
Towards Formalising Erlang
Failure and Failure Detection

Audrianne Farrugia

Supervisor: Dr. Adrian Francalanza

Faculty of ICT

University of Malta

May 2011

Submitted in partial fulfillment of the requirements for the degree
of B.Sc. I.C.T. (Hons.)

Faculty of ICT

Declaration

I, the undersigned, declare that the dissertation entitled:

Towards Formalising Erlang Failure and Failure Detection

submitted is my work, except where acknowledged and referenced.

Audrianne Farrugia

27 May 2011

ii

Acknowledgements

My deepest gratitude goes first and foremost to my supervisor, Dr. Adrian
Francalanza who extensively assisted me throughout the course of this disser-
tation. His unfailing guidance was key in developing an understanding of the
subject.

Heartfelt thanks goes to those close to me, especially my family for their moral
support throughout my educational experience. Their absolute confidence in me
and constant encouragement was greatly needed and appreciated.

iii

Abstract

Lately, more emphasis is being put on building fault-tolerant parallel systems.
This fact can be clearly seen from the number of companies that are opting to
develop their systems in Erlang; a parallel language which is renowned for its
error handling capabilities. A sound understanding of a system’s behaviour when
errors occur is the key to developing truly fault-tolerant software.

This dissertation investigates Erlang’s error handling mechanisms so as to
better understand how Erlang behaves in the presence of errors. A formal model is
defined in order to provide a precise and unambiguous description of the behaviour
of these mechanisms. The correctness of the model is evaluated by considering
a number of Erlang programs and comparing the behaviour as described by the
model with that of actual Erlang. Ultimately, the defined model is animated
through an evaluator.

iv

Contents

1. Introduction 1

1.1 Aims and Objectives . 4

1.2 Methodology . 5

1.3 Dissertation Overview . 5

2. Background 6

2.1 Introduction . 6

2.2 The Need for Parallel Languages 6

2.3 Message Passing Languages . 7

2.4 Mailbox Based Languages . 8

2.5 Erlang . 9

2.5.1 Basic Erlang . 10

2.5.1.1 Erlang Values . 10

2.5.1.2 Single Assignment 10

2.5.2 Case Expression . 11

2.5.2.1 Spawning New Processes 11

2.5.2.2 Sending and Receiving Messages 12

2.5.2.3 Process Pid . 14

2.5.3 Error Handling in Erlang 15

2.5.4 Recovering from Errors . 15

2.5.5 Local Error Handling . 17

2.5.5.1 Exceptions in Erlang 17

2.5.5.2 Try-catch . 17

2.5.5.3 SumNProduct - Sequential Version 17

2.5.5.4 SumNProduct - Parallel Version 18

2.5.6 Remote Error Handling . 20

2.5.6.1 Monitoring . 24

v

2.5.6.2 spawn link, spawn monitor 26

2.5.6.3 Explicit Error Signals 26

2.5.6.4 SumNProduct - Remote Error Handling 28

2.6 Conclusion . 31

3. Formal Semantics 32

3.1 Introduction . 32

3.2 The need for Formal Semantics in Erlang 32

3.3 Current Formal Semantics in Erlang 33

3.3.1 Differences Between Current Semantics and Defined Model 34

3.4 Erlang System . 36

3.5 Erlang Subset . 36

3.6 Contextual Rules . 38

3.7 Erlang Process . 39

3.8 Case Statement . 40

3.9 Local Error Handling - try-catch 43

3.9.1 sumNProduct Example(Sequential version) 43

3.10 Parallel Erlang . 45

3.10.1 sumNProduct Example(Parallel Version) 47

3.11 Remote Error Hadling . 49

3.11.1 Links and System Processes 49

3.11.2 Error Propagation . 52

3.11.3 Spawn link . 54

3.11.4 Explicit error signals . 58

3.11.5 Monitors . 64

3.11.6 sumNProduct Example(Remote error handling) 67

3.12 Conclusion . 72

4. Implementation Framework 73

4.1 Introduction . 73

4.2 System Design . 73

4.3 Input . 74

4.4 Parsing . 74

4.4.1 Lexer . 75

4.4.2 Parser Combinators . 75

4.5 Evaluator . 78

vi

4.6 Building the Output File . 84

4.7 Conclusion . 85

5. Evaluation 86

5.1 Introduction . 86

5.2 Evaluation Strategy . 86

5.3 Assessing the Defined Model . 87

5.3.1 Test Case 1 : Local Error Handling 88

5.3.2 Test Case 2 : Remote Error Handling - Links 91

5.3.3 Test Case 3 : Remote Error Handling - Monitors 95

5.3.4 Test Case 4 : Explicit Exit Signals 98

5.3.5 Test Case 5 : Order of Signal Evaluation 100

5.3.6 Test Case 6: Handling Errors Locally or Remotely 106

5.4 Evaluation Results . 114

5.4.1 Accomplishments . 114

5.4.2 Limitations . 115

5.4.2.1 A Single-node Semantics 115

5.4.2.2 Simulation Time 116

5.5 Conclusion . 117

6. Conclusion and Future Work 118

6.1 Benefits Achieved . 118

6.2 Suggestions for Future Work . 119

6.2.1 Distributed-node Semantics 119

6.2.2 Extend chosen Erlang Subset 120

6.2.3 Improve Evaluator’s Efficiency 120

6.2.4 A semantic theory based around notions of equivalence . . 120

6.3 Conclusion . 121

A. 122

A.1 Prerequisites . 122

A.2 Using the Evaluator . 122

vii

List of Figures

1.1 System implemented in 1.2 . 3

2.1 SumNProduct System . 16

2.2 Remote Error Handling . 21

2.3 Erlang system . 22

2.4 Error propagation . 23

2.5 Error propagation . 23

2.6 Links & Monitors - Process Pid1 terminates 24

2.7 Links & Monitors - Process Pid2 terminates 25

2.8 Explicit error signals . 27

3.1 Link Failure as described by Current Semantic Definitions 50

3.2 Exit propagation through links 52

3.3 Exit propagation through explicit error signals 59

3.4 Monitor and Links . 65

4.1 System’s design . 74

4.2 Different interleavings . 80

4.3 Different interleavings . 81

4.4 Possible Interleavings of System in 4.2: process B fails to send

message . 81

4.5 Possible Interleavings of System in 4.2: process B sends message . 82

4.6 Possible Interleavings of System 4.2 82

4.7 Error handling - possible interleavings 84

5.1 Evaluation Strategy . 87

5.2 Local error handling - evaluator’s output 90

5.3 Remote error handling - Trace list’s output 93

5.4 Remote error handling - Evaluator’s output 95

viii

5.5 Order of signal evaluation . 102

5.6 Order of signal evaluation . 104

5.7 Order of signal evaluation . 106

5.8 Local Error Handling Example . 107

5.9 Remote Error Handling Example - System 109

5.10 Remote Error Handling Example - Unexpected Behaviour(1) . . . 112

5.11 Remote Error Handling Example - Unexpected Behaviour(2) . . . 113

5.12 Error signals - Distributed Systems 116

ix

List of Tables

3.1 System rules . 36

3.2 Erlang’s subset . 37

3.3 Contextual rules . 38

3.4 Process Termination Rules . 40

3.5 Case rules . 40

3.6 Rules for local error handling . 43

3.7 Process rules . 45

3.8 Process rules for linking and system processes 49

3.9 Error propagation . 52

3.10 Spawn link rule . 54

3.11 Explicit exit signals . 58

3.12 Self-sent exit signals . 58

4.1 Actions to be performed when executing program 4.6 79

4.2 Actions to be performed . 81

4.3 Actions to be performed when executing program 4.9 83

5.1 Monitors - Behaviour as described by model 96

5.2 Explicit exit signals - Behaviour as described by model 99

5.3 Explicit exit signals - Behaviour as described by model 99

5.4 Soundness & Completeness of Model 114

x

1. Introduction

In the past few years, there has been cosiderable interest in concurrent program-

ming languages such as Erlang. This fact is clearly reflected in the increasing

number of companies that are opting to use Erlang in their systems. Among

such systems one finds Facebook’s chat service, Amazon’s SimpleDB and Yahoo’s

bookmarking service Delicious. Undoubtedly, one of the driving factors behind

Erlang’s success lies in the fact that it enables developers to build fault-tolerant

systems using really simple constructs.

Understanding the behaviour of Erlang systems in the presence of errors may

not always be an easy feat. This is even more so when considering the fact

that due to the parallel nature of Erlang systems the interleaving of processes

may result in different outputs even when the same error occurs at consecutive

executions of a system. Nonetheless, a sound understanding of a system’s er-

ror handling behaviour is the cornerstone to the development of truly reliable

software.

Experience has shown that lack of understanding of a system’s behaviour in

the presence of errors is one of the contributing factors behind many system

failures. One classic example is the Ariane 5 space shuttle which was shred to

pieces due to an unhandled exception[4]. Additionally, [5] claims that 50% of

all system failures in telephone switching applications are caused by faults in

exception handling algorithms.

In order to ensure a higher degree of reliability, the computing community has

lately started to adopt formal methods for system specification and modelling.

The main goal of a model is to faithfully mirror the behaviour of a system. One

of the strengths in models stems from the fact that they are able to abstract away

from the complex details of a system illustrating only the relevant aspects which

1

Chapter 1. Introduction

need to be checked. For instance, whereas programs are concerned with language

syntax and resource allocation, when building models these details are ignored

and more emphasis is put on interactions, actions and concurrency[1]. The sim-

pler nature of the model makes it much easier to reason about the behaviour of

the system in various situations. Besides that, the reduction in complexity also

provides a better understanding of the program’s behaviour.

Ideally a model is specified before a new programming language is imple-

mented since this yields a better language design. In addition, the simplistic

nature of the model provides future language learners a clearer definition of what

the programming constructs are expected to do. However, in most cases no lan-

guage models are specified prior to the implementation of a new programming

language. Such was the case when Erlang was born.

As a result, even though Erlang makes use of really simple error handling

constructs, sometimes it may not be easy to reason about the behaviour of Erlang

systems in the presence of errors. This is mainly due to the fact that Erlang’s

error handling mechanisms differ significantly from the ones found in mainstream

programming languages.

One distinct characteristic of Erlang’s error handling behaviour lies in the fact

that apart from handling errors locally, Erlang is also able to handle errors re-

motely. When using Erlang’s local error handling mechanisms, errors are handled

by the same process in which they occur. This is done by using the try-catch

statement, as shown in the following program:

try

%% ****code****

catch

%% error handling code

end.

Listing 1.1: Local Error Handling

When using remote error handling, two seperate processes are used. One process

will be responsible to execute the *** code **** part. If an error occurs, this

process would simply fail without attempting to recover from the error. The

error would then be handled by another different process. A simple program

which makes use of Erlang’s remote error handling constructs is the following:

2

Chapter 1. Introduction

%% spawn a new process to handle errors

spawn_link(?MODULE,errorHandler,[Pid]),

%% *** code ****.

Listing 1.2: Remote Error Handling

In this case, Erlang will first spawn a new process which will be responsible of

handling any errors that might occur while executing the *** code **** part.

After spawning the “error handling” process, the system continues to execute the

rest of the program.

Figure 1.1: System implemented in 1.2

Here, it is important to note that extra attention must be given when build-

ing systems which make use of the remote error handling constucts. This is

because the parallel nature of these systems may sometimes yield to unexpected

behaviour. For instance, let’s consider the two programs that have been presented

so far. At first glance, the program described in Listing 1.1 gives the impression

that it should always behave in the exact same way as the one described in

Listing 1.2. However, in truth there exist some subtle differences between the

two programs.

At this point, it is nigh on impossible to identify the underlying cause that

leads the two programs to behave differently. This problem brings to light the

fact that even though both programs make use of really simple constructs un-

derstanding the behaviour of such systems in the presence of errors is not as

straightforward as it might seem. Hence, defining a model for Erlang’s error han-

dling constructs would definitely provide a valuable tool to correctly understand

the behaviour of such systems.

3

Chapter 1. Introduction

1.1 Aims and Objectives

The primary aim of this project is to study the mechanisms behind Erlang’s

renowned error handling capabilities. Ultimately, a model is defined so as to

get a better understanding of Erlang’s distinct error handling mechanisms. The

underlying reasons behind defining such model, is that a model is able to :

Offer a better insight - The simplistic nature of the defined model makes it

easier to reason about the behaviour of Erlang’s error handling constructs. This

is because, through the model, it becomes really straightforward to get a detailed

step-by-step description of how systems which make use of these constructs might

behave. Even though the primary aim of models is to serve as a tool upon which

analysis and verification can be performed, even the act itself of defining the

model may reveal certain subtleties which may lead to unexpected behaviour.

Explain the cause of unexpected behaviour - The model is also capable

of describing the cause of why a system behaved in an unexpected way. This

is because it enables us to analyse what went wrong through a retracing of the

system in execution.

Predict system’s behaviour - Through the model it becomes possible to

foresee how a particular system will behave. Exhaustive analysis of the model is

able to surface any faults that could arise while the system is running. Moreover,

since the model is able to provide a step-by-step description of how an Erlang

system behaves it enables us to identify those sequences of events that may lead

to any faulty behaviour.

Lay the foundations for a semantic theory - One of the strengths of a

formal model is that it provides an accurate and unambiguous description of the

behaviour of specific constructs. Therefore, whereas informal semantics defini-

tions fall short in ensuring that two different syntactic systems behave in the same

way, a model is able to ascertain if the two different systems are truly equivalent

or not.

4

Chapter 1. Introduction

1.2 Methodology

The main focus of this work is to define a model for Erlang’s error handling

constructs. The steps taken to achieve this goal are the following:

1. Obtain a good understanding of Erlang’s error handling mechanisms focus-

ing on the different constructs that are used to build fault-tolerant systems.

2. Define a mathematical model to faithfully describe the different error han-

dling constructs that are incorporated within Erlang.

3. Animate the defined model through an evaluator.

4. Evaluate the correctness of the defined model. This is done by considering

a number of different Erlang systems and comparing the behaviour as de-

scribed by the model with the way the program behaves when run on the

Erlang VM.

1.3 Dissertation Overview

This dissertation is organized as follows:

Chapter 2 descibes the most basic concepts needed to fully understand the

motivation behind this work. Primarily, it outlines those characteristics that

make Erlang an ideal language for implementing fault-tolerant systems. It then

gives a brief overview of the Erlang language, introducing those constructs for

which a formal semantic definition is defined in this project. A number of pairs of

simple Erlang programs which seem to have identical behaviour are considered.

Chapter 3 presents a formal description of Erlang’s error handling constructs.

These formal rules are then used to show if the examples described in the previous

chapter are truly equivalent or not.

Chapter 4 describes how the formal semantic rules defined in Chapter 3 are

ultimately animated through an evaluator. The main design choices that were

taken when developing the evaluator are discussed.

Chapter 5 illustrates the evaluation strategy used to see to what degree the

aims set forth in the beginning of this project have been met. It also mentions

the main limitations of the defined semantic rules and of the designed evaluator.

Chapter 6 states the results that have been achieved through this project. It

also proposes some future work that could be done.

5

2. Background

2.1 Introduction

The scope of this chapter is to present a general overview of some basic concepts

which are key in understanding the motivation behind this work. Primarily, it

outlines the main reasons why more emphasis is being put on parallel languages.

The different models of parallel languages are identified highlighting the strengths

and weaknesses of each model. Subsequently, some light is shed on Erlang, the

language whose error handling behaviour will be ultimately defined formally.

2.2 The Need for Parallel Languages

The primary goal of this project is to study the fault recovery mechanisms inte-

grated within a parallel language. Perhaps at this point one might ask: “Why

are we considering a parallel language in the first place? Maybe the best way to

address this question is to first present some facts describing the situation that

we are currently in.

Way back in 1965, Gordon Moore had predicted that the number of transistors

on an integrated circuit would double every couple of years[6]. For a long time

there seemed to be a direct relationship between the number of transistors and

software performance. However, in the last decade, the rate of improvement in

software performance has slowed significantly. The whole problem stems from

the fact that instead of increasing the clock speed we are now increasing the

number of cores. One major downside of this approach is that most software is

not capable of fully exploiting the benefits of multi-core processors. Doubling the

number of cores in a CPU does not necessary lead to doubling the performance

6

Chapter 2. Background

as was the case when doubling the clock speed.

Therefore, whereas before all software benefited instantly from the gradual

improvement in computer performance, now we are facing a situation where ex-

isting software is finding it hard to keep pace with hardware. Nonetheless, the

world is still expecting that the computing community continues providing soft-

ware with improved performance. Consequently, in order to quench the thirst

for more powerful software, a shift to parallel computing is required. This is

because, by adopting a parallel paradigm, software would be able to improve in

performance as a result of to the increased number of cores, similar to the way,

systems were able to become more efficient due to an increase in clock speed.

2.3 Message Passing Languages

Currently, the programming languages which support concurrent processes can be

categorized into two main classes: those that support interprocess communication

through shared memory communication and those that are able to exchange

data and information through message passing. The main difference, between

these two models is the fact that in the former model, processes communicate

by accessing the same instance of data which is physically found in memory.

In contrast, when using the message passing model, processes access different

instances of the same data, rather than the actual data itself.

The message passing model, is usually preferred when transferring small amounts

of data between processes[7]. This is due to the fact, that when accessing shared

memory one has to use locks in order to ensure that no two processes are writing

simultaneously at the same memory location, since this may inherently result in a

race condition. On the other hand, when using message passing mechanisms, the

risk of race conditions is reduced since data is sent directly between processes[10].

Moreover, message-passing systems tend to have a simpler system design since

one does not need to include any locks when accessing data.

Another major benefit of message passing is the fact that it increases the

degree of isolation between processes which guarantees that an error which occurs

in one process does not propagate to other processes[8]. This is not the case, when

using shared memory. A case in point is when a process crashes while updating

the shared memory. As a result, incorrect data might be stored in memory, which

may subsequently affect the behaviour of other processes accessing this erroneous

7

Chapter 2. Background

data. On the other hand, message passing ensures that such cases will never

occur.

Perhaps one downside of message passing model is the fact that systems adopt-

ing this model tend to be slower since all accesses to memory are implemented

using system calls in contrast to shared memory systems[7]. Nonetheless, in some

systems it is ideal to trade off efficiency in order to obtain a much simpler system

design which is able to handle errors in a much cleaner way.

One can appreciate even more the benefits of message passing over shared

memory through Nyström’s work in [9]. In his paper, Nyström compares the

shared memory model adopted by Java threads with Erlang’s message passing

model. He argues how Erlang offers much better parallelisation tools when com-

pared to Java and shows how this can be easily seen from the different ways in

which Erlang and Java presented their views with respect to the parallelisation

mechanisms they offer. He mentions that in one of Sun’s tutorials threads were

introduced in the following way:

The first rule of using threads is this: avoid them if you can.

Threads can be difficult to use, and they tend to make programs

harder to debug.

Conversely, Erlang presented the use of parallel processes to its users in the

following way:

Use one parallel process to model each truly concurrent activity

in the real world

If there is a one-to-one mapping between the number of parallel

processes and the number of truly parallel activities in the real world,

the program will be easy to understand.

This striking contrast between the two statements seems to hint that Erlang users

should be much more confident when building parallel system.

2.4 Mailbox Based Languages

The term message passing embraces both channel and mailbox/actor-model com-

munication. The primary difference between the two is that whilst a mailbox is

8

Chapter 2. Background

associated with a particular process, a channel is independent from any process.

In a mailbox system, a process is able to send messages to either its own mailbox

or to another process’ mailbox. However, it may only read messages from its own

mailbox. Another aspect of mailboxes is the fact that once a process terminates,

its mailbox will automatically no longer be available to other processes.

When using the channel mechanism, all processes in a system are able send

and receive to/from the same channel. In contrast to the mailbox mechanism the

channel is not associated with the pid of any of the processes. Consequently, if

for instance process A terminates, Process B should still be able to send/receive

messages from a particular channel. In actual fact, a channel may still be available

even when all processes in a system terminate unless it is destroyed by some

process.

Therefore, one major benefit of mailboxes over channels is that mailboxes from

their very nature guarantee that resources used to store messages are released

immediately upon a process failure. On the other hand, when using channels,

another process must be responsible of releasing any resources. As a result,

mailboxes can be considered as providing a cleaner recovery from errors since

redundant resources are released immediately.

2.5 Erlang

This section will delve deeper into one particular actor-based language, Erlang;

the language whose error handling mechanisms will be studied in this project.

Firstly, Erlang’s most basic constructs will be introduced. These constructs will

serve as the main building blocks to implement simple Erlang systems in later

stages of this project. Subsequently, Erlang’s error handling constructs will be

described so as to get a clear picture of the constructs for which a formal semantics

will be defined later on.

Here it is important to note that for the purpose of this project only a subset

of Erlang will be considered. The underlying reason is that defining a formal

semantics for all of Erlang’s constructs would be infeasible since this would result

in a rather cumbersome semantics. In addition, the chosen subset is close to the

one defined in [2] which describes a complete subset of Erlang, and therefore it

should be able to represent most of the systems written in Erlang.

9

Chapter 2. Background

2.5.1 Basic Erlang

Here some light will be shed on a number of different Erlang constructs. Primarily,

we will first look at those constructs that are needed to build sequential Erlang

systems. Then the constructs needed to build parallel Erlang systems will be

outlined.

2.5.1.1 Erlang Values

In the chosen subset, Erlang values may consist of atoms, integer, variables,

pids and lists. A new unique pid can only be assigned to a process once a new

process is created i.e. a user cannot assign a specific pid to a process. The pid

of a new process will be returned to the parent process once a process creation

function such as (spawn or spawn link) has been evaluated. Communication with

a particular process can only take place if its pid is known by the process wishing

to establish communication.

