Wrangler’s homepage
they ‘make use some of the ideas from Dialyzer’. In short, we
expected that this would be a relatively easy task. Let’s see what
we found.

2. Using Dialyzer on Wrangler
We started our experiment with the first action we recommend to
any Erlang project: use Dialyzer [4]. Dialyzer is a static program
analyzer that is really easy to use and is particularly good in identi-
fying software defects which may be hidden in Erlang code, espe-
cially in program paths which are not exercised by testing. Indeed,
as we will see below, it is quite common that these defects remain
unnoticed for a long period of time.

2.1 The first experiment: Dialyzer on Wrangler 0.1
To learn something about Wrangler’s evolution, we started by ob-
taining the first version of Wrangler, which was publicly released
on the 25th of January 2007. We executed the following commands:

> wget http://www.cs.kent.ac.uk/projects/forse/wrangler/
distel3.3-wrangler/distel-wrangler-0.1.tar.gz

> tar zxvf distel-wrangler-0.1.tar.gz
> cd distel-wrangler-0.1/wrangler
> wc *.erl

2229 7247 73088 refac_atom_info.erl
... 24 more lines suppressed ...

34784 137281 1198955 total

As we can see from the output of the last command, the main
body of the code of Wrangler 0.1 contains a total of 25 mod-
ules comprising of about 35,000 lines of code. Out of these mod-
ules, many are modified versions of Erlang/OTP modules (of the
syntax tools application, the compiler, and two supporting
modules of dialyzer).

We postponed making the Wrangler system because we wanted
to shake its code first. Instead, we run Dialyzer v1.8.1 as follows:

> dialyzer --src -c *.erl

This analyzed all Wrangler modules and generated 67 warnings
in less than 2 minutes. About 50 of these warnings concerned the
refac epp module and were warnings of the form ‘Function
F/A will never be called’. Such warnings are typically side-
effects of some failing or contract-violating function calls earlier in

the same module which in turn makes calls to these functions un-
reachable. Indeed, these warnings were produced because Dialyzer
also identified two calls to the file:open/2 function which vi-
olate both its published documentation at www.erlang.org and
the explicit type information which exists for this function in the
source code of the file module of Erlang/OTP R12B-3. We man-
ually modified the two offending calls to this function by changing
them from the old-fashioned one:

file:open(Name, read)

which is still allowed for backwards compatibility to the more
kosher and documentation-conforming one:

file:open(Name, [read])

In the process, we performed a similar change to two calls to
function file:path open/3. Doing these changes took about
two minutes of our time and reduced the number of Dialyzer
warnings to 15. About half of these warnings concern modules
refac compile, refac sys core fold and refac v3 core
which are clones of the corresponding modules of Erlang/OTP
with only minor modifications. These warnings are genuine errors
that have been fixed in Erlang/OTP R12B. We concentrate on four
of the remaining warnings that are specific to the code of Wrangler.
These warnings are shown in Figure 1.

The first of them concerns a guard that will never succeed. This
typically signifies a genuine bug or is a sign of severe programmer
confusion. Indeed, very few Erlang programmers fancy writing
guards that always fail. In this case the Dialyzer warning identifies
a programming error. The corresponding code is shown in Figure 2.
As can be seen, M is an atom and the call to length/1 will always
fail in this case. However, since this call occurs in a guard context
its failure is silenced and can easily remain undetected by testing.

handle_call(Call, DefinedVars, State) ->
...
case is_c_atom(Mod) andalso is_c_atom(Fun) of

true ->
M = atom_val(Mod),
...
case {M_Loc, Call_Loc} of

{{L1, C1}, {L2, C2}} ->
if (L1 < L2) or

((L1==L2) and ((C2-C1) > length(M)))
...

Figure 2. Portion of the code of refac atom info.erl

The second warning identifies a call to the exit function with
the wrong arity. The corresponding code checks for an error condi-
tion and if the condition is met it wants to exit the Wrangler process
most probably with a tagged two tuple where the first element is the
atom error. Instead, it constructs the call:

exit(error,"Can not infer new module names, ...")

This is a particularly nasty bug that is very hard to detect by testing.
The problem is that this code will abort execution alright, but will
do so with a significantly different message than the programmer

74

expand_files([File|Left], Ext, Acc) ->
case filelib:is_dir(File) of
true ->

...
false ->

case filelib:is_regular(File) and
filename:extension(File) == Ext of

true -> expand_files(Left, Ext, [File|Acc]);
false -> expand_files(Left, Ext, [File])

end
end;

Figure 3. Portion of the code of refac util.erl

intended. (The erlang:exit/2 function throws an exceptions and
exits a process in Erlang but expects a different type of term in the
first argument and will throw a different exception if called with an
atom in the first argument.)

The third warning is simple but quite common in Erlang. The
code contains a call to a non-existing function (of an existing
module). One does not need Dialyzer to detect this error; the xref
tool would also have detected it.

