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Chapter 1

Introduction

1.1 Overview

Writing correct concurrent code is no easy feat. It is very difficult to get

an unflawed design for a reasonably sized concurrent program [16] - in par-

ticular, most analysts and programmers, are not accustomed to deal with

numerous threads or processes potentially modifying data in parallel and

unordered manner. Moreover, testing such applications also provides an

extra challenge to concurrent software development. Due to the massive

number of possible code executions, debugging concurrent code tends to fail

to expose all the possible bugs in a system [16]. This results in systems

which are unstable when in production environment.

Distributed system design is at least as challenging as concurrent system de-

sign, with different kinds of failures threatening to make the job of producing

correct code even harder. Some of the problems incurred with distributed

systems are process failures, link failures, lost messages and varying message

arrival delays[19]. Dealing with these problems in real life and ensuring that

the code prevails any of these conditions, is and active area of research.

Lately, there seems to be an overall interest in shifting towards a decentral-

ized paradigm for distributed computing. This paradigm forms the basis

of various recent architectures and technologies including Web2.0, Cloud-

computing and Peer-to-peer technologies. In the context of Distributed
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Programming, this means that systems have to be programmed from a local

observers [1] view which handles all interactions autonomously, without the

need of a global coordinator. Such an approach overcomes the issue of single

point of failure, nevertheless brings about various intricacies which need to

be resolved to ensure the correctness of the distributed algorithms.

1.2 Aims and Objective

The aim of this dissertation is to investigate various decentralised distributed

computing problems and study their applicability and possible implemen-

tation. The distributed system model will be analysed and the underlying

difficulties when attempting to program in such a model will be explored.

A number of assumptions about this model shall be made. These assump-

tions are very much identical to those followed by alternative work on pro-

gramming distributed systems [8]. In this context, different approaches to

distributed programming will be assessed.

In this dissertation, some of the most popular distributed agreement classes

will be investigated. Different specifications, for each class shall be presented

and established algorithms will then be studied.

Following this, a common framework for implementing these algorithms

should be developed in Erlang. This framework shall be built on top of

Erlang’s existing modules and built in characteristics. This way, we attempt

to provide a practical implementation framework, for these algorithms.

A number of algorithms will be implemented in a reusable manner, in Er-

lang. Together, these will form a suite of algorithms, which abstracts away

the intricacies involved in these algorithms, yet providing their functionality

in a reusable form.

Finally, a test case application will be implemented, so as to assess the

applicability of this implemented suite of algorithms.

1.3 Approach

The work taken throughout this project was organised in a particular struc-

ture. In particular, towards the early stages, we dealt more with research

and attempted to get accustomed to the notion of distributed programming.

Following this, we dealt more with the actual implementation of the project
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itself.

The various stages involved in this project were:

1. Performing research on distributed computing systems and the prob-

lems associated with programming is such systems.

2. Performing research on Distributed Agreement Problems.

3. Familiarizing ourselves with Erlang, and implementing some of the

algorithms studied, for localized environment.

4. Developing an framework, with which to build the actual distributed

algorithms, on top of Erlang’s features.

5. Implementing and testing the distributed algorithms themselves using

the developed framework.

6. Building a simple test case scenario which uses the algorithms devel-

oped as its core.

1.4 Dissertation Overview

The content of this report is divided into the following sections:

Chapter 2, lays out the background which is a prerequisite for this project.

In introduces distributed systems and various other aspects dealing with

distributed programming. In particular, the system model is outlined. Here,

Agreement problems and the main classes of these problems are outlined.

Different distributed programming approaches and languages are evaluated,

and Erlang’s strengths and advantages are pointed out.

Chapter 3 gives out a common framework for implementing the distributed

agreement algorithms, in Erlang. This chapter attempts to bridge the theory

and practice. It shows how we built on top of existing mechanisms in Erlang,

so as to achieve this framework.

In Chapter 4 we start our study of the agreement algorithms. This chap-

ter studies the Reliable Broadcast problem. Different specifications of this

problem, are outlined and established algorithms are studied. An overview

of the actual implementation in Erlang is given.
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In Chapter 5, the Consensus class of agreement problems is studied. This

chapter investigates different specifications and algorithms, and also gives

details about the implementation in Erlang.

In Chapter 6, the Atomic commit class of agreement problems is investi-

gated. Once again, here different algorithms are studied, and are imple-

mented in Erlang.