2.5.1.2 Single Assignment

The term single assignment refers to the fact that in Erlang once a variable

becomes bound to a value it cannot become bound to a different value. This

practice has been adopted in various functional programming languages such as

F# and Haskell because of side effects. To better understand what the single

assignment term actually refers to let’s consider the following piece of Erlang

code:

Value = [0],

Value = [Value,1],

...

Given the fact that variables can be bound only once, the above code will

result in a runtime error. This is because when evaluating the second expression

(Value = [Value,1]), Value has already been bound to [0] and therefore, the

system will fail when it attempts to bind Value to [Value,1]. In Erlang, the

correct way to implement to above code is by introducing a fresh new variable

name:

Value = [0],

Value1 = [Value,1],

...

10

Chapter 2. Background

2.5.2 Case Expression

The case statement behaves in the same way as in conventional programming
languages. A very simple example is :

case Number of

1 -> hello;

2 -> bye

end.

which returns hello if Number is equal to 1 or bye if Number is equal to 2.

In the chosen subset, the case statement also serves as an alternative to Er-

lang’s single assignment. For instance, let’s consider the assignment statement

:

Value = [0]

When evaluating this expression Value will become bound to [0]. The same

behaviour can be obtained by using the following expression :

case [0] of Value -> ... end

When evaluating the above expression, [0] is successfully pattern matched against

Value. As a result, Value becomes bound to [0]. Therefore, it is quite clear that

the above case statement behaves just like the assignment statement. Here, it is

noteworthy the fact that in Erlang the case statement is not a scoping construct

and hence any bindings that occur through this construct will hold even after the

end keyword. Thus, consecutive assignemnt statments can be expressed in terms

of the case statement as shown hereunder:

Value = [0],

Value1 = [Value,1],

...

⇔ case [0] of Value -> ok end,

case Value1 of [Value,1] -> end

2.5.2.1 Spawning New Processes

The spawn(m,f,a) function is the primary Erlang construct that creates new pro-

cesses. This function expects three arguments as input - (module name, function

name, arguments). The second argument indicates which function the newly cre-

ated process will start executing once it has been created. The third argument

refers to the values that are passed to the functions and the module name indi-

cates the module where the function definition is found. Once the spawn function

11

Chapter 2. Background

is evaluated it returns the pid of the new process so that the parent process will

be able to communicate with its child process. Therefore, when evaluating the

following expression:

Pid = spawn(math,sum,[[1,2,3]])

a new process will be created and Pid will become bound to the pid of the newly

spawned process. This new process will start executing sum([1,2,3]). The function

definition of sum should be found in the math module.

2.5.2.2 Sending and Receiving Messages

Sending of messages is done by using the infix construct ! . This construct expects

two arguments, the recipient’s pid and the message to be sent. For instance, in

order to send a [msg,hello] message to a process the following expression is used:

Pid ! [msg,hello].

Once this construct is evaluated the [msg,hello] message is appended to the mail-

box of the process identified by Pid. The latter process can then read the message

by using the receive construct as shown hereunder:

receive

[msg,Text] -> Text

end

The above code will cause the process to block until a message consisting of a

two element list, whose first element is the atom msg is received. Upon receipt

of such message, Text will become bound to the second element of the list. For

instance, in this case once the [msg,hello] message is received, it is successfully

pattern-matched against [msg,Text], and as a result Text will become bound to

the atom hello.

Here it is worth pointing out that in Erlang, the order of messages between a

pair of processes is guaranteed. Therefore, if say a process A sends two consecutive

messages to another process, say process B:

12

Chapter 2. Background

it may never be the case that process B receives the world message prior to

receiving the hello message. However, order of messages can only be guaranteed

between a pair of processes. With regards to message ordering between different

processes it may not always be possible to guarantee that messages will be received

in one specific order. A case in point is the following system.

In this system, process A sends two messages; it first sends the hello message to

process B and then it will send the world message to process C. When process B

receives the hello message, it will forward the received message to process C.

The above diagram illustrates that process C will receive the world message

prior to the hello message. However, in this particular system it may also be the

case that process C receives the messages in a different order. This may happen

if the following sequence of events takes place:

13

Chapter 2. Background

Just the same in both cases, process C is still able to select which of the two

messages to read/remove from the mailbox first. This can be done by using the

following coding:

receive

hello -> ...

end,

receive

world ->

end,

In this code excerpt, the hello and world atoms are used as patterns against

which, messages in the process’ mailbox will be pattern matched. In this case,

since the first receive statment is only able to read messages consisting solely of

the hello atom, the process will be suspended until the hello message is received

in its mailbox. Only then can the process proceed to read the world message.

2.5.2.3 Process Pid

The pid of a process is known by its parent process and by its owner. A parent

process will be informed about the pid of its child process, immediately after the

creation of its child. For instance, the spawn function always returns the pid of

the newly created process. A process is able of discovering its own pid by using

the self() built-in function. One example where the self() function may be used

is the following:

In this case process A spawns process B. Process B will act as an echo server,

echoing back any messages that it receives. As mentioned in the previous section,

in order for a process to send a message, it must know the pid of the recipient.

In this particular case, process A will be able to communicate with process B

by using the pid that is returned by the spawn function. However, since process

B does not know A’s pid it is not able to echo back A’s message. In order for

14

Chapter 2. Background

process B to be able to send messages, process A must include its own pid with

the messages it sends.

In this case, the self() function will evaluate down to PidA. Process B will

then be able to send back messages by using the received pid.

2.5.3 Error Handling in Erlang

Errors are likely to occur during a system’s runtime. This is even more so when

considering the fact that Erlang systems are not statically type checked and

therefore type errors have to be handled during runtime. If systems were to be

build using solely the constructs described so far, an exception or an error will

immediately result in a whole system failure. In this section Erlang’s simple yet

powerful error handling constructs will be introduced so as to get acquainted with

the constructs for which ultimately a formal semantics will be defined.

2.5.4 Recovering from Errors

Before describing the actual error handling constructs, we will consider a simple

system so as to get a clear overview of the different ways Erlang may recover from

errors. The considered system accepts as input two lists and returns the sum of

the first list, and the product of the second list. Error handling mechanisms are

used so as to handle the cases when non-numeric data is found in any of the input

lists.

15

Chapter 2. Background

Figure 2.1: SumNProduct System

Diagram 2.1 describes the different ways in which the system may be imple-

mented. It clearly demonstrates that when implementing the system sequentially,

each process is made up of coding surrounded by error handling coding. In the

second version of the system, the system experiences an improvement in efficiency

since the sum and product of the list are being carried out by two separate pro-

cesses. However, just as in the previous case, the process’ coding is cluttered

up with error handling code. This downside is overcome by adopting the design

shown in the last version of the system. In this case, thanks to remote error

handling the system enjoys a higher degree of seperation of concerns since every

process is only responsible of carrying out one particular task either calculating

the sum or the product or recovering from errors. In the following sections, we

will take a closer look into each of the different versions of the system outlining

the constructs that are needed to implement them.

16

Chapter 2. Background

2.5.5 Local Error Handling

2.5.5.1 Exceptions in Erlang

In Erlang there are three classes of exceptions:

• error

• throw

• exit

Exceptions of class error are usually caused due to some unforeseen error

such as calling an undefined functions or attempting to perform arithmetic op-

erations on non-numeric values. throw exceptions are generated by calling the

throw(Reason) built-in function. These types of exceptions are often used within

a try-catch blocks. exit exceptions can be generated by using the exit(Reason)

built-in function. The purpose of this exception is to terminate the process im-

mediately.

2.5.5.2 Try-catch

The try-catch construct has a similar behaviour to the one found in mainstream

programming languages. As mentioned in the previous section, there are three

types of exception classes that can be caught exit, throw and error. When catching

exceptions, the name of the exception class precedes the name of the exception

(errorClass:errorName). For instance, a divide by zero exception which is of class

error or a throw exception can be caught in the following way:

try

10/0

catch

error:badarith-> ’div by 0’

end.

try

throw(stop)

catch

throw:stop -> ’exception caught’

end.

2.5.5.3 SumNProduct - Sequential Version

The Erlang constructs that have been introduced so far, enable us to write the

sequential version of the sumNProduct system.

17

Chapter 2. Background

sum([]) -> 0; product([]) -> 1;

sum([H|T]) -> H+sum(T). product([H|T]) -> H * product(T).

sumNProduct(List1,List2) ->

Sum = try

%% calculate sum of given list

sum(List1)

catch

%% if error occurs return invalid

error:badarith -> invalid

end,

Product = try

%% calculate product of given list

product(List2)

catch

%% if error occurs return invalid

error:badarith -> invalid

end,

[Sum,Product].

Listing 2.1: SumNProduct - Sequential Version

In this case, the try-catch statement will be used so as to recover from er-

rors that might arise if non-numeric data is input. In both cases if an exception

is raised, the system will return the atom invalid. Here it is worth pointing

out that since the two computations have no side-effect actions it is preferable

that they are carried out in parallel. In the next section, the sumNProduct sys-

tem will be implemented using Erlang’s parallel constructs and the two different

implementations will be compared.

2.5.5.4 SumNProduct - Parallel Version

sumNProduct(List1,List2) ->

%% spawn a process to compute the sum of List1

spawn(math,sumProcess,[self(),List1]),

%% spawn another process to compute the sum of List2

spawn(math,productProcess,[self(),List2]),

18

Chapter 2. Background

%% receive the sum value}

receive

[sum,Value1] ->

%% receive the product value

receive

[product,Value2] -> [Value1,Value2]

end

end.

sumProcess(Pid,List) ->

Sum =

try

%% calculate sum of given list

sum(List)

catch

%% if error occurs return invalid

error:badarith -> invalid

end,

%% return Sum to parent process

Pid ! [sum,Sum].

productProcess(Pid,List) ->

Product =

try

%% calculate product of given list

product(List)

catch

%% if error occurs return invalid

error:badarith -> invalid

end,

%% return Product to parent process

Pid ! [product,Product].

Listing 2.3: SumNProduct Example - Parallel Version

The above program will spawn two processes; one process will compute the

sum and another will compute the product. This is done through the following

spawn calls:

%% spawn a process to compute the sum of List1

spawn(math,sumProcess,[self(),List1]),

%% spawn another process to compute the sum of List2

spawn(math,productProcess,[self(),List2]),

Listing 2.4: Spawning new processes

When evaluating these calls, Erlang will first create a new process which will start

evaluating the sumProcess function. Subsequently a new process is created which

will start evaluating the productProcess function. Here, it is important to note

that the sumProcess/productProcess function apart from the list of numbers, will

also expect the pid of the parent process(self() will evaluate down to the parent’s

19

Chapter 2. Background

pid). This pid is needed so that the newly created process will be able to send

back the sum or product of the input list once it completes its computation as

shown hereunder.

Pid ! [sum,Sum]. Pid ! [product,Product].

These are the last statements that are found in the sumProcess/ productProcess

function. One point worth pointing out at this point is that the first element of

the list to be sent(i.e. either sum or product atom) acts as a tag, so that the

parent process will be able to distinguish between the sum and product result.

In fact, when the parent process reads the received results, it will pattern match

against a two element list whose first element is either the sum or product atom.

%% receive the sum value

receive

[sum,Value1] ->

%% receive the product value

receive

[product,Value2] -> [Value1,Value2]

end

end.

Listing 2.5: Receiving Results of Sum and Product

When comparing the parallel version to its sequential counterpart, surely one

major benefit of the parallel one is that it may result in a significant improvement

in performance especially if the input lists are considerably large. Yet, in the

above implementation, errors are still handled locally and therefore code is still

cluttered up with error handling coding. In the next section, we will be introduced

to Erlang’s remote error handling constructs which will make it possible to make

an external process handle any generated errors.

2.5.6 Remote Error Handling

On the strength in Erlang when compared to mainstream programming languages

lies in the fact that it has adopted the notion of remote error handling. In order

to better understand what this term actually refers to let’s consider a very simple

system. In this example the system’s task is to compute the sum of two input

numbers. Error handling mechanisms need to be used in order to handle errors

that might arise due to invalid input data.

20

Chapter 2. Background

When using remote error handling two distinct processes are created:

Figure 2.2: Remote Error Handling

Process A’s task is to compute the sum of the two input numbers. If invalid

data has been input, Process A would simply fail without attempting to recover

from the error. Process B’s task is to handle any error which might occur. One

here can appreciate how the “let it fail” philosophy adopted by Erlang makes it

possible to implement systems having a higher degree of separation of concerns.

This is due to the fact that when using this approach the code responsible for

computing the sum of input data is not cluttered up with any exception handling

code. This yields a much cleaner and thus clearer coding.

The three main factors behind Erlang’s error handling mechanisms are:

• links : these can be seen as bidirectional paths between two processes along

which error signals travel. Each Erlang process has a link set which consists

of the pids to whom the process is linked. Whenever a process, say process

A links to another process say process B, B is added to A’s link set and

A is added to B’s link set. Once a process terminates it sends an error

signal to all processes found in its link set. Here it is worth noticing that

due to their bidirectional nature, two linked processes are guaranteed to

be notified about the termination of the other process irrespective of which

process created the link.

• error signals : these are the signals that are sent along the links. When-

ever a process terminates, error signals are sent to all linked processes to

notify them about its termination. Apart from being sent upon process

termination these signals can also be generated explicitly by using the ex-

it/2 built-in function. In the latter case these signals are used to fake the

termination of the process sending the signal.

21

Chapter 2. Background

• system processes : processes in Erlang can be classified in two distinct cat-

egories; system processes and non-system processes. The key difference

between the two is how they behave upon receipt of an abnormal error sig-

nal. A system process will translate the error signal into a normal message

and add it to the processes mailbox. On the other hand, a non-system pro-

cess will terminate upon receipt of an abnormal error signal. If a process

wishes to become a system process it can set its flag by using the expression

shown hereafter:

process_flag(trap_exit,true)

Similarly, a process may unset its process flag as follows:

process_flag(trap_exit,false)

By default, the process flag is not set and therefore a process will terminate

immediately on receipt of a process failure notification. If the process flag

has been set to true, the received notification will be added to the process’

mailbox and the process will be notified about a process’ termination by

reading the message from its own mailbox.

Let’s consider a very simple example of how these concepts are actually used.

In the following diagrams links are represented as straight lines and system pro-

cesses are represented as double-lined circles.

Figure 2.3: Erlang system

In the system described in 2.3 process A is linked to both process B and C.

Since all three processes are non-system processes, whenever any of them receives

an error signal they will terminate. Therefore, if process B terminates abnormally,

the following actions will follow.

22

Chapter 2. Background

Figure 2.4: Error propagation

Now let’s consider the same system, modifying Process A to a system process.

Figure 2.5: Error propagation

In this case the error signal sent by Process B is translated into an error mes-

sage and added to Process A’s mailbox. Process C is not notified about Process

B’s termination since there is no direct link between Process B and Process C.

System processes are highly used when building fault-tolerant systems and recov-

ery actions need to be done upon a process failure. For instance, in the above

23

Chapter 2. Background

case, process A could be programmed to restart a copy of Process B again once

it receives process B’s error message.

2.5.6.1 Monitoring

Monitors are very similar in concept to links. Monitors are created by using the

monitor built-in function. For instance, if a process wishes to monitor another

process whose pid is bound to Pid then the monitor(process,Pid) expression

is used. The key difference between monitors and links is that monitors are

unidirectional in contrast to links which are bidirectional. In addition, a monitor

will never terminate abruptly if the process it is monitoring fails. Instead, upon

process termination a message is added to the monitor’s mailbox. To better

understand the difference in behaviours between monitors and links let’s consider

the following diagrams.

Figure 2.6: Links & Monitors - Process Pid1 terminates

Figure 2.5.6.1 demonstrates the different ways in which the linked/monitored

process(i.e. Pid2) behaves when the process creating the link/monitor fails. It

clearly illustrates that since links are bidirectional a failure in Pid1 will imme-

diately be propagated to Pid2. On the other hand, in case 3 since monitors are

24

Chapter 2. Background

unidirectional, Pid2 will not be notified of Pid1’s failure.

Now let’s consider the case when process Pid2 terminates abnormally. As

shown in the diagrams below an error in Pid2, will be immediately propagated

to Pid1 both in the case when using monitors and links.

Figure 2.7: Links & Monitors - Process Pid2 terminates

When comparing the behaviour of linked and monitored processes one ques-

tion that may spring to mind is if it is possible to define monitors in terms of

links as described hereafter:

Process A

monitor(process,Pid2),

....

%%error occurs - reason = stop

Process B

...

Process A

process_flag(trap_exit,true),

link(PidB),

...

%%error occurs - reason = stop

Process B

process_flag(trap_exit,true),

...

Listing 2.6: Monitors & Links

25

Chapter 2. Background

The previous diagrams show that there is an overlapping behaviour between

monitors and links - case 2 and 3 of both figures give the impression that by trap-

ping exit signals, links are able to act just like monitors. However, at this point

it is quite impossible to determine if these two behaviours are truly equivalent or

not. Most surely this is one problem which the defined semantics will be able to

tackle. This is due to the fact that the formal definitions will be able to give us

a clear cut answer to this problem.

2.5.6.2 spawn link, spawn monitor

The spawn link and spawn monitor functions are used to create and link or moni-

tor the process as one atomic action. Perhaps here one might ask if the spawn link

construct is simply syntactic sugaring for spawn() followed by link().

spawn_link(module,function,[args]), ?
⇔

Pid = spawn(module,function,[args]),

link(Pid),

Listing 2.7: spawn link & spawn() + link ()

The only possible way to answer such a problem is through a formal semantic

definition of these constructs.

2.5.6.3 Explicit Error Signals

So far, we have seen that the primary source of error signals is the failure of a

linked/monitored process. An additional way how error signals can be generated

is by using the exit(pid,reason) built-in function(In the following sections, this

function will be referred to exit/2 so as to be able to dinstinguish this function

from the exit function described in Section 2.5.5.1). This construct expects two

arguments, the Pid to whom the error signal is to be sent and the reason describing

the cause of the error. The behaviour of the receiving process depends mainly on

two things:

- The reason passed as the second argument

- The recipient’s process flag

If the reason is equal to kill, the recipient process will terminate immediately

with reason killed, irrespective if it is trapping exit signals or not. Otherwise,

the behaviour of the recipient process will be determined by whether or not the

26

Chapter 2. Background

recipient is trapping the received exit signals as clearly illustrated in the diagram

shown hereafter.

Figure 2.8: Explicit error signals

One here cannot help noticing the striking similarity between the exit/2 con-

struct and the behaviour of error propagation through links(see Figure 2.5.6.1).

Perhaps at this point one might question if it is possible in some cases to imple-

ment the link behaviour by using only the exit/2 construct. For instance, in the

following case, will the two processes always behave in an identical way?

Process 1

link(ProcessB),

link(ProcessC),

...

exit(badarg),

?
⇔

Process 2

exit(ProcessB,badarg),

exit(ProcessC,badarg),

exit(badarg),

Listing 2.8: Links & Explicit Exit Signals

At the moment it is quite difficult to ensure if the behaviour of these two

processes is truly identical or not. This is due to the fact that, even though

the definitions given so far seem to hint that these two processes are equivalent,

there is no way to guarantee that they will always behave in the same way.

Undoubtedly a formal semantic definition of these constructs is key to check if the

same behaviour can actually be obtained by using these two different constructs.

Apart from sending explicit error signals to other processes, the exit/2 function

can also be used to send error signals to the calling process. This can be done by

passing the calling process’ pid as a first argument:

27

Chapter 2. Background

exit(self(), Reason)

This generated exit signal may cause the calling process to terminate with reason

Reason. One question that springs to mind here is if the behaviour of self-sent

exit signals is equivalent to the exit(Reason) statement. This is due to the fact

that the exit(Reason) expression may also cause the process to terminate with

reason Reason (see Section 2.5.5.1).

exit(reason)
?
⇔

exit(self(),reason)

Listing 2.9: exit(Reason) & exit(self(),Reason)

Certainly, this is yet another interesting problem that the formal semantics should

be able to solve.

2.5.6.4 SumNProduct - Remote Error Handling

sumNProduct(List1,List2) ->

%% set process flag to true to trap any error signals

process_flag(trap_exit,true),

%% spawn process to compute Sum

SumPid = spawn_link(math,sumProcess,[self(),List1]),

%% spawn process to compute Product

ProductPid = spawn_link(math,productProcess,[self(),List2]),

%% receive Sum and Product value

Sum = receiveValue(SumPid,sum),

Product = receiveValue(ProductPid,product),

[Sum,Product].

%% calculates sum of List

sumProcess(Pid,List) -> Pid ! [sum,sum(List)].

%% calculates product of List

productProcess(Pid,List) -> Pid ! [product,product(List)].

28

Chapter 2. Background

%% check if the linked process terminated normally or not

receiveValue(Pid,Tag)->

receive

%% if linked process terminated normally

%% then read result from mailbox

{’EXIT’,Pid,normal} ->

receive

[Tag,Value] -> Value

end;

%% otherwise if process terminated abnormally

%% return invalid

{’EXIT’,Pid,{badarith,Stack}} -> invalid

end.

Listing 2.11: SumNProduct - Remote Error Handling

In this version of the sumNProduct system, Erlang will first set the pro-

cess flag to true. This is done so that the process will be able to trap any errors

that might occur in any of the processes with whom it will become linked later

on. Erlang will then spawn link two separate processes; one to calculate the sum

and the other to calculate the product.

process_flag(trap_exit,true),

SumPid = spawn_link(math,sumProcess,[self(),List1]),

ProductPid = spawn_link(math,productProcess,[self(),List2]),

Listing 2.12: Parent process

Here, it is worth pointing out that since both processes are linked and the

process flag is set to true, the parent process will receive an exit notification mes-

sage once the linked processes have terminated. If the linked process completed

its task normally, the parent process will receive an {’EXIT’,Pid, normal} mes-

sage. On the other hand, if the linked process terminated abnormally due to

non-numeric data it will receive a {’EXIT’,Pid,{badarith, Stack}} message.