The last warning is the most interesting one. The corresponding
code is shown in Figure 3. To somebody not very familiar with the
idiocyncrancies of the Erlang parser this code looks correct. The
problem is that and binds stronger than == in Erlang and so the
case expression in the code is parsed as:

case (filelib:is_regular(File) and
filename:extension(File)) == Ext of

that is, the code in Figure 3 effectively tries to test a boolean value
with the value of Ext, instead of being parsed the way that the
programmer intended:

case filelib:is_regular(File) and
(filename:extension(File) == Ext) of

This bug can be fixed either by adding explicit parentheses as above
or by using the andalso operator instead of and.

Overall, we spent about half and hour understanding and fixing
the software defects of Wrangler 0.1 that were identified by Dia-
lyzer. We started from this version of Wrangler because we wanted
to see which of Wrangler’s defects are long-lived and managed to
survive from the first to the current release.

2.2 The second experiment: Dialyzer on Wrangler 0.3
At the time of writing this section (early June 2008), version 0.3
was the most recent snapshot of Wrangler. It was released on the
7th of January 2008, almost a year after version 0.1. The structure
of Wrangler’s source code has changed a bit and some of the
modules of Wrangler 0.1 that were from Erlang/OTP are no longer
present. However, many modules of the syntax tools application
are still present and some new modules have been added. Including
those modules, Wrangler’s code consists of 25 modules and about
27,000 lines of code. We run Dialyzer as follows:

> cd distel-wrangler-0.3/wrangler/erl
> dialyzer --src -I ../hrl -c *.erl

After about 50 seconds, Dialyzer produced warnings many of
which were in file refac epp and were due to using an atom
rather than a list for the options argument of calls to functions of
the file module. After manually fixing this issue, about 20 warn-
ings remained.

Some of these warnings were due to confusing one library func-
tion with another one and abusing its interface. The lists mod-

%% concat(L) concatenate the list representation of
%% the elements in L - the elements in L can be atoms,
%% numbers or strings. Returns a list of characters.

-type concat_thing() ::
atom() | integer() | float() | string().

-spec concat([concat_thing()]) -> string().

concat(List) ->
flatmap(fun thing_to_list/1, List).

thing_to_list(X) when is_integer(X) ->
...

Figure 4. lists:concat/1 function annotated with a contract

ule provides a concat/1 function. Its published documentation at
www.erlang.org reads:

concat(Things) -> string()

Types:
Things = [Thing]
Thing = atom() | integer() | float() | string()

Concatenates the text representation of the elements
of Things. The elements of Things can be atoms,
integers, floats or strings.

However, the current implementation of the concat/1 function is
more liberal than its documentation claims it is. For example, its
implementation in Erlang/OTP R12B-3 allows calls where each
Thing is a tuple:

Eshell V5.6.3 (abort with ^G)
1> lists:concat([[{a,1},{b,2}],[{c,3}]]).
[{a,1},{b,2},{c,3}]

Note that the result in this case is not a string. The code of Wrangler
is relying on an undocumented behaviour of a library function.

Misunderstanding or abusing the interface of some library func-
tion is a very common software defect in dynamically typed lan-
guages such as Erlang. We consider this problem quite severe be-
cause an application might give the impression of working alright
but this remains so only until the library has the same observable
undocumented behavior. Of course, this is something that is not
guaranteed by the library developers. We have noticed this phe-
nomenon happening again and again — even in our own code! —
in Erlang applications. For this reason, we have designed and pro-
posed a contract language for Erlang [1] and have already anno-
tated key libraries of Erlang/OTP with their documented interface.
Indeed, in Erlang/OTP R12B, the corresponding code in the lists
module reads as shown in Figure 4. Due to the presence of these
contracts, Dialyzer can easily detect such interface abuses and warn
the user about them.

In this particular case, the problem is easily fixed. The code of
Wrangler can simply use the lists:append/1 function which has
the behaviour that its authors are after. There are 13 calls in total to
lists:concat/1 that should become calls to lists:append/1.

After this fix, Dialyzer reports 10 warnings in total. The main
ones, those related to Wrangler files not from Erlang/OTP, are
shown in Figure 5.

The first and last of them are familiar. They are identical to those
in Wrangler 0.1 and have remained unaffected by code evolution
and undetected by testing and uses of Wrangler. As mentioned, it
is not very surprising that the first of them has remained undetected
since the defect appears in error-detection code which is notori-
ously hard to exercise.

75

refac_batch_rename_mod.erl:161: The call erlang:exit(’error’,[1..255,...]) will fail
since it differs in argument position 1 from the success typing arguments: (pid() | port(),any())

refac_duplicated_code.erl:441: The pattern {’error’, _Reason} can never match the type ’false’ | {’value’,tuple()}
refac_fold_expression.erl:97: The pattern {’error’, ’reason’} can never match the type {’error’,’none’} | {’ok’,_}
refac_move_fun.erl:137: The pattern {’eror’, Reason} can never match the type {’error’,_}
refac_util.erl:921: Call to missing or unexported function refac_syntax:class_body/1

Figure 5. The main defects of Wrangler 0.3 as identified by Dialyzer

trim_clones(FileNames, Cs, MinLength, MinClones) ->
...
case lists:keysearch(File1, 1, AnnASTs) of

{value, {File1, AnnAST}} ->
...