Chapter 7 provides the details of the testing which was required for the

system. It gives out the testing strategy followed for the implementation of

the developed suite of algorithms. It also outlines the implemented test case

application.

In Chapter 8 evaluates various aspects of this project. In particular, the

usage of the algorithm suite, for the development of the test case, is inves-

tigated. The choice of Erlang, is also evaluated.

In Chapter 9, we conclude this work and propose suggestions for future

work.

1.5 Conclusion

This project aims to provide the basic building blocks, which make the

development of robust distributed systems easier. A number of recurrent

distributed problems are outlined and studied in depth, in the light of process

failures. Techniques for safe distributed programming, failure detection and

fault tolerance are also investigated. A suite of protocols, providing solutions

to the distributed problems outlined, is built. Finally this suite is tested and

evaluated in a real world distributed scenario.
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Chapter 2

Background

2.1 Introduction

This chapter provides an overview of the background for this project. Pri-

marily, it attempts to motivate the use of distributed system. It presents a

simple, yet realistic, example of a distributed system. A number of recur-

rent distributed problems are then introduced in the light of this example.

All relevant terminology is defined and all design choices are explained and

justified. In particular, an implementation language is chosen after being

contrasted with other ’candidate’ languages.

2.2 The need for distribution

In the context of computer systems, a Distributed System consists of a

number of nodes operating together in a coordinated manner. Distributed

computing is not a novel field. In fact, it has been around since the early

days of networking and the internet. In reality, the need for such a system

was felt since the early days of computing, but throughout recent years,

their applications increased drastically.

Often computer systems have to deal with resources which are remotely

located. These resources may vary from computing resources, to machinery

and or even human resources. A distributed system would be needed to

ensure communication amongst users and the sharing of these resources. As

an example, the bank ATM systems may be considered. At the outer level,

clients see a terminal were they can access banking services, but in reality
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these consist of a distributed computing systems, consisting of a number of

resources.

Distribution is needed when a continuous operation needs to be guaran-

teed. In general, for a system to be failure proof, it needs to be replicated

in different locations and when one component fails, the other takes over

[4]. Moreover, distribution might also be needed to offer load balancing of

core services - if a server is heavily loaded, one might consider to split the

computation over a number of processors.

Finally, in today’s world, where internet access is becoming more and more

widespread, distributed systems have become part of every day life. Differ-

ent computing devices nowadays access remote services for their operation,

providing us with the instant and up to date information.

2.3 Motivational Scenario

One of the main problems with centralized systems, is their susceptibility

to central point of failure - if this central node fails, service stalls. Clearly,

overcoming this problem requires some form of distribution. This section

presents a simple distributed, peer-to-peer filesystem p2pFs and presents

typical problems incurred in such a distributed environment. This dis-

tributed system is used as a running example throughout this document

- to clearly demonstrate instances of distributed problems being studied.

p2pFs is a simple distributed file system, p2pFs with the following proper-

ties:

1. Decentralized There is no central overall leader coordinating the

filesystem.

2. Consistent At a particular time, all files appear the same from all

nodes

This file system provides basic handling operations:

1. File Creation: Files can be created and are immediately available for

other nodes.

2. File Access: Files can be read and written concurrently and reliably.

3. File Deletion: Files can be safely deleted.
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Throughout this chapter, reference will be made to a particular setup of the

p2pFs. For the sake of simplicity, this setup consists of just four servers:

North, South, East and West. These four servers are interconnected to-

gether, however the underlying details of these connections are irrelevant to

us - what is important is that a message sent from a server, can ultimately

be received by the destination server. Figure 2.1 (a) shows the basic layout

of this example.

Figure 2.1: (a) A distributed system using p2pfs. (b) Node compo-

sition

When a node sends a message, this message is given to the underlying

network to be delivered. It is assumed that the underlying network will

eventually transfer the message with the same content as sent, to the des-

tination (yet this message may take arbitrarily long to arrive). When a

message is transferred to a node, it is said that the message is received by

that node. Note, that here a distinction is made between a node and the

underlying application (in this case p2pFs) - despite that the node received

a message, p2pFs still does not know anything about this message and of

its existence. When the message is passed to the application to which it

is intended (p2pFs), the message is said to be delivered (refer Figure 2.1

(b) ). Note that we are hence introducing the existence of a layer between

the node and the application itself - which might decide that the message

should not be delivered to the application, despite being received by the

node. Alternatively this layer might decide that it needs to receive more

messages before deciding to deliver this message or not.