In both cases the Pid, refers to the pid of the terminated process. After creating

the two processes, the parent process will then suspend until it receives the results

of the two processes.

29

Chapter 2. Background

receiveValue(Pid,Tag)->

receive

{’EXIT’,Pid,normal} ->

receive

[Tag,Value] -> Value

end;

{’EXIT’,Pid,{badarith,Stack}} -> invalid

end.

Listing 2.13: Receiving Results from processes

What the receiveValue function essentially does is that it first checks if

the process terminated either normally(an {’EXIT’, Pid,normal} message was

received) or abnormally(an {’EXIT’,Pid,{badarith,Stack}} was received). If

the linked process terminated normally, then it will read the result of the process’

computation i.e. either the sum or the product. The Tag variable can be either

the sum or product atom and is used to indicate which of the two result should

be read. If the linked process terminated abnormally, the system will return the

atom invalid.

Perhaps one major benefit of adopting the notion of remote error handling

lies in the fact that sumProcess function and the productProcess function do

not include any error handling code. In fact if we had to compare the sumPro-

cess function with the one used in the parallel version of the system it becomes

clear that through remote error handling the system enjoys a higher degree of

separation of concerns.

Local Error Handling

sumProcess(Pid,List) ->

Sum =

try

sum(List)

catch

error:badarith -> invalid

end,

Pid ! [sum,Sum].

Remote Error Handling

sumProcess(Pid,List) ->

Pid ! [sum,sum(List)].

Listing 2.14: Seperation of Concerns

30

Chapter 2. Background

Through this simple example it becomes clear how remote error handling en-

ables us to write fault-tolerant systems which are not cluttered up with exception

handling coding. As a result, the number of lines related to error recovery within

the system has been reduced. Even though the reduction in this simple system

was minimal, one can easily imagine the significant reduction that can be achieved

when this concept is applied to larger parallel systems. In fact in his book, Ce-

sarini claimed that a particular system which was formerly implemented in C++

experienced an amazing 85% reduction in code when implemented in Erlang. One

of the main contributors to this dramatic reduction was Erlang’s error handling

mechanisms since as stated in [12] “ 27% of the C++ code consisted of defensive

programming”. It is a well-known known fact that the number of bugs within

a system is directly proportional to the number of lines of code. Therefore, this

reduction plays an important role in reducing drastically the presence of bugs

within a system.

2.6 Conclusion

This chapter has taken a closer look at the main constructs incorporated within

Erlang. A simple example was used to acquaint us with Erlang’s error handling

mechanisms. It was illustrated how Erlang enables us to handle errors locally

through the try-catch construct similar to the way other conventional program-

ming languages handle errors. The chosen example, was also implemented using

Erlang’s remote handling mechanisms. This helped to bring out certain benefits

that remote error handling has over local error handling namely reduction in lines

of code and a higher degree of separation of concerns.

However, one recurrent dilemma when describing these Erlang constructs was

if some constructs could actually be implemented in terms of other constructs.

One particular case was for instance that of monitors and trap-exit links. In ad-

dition, even though the sumNProduct system was implemented in different ways

there was no way one could actually guarantee that the system really maintained

its semantic definition. The next chapter attempts to solve these problems by

presenting a formal semantic definition for these constructs. These definition will

make it possible to indicate if two syntactically different systems have similar

behaviour or not.

31

3. Formal Semantics

3.1 Introduction

The main focus of this chapter is to get a better understanding of Erlang’s error

handling behaviour by presenting a formal model for Erlang’s error handling

constructs. In order to better appreciate the usefulness of this model, a number

of Erlang systems are considered and the behaviour of these systems is described

in terms of the model.

3.2 The need for Formal Semantics in Erlang

More often than not, the semantics of a language are more likely to be defined

through informal description rather than through a formal one. However, lately

more emphasis is being put on formal semantics, mainly due to the number

of benefits they offer over their informal counterparts. In this section, the main

drawbacks of using informal semantics to describe the behaviour of Erlang’s error

handling constructs are discussed so as to better understand the need of a formal

model.

One major downside of using informal descriptions stems from the fact that

they leave scope for ambiguity and therefore, as clearly shown in the previous

chapter, they are not able to show if two different programs will actually behave

in the same way or not. In contrast, formal semantics are able to present an un-

ambiguous and more accurate description of a system’s behaviour. Consequently,

when using these semantics it becomes much more straightforward to show if the

behaviour of two different programs is actually equivalent or not.

32

Chapter 3. Formal Semantics

Another, drawback of informal descriptions is that in certain cases, they may

fall short of accurately describing how the different Erlang constructs might in-

teract. As a result, it may become relatively challenging to understand a system’s

behaviour through these semantics. This is even more so, when considering the

fact that due to the parallel nature of Erlang systems, the interleaving of pro-

cesses may result in different behaviour at consecutive executions of the same

system. Thus, describing how parallel systems may behave by using informal

semantics may result in really lengthy and cumbersome descriptions. On the

other hand, through formal semantics it becomes much easier to reason about

the behaviour of parallel systems. This is because, from their very nature they

are able to provide concise but detailed descriptions of how a particular system

might behave.

3.3 Current Formal Semantics in Erlang

Due to the fact that Erlang was conceived in industry, it was primarily defined

in terms of its implementation[13]. However, given the significant role that for-

mal semantics play in reasoning about the behaviour of systems, it was evident

that defining such semantics for Erlang was key in understanding soundly the be-

haviour of Erlang programs. This is even more so, when considering the fact that

Erlang systems are highly dynamic and concurrent and therefore, they tend to

become quite challenging to fully reason about their behaviour. Erlang’s current

formal semantics can be classified in three categories[16]:

• functional semantics

• process semantics

• node semantics

The functional semantics, as the name itself implies, deals with the functional part

of Erlang such as pattern matching and function evaluation whilst the process

semantics deals with the process rules for instance, process termination, message

passing and links. The semantics defined in these two categories, are used to

describe the behaviour of systems found on a single machine[14]. On the other

hand, the behaviour of multi-node systems can be described through the node

semantics[13]. The term multi-node system refers to the fact that a particular

33

Chapter 3. Formal Semantics

Erlang system may sometimes be composed of multiple runtime systems commu-

nicating with each other. In Erlang each of these runtime systems is called a node.

Multi-node systems are oftenly used when implementing distributed systems.

3.3.1 Differences Between Current Semantics and Defined

Model

One of the most noticeable difference between the current semantics and the de-

fined model lies in the fact that whereas all current formal semantics of Erlang[14,

13] are defined by using an LTS semantics in this project the formal rules are de-

fined by using a reduction semantics. By adopting this approach, the semantics

are able to provide a clearer picture of how communication between processes is

carried out. This is because, when using a reduction semantics both the sender

and receiver of a signal are included in the rule definition. As a result, it becomes

easier to see how a particular action has effected the receiving process. Addition-

ally, the syntax of the reduction semantic definitions is somewhat closer to the

way in which these semantics may be implemented through an evaluator.

Another benefit of reduction semantics is that they enable us to describe some

Erlang behaviours through less formal rules. For instance, when defining message

delivery through an LTS semantics three different rules are needed:

- one rule describes the behaviour of a process when a message is sent

i 6= pid
SEND

i[pid!v, q, l, b]
pid!v
−→ i[v, q, l, b]

- another rule to describe how the a process behaves on receipt of a message

pid = i
RCV

i[e, q, l, b]
pid?v
−→ i[e, q ++ v, l, b]

- a rule to describe how delivery of messages occurs

s1
pid!v
−→ s1

′ s2
pid?v
−→ s2

′

COMM
s1 || s2

τ
−→ s1

′ || s2
′

34

Chapter 3. Formal Semantics

In contrast, when describing the delivery of messages through reduction semantics

only one rule is used:

i 6= pid
SEND

i[j!v, q, l, b] || j[e, qj, lj , bj] −→

i[v, q, l, b] || j[e, qj++ v, lj, bj]

Another fact worth mentioning with respect to the current Erlang semantics, is

that the formal semantic definition of certain mechanisms is somewhat inaccurate

since it does not faithfully mirror the behaviour of actual Erlang. A case in point

is the way the current semantics defines the behaviour of Erlang when a link

failure occurs. According to these semantics whenever a process attempts to

link to a terminated process, an exit signal is immediately sent to the process

attempting to create the link. However, as clearly described in [18] a link failure

may not necessary cause the system to behave in this way. The model presented

in this chapter addresses this inaccuracy and defines a more accurate description

of how Erlang behaves in the case of link failure.

The current semantics also fall short of describing the way a process may

behave when it sends an explicit exit signal to itself(by using the exit(self(),

Reason) expression). In fact, the current semantics are only able to describe

soundly the way a system behaves when an explicit exit signal is sent to another

different process. In the formal semantics described in this project some rules

were defined to faithfully describe the way a process behaves when an explicit

exit signal is sent to itself(see section 3.11.4).

Another improvement over the current semantics is that the presented model

is able to describe both the linking and monitoring mechanisms in Erlang whereas

the current semantics are only able to describe the linking behaviour. It is im-

portant to note that even though in [3] it was claimed that monitors can be

implemented in terms of links, in truth there exist some subtle differences be-

tween the two mechanisms. As a result, implementing monitors in terms of links

may not be as easy as it might seem. This fact is discussed in more depth in sec-

tion 3.11.5, where a simple example is considered to highlight the main differences

that exist between monitoring and linking.

The next sections presents the formal model defined in this project whose

aim is to accurately describe the behaviour of Erlang systems in the presence of

errors.

35

Chapter 3. Formal Semantics

3.4 Erlang System

Here a formal description of an Erlang system will be given together with some

fundamental rules that will be used as the foundation for the defined semantics.

An Erlang system can be composed of one or more processes. In the defined

semantics an Erlang system is represented as a set of processes. A system which

is composed of three processes is expressed as:

P || Q || R

Some important rules within the defined semantics are the following:

P || Q ≡ Q || P (COMM) P||(Q||R) ≡ (P||Q)||R (ASSOC)

P ≡ P ′ P −→ Q Q ≡ Q′

STRUCT

P ′ −→ Q′

s1 −→ s′1
INTERLEAVE

s1||s2 −→ s′1||s2

Table 3.1: System rules

In this semantics it is assumed that Erlang systems are well-formed and therefore

every process in a system has a unique pid. This assumption made it possible to

define the following relation:

pid× system −→ process

3.5 Erlang Subset

Erlang has a relatively large number of constructs. Hence, defining a formal

semantics for all these constructs would be rather infeasible since this would

result in a rather cumbersome semantics. Therefore, for this work a reduced

subset of Erlang (Table 3.2) was chosen.

36

Chapter 3. Formal Semantics

digit :: = 0 | · · · |9
uppercase :: =A| · · · |Z
lowercase :: = a | · · · |z
digitletter :: = digit|uppercase|lowercase| |@

number :: = digit+

unquotedatom :: = lowercase digitletter∗

quotedatom :: = ′(digitletter|whitespace)+ ′

atom :: = unquotedatom|quotedatom
var :: = uppercase digitletter∗

value(v) :: = atom

| int

| pid

| []

compound value (cv) :: = v|[cv1|cv2]

expression (e) :: = v | [e1|e2]
| var

| built-in function

| e1, e2
| case e of m end
| try e catch m end
| receive m end
| e1!e2

pattern(p) :: = cv | var | [p1|p2]
matchPtrn (m) :: = p1 → e1; · · · ; pn → en

built-in functions(b) :: = self()
| spawn(e, e, e)
| link(e)
| monitor(e, e)
| spawn link(e, e, e)
| spawn monitor(e, e, e)
| process flag(e, e)
| error(e)
| throw(e)
| exit(e)
| exit(e, e)

Table 3.2: Erlang’s subset

When expressing the formal definitions of Erlang’s constructs some minor

syntactic modifications were made to Erlang’s syntax. This was done so as to

represent expressions in a neater way. These modifications are primarily the

following:

- a sequence of Erlang expressions will be delimeted by a · instead of a comma.

37

Chapter 3. Formal Semantics

This is because the comma will act as a delimeter for separating the different

elements in the tuple representing an Erlang process.

- the concept of modules will not be present in the defined semantics since the

notion of modules does not in any way affect Erlang’s error handling behaviour.

As a result, built-in functions such as spawn, spawn link and spawn monitor do

not expect the module name parameter.

3.6 Contextual Rules

The formal rules presented in this project are only able to describe the behaviour

of expressions for the case when all parameters of an expression have already been

evaluated down to a value. As a result, the reduction context rules are necessary

in order to define the way a subexpression is evaluated with respect to a bigger

context.

i[e, m, l, f] −→ i[e′, m′, l′, f ′]
CONTEXT0

i[c[e], m, l, f] −→ i[c[e′], m′, l′, f ′]

i[e, m, l, f] −→ i[ex, m′, l′, f ′]
CONTEXT1

i[c[e], m, l, f] −→ i[ex, m′, l′, f ′]

Table 3.3: Contextual rules

A reduction context, c[] defines a subexpression position such that, if a subex-

pression e performs an action and reduces down to e1, than the whole expression

can perform the same action and only the subexpression e is changed. For in-

stance, when evaluating the following case statement

case e of m end

the model will first try to reduce expression e. If e reduces down to e1, then the

whole expression reduces down to

case e1 of m end.

38

Chapter 3. Formal Semantics

c[·] ::= ·

| funName(..., vn−1, c[·], en+1, ...) n > 0

| [..., vn−1, c[·], en+1] n > 0

| c[·]!e | v!c[·]

| case c[·] of mt end

What the c[·] definition essentially states is that when reducing a function call

Erlang will evaluate the functions paramenters from left to right. Elements in

a list are also evaluated from left to right. When evaluating a send statement,

Erlang will first evaluate the expression on the left hand side, and subsequently

it will start evaluating the expression found after the ! operator. The last part

of the definition describes the fact that when evaluating a case statement Erlang

will first evaluate the expression found between the case and of keywords.

3.7 Erlang Process

In this section the notion of an Erlang process is formalised. In this semantics

processes may be in one of two states, either alive or terminated. Here, it is worth

mentioning the fact that terminated processes cannot be considered as dead or

useless processes. This is due to the fact that terminated processes will still have

some tasks to carry out such as informing all processes found in their link set

about their termination. Additionally, terminated processes are also used when

defining the behaviour of the linking mechanism.

A live process is represented as

p[e,m, l, f]

pid(p) - a unique process identifier

expression(e) - the expression the process is executing

mailbox(m) - a list of received messages that are waiting to be read

links(l) - the set of pids to which the process is linked

flag(f) - a boolean value indicating if a process is trapping exit

signals or not

39

Chapter 3. Formal Semantics

A terminated process is expressed as

p[r,l]

pid(p) - a unique process identifier

reason(r) - reason describing process termination

links(l) - the set of pids found in the link set

A live Erlang process may terminate either normally or abnormally.

TERM0

i[v, m, l, f] −→ i[normal, l]

TERM1

i[ex, m, l, f] −→ i[reason(ex), l]

Table 3.4: Process Termination Rules

TERM0 states that when a process completes its task, it will terminate with

reason normal. Otherwise, the reason will describe the error that caused the

process to terminate(TERM1).

3.8 Case Statement

∃I.((result v mtI e) ∧ ∀J.J < I ⇒ ¬(matches v mtJ))
CASE0

i[case v of mt end, m, l, f] −→ i[e, m, l, f]

∀I.¬(matches v mtI)
CASE1

i[case v of mt end, m, l, f] −→ i[error:{case clause, v}, m, l, f]

Table 3.5: Case rules

Before describing what these rules state, the matches and result functions will be

defined. (The definition of these two function is very similar to the one defined

in [14].)

The matches function is defined as:

matches v (p → e) , ∃Ṽ .(v = p{Ṽ /f̃v(p)})

40

Chapter 3. Formal Semantics

The matches function is given two parameters, a value(v) and a (pattern →

expression). This function returns true if pattern p is identical to valuev once

the substitution(p{Ṽ /f̃v(p)}) is done. Two functions used in this substitution

are the:
- Ṽ : returns all the values found in v. For example, if v = [1, 2, 3, 4] then

Ṽ = 1, 2, 3, 4.

- fv(p) : returns all the free variables found in pattern p. For instance,

fv([a,B, c,D]) = [B,D].

What the p{Ṽ /f̃v(p)} substitution essentially does is that it replaces variables

according to their position in the list. For instance, let’s consider the case when:

v = [1, 2, 3, 4] p = [a,X, c, Y]

Ṽ = 1, 2, 3, 4 fv(p)= X, Y

In this case, when evaluating p{Ṽ /f̃v(p)}, free variable X, the second element

of p, is replaced by 2, the second element of v, and free variable Y, the fourth

element of p is replaced by 4, the fourth element of v:

p{Ṽ /f̃v(p)} = [a, 2, c, 4]

If p and v have different arities no replacements are done.

The result function is defined as:

result v (p → e) e′ , ∃Ṽ .(v = p{Ṽ /f̃v(p)} ∧ e′ = e{Ṽ /f̃v(p)})

The result function is very similar to the matches function. The only difference

is that this function has an extra parameter e′. This parameter represents the

corresponding body of the pattern which successfully pattern matched against

the given value. For instance, in the following case, this predicate will return

true:

v = [text, hello]

p → e= [text, V alue] → V alue

e′ = hello

41

Chapter 3. Formal Semantics

Now let’s move on to describe the behaviour of the case statement as defined

in these rules. The first rules states that the system will try to pattern match

the value against the patterns found in mt(CASE0). The patterns in mt are

sequentially matched against the value v found between the case and of keywords.

The described reduction step is done if

∃I.((result v mtI e) ∧ ∀J.J < I ⇒ ¬(matches v mtJ))

What the above predicate essentially states is that a case statement will return

the expression e if

- one of the elements in mt, say (p1 → e), consists of a pattern p1

that can be successfully pattern matched against v and

- all the elements prior to (p1 → e) fail to pattern match against v

Therefore, if we evaluate the following case statement according to CASE0:

case [a,b,c] of

[X,Y] -> first;

[X,Y,Z] -> second;

X -> third

end.

the system first tries to pattern match [a, b, c] against [X, Y] and it fails. Sub-

sequently, it attempts to pattern match [a, b, c] against [X, Y, Z] and it succeeds.

As a result, it returns the atom second. Note that the value [a, b, c] can be also

successfully pattern matched against the last pattern X. However, the defined

rule states that the case statement should always return the body of the first

pattern against which [a, b, c] is successfully pattern matched.

The second rule states that if the value fails to pattern match against any of

the patterns in mt(∀I.¬(matches v mtI)), then an exception is raised(CASE1).

42

Chapter 3. Formal Semantics

3.9 Local Error Handling - try-catch

TRY0

i[try v catch mt end, m, l, f] −→ i[v, m, l, f]

i[e, m, l, f] −→ i[e′, m′, l′, f ′]
TRY1

i[try e catch mt end, m, l, f] −→ i[try e′ catch mt end, m′, l′, f ′]

i[e, m, l, f] −→ i[ex, m, l, f]

∃I.((result ex mtI e′) ∧ ∀J.J < I ⇒ ¬(matches ex mtJ))
TRY2

i[try e catch mt end, m, l, f] −→ i[e′, m, l, f]

∀I.¬(matches ex mtI)

i[e, m, l, f] −→ i[ex, m, l, f]
TRY3

i[try e catch mt end, m, l, f] −→ i[ex, m, l, f]

Table 3.6: Rules for local error handling

These rules describe that Erlang will first try to evaluate the expression between

the try and catch statement(TRY1). If this expression evaluates down to a value

than that value is returned(TRY0). If the expression raises an exception, the

system will try to pattern match the exception against the patterns found in mt

and if the exception pattern matches, the corresponding error handling code is

returned(TRY2). Otherwise, if the exception is not caught the try expression will

return the raised exception. (TRY3).

3.9.1 sumNProduct Example(Sequential version)

Using the rules defined so far it is now possible to get a step-by-step description

of how the example explained in section 2.5.5.3 is evaluated. Here, only the

reduction steps related to the evaluation of sum(List1)will be shown.

try sum(List1) catch error:badarith -> 0 end,...

The evaluation of

... try product(List2) catch error:badarith -> 0 end.

43

Chapter 3. Formal Semantics

is almost identical. First, let’s consider the case when the input list is the numeric

list [12,5]. By using rule TRY1 the system will first evaluate sum([12,5]) :

i[try sum([12, 5]) catch error :badarith → invalid end · e1, ε, ∅, false]

−→ i[try 12 + sum([5]) catch error :badarith → invalid end · e1, ε, ∅, false] (TRY1)

−→ i[try 12 + 5 catch error :badarith → invalid end · e1, ε, ∅, false] (TRY1)

where e1 = try product([12, 5]) catch error :badarith → invalid end·

[Sum,Product]

Since the expression between the try and catch block evaluated down to a value,

by rule TRY0 the whole try-catch construct will evaluate down to 17.

−→ i[try 17 catch error :badarith → invalid end · e1, ε, ∅, false] (TRY1)

−→ i[17 · e1, ε, ∅, false] (TRY0)

−→ i[e1, ε, ∅, false] (SEQ1)

The system will then continue to evaluate e1.

One here can appreciate that the defined rules make it possible to ascertain

that the system will always return the sum of the input list whenever valid num-

bers are input since there does not exist any other possible sequences of steps

that may lead to a different result.

Now let’s consider the case where the input list contains a non-numeric value;

[a,12]. As in the previous case the system will first evaluate the expression found

within the try catch block:

i[try sum([a, 12]) catch error :badarith → invalid end · e1, ε, ∅, false]

−→ i[try a+ sum([12]) catch error : badarith → invalid end · e1, ε, ∅, false] (TRY1)

−→ i[try a+ 12 catch error :badarith → invalid end · e1, ε, ∅, false] (TRY1)

where e1 = try product([12, 5]) catch error :badarith → invalid end·

[Sum,Product]

44

Chapter 3. Formal Semantics

When the system attempts to add a to 12 a badarith exception is raised:

−→ i[try error :badarith catch error :badarith → invalid end · e1, ε, ∅, false] (TRY1)

The generated exception is caught and therefore the output of this computation

will be the atom invalid.