{error, _Reason} -> {false, {Range, Len, F}}
end

...

Figure 6. Portion of the code of refac duplicated code.erl

The second warning is due to confusion about the possible
return values of the lists:keysearch/3 function. The offending
code is shown in Figure 6. We have seen similar defects in various
other Erlang code bases. The remaining warnings are simple typos
in error checking code. Similar defects have a tendency to remain
unnoticed for a long time.

We manually corrected these problems but for the last one (the
call to the missing function) which we did not know how to fix.
The whole process, including referring to Erlang/OTP’s documen-
tation and code to verify issues related to lists:concat/1 vs.
lists:append/1, took us a bit more than two hours. With an al-
most warning-free code base, we could start adding contracts to the
code of Wrangler in order to robustify its API and in the hope of
identifying more defects and interface abuses. Let’s see where this
got us.

3. Adding Contracts to Wrangler
The second action we recommend to any Erlang application is to
expose as much type information about functions and modules as
possible and make this information part of the code. Typically, type
information is only implicit in most Erlang programs. Making it
more explicit can happen in the following two ways:

Add explicit type guards in key places in the code. Such an ac-
tion has the advantage that it exposes type information to static
analysis tools such as Dialyzer and at the same time ensures
that calls to these functions will fail if they violate these type
tests during program execution. One disadvantage is that there
is a runtime cost associated with this action, but this cost is typi-
cally quite small. A more serious disadvantage is that programs
may not be prepared to gracefully handle such failures.

Add type declarations and contracts. Type declarations can give
convenient names to key data structures which can then be
used to document function and module interfaces. Such type
information can then be used by Dialyzer to detect interface
violations without occurring any runtime overhead. Quite often
such information already exists in comments: either in Edoc
format or even in plain text.

Of course, these two methods of exposing type information are not
mutually exclusive and projects can employ the combination that is
best suited for each situation in hand.

In the case of Wrangler 0.3, its source code already contains
a fair amount of @spec annotations (336 in total). However, the

bulk of these annotations is in files that are minor modifications of
Erlang/OTP modules. Because for the more up-to-date version of
some of these modules (the ones in Erlang/OTP R12B-3) we had
already performed a similar action to the one we will describe in
this section, we decided to focus on the @spec annotations in mod-
ules that have been written entirely by Wrangler’s authors. There
are 15 such modules but three of them (refac module graph,
wrangler distel and wrangler options) contain no annota-
tions. In the remaining 12 modules there are 54 @spec annotations
in total. Their breakdown according to module is shown in Table 1.

module @specs
refac batch rename mod 1
refac duplicated code 1
refac expr search 1
refac fold expression 2
refac gen 7
refac move fun 2
refac new fun 1
refac rename fun 2
refac rename mod 2
refac rename var 3
refac util 21
wrangler 11

Table 1. Number of @specs in modules of Wrangler 0.3; modules
with no @specs and modules from Erlang/OTP have been excluded

3.1 Turning @spec annotations into -spec declarations
At least syntacticly, converting an existing @spec annotation into a
-spec declaration is a rather straightforward procedure. For exam-
ple, in refac batch rename mod.erl the @spec annotation:

%% @spec batch_rename_mod(OldNamePattern::string(),
%% NewNamePattern::string(),
%% SearchPaths::[string()]) ->
%% ok | {error, string()}

can immediately be turned into:
-spec batch_rename_mod(OldNamePattern::string(),

NewNamePattern::string(),
SearchPaths::[string()]) ->

’ok’ | {’error’, string()}.

The single quotes around the atoms are not really needed, but we
recommend their use so that it is clear to the reader what e.g. is
supposed to be the atom ’ok’, which denotes a singleton type in
the language of types, rather the ok() type where the programmer
has mistakenly forgotten the parentheses.

Quite often, one also needs to make up names for types which
are not built-in types. For example, refac duplicated code.erl
contains the following @spec annotation:

%% @spec duplicated_code(FileName ::filename(),
%% MinLines ::integer(),
%% MinClones::integer()) -> term().

which, after making some educated guess, can be turned into:

76

-type filename() :: string().
-spec duplicated_code(FileName ::filename(),

MinLines ::integer(),
MinClones::integer()) -> any().

If one continues this way, she is quickly faced with a problem.
Because @spec annotations are not routinely checked by the com-
piler or any static analysis tool, many of them have suffered from
severe code rot and have become inaccurate, outdated, or even com-
pletely wrong. For example, to be correct, let alone precise, the
above -spec declaration should actually read:

-type filename() :: string().
-spec duplicated_code(FileNames::[filename()],

MinLines ::[byte()],
MinClones::[byte()]) -> any().