It is noted that such a file system has very simple semantics, yet the intrica-

cies can be very subtle. For example, how can a node ensure that updating

a file will result in all nodes having the same version of the file? What

if multiple nodes try to update it at once? What if some nodes fail after
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transferring their updates to only half of the nodes? What if a file is deleted

while it is being updated by some node?

Such problems are yet another instance of agreement problems in a dis-

tributed system. This work, investigates and analyses different solutions

to these problems. Ultimately these solutions are used to build a reliable

version of the p2pFs, as described here.

2.4 Distributed Agreement Problems

Fault-tolerant distributed systems present various challenges which make

this area of computer science an active area of research. An number of

problems are recurrently dealt with when attempting to perform distributed

computation[8]. Such problems explore different situations of data exchange,

in a way to keep the overall systems consistent, despite the unreliability

of the processes themselves and the interconnecting links. These set of

problems are more commonly known as Agreement Problems. Here, a brief

overview of these problems is given, and an example in the light of the dis-

tributed scenario being studied, is outlined. These problems will be studied

in depth later.

1. Reliable Broadcast Reliable Broadcast deals with the safe transfer

of a message to a number of nodes, despite the eventuality of having

nodes which fail during this process - including the sender itself. [14]

For example, in the p2pFs scenario outlined, consider the case where

the W server wants to send an update a to all other servers. However,

it might happen that it succeeds in sending the update to N and E,

but crashes exactly before sending it to S (as shown in Figure 2.2)

Clearly this leaves the system in an inconsistent state since server S

does not get the update. A Reliable Broadcast protocol would be rather

handy in this situation to ensure that a message is safely broadcast

under all possible eventualities. Hence, if a reliable broadcast proto-

col is followed, all correct nodes should have a consistent view of the

system.

2. Consensus Consensus deals with agreement within a group of pro-

cesses, in the presence of failures. Processes propose to each other

and finally each process should decide on the values it received. In the
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Figure 2.2: Failure of simple broadcast mechanisms: Node S only

manages to broadcast to part of the system.

end all decisions should be consistent. [14] For example, assume that

across the nodes there are different files with the same name. This is

shown in figure 2.3 below, where a file with the same name (named

A), is present on all nodes. Note also, that the size of file A is indi-

cated at each node. Such a situation can occur when the distributed

filesystem is initialised for the first time. If node W requests to open

file A, which version should it open?

Figure 2.3: Failure of Node E after submitting its version of the file

to S, but before submitting to the rest, results in an inconsistent

system.

A simple solution might be everyone broadcasting his version of the file

to oneanother and the receiver nodes always keeping the file which has

a largest filesize . However, similar to the reliable broadcast scenario,

if say node E crashes after sending its 6b version of file A to node S

but before even sending the file to the rest, then node E will keep the

6b version of the file, whereas the other nodes will keep the 4b version

of file A since this is the version of A with the largest filesize, they get
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to see. Clearly this is a problem and hence the p2pFs requires some

consensus protocol to ensure that all nodes agree on the same version

of the file.

3. Atomic Commit The Commit problem deals with having a number

of processes which try to perform some action together. This action

should be aborted and rollbacked, if any of the processes disagrees to

carry out this action, or crashes. [14]

Figure 2.4: S tries to delete a file from all nodes, however, node W

cannot accomplish this operation because the file is open.

Now consider that a delete operation on file A is issued from node S.

This operation is broadcast to all other nodes (assume any a reliable

broadcast), as seen in figure 2.4. However, the file is deleted from

nodes N and E but is currently open at node W , and hence can not

be deleted from node W . Again this would leave the system in an

inconsistent state. An atomic commit would ensure that either all files

are deleted or else no file is deleted until it can be deleted from all

nodes.

These problems have been the basis of various research[19] [14]. A number

of results have been established which identify limitations on the solutions to

these problems, in various contexts of time and failures. Nevertheless, since

these problems are central in the design of fault-tolerant distributed systems,

various approaches have been proposed to go around these limitations in a

well defined manner.[8]
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2.5 Distributed Computing Models

This section will outline various computational models, which are relevant

when investigating a distributed system. Such models can be used to analyse

the correctness and bounds of the problem being studied.