−→ i[invalid · e1, ε, ∅, false] (TRY2)

−→ i[e1, ε, ∅, false] (SEQ1)

The system will then continue to evaluate e1.

3.10 Parallel Erlang

fresh(j)
SPAWN

i[spawn(f, args), m, l, f] −→

i[j, m, l, f]||j[f(args), ε, ∅, false]

i = j
SEND0

i[j!v, m, l, f] −→ i[v, m++ v, l, f]

i 6= j
SEND1

i[j!v, mi, li, fi] || j[ej , mj , lj , fj] −→

i[v, mi, li, fi] || j[ej , mj ++ v, lj , fj]

i 6= j
SEND2

i[j!v, mi, li, fi] || j[reason, {pids}] −→

i[v, mi, li, fi] || j[reason, {pids}]

∃I.((result v mtI e) ∧ ∀J.J < I ⇒ ¬(matches v mtJ))
RCV

i[?mt, m1 ++ v ++m2, li, fi] −→ i[e, m1 ++m2, l, f]

Table 3.7: Process rules

45

Chapter 3. Formal Semantics

The SPAWN rule states that whenever a new process is created, its identifier

must be unique(fresh(j)). It also illustrates that the new process will have an

empty mailbox and link set. Additionally, by default it will not be trapping any

exit signals since its process flag is set to false.

With regards to message delivery, it was assumed that all messages arrive in

their destination instantaneously. In fact, in actual Erlang when dealing with

single-node systems it is guaranteed message delivery is immediate. The instan-

taneous message delivery is described by the three SEND rules. SEND0 describes

the fact that when a process sends a message to itself, the message is immediately

appended to the process’ mailbox. When a process sends a message to another

process, say process j then this message is appended immediately to process j’s

mailbox(SEND1). The last send rule describes the fact that when a message is

sent to terminated process j then the message is not appended to process j’s

mailbox(SEND2).

What the RCV rule states is that the receive construct will attempt to pattern

match sequentially the patterns found in mt with the messages found in the

mailbox. The body of the first pattern to pattern match against one of the

messages in the mailbox will be returned. This fact is described through the

following predicate:

∃I.((result v mtI e) ∧ ∀J.J < I ⇒ ¬(matches v mtJ))

For this predicate to hold:

- one of the patterns in mt must pattern match against the mes-

sage v which is currently found in the process’ mailbox described as

[m1 ++ v ++m2]

- all messages found in the mailbox prior to v i.e. in [m1] do not pattern

match against any of the patterns found prior to mtI .

Once a message has been pattern matched it is removed from the mailbox. Note

that if no messages pattern match against any of the patterns in mt than the

system will block. This is the main reason why there is no reduction rule defined

to cater for this particular case.

46

Chapter 3. Formal Semantics

3.10.1 sumNProduct Example(Parallel Version)

Through these rules, it is now possible to describe the behaviour of the sumN-

Product system(parallel version). In this version, two seperate processes are used

to calculate the sum and product of the input lists. We will first consider the

case when two valid lists are input; for this example both input lists are [12,5].

Firstly, the system will spawn a new process whose task is to calculate the

sum of [12,5]. The pid of the newly created process, in this case j will be returned

to the parent process i.

i[spawn(sumProcess, [i, [12, 5]]) · e1, ε, ∅, false]

−→ i[j · e1, ε, ∅, false] || j[sumProcess(i, [12, 5]), ε, ∅, false] (SPAWN)

−→ i[e1, ε, ∅, false] || j[sumProcess(i, [12, 5]), ε, ∅, false] (SEQ1)

where e1 = spawn(productProcess, [i, [12, 5]]) ·

?[sum, V alue1] →?[product, V alue2] → [V alue1, V alue2].

Process i will then spawn another process whose task is to calculate the product

of [12,5].

−→ i[k · e2, ε, ∅, false] || k[productProcess(i, [12, 5]), ε, ∅, false] ||

j[sumProcess(i, [12, 5]), ε, ∅, false] (SPAWN)

where e2 = ?[sum, V alue1] →?[product, V alue2] → [V alue1, V alue2].

Once the sum of the list has been calculated, the sumProcess functions will eval-

uate the i![sum, 17] expression. When evaluating this expression, process j will

send a message containing the sum result to process i. The sent message will be

appended to process i’s mailbox.

≡ j[i![sum, 17]), ε, ∅, false] || i[e2, ε, ∅, false] || sk

−→ j[[sum, 17], ε, ∅, false] || i[e2, [[sum, 17]], ∅, false] || sk (SEND1)

where sk = k[productProcess(i, [12, 5]), ε, ∅, false]

Similarly, once the product of the list has been calculated, the productProcess

47

Chapter 3. Formal Semantics

functions will evaluate the i![product, 60] expression. When evaluating this ex-

pression, process k will send the product result to process i. This will be also

appended to process i’s mailbox.

≡ k[i![product, 60]), ε, ∅, false] || i[e2, ε, ∅, false] || sj

−→ k[[product, 60], ε, ∅, false] ||

i[e2, [[sum, 17], [product, 60]], ∅, false] || sj (SEND1)

where sj = j[[sum, 17], ε, ∅, false]

Process i will then start reading the received messages. It will first read the sum

Value. Once this message is read it will be removed from the mailbox.

≡ i[?[sum, V alue1] →?[product, V alue2] →, [[sum, 17], [product, 60]], ∅, false]

|| sj || sk

−→ i[?[product, V alue2] → [17, V alue2], [[product, 60]], ∅, false] || sj || sk

(RCV)

Subsequently, process i reads the received product result. Once this message is

read it is also removed from the mailbox. The system will then return a list

containing the sum and product of the input lists.

−→ i[[17, 60], ε, ∅, false] || sj || sk (RCV)

The above steps show only one possible sequence of reductions that leads to

the expected output i.e.[17,60]. One fact worth pointing out here is that in truth

there a several other possible interleavings which can lead to the same output. For

instance, process j could have sent the [sum,17] message before process i spawned

process k. In fact, even though this system consists only of three processes

there are relatively many different possible interleavings. Nonetheless, the defined

semantic rules enable us to check that given the same input there does not exist

any possible interleaving that may lead to a different output. Here one can

appreciate even more how such simple rules have in actual fact paved the way to

show such an essential fact.

In order to check if the parallel version of sumNProduct is semantically equiv-

48

Chapter 3. Formal Semantics

alent to the sequential version we will need to check the case when invalid data is

passed. Though it will not be illustrated here(since the reduction steps are highly

similar to the ones described in the sequential version of the sumNProduct exam-

ple), through these semantics it is possible to show that in fact the system will

always evaluate down to [invalid, invalid] when given non-numeric data. There-

fore, it can be concluded that the parallel version of sumNProduct is semantically

equivalent to its sequential version.

3.11 Remote Error Hadling

3.11.1 Links and System Processes

LINK0
i[link(j), mi, li, fi] || j[ej , mj , lj , fj] −→

i[true, mi, li ∪ {j}, fi] || j[ej , mj , lj ∪ {i}, fj]

f = true
LINK1

i[link(j), m, l, f] || j[v, l] −→

i[true, m++ [′EXIT ′, j, noproc], l, f] || j[v, l]

f = false
LINK2

i[link(j), m, l, f] || j[v, l] −→

i[error:noproc, m, l, f]||j[v, l]

PROC FLAG
i[process flag(trap exit, f lag1), m, l, f2] −→

i[f2, m, l, f lag1]

Table 3.8: Process rules for linking and system processes

As already described in section 2.5.6 links are the underlying factor behind Er-

lang’s remote handling mechanisms. These three rules bring to light the fact that

the link expression can be also used as a ping. This is because the link(Pid)

expression is able to indicate if the process identified by Pid is alive(LINK0) or

dead(LINK1 or LINK2). Rule LINK0 describes Erlang’s behaviour when a pro-

cess successfully links to another process. Here, it is worth mentioning the fact

that since in this semantics links are expressed as a set, it is ensured that when-

ever a process attempts to link to a process which is already found in its link set

49

Chapter 3. Formal Semantics

nothing actually happens. This guarantees that the defined rules are faithful to

the behaviour of actual Erlang.

The last two rules describe Erlang’s behaviour when a process tries to link

to a terminated process. LINK1 describes link failure when the process calling

link is trapping exit signals i.e. the process flag is set to true. In this case a link

failure will result in a message to be appended to the calling process’ mailbox.

LINK2 describes the case when the calling process is not trapping exit signals.

In this case a link failure evaluate down to an exception. Interestingly enough all

semantics which have attempted to describe Erlang’s error handling mechanisms

so far, always describe a link failure in the following way:

Figure 3.1: Link Failure as described by Current Semantic Definitions

As shown in the above diagram, according the these semantics a link failure

will always trigger the terminated process to send an exit signal with reason

noproc. Consequently, since process A is not trapping exit signals, the sent signal

will cause process A to terminate with reason noproc.

However, according to Erlang’s reference manual [23], a link failure may result

in either of the following:

- If the calling process is not trapping exits, and checking Pid is cheap

– that is, if Pid is local – link/1 fails with reason noproc.

- Otherwise, if the calling process is trapping exits, and/or Pid is

remote, link/1 returns true, but an exit signal with reason noproc is

sent to the calling process.

All previous semantic definitions seem to ignore the fact that a link call may

also evaluate down to an exception with reason noproc. Perhaps the reason why

this was deemed to be correct was that the generated exception, if uncaught, may

50

Chapter 3. Formal Semantics

still terminate the calling process with reason noproc. Nevertheless, this semantic

definition is not capable of describing correctly the behaviour of actual Erlang

when a link failure occurs within a try-catch block. For instance, let’s consider

the following case:

try

link(Pid)

catch

error:noproc -> ’process is dead’

end,

Pid2!hello.

Listing 3.1: Link Failure Program

In the above case, the exception generated due to link failure will be caught.

As a result, the process will still be able to send the hello message to Pid2.

However, if the above coding is evaluated using the previous semantic definitions,

the link failure will cause the calling process to terminate immediately with reason

noproc. This is so, because a try-catch is only capable of catching exceptions(i.e.

exit signals cannot be caught by using the try-catch construct). When considering

this example it becomes clear that the previous semantic definition of link failure

is somewhat inaccurate to the behaviour of actual Erlang.

The last rule described in Table linkProcFlag is the PROC FLAG rule. This

rules states the behaviour of a system process upon receipt of an exit signal. Once

a process receives an exit signal it may either terminate abruptly or else it may

translate the received signal into a normal message which is appended it to its own

mailbox. One of the main factors which decides which course of actions to take is

the process flag. If the process flag, (which in our semantics is expressed as the

last element of the process tuple) is set to true, then the received exit signal will

not cause the process to terminate immediately. Conversely, if the process flag is

set to false, the process may terminate immediately upon receipt of an exit signal.

The process flag function’s second argument is a boolean value which determines

if the flag should be set or unset. As stated in the PROC FLAG rule, once the

function is evaluated the previous flag value (i.e. flag0) will be returned.

51

Chapter 3. Formal Semantics

3.11.2 Error Propagation

v = normal ∧ f = false ∧ j ∈ pids
EXIT0

i[v, pids] || j[e,m, l, f] −→ i[v, pids \ {j}] || j[e,m, l \ {i}, f]

v 6= normal ∧ f = false ∧ j ∈ pids
EXIT1

i[v, pids] || j[e,m, l, f] −→ i[v, pids \ {j}] || j[v, l \ {i}]

f = true ∧ j ∈ pids
EXIT2

i[v, pids] || j[e,m, l, f] −→

i[v, pids \ {j}] || j[e,m++ [EXIT, i, v], l \ {i}, f]

Table 3.9: Error propagation

The above rules state the behaviour of Erlang processes on receipt of an error

signal. To better understand the relation between these rules and the behaviour

of Erlang’s error propagation let’s consider the following diagram:

Figure 3.2: Exit propagation through links

Figure 3.2 depicts a system which is composed of three processes. Process

A is linked to Process B and Process C. When process A terminates, an error

signal will be sent to both linked processes. The main difference between the two

processes is that process C is a system process (i.e. it is trapping exit signals)

52

Chapter 3. Formal Semantics

while process B is not. Through this diagram it becomes quite evident that the

behaviour of a process on receipt of an error signal depends mainly on two things

• if a process is a system process

• if the reason of the received exit signal is equal to normal or not

As clearly illustrated in the diagram a normal termination(v = normal) will

never cause a linked process to terminate immediately. Therefore, if a process

which is not trapping exit signals receives an exit signal where reason is equal

to normal, the receiving process will ignore this signal(EXIT0). Instant termina-

tion of a linked process can only happen as a result of an abnormal termination

of a linked process(EXIT1). If a linked process is trapping exit signals, the re-

ceived exit signal will be translated into a message and appended to the process’

mailbox(EXIT2).

In our semantics a terminated process is expressed as pid[v, linkSet]. There-

fore, in the above case process A will be expressed as A[v, {B,C}]. The receiving

process will be able to identify the cause of process termination by reading v;

if the process has terminated normally the value of v will be equal to normal.

Otherwise, v will describe the error which occured for instance badarith.

Here, it is worth pointing out that the fact, that the group of linked pids are

expressed as a set is key. This is mainly due to the fact that sets from their very

nature:

• do not determine order between elements

• do not store duplicates

The first point guarantees that the sending of error signals in our semantics is

not done in any particular order. This ensures that these rules faithfully describe

the behaviour error propagation since in actual Erlang the order in which error

signals are sent is not determined. For instance, if we consider the following piece

of code

link(Pid1),

link(Pid2),

.....,

%%error occurs

even though Pid1 is added to the link set prior to Pid2, it is not guaranteed that

an error signal will be first sent to Pid1. In actual fact, since the order is not

53

Chapter 3. Formal Semantics

determined, it may very well be the case that the same system will sometimes

first send an error signal to Pid1 and at other times first send an error signal

to Pid2. The fact that sets do not store duplicates also plays a crucial role in

ensuring that the defined semantics is loyal to the behaviour of actual Erlang.

For instance, in the following case:

link(Pid1),

link(Pid1),

.....,

%%error occurs

even though the process attempted to create a link to Pid1 twice, Pid1 will

still be found once in the process’ link set. As a result, when sending error

signals to all processes found in the link set only one error signal will be sent

to Pid1. Additionally, in the defined rules the set of linked processes is updated

immediately (pids \ {j}) once an error signal has been sent so as to ensure that

no duplicate error signals are sent.

3.11.3 Spawn link

SPAWN LINK
i[spawn link(f, args), m, l, f] −→

i[j, m, {l ∪ j}, f]||j[f(args), ε, {i}, false]

Table 3.10: Spawn link rule

As stated by this rule, the spawn link primarily consists of a function which

creates a new process and links to it as one atomic action. Perhaps one question

that may come to mind at this point is whether it is possible to define spawn link

in terms of spawn followed by link. For instance, let’consider the following system:

%% this function will cause the process to terminate

%% with reason badarith

doError(Pid) -> Pid ! a + a.

processA() ->

process_flag(trap_exit,true),

%% spawn_link new process

spawn_link(moduleName,doError,[self()]]),

54

Chapter 3. Formal Semantics

%% wait for result from the spawned process

receive

[value,Result] -> Result;

{’EXIT’,Pid,badarith} -> ’invalid operation’

end.

Listing 3.2: Spawn link - Example A

By using the defined rules, it is possible to ascertain that the above system

will be always return the same result. The below description gives one possible

interleaving how this result can be achieved.

The system will first set its process flag so as to be able to trap any received exit

signals.

i[process flag(trap exit, true) · e, ε, ∅, false]

−→ i[false · e, ε, ∅, true] (PROC FLAG)

where e = spawn link(doError, [i]·

?[value,Result] → Result;

[EXIT, P id, badarith] →′ invalid operation′.

Subsequently, a new process is created and a link between the two processes is

set up instantaneously.

−→ i[spawn link(doError, [self()]) · e1, ε, ∅, true]

−→ i[j · e1, ε, {j}, true] || j[doError(i), ε, {i}, false] (SPAWN LINK)

where e1 =?[value,Result] → Result;

[EXIT, P id, badarith] →′ invalid operation′.

When the new process(process j), attempts to evaluate the doError() function

it fails. The uncaught exception, will cause the process to terminate with reason

badarith.

j[error : badarith, ε, {i}, false] −→ j[badarith, {i}] (TERM1)

Upon process j’s termination, an error signal is sent to process i. This signal is

trapped and translated into a normal message. The error notification message,

55

Chapter 3. Formal Semantics

[EXIT, j, badarith] is appended to process i’s mailbox.

−→ j[badarith, {i}] || i[e1, ε, {i}, true]

−→ j[badarith, ∅] || i[e1, [[EXIT, j, badarith]], ∅, true] (EXIT2)

The trapped error signal will be read, and the atom ‘invalid operation’ will be

returned.

≡ i[e1, [[EXIT, j, badarith]], ∅, true] || j[badarith, ∅]

−→ i[′invalid operation′, ε, {j}, true] || j[badarith, ∅] (RCV)

Now let’s consider the same system, but replacing spawn link by spawn followed

by a link as follows:

%% this function will cause the process to terminate

%% with reason badarith

doError(Pid) -> Pid ! a + a.

processA() ->

process_flag(trap_exit,true),

%% create new process

Pid = spawn(moduleName,doError,[self()]),

%% link to new process

link(Pid),

receive

[value,Result] -> Result

{EXIT,Pid,badarith} -> ’invalid operation’

end.

Listing 3.3: Spawn link - Example B

Even though the above system may still evaluate down to ’invalid operation’

it is also possible that the system returns a different result. This may occur if

the following sequence of steps occurs.

The system sets its process flag and creates the new process.

i[process flag(trap exit, true) · spawn(doError, [i]) · link(j) · e, ε, ∅, false]

56

Chapter 3. Formal Semantics

−→ i[false · spawn(doError, [i]) · link(j) · e, ε, ∅, true] (PROC FLAG)

−→ i[spawn(doError, [i]) · link(j) · e, ε, ∅, true] (SEQ1)

−→ i[j · link(j) · e, ε, ∅, true] || j[doError([i]), ε, ∅, false] (SPAWN)

where e =?[value,Result] → Result;

[EXIT, P id, badarith] →′ invalid operation′.

Process j will then attempt to evaluate doError and it fails. As a result, process

j terminates. Note however, that since there are no pids in its link set no error

signals will be sent.

j[error : badarith, ε, ∅, false] −→ j[badarith, ∅] (TERM1)

Subsequently, process i will attempt to link to process j. Since process j has

terminated it receives an error signal with reason noproc.

−→ i[link(j) · e, ε, ∅, true] || j[badarith, ∅] (TERM1)

−→ i[true, q ++ [′EXIT ′, j, noproc], ∅, true] || j[badarith, ε] (LINK1)

Due to the fact that the receive construct is only able to read exit message with

reason badarith, process j will then block indefinitely since no messages in its

mailbox pattern match against the provided patterns .

This really simple example illustrates that by calling a spawn followed by a

link, the system may sometimes evaluate to unwanted results. Perhaps this is one

of the main reasons why as mentioned in [17], the link call is rarely used in actual

Erlang systems. In fact, Erlang developers more often than not, opt to use solely

the spawn link function since this guarantees that the link is always carried out

instantly, ensuring that no error signals are lost.

57

Chapter 3. Formal Semantics

3.11.4 Explicit error signals

i 6= j ∧ v = kill
EXIT3

i[exit(j, v), mi, li, fi] || j[ej , mj , lj , fj] −→

i[true, mi, li, fi] || j[killed, lj]

i 6= j ∧ v 6= kill ∧ v 6= normal ∧ fj = false
EXIT4

i[exit(j, v), mi, li, fi] || j[ej , mj , lj , fj] −→

i[true, mi, li, fi] || j[v, lj]

i 6= j ∧ v = normal ∧ fj = false
EXIT5

i[exit(j, v), mi, li, fi] || j[ej , mj , lj , fj] −→

i[true, mi, li, fi] || j[ej , mj , lj , fj]

i 6= j ∧ v 6= kill ∧ fj = true
EXIT6

i[exit(j, v), mi, li, fi] || j[ej , mj , lj , fj] −→

i[true, mi, li, fi] || j[ej , mj ++ [EXIT, i, v], lj , fj]

EXIT7

i[exit(j, v), mi, li, fi] || j[v, lj] −→ i[true, mi, li, fi] || j[v, lj]

Table 3.11: Explicit exit signals

i = j ∧ v = kill
EXIT8

i[exit(j, v),m, l, f] −→ i[killed, l]

i = j ∧ v 6= kill ∧ f = false
EXIT9

i[exit(j, v),m, l, f] −→ i[v, l]

i = j ∧ v 6= kill ∧ f = true
EXIT10

i[exit(j, v),m, l, f] −→ i[true,m++ [EXIT, i, v], l, f]

Table 3.12: Self-sent exit signals

The above rules state how processes behave on receipt of an error signal which is

explicitly sent by another process. The diagram shown hereafter illustrates how

these rules relate to the behaviour of actual Erlang.

58

Chapter 3. Formal Semantics

Figure 3.3: Exit propagation through explicit error signals

In the above diagram Process A is the process which is generating the explicit

error signal by calling the exit(pid,Reason) built-in function. Here note, that

process A is calling the exit function twice i.e. exit(B,Reason), exit(C,Reason).

The key difference between process B and process C, is that process C is a system

process(process flag is set) while process B is not.

Perhaps the most noticeable difference between explicitly generated error sig-

nals and error propagation through links is when the reason of the generated

signal is kill. In this case, as stated in rule EXIT3, the receiving process will

terminate immediately with reason killed irrespective of whether it is trapping

exit signals or not. Rules EXIT4 and EXIT5 describe the way the system behaves

whenever an exit signal is sent to a process which is not trapping exit signals.