Note that the problem is not in the type declaration that we intro-
duced but in that the original @spec annotation that the file con-
tained is not correct.

Out of curiosity, we performed the following experiment. We
converted all 54 @spec annotations of Wrangler 0.3 to -spec
declarations and added very loose type declarations for type names
which were not documented in the code: we basically mapped
most of these types to any(). This makes the contracts containing
these types as forgiving as possible. We then run Dialyzer on the
Wrangler files. Dialyzer reported a total of 164 warnings! Recall
that this was on a set of files which were warning-free without any
-spec declarations. This is not the first time we experienced this
behaviour: Edoc annotations need to be treated with caution.

In our experience, the ‘convert all @specs at once’ approach
is very crude. The user is simply overwhelmed by the number
of warnings that Dialyzer reports. We recommend the following
approach instead.

Start from some easy files. Easy files are either those that do
not contain many @spec annotations or those that depend on only
few other modules. This way, one has the chance to run Dialyzer
on a single module at a time and correct the defects that Dialyzer
identifies on a module-local basis. Then continue this way until all
modules have been processed. Note that this is not guaranteed to
result with a set of files which, when considered together, can be
analyzed by Dialyzer without any warnings. If the warnings that are
produced are too many, then analyze the modules by considering
the strongly connected components that they form, fix warnings
in the process, and expand on this set until all modules can be
analyzed warning-free.

Fixing warnings of only one or of a small set of modules is usu-
ally quite easy. For example, for the refac rename var module,
one gets the following warning from Dialyzer.

refac_rename_var.erl:66:
The call cond_check(..., ..., NewName1::atom())
breaks the contract (..., ..., NewName::string())

where one can immediately see that there is something wrong in the
last argument of this function; either in the call on line 66 or in the
contract of the function (i.e., the -spec declaration that we added).
Finding out which of these two is to blame is a bit more tricky,
especially if one is unfamiliar with the code. Quite often though
the module has some code part that gives a strong indication about
where to assign blame.

We followed the approach we describe above and converted
all @specs to -specs ending up with a set of modules for which
Dialyzer gave no warnings when run on a single module at a time.
In the process we had to fix a total of ten erroneous specs out of the
54 original ones. The ‘local’ column of Table 2 shows how these are
partitioned per module. We then run Dialyzer on the complete set of
modules, which resulted in a total of 42 warnings. (In fact, only 17

if one excludes warnings that are quite clearly a side-effect of some
other warning.) In any case, 42 is a much more manageable number
than 164. Most warnings were due to eight additional specs in the
code of Wrangler 0.3 being erroneous, which we also corrected.
Their modules are indicated in the ‘global’ column of Table 2. The
whole process took about six hours. Of course, it would have taken
us less time had we been familiar with Wrangler’s code.

wrong @specs
module @specs local global
refac batch rename mod 1
refac duplicated code 1 1
refac expr search 1
refac fold expression 2
refac gen 7 1
refac move fun 2
refac new fun 1 1
refac rename fun 2
refac rename mod 2
refac rename var 3 2
refac util 21 6 5
wrangler 11 2

Table 2. Wrong @specs in Wrangler 0.3; blank entries denote 0

3.2 Fixing defects exposed by -spec declarations
When -spec declarations become part of the code, interesting soft-
ware defects are exposed by Dialyzer. For example, the Wrangler
file refac util.erl contains the following @spec annotation:

@spec pos_to_var_name(Node::syntaxTree(), Pos::Pos) ->
{’ok’, {atom(), {Pos, Pos}}} | ...

To ease exposition, let us drop the variable names for referring
to types, introduce a type declaration for what the authors of
Wrangler denote as Pos, and fix this annotation so that its return
type is actually correct. The intended specification for function
refac util:pos to var name/2 should read:

-type pos() :: {integer(), integer()}.
-spec pos_to_var_name(Node::syntaxTree(), Pos::pos()) ->

{’ok’, {atom(), {pos(), pos()}, cat()}} | ...

where cat() is some type. In refac rename var.erl this func-
tion is used as shown in Figure 7. In this code, Dialyzer warns that
the equality test between DefinePos, which is a two tuple, and a
singleton list will always fail. Once again, this is a very difficult bug
to spot or discover by testing because it is in code which handles
exceptional cases. (Under typical executions, the code goes to the
true branch anyway.)

rename_var(Fname, Line, Col, NewName, SearchPaths) ->
...
case refac_util:pos_to_var_name(AST, {Line,Col}) of

{ok, {VarName, {_, DefinePos}, C}} ->
if DefinePos == [{0,0}] ->

{error, "Renaming of ... is not supported!"};
true ->

... % code that renames the variable here
case cond_check(AST1, DefinePos, NewName) of
...

Figure 7. Portion of the code of refac rename var.erl

Once this problem gets exposed, Dialyzer also warns about
other problems further down in the code. Figure 8 shows a small
portion of the code of the cond check/3 function. The call to
lists:any/2 demands that Pos, which comes from DefinePos

77

cond_check(Tree, Pos, NewName) ->
...
BdVars = lists:map(fun(_, B, _) -> B end, ...),
Clash = lists:any(fun(bound, Bds) ->

...
F_Member = fun (P) -> ... end,
lists:any(F_Member, Pos) and ...

end, BdVars),
...

Figure 8. Portion of the code of refac rename var.erl

in Figure 7, is a list. This code will surely fail if ever executed.
We could not decipher what exactly this lists:any/2 call and
two similar occurrences further down in the code of cond check/3
try to do, so we did the best action we could think of: we simply
wrapped the Pos variables in a list. This silenced all but one Dia-
lyzer warnings on the complete set of files of Wrangler 0.3.

3.3 Strengthening and factoring -type declarations
Since we were unfamiliar with Wrangler’s code, when adding con-
tracts we initially mapped most types mentioned in @spec annota-
tions (like for example the types syntaxTree() and cat() in the
example of the previous section) to the type any(). This is the most
general type of the type system, representing the set of all Erlang
terms. Mapping these types to any() has the property that Dialyzer
will not report any contract violations due to a mistake in the def-
initions of these types. On the other hand, it is clear that in most
cases these type names denote only a subset of all Erlang terms and
mapping them to any() is a gross overapproximation. We can and
should do better than that.

However, unless one is pretty certain about the values of types,
we recommend that initially one is not overly zealous in constrain-
ing them. The reason is that over-constrained type declarations can
result in a lot of warnings from Dialyzer. As a result, it might be
quite hard to find the culprits and correct these warnings in con-
junction with erroneous -spec declarations. We instead recom-
mend that one first tries to come to a state where the existing -spec
declarations do not result in any warnings from Dialyzer and only
then start constraining the types. Indeed, this is the approach we
followed when typing Wrangler.

Sometimes, Edoc @type annotations already exist in the files
and these can be changed to the corresponding -type declarations.
Some other times, type declarations are pretty obvious, as e.g. for
the case of the filename() type that we mapped to string(). Fi-
nally, often information about types exists in comments or types are
pretty clear from the structure of terms and the names of variables.
This is for example what we did for pos(). In various parts of the
code, it was mentioned that this type denotes a pair of integers.
Thus, we initially added the declaration:

-type pos() :: {integer(), integer()}.

and corrected the warnings reported by Dialyzer. None of them was
related to this declaration. Then, looking deeper in the code, we re-
alized that pos() denotes the line and column numbers of a posi-
tion in the program source; the position {0,0} was used to denote
the default position or the absense of position information. We sub-
sequently refined its declaration to exclude negative integers:

-type pos() :: {non neg integer(), non neg integer()}.

For safety, a Wrangler programmer might want to further constrain
this type to appropriate integer ranges for lines and columns that a
source file might contain. For example, the above declaration can
be refined to:

-type pos() :: {0..100000, 0..200}.

In short: like applications, types can be gradually refined and
strengthened up to the point that the programmer wishes to expose
information about sets of values and impose constraints on their
uses. This way, programs can protect themselves from accidentally
violating these constraints.

Once types are declared, often one notices that the same type
definition appears in more than one file. For example, the above
type declaration for pos() was added and refined in a total of four
Wrangler files. It is of course bad software engineering practice
to have the same information in different places in the code. One
can either place this type definition in a common header file which
can then be included by all files that need it, or place it in only
one file, say m.erl, and then in all other files can use the notation
m:t() to refer to this t() type definition that module m contains.
For Wrangler, since a wrangler.hrl file already existed, we opted
for factoring all type declarations that were used in more than one
module to this header file.

3.4 Strengthening underspecified -spec declarations
The next step is to gradually strengthen some -spec declarations,
because quite often many of them are underspecified. For exam-
ple, in the code of Wrangler about a third of all @spec annotations
specify a return type of term() for the corresponding functions.
Obviously, this return type is not very precise; most of these func-
tions return terms with a statically known structure.

Luckily, when specs become part of the code, there is an easy
automatic way to discover the underspecified ones among them:

> dialyzer -Wunderspecs --src -I ../hrl -c *.erl

Running this command revealed a total of 19 underspecified
-spec declarations (out of the 54 ones). This was after we strength-
ened the -type declarations; the number would have been 24 if we
had not done so.

Correcting the underspecified declarations is quite easy. For
example, for one of them Dialyzer reports:

refac_duplicated_code.erl:53:
Type specification for duplicated_code/3 ::

([filename()],[byte()],[byte()]) -> any()
is a supertype of the success typing:

([string()],[byte()],[byte()]) -> {’ok’,[1..255,...]}

and of course it is a simple matter to change the return type in
the -spec declaration of this function from any() to either the
return type which is reported by Dialyzer (denoting a two tuple
where the second element is a non-empty string) or to the slightly
underspecified but much more readable type {’ok’,string()}.