Rule EXIT4 states that when an exit signal with reason R(where R 6= to kill

or normal) is sent to a process which is not trapping exit signals, the receiving

59

Chapter 3. Formal Semantics

process will terminate with reason R. Otherwise, if an exit signal with reason

normal is sent to a process which is not trapping exit signals then this process

will not terminate(EXIT5). Rule EXIT6 states that when an exit signal is sent to

a process which is trapping exit signal, then the received signal is translated into

an exit message and appended to the process’ mailbox. Rule EXIT7 states that

if an exit signal is sent to a terminated process, then the exit signal is ignored.

Given the high degree of similarity between explicitly generated error signals

and error propagation through links, at this point it is worth considering if it

is possible to imitate the behaviour of links by sending explicit error signals.

For example, can the following two pieces of code be considered as semantically

equivalent?

Process i:

link(j),

link(k),

...

exit(badarg),

?
⇔

Process i :

exit(j,badarg),

exit(k,badarg),

exit(badarg),

Listing 3.4: Exit propagation & Explicitly sent exit signals

At first glance, they seem to have identical behaviour - in both cases an exit

signal with reason badarg will be sent to process j and process k. However, there

is one subtle difference. In the first case process i will terminate prior to sending

any error signals whereas in the second case process j will send all error signals

before its termination. In order to better understand the consequence of such a

slight difference let’s consider the case where an external process, say process l

sends an exit signal with reason stop just after process i has sent an error signal

to process j.

First we will consider the piece of code shown on the left hand side. In this

case after linking to process j and process k, process i will terminate with reason

badarg.

i[link(j)·link(k)·...exit(badarg), ε, ∅, false] || j[ej, ε, ∅, false] || k[ek, ε, ∅, false]

−→ i[link(k) · exit(badarg), ε, {j}, false] || j[ej , ε, {j}, false] || k[ek, ε, ∅, false]

(LINK0)

60

Chapter 3. Formal Semantics

−→ i[exit(badarg), ε, {j, k}, false] || j[ej , ε, {j}, false] || k[ek, ε, {k}, false]

(LINK0)

−→ i[badarg, {j, k}] || j[ej , ε, {j}, false] || k[ek, ε, {k}, false] (TERM1)

After its termination, process i will start sending error signals to all processes

found in its link set; i.e. process j and process k. Here it is worth pointing

out that process i may first send an error signal to either process j or k since

as mentioned in Section 3.11.2 the order in which error signals are sent upon

process termination is undetermined. In the following steps process i will first

send an error signal to process j. Since process j is not trapping exit signals it

will terminate with reason badarg.

i[badarg, {j, k}] || j[e, ε, {i}, false] −→ i[badarg, {k}] || j[badarg, ∅] (EXIT2)

After the error signal has been sent, another different process l, sends an error

signal with reason stop to process i. Since process i has already terminated this

error signal will be ignored.

l[stop, {i}] || i[badarg, {k}] −→ l[stop, ∅] || i[badarg, {k}] (EXIT7)

Process i, will then continue sending error signals to the remaining processes

found in its link set i.e. process k. On receipt of the error signal process k will

also terminate with reason badarg.

i[badarg, {k}] || k[e, ε, {i}, false] −→ i[badarg, ∅] || k[badarg, {i}] (EXIT2)

Now let’s consider the scenario where no links are used. In this case process i will

first send an error signal to process j and just as before process j will terminate

with reason badarg.

i[exit(j, badarg), ε, ∅, false]|| j[e, ε, {i}, false] −→

i[true, ε, ∅, false] || j[badarg, ∅] (EXIT4)

Then process i will receive the error signal from process l. Since process i is not

trapping exit signals, this will cause process i to terminate immediately.

61

Chapter 3. Formal Semantics

l[stop, {i}] || i[true, ε, ∅, false] −→ l[stop, ∅] || i[stop, ∅] (EXIT2)

As a result process i would never be able to send the remaining error signal

to process k. This which may potentially result in a memory leak, if for instance

process k is blocked waiting for some message from process i. This particular

example proves that the behaviour of error propagation through links cannot

always be imitated by using explicit error signals.

Another major difference between links and explicit error signals is that an

explicit error signal can be sent to the process generating the signal itself. This

is done if the first argument of the exit built-in functions is set to the calling

process pid, exit(self(), Reason). In the case of links this behaviour cannot be

obtained, a process cannot be linked to oneself. The rules defining the behaviour

of processes when exit signals are sent to oneself are described in Table 3.11.4.

What these rules essentially state is that when sending error signals to oneself
the behaviour of the process will depend mainly on two factors:

• the reason describing the cause of the error signal

• the process’s process flag

If the reason of the error signal is equal to kill, the process will die irrespective

of whether it is trapping exit signals or not(EXIT8). Otherwise, if the process is

trapping exit signals, the generated error signal will be trapped and a message

is appended to the process’ mailbox(EXIT10). If the process is not trapping exit

signals, the process will terminate immediately with the reason being the one set

by the explicitly generated error signal(EXIT9). Here it is worth highlighting the

fact that the process will still terminate even if the reason is set to normal.

In fact this is one minor improvement over Fredlund’s semantic definition of

explicitly generated error signals[14]. In his work, Fredlund does not define rules

to describe the behaviour of processes when error signals are sent to oneself. Con-

sequently, when trying to evaluate exit(self(),Reason) it is impossible to see how

the system will behave. For instance, let’s consider the case when the expression

exit(self(),normal) is evaluated. At first one might think that when evaluating

this expression the process will not terminate. This is because non-system pro-

cesses will only terminate upon receipt of an abnormal error signal (i.e. reason

6= normal). However, in truth when evaluating this expression using actual

Erlang the system will terminate immediately with reason normal.

62

Chapter 3. Formal Semantics

One problem mentioned in the previous chapter with respect to self-sent error

signals was if the function call exit(Reason) can be considered to be semantically

equivalent to exit(self(), Reason). Through the above semantics it becomes ev-

ident that there are some major difference between the two. For instance, let’s

consider the following two code excerpts:

process_flag(trap_exit,true),

....

exit(reason),

?
⇔

process_flag(trap_exit,true),

....

exit(self(),reason),

Listing 3.5: exit(Reason) & exit(self(),Reason) - Case A

When trying to evaluate the code excerpt found on the left using the defined

semantics the exit(reason) will be first reduced to an exception. This exception

will then cause the process to terminate with reason reason.

i[exit : reason, ε, ∅, true] −→ i[reason, ∅] (TERM1)

If we attempt to evaluate the code excerpt found on the right hand side the

end process will be different. This is due to the fact that the exit(self(), reason)

will not cause the process to terminate. Instead an error signal notification is

added to its mailbox.

i[exit(self(), reason), ε, ∅, true] −→

i[true, [EXIT, i, reason], ∅, true] (EXIT10)

This scenario shows that the exit(Reason) function cannot be considered to be

semantically equivalent to exit(self(),Reason). Nonetheless, the above case only

illustrates that these two expressions are not equivalent when called from within

a system process. What if the process flag is set to false just before calling the

exit(self(), Reason)? In this case will the two expressions always behave in the

same way? In order to be able to tackle this problem let’s consider the following

code excerpts:

try

process_flag(trap_exit,false),

exit(reason),

catch

exit:reason -> caught

end

?
⇔

try

process_flag(trap_exit,false),

exit(self(),reason),

catch

exit:reason -> caught

end

Listing 3.6: exit(Reason) & exit(self(),Reason) - Case B

63

Chapter 3. Formal Semantics

Using the defined semantics, the exit(reason) will be first reduced to an exception.

Since this is found within a try-catch block the generated exception will not cause

the process to terminate. As a result, the process will not terminate.

i[try exit : reason catch exit : reason → caught end, ε, ∅, false] −→

i[caught, ε, ∅, false] (TRY2)

In the second case, the exit(self(),reason) expression will send an exit signal to

itself. Due to the fact that the try-catch block is only capable of catching excep-

tions, the sent exit signal will immediately cause the process to terminate.

i[exit(self(), reason), ε, ∅, false] −→ i[reason, ∅] (EXIT9)

Therefore, even though at first it might seem that exit(self(), Reason) and

exit(Reason) will always behave in the same way when used by a non-system

process, this case proves that in truth this may not always be the case.

3.11.5 Monitors

MON0

i[monitor(process, j), mi, li, fi]||j[ej, mj, lj, fj] −→

i[true, mi, li, true] || j[ej, mj, lj ∪ {i}, fj]

MON1

i[monitor(process, j), m, l, f] || j[v, l] −→

i[true, m++ {′EXIT ′, j, down}, l, f] || j[v, l]

These rules state that when a process calls the monitor function, a one directional

link is created between the calling process and the specified pid(MON0). If the

process specified by the pid terminates abnormally, a notification message about

its termination will be sent. When the calling process, attempts to monitor

a terminated process, a notification message is immediately sent to the calling

process(MON1).

One point worth mentioning here is that these rules have two main limitia-

tions:

• In actual Erlang, when a process calls the monitor function consecutive
times, multiple monitors are created. For instance, in the following example

64

Chapter 3. Formal Semantics

monitor(process, Pid1),

monitor(process, Pid1)

two monitors will be created. As a result when the process terminates, two

message notifications will be received. In our semantics, only one message

will be received since the link set will only contain one instance of the

monitor’s pid. (due to the fact that sets are not able to store duplicates)

• In actual Erlang, when a process calls the monitor function it will only
be able to trap error signals from the process which it is monitoring. For
instance, in the case shown hereafter:

monitor(process, Pid1),

link(Pid2)

the calling process is only able of trapping error signals from Pid1. If pro-

cess Pid2 fails abnormally, than the calling process will also fail. However,

by using the defined rules, it is not possible to faithfully describe this be-

haviour. In fact the defined rules assume that there will only be monitor

calls within one process.

Using the defined rules, we are now able to tackle another problem mentioned

in the previous chapter - Can the monitor behaviour be implemented using links

as illustrated in the following diagram?

Figure 3.4: Monitor and Links

The following two code excerpts, illustrate how the above two systems are imple-

mented in Erlang.

65

Chapter 3. Formal Semantics

Process i

monitor(process,Pid2),

....

%%error occurs - reason = stop

Process j

...

Process i

process_flag(trap_exit,true),

link(PidB),

...

%%error occurs - reason = stop

Process j

process_flag(trap_exit,true),

...

Listing 3.7: Monitors & Links

The two systems seem to be semantically equivalent. In both cases if process

j fails, process i will be notified through an error messages. Additionally, a failure

in process i should never cause process j to terminate since:

• in the case of monitors, an error signal will not be sent given that process

j is not included in process i’s links set.

• in the case of links, process j should be able to trap the received exit signal.

Nonetheless, by using the defined rules it is possible to see that this last

statement is not entirely true since in reality when using links, process j may

actually fail to trap the received exit signal. This occurs, if the following sequence

of reductions take place.

After setting its process flag, process i creates a link to process j.

i[link(j) · exit(stop), ε, ∅, true] || j[e, ε, {i}, false]

−→ i[true · exit(stop), ε, {j}, true] || j[e, ε, {i}, false] (LINK0)

where e = process flag(trap exit, true) · ...

Process i, then terminates abnormally with reason stop. Upon termination it

sends an error signal to process j. Since process j has not set its process flag yet,

the sent error signal will cause it to terminate immediately.

−→ i[stop, {j}] || j[e, ε, {i}, true] (TERM1)

66

Chapter 3. Formal Semantics

−→ i[stop, ∅] || j[stop, ∅] (EXIT2)

Therefore, this proves that even though at first it might seem that the two

code excerpts are equivalent in actual fact they are not. Here one can appreciate

the fact, that thanks to the defined rules it was possible to clearly identify the

subtle difference between the two mechanisms.

3.11.6 sumNProduct Example(Remote error handling)

Using this rule it is now possible to describe the behaviour of sumNProduct which

makes use of the remote handling mechanisms as described in 3.11.2. Here, it

is important to note that in the following descriptions only the main reduction

steps are described. This is due to the fact that if all the reduction steps were to

be mentioned, the system’s description may result in a rather lengthy one.

First, we will consider the case when the both input lists consists are set to

[12,5]. First the parent process sets its flag so that it will be able to trap any

received error signals.

i[process flag(trap exit, true) · e1, ε, ∅, false]

−→ i[false · e1, ε, ∅, true] (PROC FLAG)

where e1 = spawn link(sumProcess, [i, [12, 5]]) · spawn link(productProcess, [i, [12, 5]])·

?[sum, Sum] → Sum; [EXIT, j, badarith] → invalid·

?[product, Product] → Product; [EXIT, k, badarith] → invalid·

[Sum,Product]

Two seperate processes are then created. Since the spawn link function is used a

link between the child and parent process is set up immediately. First the process

which is responsible to compute the sum is spawned:

−→ i[spawn link(sumProcess, [i, [12, 5]]) · e2, ε, ∅, true] (SEQ1)

−→ i[j · e2, ε, {j}, true] || j[i![sum, 12 + 5]), ε, {i}, false] (SPAWN LINK)

67

Chapter 3. Formal Semantics

where e2 = spawn link(productProcess, [i, [12, 5]])·

?[sum, Sum] → Sum; [EXIT, j, badarith] → invalid·

?[product, Product] → Product; [EXIT, k, badarith] → invalid·

[Sum,Product]

Subsequently, another process is spawned to calculate the product of the input

list.

−→ i[spawn link(productProcess, [i, [12, 5]]) · e3, ε, {j}, true] ||

k[i![product, 12 ∗ 5], ε, {i}, false] || sj (SEQ1)

−→ i[k · e3, ε, {k}, true] || k[i![product, 12 ∗ 5], ε, {i}, false] || sj (SPAWN LINK)

−→ i[e3, ε, {j, k}, true] || k[i![product, 12 ∗ 5], ε, {i}, false] || sj (SEQ1)

where sj = j[i![sum, 12 + 5]), ε, {i}, false]

e3 =?[sum, Sum] → Sum; [EXIT, j, badarith] → invalid·

?[product, Product] → Product; [EXIT, k, badarith] → invalid·

[Sum,Product]

Process j, the process calculating the sum will then send its result.

≡ j[i![sum, 12 + 5]), ε, {i}, false] || i[e3, ε, {j, k}, true] || s′k

−→ j[[sum, 17], ε, {i}, false] || i[e3, [[sum, 17]], {j, k}, true] || s′k (SEND1)

Subsequently process k will send the the product of the input list.

≡ k[i ! [product, 60], ε, {i}, false] || i[e3, ε, {j, k}, true] || s′j

−→ k[[product, 17], ε, {i}, false] ||i[e3, [[sum, 17], [product, 60]], {j, k}, true] || s′j

(SEND1)

where s′k = k[i![product, 12 ∗ 5]), ε, {i}, false]

s′j = j[[sum, 17], ε, {i}, false]

The two results are then read from the mailbox. First process i will read the sum

value.

68

Chapter 3. Formal Semantics

≡ i[?[sum, Sum] → Sum; [EXIT, j, badarith] → invalid · e4,

[[sum, 17], [product, 60]], {j, k}, true] || s′′j || s′′k

−→ i[17 · e4, [[product, 60]], {j, k}, true] || s′′j || s′′k (RCV)

where e4 = ?[product, V alue] → V alue; [EXIT, k, badarith] → invalid

·[17, P roduct]

s′′k = k[[product, 60], ε, {i}, false]

s′′j = j[[sum, 17], ε, {i}, false]

Then process i will then read the product value. The two read values i.e. [17,60]

are then returned.

−→ i[?[product, Product] → Product; [EXIT, k, badarith] → invalid

·[17, P roduct], [[product, 60]], {j, k}, true] || s′′j || s′′k

−→ i[[17, 60], ε, {j, k}, true] || s′′j || s′′k (RCV)

The above reduction steps are only one possible sequence of steps that can

lead to the expected output. As mentioned in a previous section, when dealing

with a parallel system there may be various different interleavings which still lead

to the same output. Nonetheless, through the defined rules it is possible to check

that all possible interleavings lead to the same result.

We will now consider the case when invalid list of data is input - [a,12]. Note

that here only the main reduction steps are highlighted. These will give an idea

how the defined rules can be used to describe the behaviour of a system. Similar

to the previous case, process i will first set its process flag.

i[process flag(trap exit, true) · e1, ε, ∅, false]

−→ i[false · e1, ε, ∅, true] (PROC FLAG)

where e1 = spawn link(sumProcess, [i, [a, 12]]) · spawn link(productProcess, [i, [a, 12]])·

?[sum, Sum] → Sum; [EXIT, j, badarith] → invalid·

?[product, Product] → Product; [EXIT, k, badarith] → invalid·

[Sum,Product]

Then it will spawn the two processes, one to calculate the sum and another to

calculate the product.

69

Chapter 3. Formal Semantics

−→ i[spawn link(sumProcess, [i, [a, 12]]) · e2, ε, ∅, true] (SEQ1)

−→ i[j · e2, ε, {j}, true] || j[i![sum, a+ 12]), ε, {i}, false] (SPAWN LINK)

where e2 = spawn link(productProcess, [i, [a, 12]])·

?[sum, Sum] → Sum; [EXIT, j, badarith] → invalid·

?[product, Product] → Product; [EXIT, k, badarith] → invalid·

[Sum,Product]

Subsequently, another process is spawned to calculate the product of the input

list.

−→ i[spawn link(productProcess, [i, [a, 12]]) · e3, ε, {j, k}, true] ||

k[i![product, a ∗ 12], ε, {i}, false] || sj (SEQ1)

−→ i[k · e3, ε, {j, k}, true] || k[i![product, a ∗ 12], ε, {i}, false] || sj (SPAWN LINK)

−→ i[e3, ε, {j, k}, true] || k[i![product, a ∗ 12], ε, {i}, false] || sj (SEQ1)

where sj = j[i![sum, a+ 12]), ε, {i}, false]

e3 =?[sum, Sum] → Sum; [EXIT, j, badarith] → invalid·

?[product, Product] → Product; [EXIT, k, badarith] → invalid·

[Sum,Product]

When processes j attempts to calculate the sum of the received list it will fail

with reason badarith. Afterwards, it will send an error signal to process i.

≡ j[i![sum, a+ 12]), ε, {i}, false] || i[e3, ε, {j, k}, true] || s′k

−→ j[error : badarith, ε, {i}, false] || i[e3, ε, {j, k}, true] || s
′

k

−→ j[badarith, i] || i[e3, ε, {j, k}, true] || s
′

k (TERM1)

−→ j[badarith, ∅] || i[e3, [[EXIT, j, badarith]], {k}, true] || s′k (EXIT2)

where s′k = k[i![product, a ∗ 12]), ε, {i}, false]

Process i will then read the received error notification

70

Chapter 3. Formal Semantics

≡ i[?[sum, Sum] → Sum; [EXIT, j, badarith] → invalid · e4,

[[EXIT, j, badarith]], {k}, true] || j[badarith, ∅] || s′k

−→ i[invalid · e4, ε, {k}, true] || j[badarith, ∅] || s′k (RCV)

where e4 =?[product, V alue] → V alue; [EXIT, k, badarith] → invalid

·[invalid, Product]

Similarly, process k will also terminate with reason badarith. The received error

notification will be appended to process i’s mailbox.

≡ k[i![product, 12 ∗ 5], ε, {i}, false] || i[invalid · e4, ε, {k}, true] || s′j

−→ k[error:badarith, ε, {i}, false] || i[invalid · e4, ε, {k}, true] || s′j

−→ k[badarith, {i}] || i[invalid · e4, ε, {k}, true] || s′j (TERM1)

−→ k[badarith, ∅] || i[e4, [[EXIT, k, badarith]], ∅, true] || s′j (EXIT2)

where s′j = j[badarith, ∅]

Process i will read the error notification sent from process k.

−→ i[?[product, Product] → Product; [EXIT, k, badarith] → invalid·[invalid, Product],

[[EXIT, k, badarith]], ∅, true] || s′k || s′j

−→ i[[invalid, invalid], ε, ∅, true] || s′k || s′j (RCV)

where s′k = k[badarith, ∅]

The above steps show that in the case of invalid input, this version of sumN-

Product will also return [invalid, invalid] just like its sequential and other parallel

version. By using the defined rules it is also possible to show that even by chang-

ing the order in which the events happen the system will still return the same

output if given the same input. Therefore, it is possible to conclude that this

version of sumNProduct is semantically equivalent to its previous versions.

71

Chapter 3. Formal Semantics

3.12 Conclusion

This chapter presented a formal semantic definition of Erlang’s error handling

mechanisms. These formal definitions provided us a better insight of how Er-

lang systems behave in the presence of errors. In fact, by using these rules it

became possible to get a step-by-step description of how Erlang systems are ex-

ecuted, bringing to light any unexpected sequences of events that may lead to

unwanted results. Additionally, these rules were also able to show that in some

cases, two syntactically different systems can actually have semantically equiva-

lent behaviour. However, when dealing with parallel system it was much more

challenging to ensure semantic equivalence of two systems. This is due to the fact

that the number of possible interleavings is exponential to the size of the given

system. This latter fact, is the motivation behind the next chapter. In order

to facilitate the task of exhaustively analysing a system’s behaviour, the defined

semantic rules will be animated through an evaluator.

72

4. Implementation Framework

4.1 Introduction

The main motivation behind defining a formal semantics for the error handling

constructs was to be able to correctly reason about Erlang systems. Through

the rules defined in the previous chapter it became possible to give a detailed

description of how a particular Erlang system is expected to behave. The aim of

this chapter is to give a high-level description of the system which was designed so

as to be able to check the behaviour of a system under all possible interleavings

in a more efficient way. The main components of the designed system will be

outlined highlighting any choices that were taken whilst designing the system.

4.2 System Design

The system was implemented in Haskell and as illustrated in Figure 4.1, it consists

mainly of three main modules. The first module is responsible for parsing the

input text. The parsed input is then fed to the evaluator which will describe all

possible ways the input system may behave according to the previously defined

semantic rules. The last module’s task is to present in an understandable way, a

step-by-by description of these different behaviours. In the following sections we

will take a deeper look at hwoeach of these modules.