It is important to note that the success typing information re-
ported by the -Wunderspecs option of Dialyzer is a conservative
approximation of the behaviour of the function which is safe to use
and can be copied and pasted in the file as is. Its use will never re-
sult in any additional Dialyzer warnings. Dialyzer does not really
need its presence because it is the one that it infers. But there is
a good reason to explicitly add this information in the file: it pro-
vides useful documentation and from that point on its consistency
with the code can be statically checked by Dialyzer.

Sometimes this search for underspecified contracts uncovers
repeated patterns which are so common that they deserve their
own type declaration. For example, the Dialyzer call above re-
vealed that many Wrangler files define an auxiliary function
application info/1 that returns a two tuple of the form {{ , },
non neg integer()}. Turns out that the two underscores are al-
ways atoms and the non-negative integer represents the arity of a
function. We thus added the following type declaration:

-type appl_info() :: {{atom(),atom()}, arity()}.

78

> erlc +warn_missing_spec -I ../hrl refac_rename_var.erl
./refac_rename_var.erl:166: Warning: missing specification for function pre_cond_check/4

> typer --show-exported -I ../hrl refac_rename_var.erl
Unknown functions: [{refac_syntax,get_ann,1}, ...,

{refac_util,envs_bounds_frees,1}, ..., {refac_util,write_refactored_files,1}]
%% File: "refac_rename_var.erl"
%% ----------------------------
-spec pre_cond_check(tuple(),_,_,atom()) -> bool().
-spec rename(Tree::syntaxTree(),DefinePos::pos(),NewName::atom()) -> {syntaxTree(),bool()}.
-spec rename_var(FileName::filename(),...,SearchPaths::[string()]) -> {’ok’,string()} | {’error’,string()}.

> typer --show-exported -I ../hrl refac_rename_var.erl -T refac_util.erl
Unknown functions: [{refac_syntax,get_ann,1}, ...,

{refac_util,parse_annotate_file,4},{refac_util,post_refac_check,3}]
%% File: "refac_rename_var.erl"
%% ----------------------------
-spec pre_cond_check(tuple(),non_neg_integer(),non_neg_integer(),atom()) -> bool().
-spec rename(Tree::syntaxTree(),DefinePos::pos(),NewName::atom()) -> {syntaxTree(),bool()}.
-spec rename_var(FileName::filename(),...,SearchPaths::[string()]) -> {’ok’,string()} | {’error’,string()}.

Figure 9. Finding missing contracts for exported functions of module refac rename var using Typer

in the header file of Wrangler although we could refine the two
atom() types even further.

With the help of Dialyzer, many underspecified contracts can
be strengthened more or less automatically. However, one should
be aware that Dialyzer does not report all underspecified contracts.
Instead, Dialyzer only reports those -spec declarations that are
found strictly more general than the corresponding success typings
that it infers for these functions [5]. If there exists even one argu-
ment position in the -spec declaration which is more specific than
the corresponding success typing, Dialyzer will not report these
declarations as underspecified. For this reason, one might want to
manually inspect all -spec declarations to spot arguments and re-
turn values whose types are underspecified. In fact, this is what we
did for Wrangler 0.3. After we corrected underspecified contracts
which Dialyzer reported, we used grep to detect -spec declara-
tions with an occurrence of the term() or any() type and manu-
ally corrected these. There were an additionally nine such -spec
declarations. The whole process described in this subsection took
about two hours to complete.

3.5 Adding -spec declarations for exported functions
To ease development and maintainability of Erlang applications,
we recommend that modules contain -spec declarations for all
their exported functions. This way, at least their public interface
is documented and Dialyzer can detect possible violations. To help
detect modules whose public interface is not documented, we in-
troduced a new compiler option in Erlang/OTP R12B-3, called
warn missing spec, which warns about missing -spec declara-
tions for all exported functions of a module. We used this option
on the files of Wrangler 0.3 which are not from Erlang/OTP. The
number of existing and missing specs for exported functions for
these modules is shown in Table 3. As can be seen, only half of the
exported functions have a publicly documented interface.

With the help of this new compiler option and of the Typer
tool the missing function specifications can also be generated semi-
automatically. For example, Figure 9 shows the three commands we
used to find the missing contract of module refac rename var.
The first command uses the new compiler option to see the exported
functions without specifications; there is only one of them in this
module. Subsequently, Typer is used to generate specifications for
all exported functions in this module. For all functions with ex-
isting specifications (e.g. functions rename/3 and rename var/5

@specs
module present missing
refac batch rename mod 1
refac duplicated code 1 1
refac expr search 1 2
refac fold expression 2
refac gen 2 4
refac module graph 1
refac move fun 2
refac new fun 1
refac rename fun 1 1
refac rename mod 1
refac rename var 2 1
refac util 21 21
wrangler 11
wrangler distel 13
wrangler options 1

Table 3. Number of existing and missing specs for all exported
functions of Wrangler 0.3 modules; blank entries denote 0

in this case) Typer is printing them as these appear in the file.
But Typer also generates conservative approximations of specifica-
tions for the remaining functions. As can be seen, the first attempt
to generate such a specification for function pre cond check/4
was only partly successful. The generated specification contains no
type information for the second and third argument of the func-
tion because Typer also complained that it does not know anything
about functions of modules refac syntax and refac util that
the refac rename var module is using. By instructing Typer to
trust the existing function specifications of file refac util.erl
(but recall that this module has specifications for only half of its
functions), Typer is able to infer an accurate specification for func-
tion pre cond check/4.

Actually, in this particular case, we happened to be somewhat
lucky. Module refac util contained type specifications which
are sufficient for Typer to infer a relatively accurate type informa-
tion for pre cond check/4. However, often this is not the case. In
those situations, we recommend that the user starts from leaf mod-
ules (i.e., modules which do not call functions from other modules),
use Typer to annotate their exported functions with contracts, and
continue bottom up in the module dependency graph until all mod-
ules are annotated with contracts.

79

One can even be brave and use the --annotate option of Typer,
which will automatically insert the generated -specs in the source
code of the file(s) on which Typer is run.

Of course, one must always keep in mind that the specifications
that Typer generates are conservative approximations (in fact, they
are success typings) and will never contain any constraints that
are not present or enforced by the source code of the module.
In other words, these automatically generated specifications are
correct but possibly imprecise. In most cases, the user needs to
refine them manually, both in order to strengthen them and in order
to use appropriate type names for their arguments. For example, the
occurrence of tuple() in the specification of pre cond check/4
denotes a syntaxTree().

4. Contacting the Authors of Wrangler
At this point, instead of proceeding on our own, we decided to get
in touch with the authors of Wrangler. We sent them our paper with
the information it contains up to this point.

In the beginning of July 2008, the code of Wrangler had been
extended and somewhat changed compared with the version of Jan-
uary 2008 that we were looking at, but most of our steps could eas-
ily be retraced even in the development version of Wrangler. The
Wrangler authors confirmed our findings. They also added -spec
declarations for most exported functions of Wrangler modules. Un-
fortunately, they added these specifications in one go and were sub-
sequently confronted with many Dialyzer warnings that they could
not figure out their cause. So, they asked for our help. Of course,
the culprit was that some of the -specs that they added were in
conflict with the functions’ uses. In other words, the Wrangler au-
thors did not only confirm our findings but also corroborated our
opinion that converting all @spec annotations into -spec declara-
tions in one go is something not recommendable in code bases of
significant size.

With our help, the erroneous function specifications which were
resulting in warnings from Dialyzer were corrected. There were
eight of them in a total of about 150 -spec declarations. In the
process, some of the specifications written by the authors of Wran-
gler were tightened and a few more were added by us. The end
result was a Wrangler code base which was totally free from Dia-
lyzer warnings, more robust, and with better documentation about
its main functions. The Wrangler authors were happier but we were
still not fully satisfied...

5. Testing Contracts of Wrangler
What troubled us was the following. Because Dialyzer’s analysis is
conservative and based on approximations, Dialyzer never reports
a code discrepancy if it is not absolutely certain that there is some-
thing wrong with the code. In particular, all -spec declarations are
trusted and are assumed correct unless Dialyzer discovers a clear
conflict between their definitions and uses. For functions with no
calls, for functions whose calls are with arguments whose types are
not precise enough, or in cases where the return value is not in-
volved in any explicit pattern matching, contract violations will not
be detected or reported.

For this reason, we have created yet another tool that, given a
test suite, dynamically checks the validity of -spec declarations in
a set of files. This tool is not yet publicly available and its interface
is subject to changes so we will only describe its main idea here.

Currently, the tool starts with a set of .beam files and a test
suite which can be called from some top-level function (e.g.
mytest:run/N) possibly with some arguments. For all files which
have been compiled with debug info on (and thus whose -specs
are retained in the byte code), it will employ runtime monitoring
to check the validity of their contracts and record all violations it

detects while the test suite is running. The recording of all contact
violations happens using the Erlang error logger and can be saved
in a file, if so desired. The contract checker is straightforward to
use for code bases with an already existing test suite. The only
drawback, albeit a serious one, is that the test suite will run sig-
nificantly slower. However, because all calls to contract-annotated
functions originating from non debug-compiled modules will not
be checked, the user can fully control which parts of the code base
will be contract checked and the amount of runtime overhead to the
test suite.

The authors of Wrangler provided us with a small test suite
that we used to test the validity of -spec declarations in files that
were somehow “touched” by this test suite. These files contained
a total of 106 -specs out of which 55 were checked at least once;
the remaining 51 concerned functions that were not called by the
test suite. The contract checker detected a total of six contract
violations: two in calls to functions and four cases where functions
returned a value of different type than promised.