73

Chapter 4. Implementation Framework

Figure 4.1: System’s design

4.3 Input

The designed system asks the user to enter three inputs:

1. name of the module file - The module file should contain the function defi-

nitions that are called by the Erlang system. Even though in actual Erlang

one system can call functions, whose definitions are found within different

modules in the designed system, all function definitions have to be found

within the same file. The expressions of this file will be parsed according

to the BNF described in Table 3.2. The only difference is that the spawn,

spawn link, and spawn monitor functions do not expect the module name

parameter.

2. name of the input file - this file will contain the input expression that in

actual Erlang is input into the shell. This expression will be also parsed

according to the BNF described in Table 3.2 and as in the previous case the

spawn, spawn link and spawn monitor functions do not expect the module

name parameter.

3. name of the output file - this will determine the name of the file where the

results of the evaluator will be stored.

4.4 Parsing

The first module is composed of two distinct sub-modules; the lexer and the

parser. The purpose why the parsing analysis was divided into two stages is that

this approach helps in ensuring a less complex design for the parser.

74

Chapter 4. Implementation Framework

4.4.1 Lexer

The lexer used within the system was adapted from the one found in [20]. As

input the lexer will be fed text upon which it performs the following taks:

- remove comments

- remove white spaces

- detect any lexical errors

- recognise any keywords or operators

- recognise atoms and integers

For example, if the lexer is given the following input:

%% this is an example

[1,20,Hello,world]

it will tokenize the input text and return the following list of tokens.

[Tok "[" 3 2 Keyword,

Tok "1" 3 3 Number,

Tok "," 3 4 Keyword,

Tok "10" 3 5 Number,

Tok "," 3 7 Keyword,

Tok "Hello" 3 8 Variable,

Tok "," 3 13 Keyword,

Tok "world" 3 14 UnquotedAtom,

Tok "]" 3 19 Keyword,

Tok "" 3 20 EndToken]

Each token has a string containing the exact substring from the source file

followed by the line and column where the token is found in source file and the

token’s class such as Number or Variable. This tokenized list is then passed to

the parser.

4.4.2 Parser Combinators

The parser was implemented using parser combinators rather than a parser gener-

ator. One major benefit of using parser combinators is that one need not generate

the whole parser every time a minor modification is done to the parser as is the

case when using a parser generator. The fundamental principle behind parser

combinators is that a parser is written in bottom-up fashion, similar to the way

that one would define a language grammar.

75

Chapter 4. Implementation Framework

In fact, when implementing the parser for this project the most elementary

parser were first defined. These parsers were then “joined” together so as to get

the main parser which is able to parse all of the expressions found in the chosen

subset of Erlang. The most basic parser within the designed system is the token

parser.

token ([]) = ParseError "Unexpected eof"

token (x:xs) = Expression (x,xs)

Listing 4.1: Basic Parser

The task of this simple parser is to return as the parsed expression, the head

of the token’s list that is passed to the main parser. Apart from the token

parser, several other elementary parsers were defined. These all combined the

token parser described above with another function in order to produce a new

parser. One such parser is the keyword parser.

keyword str = token <=> (isKeyword str)

Listing 4.2: Keyword parser

Here, the <=> combinator, checks if the function given on the right hand side,

(isKeyword str), returns true when applied to the parsed expression that is

produced when using the parser on the left hand side (token). The keyword

parser was then combined to other elementary parsers which are needed to parse

the Erlang expressions that are found in the chosen subset. Two such expression

parsers are the following:

caseExp = (keyword "case") <-+>

expression <+->

(keyword "of") <+>

erlangMatch

tryExp = (keyword "try") <-+>

sequence <+->

(keyword "catch") <+>

exceptionsCatch

Listing 4.3: Parser Combinators

These parsers make use of three different parser combinators. The <+> com-

binator joins two parsers using the ‘and’ type operator. The <-+> combinator is

similar to the <+> combinator but does not return the output of the parser on the

left hand side of the combinator. On the other hand, the <+-> combinator does

not return the output of the parser defined on the right hand side. For instance,

76

Chapter 4. Implementation Framework

when applying the caseExp parser to a tokenized list representing the following

expressions:

case Value of 1 -> hello; 2 -> bye end

try A+B catch error:Desc -> Desc end

the Erlang expression parser returns the expression

Case (Var "Value") Match [(1,Atom "hello"),(2,(Atom "bye")]

Try (Add (Var A) (Var B)) Match [Exception Error (Var Desc)]

In order to be able to parse all the expressions in the subset, a different

simple parser were defined for each Erlang expression. Here, only the tryExp

and caseExp parsers were described. However, the other parsers were defined

similar to the way in which these two parsers have been defined.

The main parser then “combined” all of these expression parser by using the

<|> combinator whose task is to join any two elementary parsers using the ‘or’

type operator.

prefixExp :: Parser ErlangExp

prefixExp =

caseExp

<|> receiveExp

<|> tryExp

<|> builtInFun

<|> functionCall

<|> list

<|> atom

<|> number

<|> var

Listing 4.4: Expressions Parser

The above parser is used to parse the Erlang expressions found in the chosen

subset. Once again, through this example one cannot help noticing the fact

parser combinators made it possible to define the parser using really neat syntax.

Moreover the parser’s syntax is highly similar to the BNF definition. In fact,

by looking at the parser definitions in 4.4 one can immediately understand what

expression a particular parser is expected to parse since the parser function is

almost identical to the BNF definition.

77

Chapter 4. Implementation Framework

Another reason why it was opted to implement the parser through parser

combinators lies in the fact that this approach allows incremental development.

Therefore, if for instance the parser were to be extended so as to be able to parse

Erlang tuples it would be relatively easy to carry out such modification. This

is because in order to extend the parser one need only define a simple parser to

parse Erlang tuples. The simple parser is then “joined” to the main parser as

described in Listing 4.5

prefixExp :: Parser ErlangExp

prefixExp =

caseExp

<|> receiveExp

<|> tryExp

<|> builtInFun

<|> functionCall

<|> list

<|> atom

<|> number

<|> var

<|> tuple

Listing 4.5: Expression Parser Extended

This simple example brings to light the fact that when using parser combi-

nators, no major modifications need to be done in order to increase the number

of expressions that the parser is able to parse. Therefore, with regards to this

work, even though the parser was defined for a subset of Erlang, it will be quite

straightforward to extend the parser so as to be able to accept an increased sub-

set of Erlang. In fact, if a parser were to be defined to accept a larger subset of

Erlang there will not be a need to implement the new parser from scratch as is

the case when parser generators are used. This is because the parser implemented

for this project may serve as the basis upon which the larger parser is built.

4.5 Evaluator

The primary aim of the evaluator is to give a clear and accurate description of

how a particular Erlang system behaves. This is done by going through all pos-

sible sequences of reduction steps that the system might take, possibly revealing

any unexpected ways in which an Erlang system might behave. Undoubtedly,

one of the major benefits of the designed evaluator is that it makes the task of

78

Chapter 4. Implementation Framework

checking the behaviour of a system under all possible interleavings much more

efficient. One here should be aware that the total number of interleavings can be

considerably large even when the input system is extremely simple. This can be

clearly seen if we consider the following really simple system:

processA() ->

%% create a new process send the value 3

case spawn_link(processB,[]) of

%% send the value 3 to the new process

Pid -> Pid ! 3

end.

processB() ->

%% bind the sum of 1+2 to Total

case 1+2 of Total ->

%% add the received Value to Total

receive

Value -> Total + Value

end

end.

Listing 4.6: Erlang Program

The following two lists identify all the small subtasks that are carried out by

each process when the system is executed. Each of these tasks corresponds to

exactly one reduction step.

Process A :

A1 : spawn new process

A2 : bind Pid to pid of new process

A3 : send message to process B

Process B :

B1 : compute sum of 1+2

B2 : bind Total to the result

B3 : receive message

B4 : add Total to the received Value

Table 4.1: Actions to be performed when executing program 4.6

Diagram 4.2 illustrates the different sequences of reduction steps that this

particular system may take before it returns its final output.

79

Chapter 4. Implementation Framework

Figure 4.2: Different interleavings

In the above diagram the actions that are done by process A are indicated

by gray coloured boxes, whereas actions that are carried out by process B are

indicated by white boxes.

One here may notice that in all cases, process A will send the message to

process B, and process B will always evaluate down to 6. Therefore, all cases

can be considered to have identical behaviour even though the sequence of steps

that led the system to achieve its final result are slightly different. Through this

diagram it becomes clear that one extra reduction step in any of the given process,

will increase the number of possible interleavings drastically.

In order to reduce the number of interleavings that the evaluator needs to

go through, it was decided that sequences of reduction steps that do not cause

any side effects, such as evaluation of addition followed by binding of variables

should be considered as one single operation. This is due to the fact, that the

order in which non-side effect reduction steps occurs may never yield to a different

system’s behaviour. For instance, let’s consider again the program described in

4.6. In this case, as described in 4.1 the majority of the actions that are carried

out by the two processes are non-side effect actions. In fact, the only side-effect

action is A3.

Therefore, it does not make any real difference if B1 is computed before A2,

or vice versa. This is because, non-side effect actions may only effect the local

state of the process. By adopting such a practice, the number of interleavings

is reduced substantially. This fact, is quite evident through Diagram 4.3 which

shows the reduced number of different interleavings that the evaluator will check

when using this approach.

80

Chapter 4. Implementation Framework

Figure 4.3: Different interleavings

In order to better appreciate how this approach made it possible to reduce

the number of interleavings but still be able to represent all the different ways in

which the system may behave, let’s consider another simple system.

Process A :

A1 : spawn new process

A2 : bind Pid to pid of new process

A3 : send exit signal to process B

Process B :

B1 : compute sum of 1+2

B2 : bind Total to the result

B3 : send Total to process C

Table 4.2: Actions to be performed

In this case, the different interleavings, may result in a different behaviour.

This is because, if action A3 is executed before B3 then the Total message will

never reach process C. This may occur if any of these interleavings occur:

Figure 4.4: Possible Interleavings of System in 4.2: process B fails to send message

By analysing these interleavings it becomes evident that in actual fact all

these interleavings are expressing the same behaviour i.e. the behaviour of the

system when the exit signal is received before process B sends the Total message

81

Chapter 4. Implementation Framework

to process C. Here, it is worth highlighting the fact that in Erlang systems once a

process dies, all the information stored within local variables is lost. As a result,

with regards to this example, it does not really matter if the exit signal is received

after executing step B1 or just after executing B2. This is because, upon process

B’s termination all information stored in variables is lost.

Now, let’s consider the case when codeCommB3 is evaluated before A3 and

therefore the Total message will be successfully sent to process C. As in the

previous case, there are several possible different interleavings that may lead

process B to eventually send the Total message. These interleavings are described

in Figure 4.5.

Figure 4.5: Possible Interleavings of System in 4.2: process B sends message

Through this example it became evident that an Erlang system due to its

parallel nature may take different interleavings to complete its task. However,

the behaviour of a system is really determined by the order in which the side-

effect actions take place. For instance, with respect to this system, what really

matters is if the exit message is received before or after the Total message is

sent to process C. Therefore, all the different behaviours in which this particular

system may behave can be represented through the following two interleavings.

Figure 4.6: Possible Interleavings of System 4.2

Here, it is important to note that even though the number of interleavings to

be checked are reduced substantially, the different interleavings are still able to

represent all the possible ways in which a system may behave.

82

Chapter 4. Implementation Framework

One of the major benefits of reducing the number of possible interleavings was

that the evaluator experienced a slight improvement in efficiency. Just the same,

the number of possible interleavings in some cases is considerably large especially

when dealing with systems in which processes may terminate abnormally. This

is due the fact that the order in which exit signals are sent is undefined. For

instance, if a process is linked to 3 other processes, say process A, process B and

process C then there are a total of six different orderings in which the exit signal

may be sent. (since the failed process may send its exit signals either to A then

to B and then to C, or first to B, then to A and then to C ...) Let’s consider the

following example, to better understand how the order in which exit signals are

sent may increase significantly the number of possible interleavings:

...

%% spawn and link to process A

spawn_link(waitError,[Pid,ProcessB]),

%% spawn and link process B

spawn_link(waitError,[Pid,ProcessC]),

%% process terminates abnormally

%% with reason ’error occured’

exit(’error occured’).

waitError(Pid,Name) ->

%% start trapping exit signals

process_flag(trap_exit,true),

%% wait for error message

receive

Error -> Pid ! Name

end.

Listing 4.9: Erlang Program using Remote Error Handling Mechanisms

Each process in the above system, needs to execute the following steps:

Process A :

A1 : spawn link process B

A1 : spawn link process C

A3b : send error signal to B

A3c : send error signal to C

Process B :

B1 : set process flag

B2 : receive error message and

send result to Pid

Process C :

C1 : set process flag

C2 : receive error message and

send result to Pid

Table 4.3: Actions to be performed when executing program 4.9

83

Chapter 4. Implementation Framework

In this case process A is linked to both process B and process C and therefore

it needs to send an exit signal to both processes. The evaluator needs to cover

both when A sends its exit signal first to process B and when process A sends its

exit signal first to process C. This factor, is one major contributor to the increase

in the number of sequences that need to be checked by the evaluator. To get a

better idea, how large this number can actually get, let’s consider the following

diagram which describes the different interleavings that the system described

above may take:

Figure 4.7: Error handling - possible interleavings

Given the fact, that the number of different sequences may become consid-

erably large, it was decided that in the final output the evaluator only includes

the different end result the system might reach and one sequence that may lead

to this end result. For instance, in the above system, since the system may end

in five different ways in the output file only five sequence of reductions steps are

included, even though there are more different interleavings that the system may

take.

4.6 Building the Output File

Once the evaluator has gone through all the interleavings, an output file is built

decribing the different ways in which the input system may behave. The output

file consists of a pdf file, which is composed primarily of four sections

84

Chapter 4. Implementation Framework

- function definitions

- shell input

- different end systems

- sequence of reduction steps that have led to the above end systems

In order to build the pdf file, the output of the evaluator is translated into a

latex file. This is then parsed by using the pdflatex command. Once the output

file has been built, the system will automatically open the file so that the user

may view the result of the evaluator.

4.7 Conclusion

This chapter gave a brief overview of the main components found within the

designed system. It also illustrated why parallel systems may go through several

different sequences of reduction steps before completing their task. As a result, it

became evident that when dealing with parallel systems the use of an evaluator

is key in order to identify those sequences of steps that may lead to unexpected

behaviour.

85

5. Evaluation

5.1 Introduction

The aim of this chapter is to measure to what degree the objectives set forth

in the beginning of this project have been met. These objectives were primarily

that the defined model should be able to:

- offer a better insight into Erlang’s error handling mechanisms

- explain better those circumstances that lead to unexpected results

- predict a system’s behaviour

- lay foundations for a semantic theory

In the first section of this chapter the evaluation strategy that is used is ex-

plained. Subsequently, the described evaluation strategy is applied to a number

of Erlang systems in order to evaluate to what extent the initial objectives have

been achieved. Finally, the results of the evaluation are discussed.

5.2 Evaluation Strategy

Since the semantics were defined post-hoc, it was important to ensure that the

presented definitions are loyal to the behaviour of actual Erlang. The correctness

of the defined model was measured by adopting the strategy described in Figure

5.1.

86

Chapter 5. Evaluation

Figure 5.1: Evaluation Strategy

The correctness of the model was analysed by considering a number of different

Erlang programs.

1. Each program was first run on the Erlang VM. In order to get a clearer

picture of how a program is evaluated, Erlang’s trace built-in function was

used. This function returns a step-by-step description of how a program has

been evaluated by Erlang, hence indicating the order in which side-effect

actions such as linking and delivery of exit signals took place.

2. The same Erlang program was then translated in terms of the model.

3. Subsequently, the translated Erlang program was input into the evaluator.

The evaluator returned sequences of reduction steps describing the different

ways the input program may be evaluated according to the defined model.

4. The output generated by Erlang’s tracer and the output of the evaluator are

compared to analyse if the defined rules are capable of faithfully describing

Erlang’s behaviour.

5.3 Assessing the Defined Model

In this section, the evaluation strategy is applied to several Erlang programs. The

programs were selected in such a way to evaluate all the rules which were defined

to describe Erlang’s error handling behaviour.

87

Chapter 5. Evaluation

5.3.1 Test Case 1 : Local Error Handling

In order to evaluate the correctness of the formal rules describing Erlang’s local

error handling mechanisms, several programs which make use of the try-catch

expression were considered. Two of the programs which were considered were the

following:

Test case 1A:

fun1() ->

try

hello

catch

throw:stop ->

’error caught’

end.

Test case 1B:

fun1() ->

try

abc + def,

catch

error:badarith ->

’sum error’

end.

In all cases it was found that the model is able to mirror correctly the be-

haviour of Erlang both when no exceptions were raised within the try-catch

block(as in test case 1A), and also when exceptions were raised and needed to be

handled by the try-catch statement(as in test case 1B).

One of the most interesting test cases with regards to local error handling was

the following program which consists of two nested try-catch statements.

fun1(Pid,A,B) ->

try

try

Pid ! A + B

catch

error:badarith -> Pid ! invalid

end,

catch

error:badarg -> invalidPid

end.

Listing 5.1: Nested try-catch statements

In this program, the innermost try-catch can only handle badarith exceptions,

i.e. exceptions that occur when non-numeric data is passed as the second and

88

Chapter 5. Evaluation

third argument. The outermost try-catch statement is used to handle badarg

exceptions, i.e. those exceptions which arise if invalid pids are passed to the

function.

Here, we will consider the case when the first argument, i.e. the value bound

to Pid is not a valid pid. As a result, when evaluating the Pid ! A + B an

exception of type badarg is raised. The trace that was generated when evaluating

the

fun1(nonPid,1,2)

expression was the following:

ln1 : {trace,<0.161.0>,send,3,invalidPid}

ln2 : {trace,<0.161.0>,exit,normal}

The above trace list shows that Erlang will first attempt to send the sum of the

two input numbers i.e. 3 (ln1). Since in this case the first argument is bound

to the atom invalidPid the send expression fails. This can be seen from the

fact that in the trace list there is no tuple to show that the message has been

received. At this point, it is important to note that the raised badarg exception

does not cause the process to terminate abnormally since as shown in ln2 the

process will terminate with reason normal. This fact indicates that the generated

exception must have been handled by one of the try-catch statements. In fact,

when running the program, the system returned the atom invalidPid which shows

that the generated exception was handled by the outermost try-catch statement.

This program was then evaluated by using to the defined semantics rules.

According to the defined rules the system first evaluates the expression found

within the try-catch block(which in the following reduction step is represented

by e1).

i[try e1 catch error:badarg → invalidP id end, ε, ∅, false]

where e1 = try nonPid ! 1 + 2 catch error:badarg → invalidP id end

When evaluating the try-catch statement found in e1 a badarg exception is raised.

Since, the try-catch statement is only able to handle badarith exceptions, e1 will

evaluate down to a badarg exception as shown in the following reduction step:

89

Chapter 5. Evaluation

Evaluating subexpression e1:

i[try nonPid ! 1 + 2 catch error:badarith → Pid!invalid end, ε, ∅, false]

−→ i[error:badarg , ε, ∅, false]

The raised exception is then handled by the outermost try-catch statement and

the atom invalidP id is returned.

i[try error:badarg catch error:badarg → invalidP id end , ε, ∅, false]

−→ i[invalidP id , ε, ∅, false]

Subsequently, since there is no other expression to evaluate after the try-catch

statement the process terminates normally.

−→ i[normal, ∅]

The same behaviour was described when the program was input into the evalua-

tor:

Figure 5.2: Local error handling - evaluator’s output

As seen in Figure 5.2, the evaluator described the fact that the raised excep-

tion is handled by the outermost try-catch statement(TRY2). Subsequently, the

90

Chapter 5. Evaluation

process terminates with reason normal(TERM0).

With regards to the output generated by the evaluator, here it is important

to note that the expression in each reduction step only describes the innermost

evaluating expression. For instance, in the first reduction step, only the nonPid!3

expression found in process i is shown even though in actual fact this expression

is found within a try-catch statement. The main reason why it was opted to only

show the innermost evaluating expression was to prevent the reduction steps

descriptions from becoming too cumbersome.

Here, it is evident that the reduction steps describe a behaviour which is identical

to the one of actual Erlang. Therefore, it is clear that in this particular test case

the defined model is able to faithfully describe the behaviour of actual Erlang.

We will now move on to see if the behaviour of Erlang’s remote error handling

mechanisms as described by the model is completely faithful to the behaviour of

Erlang.

5.3.2 Test Case 2 : Remote Error Handling - Links

In Erlang whenever a process, say process A terminates with reason R then an

exit signal is sent to all of A’s linked processes. Upon receipt of this exit signal,

the linked process, say process B may behave in either of the following way:

case A: if process B’s process flag is set, an exit notification is appended to

process B’s mailbox

case B: if process B’s process flag is unset and R is normal, then the process

B ignores the received signal

case C: if process B’s process flag is unset and R is not equal to normal,

then the receiving process terminates with reason R

In order to check if the error propagation behaviour as described by the model

is correct, the test cases were chosen in such a way to cater for all the three

different ways a process might behave on receipt of an exit signal due to the

termination of a linked process. Here, only the evaluation of case A is described

since the evaluation carried out for each of the other cases is quite similar to the

one described here.

In the chosen program, one process is used to handle the generated exception

whereas another seperate process is responsible to compute the summation of the

91

Chapter 5. Evaluation

two input numbers.

fun1(Num1, Num2) ->

%% set process flag

process_flag(trap_exit,true),

%% create new process to compute sum of numbers

Pid = spawn_link(?MODULE,sum,[self(),Num1,Num2]),

receive

{’EXIT’,Pid,Error} -> invalid;

Result -> Result

end.

sum(Pid,Num1,Num2) -> Pid ! Num1 + Num2.

Listing 5.2: Remote Error Handling Example

When running this test case, the fun1() function was passed non-numeric data

(aa,bb) so as to see how the system will behave when incorrect data is input. The

generated trace list was as follows:

ln1 : {trace,<0.125.0>,spawn,<0.126.0>,{links,sum,[<0.125.0>,aa,bb]}}

ln2 : {trace,<0.125.0>,link,<0.126.0>}

ln3 : {trace,<0.126.0>,exit,{badarith,[{links,sum,3}]}}

ln4 : {trace,<0.125.0>,’receive’,{’EXIT’,<0.126.0>,

{badarith,[{links,sum,3}]}}}

ln5 : {trace,<0.125.0>,getting_unlinked,<0.126.0>}

ln6 : {trace,<0.125.0>,exit,normal}

In the above trace list, each side-effect action is represented by a tuple. The

second element of every tuple identifies the Pid of the process performing the

action. The third element gives the name of the side effect action that has been

done. In the case of spawning the fourth element shows the Pid of the new pro-

cess, whilst the fifth element shows the arguments passed to the spawn function

basically {moduleName, functionName, arguments}. In the case of linking, the

third element refers to the pid of the process with whom the link will be done.

92

Chapter 5. Evaluation

When the process terminates the third tuple is set to exit and the fourth tuple

indicates the reason with which the process terminated.

Here, one can appreciate how the trace list made it possible to get a really

clear picture of how this particular program is evaluated. In order to better

understand Erlang’s behaviour as described by the trace list let’s consider the

following diagram.

Figure 5.3: Remote error handling - Trace list’s output

The trace list describes the fact that the parent process (<0.125.0>) first

spawns and links to a new process(<0.126.0>)(ln1 - ln2). The task of the new

process is to compute the sum of aa and bb. Since the new process fails to com-

pute the sum of aa and bb it terminates with reason badarith(ln3). Once process

<0.126.0> terminates, an exit message is appended to process <0.125.0>’s mail-

box(ln4). The link which was found between the two processes is removed(ln5).

Subsequently, process <0.125.0> reads the exit message and terminates nor-

mally(ln6).

When the same system was input into the evaluator, the following sequence

of reductions was described. The parent process(process i), will first set its pro-

cess flag to true so as to trap any received exit signals.

93

Chapter 5. Evaluation

i[process flag(trap exit, true) · e1, ε, ∅, false]

−→ i[false · e1, ε, ∅, true]

where e1 = spawn link(sum, [i, aa, bb]),

?[′EXIT ′, P id, Error] → invalid;Result → Result end.

Process i then starts evaluating e1. It spawn links a process(process j) whose

task will be to compute the sum of the input parameters i.e. aa and bb.

−→ i[spawn link(sum, [i, aa, bb]) · e′1, ε, ∅, true]

−→ i[j · e′1, ε, {j}, true] || j[i!aa+ bb, ε, {i}, false]

where e′1 =?[′EXIT ′, P id, Error] → invalid;Result → Result end.

When process j attempts to calculate the sum of the two input numbers it fails

and a badarith exception is raised. This causes process j to terminate with reason

badarith.

−→ i[j · e′1, ε, {j}, true] || j[error :badarith, ε, {i}, false]

−→ i[j · e′1, ε, {j}, true] || j[error :badarith, {i}]

Upon termination, an error signal is sent to process i. Since process i is trapping

exit signals, the received signal is translated into an exit notification and appended to

process i’s mailbox.

≡ j[error :badarith, {i}] || i[j · e′1, ε, {j}, true]

−→ j[error :badarith, ∅] || i[j · e′1, [[
′EXIT ′, j, badarith]], ∅, true]

Process i then moves on to evaluate expression e′1 which consists of a receive

statement. The received exit message is read from the process’ mailbox and

process i terminates with reason normal.

−→ j[error :badarith, ∅] ||

i[?[′EXIT ′, P id, Error] → invalid;Result → Result end. ,

[[′EXIT ′, j, badarith]], ∅, true]

94

Chapter 5. Evaluation

−→ j[error :badarith, ∅] || i[invalid , ε, ∅, true]

−→ j[error :badarith, ∅] || j[normal, ∅]

The same behaviour was described by the evaluator:

Figure 5.4: Remote error handling - Evaluator’s output

Through this example it becomes evident how Erlang’s trace function made

it easier to compare the behaviour of actual Erlang to the one described by the

model. This is because, the trace list brings to light the order in which the

side effect actions took place and as a result it becomes really straightforward

to compare the sequence of reduction steps as described by the model to the

sequence of steps as described by the trace list.

5.3.3 Test Case 3 : Remote Error Handling - Monitors

In this section, the degree up to which the defined model is able to mirror the

behaviour of one-way linking (also known as monitoring) is evaluated. A number

95

Chapter 5. Evaluation

of different programs were considered to evaluate the correctness of the model.

Table 5.1 describes the way monitors are expected to behave according to the

defined model.

Test case description Behaviour according to model

Process A starts monitoring process B.

Process A terminates.

Process B is not affected.

Process A starts monitoring process B.

Process B terminates.

An exit message is appended to pro-

cess A’s mailbox.

Process A creates two monitors of pro-

cess B. Process B terminates.

Process A receives only one exit

message describing B’s termination.

Table 5.1: Monitors - Behaviour as described by model

One point worth mentioning here is that when the behaviour as described

by the model was compared to the behaviour of actual Erlang only the first two

test cases were found to be faithful to Erlang’s behaviour. In the last case the

model fell short of describing correctly Erlang’s behaviour. In order to better

understand why in the third case the behaviour of the model was found not to

be loyal to that of actual Erlang let’s consider the following program:

fun1(Pid) ->

erlang:monitor(process,Pid),

erlang:monitor(process,Pid),

exit(Pid,stop),

receive

Msg1 -> ’1st msg’

end,

receive

Msg2 -> ’2nd msg’

end.

Listing 5.3: Monitor Example

In this program two monitors are created to monitor the process indentified by

Pid. An exit signal is then sent to process Pid. Subsequently, the program will

wait for two messages describing process Pid termination. When evaluating the

above program, Erlang returned the following trace list:

96

Chapter 5. Evaluation

ln1:{trace,<0.224.0>,exit,stop}

ln2:{trace,<0.226.0>,’receive’,{’DOWN’,#Ref<0.0.0.1065>,process,<0.224.0>,

stop}}

ln3:{trace,<0.226.0>,’receive’,{’DOWN’,#Ref<0.0.0.1064>,process,<0.224.0>,

stop}}

ln4:{trace,<0.226.0>,exit,normal}

The above trace list indicates that since the monitor function is called twice,

the process creating the monitor(process <0.226.0>) receives two exit messages

when the monitored process(process <0.224.0>) terminates(ln2 - ln3). In con-

trast, when the above system is described through the model only one exit mes-

sage is received.

According to the defined rules, this program is evaluated in the following way.

In these reduction steps, the process creating the monitors is identified as process

i whereas the process which is going to be monitored is process j. Process i will

first evaluate the first monitor expression.

i[monitor(process, j) ·monitor(process, j) · exit(j, stop) · e1, ε, ∅, false] ||

j[e, ε, ∅, false]

−→ i[monitor(process, j) · exit(j, stop) · e1, ε, ∅, true] || j[e, ε, {i}, false]

where e1 =?Msg1 →′ 1st msg′ end·?Msg2 →′ 2nd msg′ end.

It then moves on to evaluate the next monitor expression. Note however, that

when executing this statement, process j’s state is not affected in any way since

no links are added to its link set.

−→ i[exit(j, stop) · e1, ε, ∅, true] || j[e, ε, {i}, false]

An exit signal is then sent to process j. This exit signal causes process j to

terminate immediately.

−→ i[e1, ε, ∅, true] || j[stop, {i}]

Process j then starts sending exit signals to those processes found in its link

97

Chapter 5. Evaluation

set, in this case process i. Since process i is trapping exit signals, the received

signal is translated into an exit message and appended to its mailbox. Here, it

is important to note that since process i’s pid was only found once in process j’s

link set, only one exit message is sent to process i.

≡ j[stop, {i}] || i[e1, ε, ∅, true]

−→ j[stop, ∅] || i[e1, [
′EXIT ′, j, stop], ∅, true]

Process i will then read the exit message it received.

≡ i[?Msg1 →′ 1st msg′ end·?Msg2 →′ 2nd msg′ end, [′EXIT ′, j, stop], ∅, true] ||

j[stop, ∅]

−→ i[[′EXIT ′, j, stop]·?Msg2 →′ 2nd msg′ end, ε, ∅, true] || j[stop, ∅]

Since only one message was found in process i’s mailbox, process i will block

indefinetly waiting for the second message.

−→ i[?Msg2 →′ 2nd msg′ end, ε, ∅, true] || j[stop, ∅]

Therefore, by analysing the behaviour as described by the model, it becomes

clear that with respect to the behaviour of monitors, the model’s description is

not completely faithful to the behaviour of actual Erlang.

5.3.4 Test Case 4 : Explicit Exit Signals

In this section, the correctness of the model with respect to the behaviour of

explicitly sent exit signal is analysed. During the evaluation stage, a number of

Erlang programs which make use of the exit(Pid,R) expression were considered.

In the following table, there is a summary of the different behaviours that the

model was able to describe when a process, say process A sent an exit signal to

another process, say process B.

98

Chapter 5. Evaluation

Reason Is process B Model’s Result

(R) trapping signals?

normal yes exit message appended to process B’s mailbox

normal no process B ignored the signal

6= normal yes exit message appended to process B’s mailbox

6= normal no process B dies with reason R

kill yes process B died with reason killed

kill no process B died with reason killed

Table 5.2: Explicit exit signals - Behaviour as described by model

In all of the above cases, the model was found to be loyal to the behaviour of

actual Erlang.

Apart from sending explicit signals to external processes, an Erlang process

is also able to send explicit exit signals to itself through the following expres-

sion exit(self(),R). In order to ensure that the model is also able to describe the

behaviour of Erlang when explicit exit signals are sent to the calling process,

a number of other programs were considered to cover all possible situations in

which an exit(self(),R) may be used. The results obtained are described in the

following table.

Reason Is process Model’s Result

(R) trapping signals?

normal yes exit message is appended to process A’s mailbox

normal no process A terminates with reason normal

6= normal yes exit message is appended to process A’s mailbox

6= normal no process A dies with reason R

kill yes process A dies with reason killed

kill no process A dies with reason killed

Table 5.3: Explicit exit signals - Behaviour as described by model

When the model’s behaviour was compared to the one of actual Erlang it was

found that in all cases the model was able to faithfully describe the behaviour

of Erlang whenever a process sends an explicit exit signals to itself. Therefore,

it was concluded that the model is able to correctly describe Erlang’s behaviour

whenever explicit exit signals are used.

99

Chapter 5. Evaluation

5.3.5 Test Case 5 : Order of Signal Evaluation

When dealing with single-node Erlang systems message delivery is guaranteed to

be carried out instantaneously[3]. In order to check if the order in which received

signals are evaluated is loyal to the behaviour of actual Erlang, a number of

systems which make use of side effect signals, primarily:

- sending of message e.g. Pid ! hello

- linking signals e.g. link(Pid)

- explicit exit signals e.g. exit(Pid,stop)

were considered. In the initial test cases, consecutive side effect actions of the

same type (i.e. either consecutive linking signals or exit signals or ordinary mes-

sages) were carried out between a pair of processes. Through these test cases it

became clear that in Erlang the receiving process always evaluated the signals in

the same order in which they were sent. For instance, if a process, evaluated the

following code:

B ! message1,

B ! message2

then it was always the case that process B received message1 prior to message2.

Similarly, when a process evaluated the following code:

exit(B,stop1),

exit(B,stop2)

then it was always the case that process B received the stop1 exit signal prior

to receiving the stop2 signal. This kind of behaviour was correctly described

by the defined model. Therefore, the model was found to be faithful to the

behaviour of actual Erlang with regards to the order in which “same-type” signals

are evaluated.

After checking that the model can correctly describe Erlang’s behaviour when

consecutive “same-type” signals are sent between a pair of processes it was

checked if the model could also faithfully describe the behaviour of actual Er-

lang when signals of different types were sent between a pair of processes. One

of the considered programs was the following:

100

Chapter 5. Evaluation

init() -> Pid = spawn(?MODULE,wait,[]),

%% send first signal - an exit signal

exit(Pid,stop),

%% send second signal - a link signal

link(Pid),

wait().

wait() -> receive

noMsg -> ok

end.

Listing 5.4: Order of signal evaluation - test case

In this program two different signals; an exit signal followed by a link signal are

sent to a particular process. The generated trace list when running this program

was :

ln 1 : {trace,<0.806.0>,spawn,<0.807.0>,{system3,wait,[]}}

ln 2 : {trace,<0.806.0>,link,<0.807.0>}

ln 3 : {trace,<0.807.0>,getting_linked,<0.806.0>}

ln 4 : {trace,<0.807.0>,exit,stop}

ln 5 : {trace,<0.806.0>,exit,stop}

The above trace list reveals the fact that although the process creating the

link(<0.806.0>), sends the exit signal before sending the link signal, Erlang will

actually create the link(ln 2) before the other process terminates due to the

received exit signal(ln 4). Consequently, when process <0.807.0> terminates

with reason stop, it will send an exit signal to its newly linked process. The latter

process will then also terminate with reason stop(ln 5).

This example shows that even though in Erlang, all signals between a pair

of processes are guaranteed to be ordered, there is no guarantee that all signals

will be evaluated in the same order in which they are sent. This is because,

whereas link signals were evaluated instantly, other signals such as the exit signals

were not. In fact, it seems that the exit signals are evaluated when the system

schedules some time for the receiving process. In order to better understand

101

Chapter 5. Evaluation

this latter statement let’s consider Figure 5.5 which describes how actual Erlang

is evaluating this particular system. The process in green indicates the process

which is currently in running state whereas the black process is currently waiting

for the scheduler to give it a time slice.

Figure 5.5: Order of signal evaluation

When evaluating this particular system, actual Erlang first sends an exit sig-

nal to process j. Note how this signal does not cause process j to terminate

immediately(1). Instead, the received signal seems to be put into some sort of

queue. Subsequently, process i sends a link signal to process j. Here, it is im-

portant to highlight the fact that the link signal is not put into a queue as was

the case with the exit signal. In contrast, this signal is evaluated instantly and

a link is created between the two processes(2). When the time scheduler assigns

some time to process j, this process will first evaluate the received exit signal and

terminate(3). Upon termination it will send an exit signal to its linked process,

process i(4).

When the behaviour of this program was described using the defined rules,

it fell short of describing the behaviour of actual Erlang. This is because in

the defined semantics all signals are received and evaluated instantaneously. As a

result, according to the defined rules, the system will be evaluated in the following

way:

102

Chapter 5. Evaluation

The parent process(process i) will first spawn its child process(process j).

i[spawn(wait, []) · exit(j, stop) · link(j) · wait(), ε, ∅, false]

−→ i[j · exit(j, stop) · link(j) · wait(), ε, ∅, false] || j[wait(), ε, ∅, false]

Process i, will then send an exit signal to process j. This will cause process j to

terminate with reason stop.

−→ i[exit(j, stop) · link(j) · wait(), ε, ∅, false] || j[wait(), ε, ∅, false]

−→ i[true · link(j) · wait(), ε, ∅, false] || j[stop, ∅]

Process i, then attempts to link to process j. However, since process j has

terminated, the link call fails and a noproc exception is raised.

−→ i[link(j) · wait(), ε, ∅, false] || j[stop, ∅]

−→ i[error:noproc · wait(), ε, ∅, false] || j[stop, ∅]

−→ i[error:noproc, ε, ∅, false] || j[stop, ∅]

The raised exception causes process i to terminate with reason noproc.

−→ i[noproc, ∅] || j[stop, ∅]

Therefore, whereas in Erlang both processes terminated with reason stop,

according to the defined rules the two processes will terminate with different

reasons. Perhaps at this point one question that comes to mind is, if it is the

case that the defined model has described a behaviour which can never occur in

actual Erlang. In order to answer this question a time delay was inserted between

the exit() and link() expression as shown in Listing 5.5. This was done to see if

Erlang will evaluate the received signals in the same order in which they are sent.

init() -> Pid = spawn(?MODULE,wait,[]),

exit(Pid,stop),

%% 1 second delay

link(Pid),

wait().

wait() -> receive

noMsg -> ok

end.

Listing 5.5: Order of signal evaluation - one second delay

103

Chapter 5. Evaluation

In this case the generated trace list is as follows:

ln1 : {trace,<0.198.0>,spawn,<0.199.0>,{system3,wait,[]}}

ln2 : {trace,<0.199.0>,exit,stop}

ln3 : {trace,<0.198.0>,link,<0.199.0>}

ln4 : {trace,<0.198.0>,exit,{noproc,[{erlang,link,[<0.199.0>]},

{system3,init,0}]}}

As shown in the trace list, in this case the child process(process <0.199.0>)

will terminate before its parent process(process <0.199.0>) attempts to create

the link(ln2). In fact, when the link expression is evaluated an exception is raised.

This fact is illustrated by the fact that the parent process terminated with reason

noproc (ln4). In order to get a clearer picture of what is happening in this case

let’s consider Figure 5.6

Figure 5.6: Order of signal evaluation

This latter behaviour is identical to the one described by the model and there-

fore it shows that the model did not describe a behaviour which may never occur

in reality.

Nonetheless, through test case 2 it became clear that in actual Erlang signals

are not delivered and evaluated instantly. This fact was also brought to light

104

Chapter 5. Evaluation

through the following test case. In this case, two different processes, Pid1 and

Pid2 are spawned. Subsequently an error signal is first sent to Pid2 and then

another exit signal is sent to Pid1.

init() -> Pid1 = spawn(?MODULE,wait,[]),

Pid2 = spawn(?MODULE,wait,[]),

exit(Pid2,’first signal’),

exit(Pid1,’second signal’),

wait().

wait() -> receive

noMsg -> ok

end.

Listing 5.6: Order of evaluation of exit signals

The generated trace list shows that even though an exit signal is first sent to

Pid2 (in the below trace list indicated by Pid <0.966.0>), the first process to

terminate due to received exit signal is the process indicated by Pid1 (in the

below trace list indicated by Pid <0.964.0>).

{trace,<0.963.0>,spawn,<0.964.0>,{system4,wait,[]}}

{trace,<0.963.0>,spawn,<0.965.0>,{system4,wait,[]}}

{trace,<0.964.0>,exit,’second signal’}

{trace,<0.965.0>,exit,’first signal’}

In order to better understand what is actually happening let’s consider the

following diagram. The green processes, represent those processes which are in a

running state whereas the black processes are in a waiting state.

105

Chapter 5. Evaluation

Figure 5.7: Order of signal evaluation

This diagram shows that even though an exit signal is first sent to process

Pid2, the first process to terminate is process Pid1. Conversely, according to

the defined semantic rules, the order in which the two processes will terminate

is defined by the order in which the exit signals are sent i.e. according to the

defined rules process Pid2’s termination will always occur prior to that of Pid1.

Therefore, through this case it seems that the defined semantics are not totally

faithful to the behaviour of actual Erlang.

Nonetheless, it was decided that the defined rules should just the same assume

that signals will be evaluated instantly. The main underlying reason, is that this

prevents from having a state explosion when going through all possible sequence

of states that the system may take. Additionally, in most cases, it is still possible

to predict accurately the behaviour of actual Erlang by using the defined semantic

rules.

5.3.6 Test Case 6: Handling Errors Locally or Remotely

In the initial chapter of this dissertation, a simple example was considered so as to

illustrate why understanding the behaviour of Erlang’s error handling constructs

may not always be as straightforward as it might seem. In fact, even though the

two programs described in Chapter 1 seemed to have identical behaviour, when

106

Chapter 5. Evaluation

they were run on Erlang it became evident that this was not the case. This is

because, whereas the program which handled errors locally was always able to

handle the raised exceptions, the one which made use of remote error handling

constructs sometimes failed to handle the exceptions which occured.

In this section the defined model is applied to both systems so as to see to

what degree the defined model is able to provide a better understanding of how

these systems behave hopefully revealing the underlying cause of this different

behaviour. The first system to be considered is the one in which errors are

handled locally:

processI(Pid,Num1,Num2) ->

try

Pid ! A + B

catch

error:badarith -> Pid ! invalid

end.

processJ() ->

receive

Result -> Result

end.

Listing 5.7: Local Error Handling Example

In this example, the system is composed of two different processes.

Figure 5.8: Local Error Handling Example

Process i’s task is to compute the sum of the two input numbers. The result

of this computation is then sent to the process j. Error handling constructs are

used so that if an error occurs when computing the sum of the two numbers, the

atom invalid is sent to process j.

When this program was run by Erlang it gave the expected results both when

valid data or invalid data was input. When the behaviour of this system was

107

Chapter 5. Evaluation

described through the defined model it became evident that this program will

always behave as expected. In fact, the model was able to ensure that some value

will always reache process j since there does not exist any other possible sequence

of reductions they may cause process j to block indefinitely waiting for the result.

This is because when valid data is input, the sum of the input numbers is received

and when invalid data is input the atom invalid is received.

Here, the case when the pid of process j and non-numeric data 1 and a is

passed to the processI() function will be considered so as to be able to better ap-

preciate how the model was able to provide a detailed description of this system’s

behaviour in the case when exceptions are raised.

According to the defined rules, the system first attempts to calculate the sum of

1 and a. This raises a badarith exception.

i[try j ! 1 + a catch error : badarith → j!invalid end, ε, ∅, false] || sj

−→ i[try error : badarith catch error : badarith → j!invalid end, ε, ∅, false] || sj

where sj = j[?Result → Result end], ε, ∅, false]

The raised exception is caught by the try-catch block and as a result, the atom

invalid is sent to process j.