Two of the contract violations involved functions get toks/1
and concat toks/1 of the heavily called refac util module.
They were both due to an erroneous declaration of the token()
type by the Wrangler authors. This type was declared as:

-type token() :: {’var’, pos(), atom()}
| {’integer’, pos(), integer()}
| {’float’, pos(), float()}
| {’char’, pos(), char()}
| {’string’, pos(), string()}
| {’atom’, pos(), atom()}
| {atom(), pos()}

but failed to account for the fact that the lexical analyzer also
returns white spaces and comments as tokens. We extended this
declaration by including the following two cases:

| {’whitespace’, pos(), whitespace()}
| {’comment’, pos(), string()}.

and added an appropriate definition for the whitespace() type.
The refac util module contained another contract violation.

The function get bound vars/1 was declared as:

%% @doc Return the bound variables of an AST node.

-spec get_bound_vars(Node::syntaxTree()) -> [atom()].
get_bound_vars(Node) ->

get_bound_vars_1(refac_syntax:get_ann(Node)).

failing to account for the fact that a variable annotation can oc-
casionally be a two tuple containing an atom and a position (e.g.
{’Self’,{77,11}}).

The forth violation concerns function fold expression/3 of
the refac fold expression module. Its contract reads:

-spec fold_expression(filename(),integer(),integer()) ->
{’ok’, [filename()]} | {’error’, string()}

but it is clear from the code, shown in Figure 10, that this function
returns something different than a list of filenames (strings) when
the last argument to the fold expression/4 function is emacs.

A similar, though not the same violation, concerned the return
type of refac move fun:move fun/6. Finally, the last violation
was detected in the contract of function refac gen:generalise/5
whose last argument was erroneously specified as being a dir()
when in fact it should be [dir()] (i.e. a list of directories).

After the corresponding changes, the contract checker reported
no violations when running Wrangler’s test suite. Of course, this
does not mean that Wrangler’s contracts were not erroneous any-
more. Instead, it just means that contracts which were exercised by
the test suite accurately reflect their common uses.

80

fold_expression(FileName, Line, Col) ->
fold_expression(FileName, Line, Col, emacs).

fold_expression(FileName, Line, Col, Editor) ->
case refac_util:parse_annotate_file(FileName, true, []) of

{ok, {AnnAST, _Info}} ->
...
Candidates = search_candidate_exprs(AnnAST, FunName, FunClauseDef),
case Candidates of

[] -> {error, "No expressions that are suitable for folding against ..."};
_ -> Regions = case Editor of

emacs ->
lists:map(fun({{{StartLine, StartCol}, {EndLine, EndCol}},NewExp}) ->

{StartLine, StartCol, EndLine, EndCol, NewExp, {FunClauseDef, ClauseIndex}}
end, Candidates);

eclipse -> Candidates
end,

{ok, Regions} %% or {ok, FunClauseDef, Regions}? CHECK THIS.
end;

{error, Reason} -> {error, Reason}
...

Figure 10. Portion of the code of refac fold expression.erl

6. Concluding Remarks
In this paper we described in detail the steps needed to gradually
type the code base of an existing Erlang application. We carefully
documented the methodology we advocate, the effort that is re-
quires, and the pitfalls that it may involve. In most code bases the
process is far from straightforward, but with the help of the static
and dynamic analysis tools we have developed it can at least be
performed semi-automatically.

In our experience, what we have described for the code base of
Wrangler in no way refects on its quality as an application. In fact,
it is quite typical for most Erlang applications out there on which
we have applied Dialyzer. Type information is not a panacea, but
having it as part of the code helps in catching some easy to detect
programming errors, documents intended uses of functions and
results in code which is easier to understand and whose correctness
is easier to maintain.

Acknowledgements
The research of the second author has been supported in part by
a grant from the Swedish Research Council (Vetenskapsrådet).
We thank Huiqing Li and Simon Thompson for confirming our
findings, giving us access to their repository and sending us a test
suite for Wrangler.

References
[1] M. Jiménez, T. Lindahl, and K. Sagonas. A language for specifying

type contracts in Erlang and its interaction with success typings. In
Proceedings of the 2007 ACM SIGPLAN Erlang Workshop, pages
11–17, New York, NY, USA, Sept. 2007. ACM Press.

[2] H. Li and S. Thompson. Testing Erlang refactorings with QuickCheck.
In Pre-proceedings of Implementation of Functional Languages, Sept.
2007.

[3] H. Li and S. Thompson. Tool support for refactoring functional
programs. In Proceedings of the 2008 ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-Based Program Manipulation,
pages 199–203. ACM Press, Jan. 2008.

[4] T. Lindahl and K. Sagonas. Detecting software defects in telecom
applications through lightweight static analysis: A war story. In C. Wei-
Ngan, editor, Programming Languages and Systems: Proceedings of
the Second Asian Symposium (APLAS’04), volume 3302 of LNCS,
pages 91–106. Springer, Nov. 2004.

[5] T. Lindahl and K. Sagonas. Practical type inference based on success
typings. In Proceedings of the 8th ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming, pages 167–178,
New York, NY, USA, 2006. ACM Press.

81