−→ i[j!invalid, ε, ∅, false] || j[?Result → Result end, ε, ∅, false]

−→ i[invalid, ε, ∅, false] || j[?Result → Result end, [invalid], ∅, false]

Process j then reads the received message.

−→ i[invalid, ε, ∅, false] || j[invalid, ε, ∅, false]

Through these reduction steps it became clear why in this case the system

always behaves as expected. Now let’s consider the case when the same system

was implemented using remote error handling constructs. In this case the system

is composed of three different processes as shown hereunder:

108

Chapter 5. Evaluation

Figure 5.9: Remote Error Handling Example - System

Process i’s task is to compute the sum of the input numbers. The result is

then sent to process j. If an error occurs when computing the sum, process i

will terminate and the error is expected to be handled by process k. The task

of process k is to send the atom invalid to process j if any errors occur whilst

computing the sum of the two numbers. The system described in Figure 5.9 was

implemented in the following way:

processB(Pid,Num1,Num2) ->

%% spawn_link a new process to handle errors

%% the new process will start evaluating the errorHandler function

spawn_link(?MODULE,errorHandler,[Pid]),

Pid ! Num1 + Num2.

errorHandler(Pid) ->

%% make this process a system process

process_flag(trap_exit,true),

%% receive the trapped exit signal

receive

%% if process terminated normally then do nothing

{’EXIT’,Pid1,normal} -> ok;

%% otherwise send ’invalid’ to the process identified by Pid

{’EXIT’,Pid1,{badarith,stack}} -> Pid ! invalid

end.

Listing 5.8: Remote Error Handling Example

When the system was evaluated according to the defined rules it became clear

why in some cases the system was not handling the error which occurs while

computing the sum of the two numbers. In fact, the defined rules revealed the

fact that due to the different interleavings that the system might take, the system

109

Chapter 5. Evaluation

may terminate in either of these two states when invalid data is input.

Case 1: i[badarith, ∅] || j[normal, ∅] || k[normal, ∅]

Case 2: i[badarith, ∅] || j[?Result → Result end, ε, ∅, false] || k[badarith, ∅]

Case 1 describes the case when the error handling process(process k) successfully

handled the generated error. As a result, the atom invalid is successfully sent to

process j. Process j reads the sent message and terminates normally. This kind

of behaviour is identical to the one where local error handling is used since the

generated exception was successfully handled by the error handling process.

Case 2 describes the case when the error handling process(process k) failed to

handle the error and therefore, no message was sent to process j. As a result,

process j remains blocked waiting for the result of the computation. In order

to better understand the cause of such behaviour let’s consider the trace of ex-

ecution(as described by the model) that has led the system to behave in this

way.

According to the defined model the parent process(process i) will first spawn link

the error handling process(process k).

i[spawn link(errorHandler, [j]) · j ! 1 + a, ε, ∅, false] || sj

−→ i[k · j ! 1 + a, ε, {k}, false] ||

k[process flag(trap exit, true) · e1, ε, {i}, false] || sj

where sj = j[?Result → Result end], ε, ∅, false]

e1 =?[′EXIT ′, P id, normal] → ok; [′EXIT ′, P id, badarith] → Pid!invalid

Subsequently, when process i attempts to compute the sum of a and 1, a badarith

exception is raised.

−→ i[j ! 1 + a, ε, {k}, false] ||

k[process flag(trap exit, true) · e1, ε, {i}, false] || sj

−→ i[error : badarith, ε, {k}, false] ||

k[process flag(trap exit, true) · e1, ε, {i}, false] || sj

The raised exception will cause process i to terminate with reason badarith.

110

Chapter 5. Evaluation

−→ i[badarith, {k}] || k[process flag(trap exit, true) · e1, ε, {i}, false] || sj

Upon termination, process i starts sending exit signals to all its linked processes,

in this case process k. Note that since process k(the error handling process),

has not set its process flag yet, it will fail to trap the exit signal. As a result,

instead of carrying out the needed error handling code process k would terminate

immediately upon receipt of the exit signal.

−→ i[badarith, {k}] || k[process flag(trap exit, true) · e1, ε, {i}, false] || sj

−→ i[badarith, ∅] || k[badarith, ∅] || sj

Here it is worth pointing out that process j, is still alive waiting to receive the

result of the computation.

Through these reductions it became clear why this system does not have an

identical behaviour to the one which uses local error handling. The main reason

behind this faulty behaviour lies in the fact that an error might occur before the

error handling process has set its process flag. As a result, it is not able to trap

the received exit signal so as to recover from the received signal. The sequence

of steps that led to such behaviour are described in Figure 5.10

111

Chapter 5. Evaluation

Figure 5.10: Remote Error Handling Example - Unexpected Behaviour(1)

This example proved that the model is truly capable of providing a better

insight into how a system might behave. Moreover, through the model it became

much easier to identify the sequence of events that led to this behaviour.

It is also worth mentioning, that even though the two programs considered in

Chapter 1, seemed to have identical behaviour when valid data is input, when the

model was applied to this program it revealed that in effect this is not true. This

is because, when using remote error handling it may be the case that process k

will block indefinitely. This may happen if the sequence of steps described in the

Figure 5.11 takes place.

112

Chapter 5. Evaluation

Figure 5.11: Remote Error Handling Example - Unexpected Behaviour(2)

In the above diagram, process i terminates before process k has set its pro-

cess flag(4). Since the reason is set to normal, the received signal is ignored(5).

After receiving the signal, process k will set its process flag to true(6). Given

the fact that both process i and process j have terminated, process k will then

remain blocked waiting for the message describing the way process i terminates.

Through this simple case study, it became evident that the defined model

is able to provide a better insight into Erlang’s both local and remote error

handling constructs. As a result, whereas before it was somewhat difficult to truly

reason about Erlang’s behaviour in the presence of errors through the model it

became much easier to understand such behaviour. Moreover, the step-by-step

description of how Erlang programs are evaluated greatly helped to reveal the

cause of unexpected behaviour.

113

Chapter 5. Evaluation

5.4 Evaluation Results

This last section, outlines some facts that were observed during the evaluation

stage of this project. Primarily, it first gives a summary describing the results

that were obtained when measuring to what degree the model is faithful to actual

Erlang. Subsequently, the main limitations of the work done in this project are

discussed.

5.4.1 Accomplishments

In this section a table is presented summarizing all the different aspects of the

model that have been analysed in this chapter. Primarily it shows, if the model

is sound and/or complete with respect to the behaviour of actual Erlang. The

term soundness refers to the fact that the model can never describe a behaviour

which may never occur in reality. Completeness refers to the fact that the model

is able to represent all the possible ways actual Erlang may behave when using

that particular mechanism.

Erlang mechanism
Model

Sound Complete

Local Error Handling - try-catch X X

Error Propagation - linking X X

Error Propagation - monitoring X

Explicit Error Signals X X

Order of Signal Evaluation X

Table 5.4: Soundness & Completeness of Model

Here, it is important to note that since in this project the evaluation approach

was not a formal one, the X symbol does not necessary imply that a particular

mechanism is 100% guaranteed to be sound or complete. However, the several

examples which were considered during the evaluation stage gave us a good indi-

cation if the behaviour of a specific Erlang mechanism as described by the model

is sound and/or complete.

This table shows that the defined model was found to be able to describe

soundly the behaviour of all the Erlang mechanisms that were considered. This

114

Chapter 5. Evaluation

is because when carrying out the evaluation it was never the case that the model

described a behaviour which can never occur in actual Erlang.

With respect to the model’s completeness, in some cases the model fell short to

describe all the possible ways an Erlang system may behave. For instance, when

using monitors, the model was not able to completely describe the behaviour of

actual Erlang when one particular process created multiple monitors of another

process. The model was also found not to be complete when it came to describing

the ordering in which sent signals are evaluated. This is because, whereas the

model assumes that all signals are evaluated in the same order in which they

are sent, in reality Erlang may sometimes evaluate the sent signals in a different

order.

However, even though the model is not complete through the evaluation stage

it became evident that by using the model we are now able to get a better

insight into how Erlang’s error handling mechanisms behave. In this chapter,

this fact became even more clear through the several number of test cases which

were carried out. In all these test cases the model was able to give a precise

description of how particular constructs behave.

Through the model it also became possible to get a good indication if two

systems are expected to behave in a similar way or not. For instance, in the

last case study, the model was able to show that although the program which

adopted remote error handling seemed to have an identical behaviour to the one

using local error handling, in truth the two programs may behave in a different

way.

5.4.2 Limitations

Even though, in most cases the defined semantics and designed evaluator are able

to faithfully mirror the behaviour of actual Erlang through the evaluation stage

it became apparent that they still suffer from some limitations.

5.4.2.1 A Single-node Semantics

One main limitation of the defined semantics is that they are only able of de-

scribing all possible behaviors of single-node systems. If these semantics were to

be used to describe the behaviour of distributed Erlang systems, the rules may

not be able to describe completely the different ways in which the system might

115

Chapter 5. Evaluation

behave. This is because, as claimed by [3], when dealing with distributed Erlang

systems, signal delivery is not immediate. In contrast, the defined semantics as-

sumes that all signals are received instantaneously. In order to better understand,

the implications of this latter fact let’s consider the following case:

Figure 5.12: Error signals - Distributed Systems

In the above system Process A, first sends an explicit exit signal to process C.

Subsequently, an error signal is sent to process B. Once process B receives the

exit signal it will terminate and an exit signal is sent to process C.

According to the defined semantics, process C will always terminate with

reason ‘first’ and process B will always terminate with reason ‘second’. This

is because in the defined semantics all exit signals are received and evaluated

immediately. However, in actual Erlang if all three processes were to be found

on different nodes, the exit signal delivery is not guaranteed to be instantaneous.

Therefore, even though process A will send the exit signal ‘first’ to process C

prior to sending an exit signal ‘second’ to process B, it is not guaranteed that

the ‘first’ signal arrives at C prior to the exit signal ‘second’. In actual fact, it

may very well be the case that process C terminates with reason ‘second’. This

kind of behaviour cannot be described through the presented semantics.

5.4.2.2 Simulation Time

Perhaps one of the main limitations of the designed evaluator is that in some

cases it may take a considerably long time to produce an output describing the

different ways the system may behave. The underlying cause lies in the fact

that the number of different interleavings that need to be checked will grow

exponentially to the size of the input system. As a result, the designed evaluator

116

Chapter 5. Evaluation

is only able to simulate the behaviour of small systems in a reasonable amount

of time.

5.5 Conclusion

This chapter evaluated the different aspects of this project. This was done by

considering a number of Erlang systems and comparing the behaviour of these

programs as described by the model against the way the same programs behaved

when run on the Erlang VM. This evalution strategy gave us a clear indication to

what extent the model is able to faithfully mirror the behaviour of actual Erlang.

Additionally, it also helped to expose the main benefits and limitations of the

defined model and evaluator.

117

6. Conclusion and Future Work

In this final chapter the benefits that have been achieved through this project will

be outlined. Subsequently, some improvements that could be done to the work

presented in this project are suggested.

6.1 Benefits Achieved

The following points outline the main results that were accomplished through the

defined semantic rules.

Offer a better insight - In the initial stage of this project it was not quite clear

how Erlang systems, especially those which made use of the remote error handling

constructs might behave. For instance, in Chapter 1, it was rather unclear why

the program which made use of the remote error handling constructs(Listing 1.2)

does not always behave in the same way as the one which uses local error han-

dling constructs(Listing 1.1). The model defined in this work has successfully

addressed these type of problems by providing precise and unambigious descrip-

tion of Erlang’s error handling constructs. As a result, as shown in the Evaluation

chapter, by applying the model on a particular Erlang systems it is now possible

to understand immediately why a system is behaving in a certain way.

Explain the cause of unexpected behaviour - The defined rules are capable

of providing a step-by-step description of how a system is evaluated possibly

revealing sequences of steps that may lead to unexpected outcomes. For instance,

with respect to the example described in Chapter 1, it is now clear why sometimes

the system which makes use of remote error handling constructs behaves in an

118

Chapter 6. Conclusion and Future Work

unexpected way and thus fails to handle any raised exceptions. This is because

through the defined model it is now possible to retrace the sequence of steps that

may cause the system to behave in an unexpected way.

Predict system’s behaviour - Prior to defining the model, the only way a

user could see how an Erlang system might behave was by executing it on the

Erlang VM. In fact, in the initial stage of this project, the difference in behaviour

between Listing 1.1 and Listing 1.2 could only be noted after the two systems

were run on the Erlang VM. Conversely, through the defined rules it has became

possible to see that the two systems might behave in different ways, without the

need of actually running the systems on the Erlang VM.

Lay the foundations of a semantic theory - This model is able to give a

good indication of whether or not a pair of systems are expected to have identical

behaviour. For instance, even though the pair of systems described in Chapter

1 seemed to have identical behaviour, the model was able to show that in actual

fact this was not the case. In fact, when the model was applied to the pair of

programs, it was able to bring to light the subtle difference that existed between

them. This fact indicates that the defined rules can act as a basis for defin-

ing notions of equivalence such as testing equivalence[26] and reduction barbed

congruence, which can later be justified through labelled transition systems and

bisimulations[24, 25].

6.2 Suggestions for Future Work

Even though the main objectives of this project have been met, there is still room

for improvement. In this section a number of suggestions that may be considered

for future work are presented.

6.2.1 Distributed-node Semantics

Following up this work, it would be interesting to study the behaviour of Erlang’s

error handling mechanisms when used in distributed systems. The rules defined

in this project are only able to accurately describe the behaviour of single-node

systems. Therefore, when considering the fact that in these days more emphasis is

being put on building distributed systems it would be quite beneficial to extend

119

Chapter 6. Conclusion and Future Work

the semantic rules defined here so as to be able to cater also for distributed

systems.

6.2.2 Extend chosen Erlang Subset

Another improvement that could be done to the semantics, is to modify Erlang’s

chosen subset so as to accept all constructs found in Core Erlang[2]. As claimed in

[3], Core Erlang represents a complete core fragment of Erlang. Therefore, if the

semantics is modified to operate on Core Erlang, it would be a great step towards

defining a complete semantics for Erlang. In addition, since there already exists a

compiler(HiPE compiler) which can automatically translate Erlang programs in

terms of Core Erlang, it will become possible to modify the designed evaluator to

accept ordinary Erlang programs instead of programs consisting only of constructs

found in the chosen subset. This is because the HiPE compiler could then be

used to translate the input fed to the evaluator in terms of Core Erlang prior to

simulating Erlang’s behaviour according to the defined semantics.

6.2.3 Improve Evaluator’s Efficiency

One major downside of the designed evaluator is that it may be rather slow when

simulating the behaviour of input systems. Even though some techniques have

already been adopted in order to improve its efficiency, it would be ideal to further

explore other modifications that could be made to make it more efficient. Perhaps,

one possible improvement would be that given the fact that the simulation of

different traces is independent of each other, they could easily be carried out in

parallel.

6.2.4 A semantic theory based around notions of equiva-

lence

The model defined in this work only provides the basis of a semantic theory.

Therefore, it would be interesting to extend this work so that given any two

Erlang systems it would be able to show if they are truly semantically equivalent

or not.

120

Chapter 6. Conclusion and Future Work

6.3 Conclusion

This project gave a closer insight into Erlang’s error handling mechanisms. A

formal semantic definition for these mechanisms was presented providing an ac-

curate and unambigious description of Erlang’s behaviour when dealing with

errors. These definitions have been animated through an evaluator which returns

a detailed description of all the possible different ways a particular Erlang system

may behave.

In order to better appreciate the usefulness of these formal definitions, the

behaviour of a number of different Erlang systems was described according to

the defined semantics. These descriptions were found to be really helpful in un-

derstanding why sometimes certain systems behaved in an unexpected way. In

addition, these descriptions were also able to approximate whether two syntacti-

cally different systems were truly semantically equivalent or not.

121

A.

Here are some steps that need to be followed in order to use the designed evalu-
ator.

A.1 Prerequisites

• pdf reader eg. Acrobat Reader

• implementation of LaTeX eg. MiKTeX (listings package needed)

A.2 Using the Evaluator

In order to use the evaluator

1. Copy Evaluator Folder onto your computer.

2. Run the Evaluator.bat file.

3. In the command prompt enter the path where the “functions” file is found.
This file should contain the necessary function definitions that are needed
when running the Erlang system. The syntax of the input file should be
quite similar to the one used when writing an Erlang module. In fact
the only differences between an ordinary Erlang module file and the input
accepted by the evaluator are that in the input file:

• the module and export constructs need not be included

• definitions of functions which share the same function name are not
delimeted by a ; but by a .

• the spawn link, spawn monitor and spawn functions do not expect the
module name parameter

• only the subset of Erlang as defined in Table 3.2 can be successfully
parsed

122

Appendix A.

Following there is a simple Erlang module and how it can be expressed

in terms of the evaluator’s input. The code in green, highlights the parts

which need to be removed or modified before an Erlang module is fed to

the evaluator.

Erlang Module:

-module(example1).

-export([init/1,sum/1,getSum/2]).

sum([]) -> 0;

sum([H|T]) -> H + sum(T).

getSum(Pid,List) -> Pid ! sum(List).

init(List) ->

spawn_link(?MODULE,getSum,[self(),List]),

receive

Sum -> Sum

end.

Evaluator’s input:

sum([]) -> 0.

sum([H|T]) -> H + sum(T).

getSum(Pid,List) -> Pid ! sum(List).

init(List) ->

spawn_link(getSum,[self(),List]),

receive

Sum -> Sum

end.

4. After entering the functions file path, enter the path of the file containing

the expression that in actual Erlang is input into Erlang’s shell.

5. In the command prompt then enter the name of the output file.

6. The system will then automatically create and open a pdf file containing a

detailed description of the different ways the system may behave.

123

Bibliography

[1] J. Magee & J. Kramer Concurrency : state models and Java programs
Wiley, 2006

[2] R. Carlsson, B. Gustavsson, E. Johansson, T. Lindgren, S. Nyström,
M.Pettersson, R. Virding Core Erlang 1.0.3 language specification, 2004

[3] K. Claessen, & H. Svensson A Semantics for Distributed Erlang ACM, 2005

[4] Nuseibeh, B.; , ”Ariane 5: Who Dunnit?,” Software, IEEE , vol.14, no.3,
pp.15-16, May/Jun 1997

[5] W. N. Toy. Fault-tolerant design of local ess processors. In Proceedings of
IEEE, pages 11261145. IEEE Computer Society, 1982

[6] G. E. Moore Cramming more components onto integrated circuits
April, 1965 URL ftp://download.intel.com/museum/Moores_Law/

Articles-Press_Releases/Gordon_Moore_1965_Article.pdf Date Last
Accessed: 20th May 2011

[7] A. Silberschatz, P.B. Galvin, & G. Gagne Operating System Concepts John
Wiley & Sons, Inc, 2005

[8] J. Armstrong Making Reliable Distributed Systems in the Presencs of Soft-
ware Errors Royal Institute of Technology, Stockholm, Sweden, 2003

[9] S. Nyström Concurrency in Java and in Erlang Department of Information
Technology, Uppsala University, Sweden, 2004

[10] S. Agarwal & P. Lakhina Erlang - Programming the Parallel World
URL http://www.cs.ucsb.edu/ puneet/reports/erlang.pdf Date last ac-
cessed: 20th May 2011

[11] J. A. Board Transputer research and applications, 2:NATUG-2 IOS PRESS,
1990

[12] F. Cesarini & S. Thompson Erlang programming O’Reilly Media 2009

124

Bibliography

[13] H. Svensson & L.A. Fredlund A more accurate semantics for distributed
erlang. In Proceedings of the 2007 SIGPLAN workshop on ERLANG Work-
shop (ERLANG ’07). ACM, 2007

[14] L.Fredlund Towards a semantics for Erlang Workshop on Foundations of
Mobile Computation, Chennai, India, 1999

[15] H. Svensson, L.A. Fredlund & C.B. Earle A unified semantics for future
Erlang . In Proceedings of the 9th ACM SIGPLAN workshop on Erlang
(Erlang ’10). ACM, 2010

[16] L. A. Fredlund & H. Svensson McErlang: a model checker for a distributed
functional programming language. SIGPLAN Not. 42, 9 (October 2007),
125-136. ACM, 2007

[17] H. Svensson and L.A. Fredlund. Programming distributed erlang applica-
tions: pitfalls and recipes. In Proceedings of the 2007 SIGPLAN workshop
on ERLANGWorkshop (ERLANG ’07). ACM, New York, NY, USA, 37-42.
2007.

[18] J. Barklund and R. Virding. Erlang 4.7.3 reference manual Draft (0.7),
Ericsson Computer Science Laboratory, 1999.

[19] Aho, A.V., Sethi, R., & Ullman, J.D. (2003). Compilers principles, tech-
niques, and tools. United States: Bell Telephone Laboratories.

[20] Scanner.hs Retrieved from http://www.cs.bris.ac.uk/Teaching/

Resources/COMS30122/haskell/Scan.hs Data last accessed: 30th April
2011

[21] C.B. Earle, L.A. Fredlund, & J. Derrick. Verifying fault-tolerant Erlang
programs. In Proceedings of the 2005 ACM SIGPLAN workshop on Erlang
(ERLANG ’05). 2005

[22] Q. H. DO & T.D. Ajakaiye Fault Injection Technique for Evaluating Erlang
Test Suites 2009

[23] Erlang Reference Manual. Accessed from http://www.erlang.org/doc/

man/erlang.html Date last accessed: 20th May 2011

[24] D. Sangiorgi & D. Walker The π-calculus: A Theory of Mobile Processes.
Cambridge, UK: Cambridge University Press, 2001

[25] R. Milner Communicating and Mobile Systems: The π-calculus. Cambridge,
UK: Cambridge University Press,1999

[26] M. Hennessy Algebraic Theory of Processes The MIT Press, Boston 1988

125