2.5.0.1 Programming Distributed Systems

There exist two main schools of thought when programming for a distributed

architecture. These are the Shared-Memory Model and the Message-

Passing Model[16]:

Shared-Memory Model In the Shared-Memory model, processes inter-

act by using common resources such as memory pages and registers. Higher

level shared structures can also be composed on top of these structures, such

as shared queues or stacks. Access to the shared objects is one classical in-

stance of the Critical Section problem - it might be safe to have multiple

readers but not multiple writers or a mixture of readers and writers access-

ing the shared object.[16] Various solutions to the Critical Section Problem

have been proposed. The main ones are:

• Semaphores and Mutexes: These are constructs which restrict the

number of processes executing within a Critical Section. In a nutshell,

mutexes allow just one process to execute its Critical section at a time

whereas semaphores allow an arbitrary number of processes to execute

their Critical Section concurrently, depending on the initial value of the

semaphore. Simply put, these lock constructs are a memory barrier.

When a process tries to access a Critical Section, it waits until it

acquires a lock. Contention on the locking depends on the underlying

fairness of the lock and the scheduling algorithm. Having acquired the

lock, a process executes its Critical Section and releases the lock.[16]

Despite being rather straight-forward, lockful programming gives rise

to various caveats including deadlock, livelock, priority inversion and

the convoy effect. Moreover, lockful algorithms are not suitable for

SMP because of their scalability limitations.

• Lock-free and Wait-free Programming: In an attempt to over-

come the problems related to lockful programming, hardware man-
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ufactures started providing atomic primives such as Test-And-Set,

Compare-And-Swap, Load Linked and Store Conditional operations.

Such operations allow algorithms to be devised which despite avoiding

the usage of locks, guarantee correct access to the shared resources

for all possible histories of an algorithm. This requires the algorithm

to be proven correct for all possible interleavings.[15] This is gener-

ally a streneous task, and despite that there are proven algorithms

for some common data structures, more complex data strucutures and

custom/hybrid data structures will, of course, have no guarantee of

correctness. Moreover, lock-free code is note guaranteed to remain

correct across different architectures (example if an assignment takes

more than one CPU instruction). Wait-free programming goes a step

further from Lock-Free programming, by giving timing constraints on

the execution of the algorithm.[15]

• Transactional Memory: An emerging field with Shared Memory

Programming, is that of Transactional Memory. Transactional Mem-

ory provides the programmer with an atomic construct for coarse

grained atomic actions, which allows code within it to be executed

concurrently in a safe manner. The approach is analogous to that of

transactions in a database system: start executing the atomic code, if

some other process interferes with this process’ execution, then roll-

back the changes made and ensure that the processes execute in a con-

sistent manner. This approach, especially the field of Software Trans-

actional Memory started gaining ground, however as systems starts

getting larger and the amount of concurrent atomic actions start to

escalate. In particular, lots of processes start interfering, and more

memory needs to be copied to allow for the reversing of its contents

- degrading performance substantially. Moreover, such a system is

sometimes deemed unsuitable for everyday computing, because most

system calls, such as read() and write() are not easily reversible (es-

pecially if these access external resources such as the network).

Despite the severe performance problems outlined, lockful code seems to

be the mainstream, possibly because of its programming ease and compu-

tational correctness. In order to overcome this problem, some programming

languages, usually provide optimised libraries for common data structures
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based on lock-free and wait-free algorithms.

Message-Passing Model In a Message-Passing architecture, processes

communicate by exchanging messages over some interconnecting link. Pro-

cesses in this model, have local memories (distributed memory), which can

be acted upon depending on the messages received. This model is also re-

ferred to as the actor model - processes can be seen as actors which interact

with each other solely through the exchange of messages. Message Passing

architectures can be classified as either Asynchronous Message Passing and

Synchronous Message Passing. In Asynchronous Message Passing, send-

ing messages is non-blocking, whereas in Synchronous Message Passing the

sender blocks until the receiver delivers the message[15].

2.5.1 Degree of Synchrony

One other distinguishing attribute in distributed systems is the degree of

synchrony - whether the system is synchronous or asynchronous. In sec-

tion 2.7 , partially synchrony is also analysed as a way to circumvent the

limitations of the problems outlined.

A system is synchronous if it obeys the following properties[14]:

1. A known upper bound exists on the message delivery delay.

2. A known upper bound exists on the time between execution steps of

a process.

3. A known upper bound exists on the clock drifts of the interacting

processes.

On the other hand, the asynchronous distributed system model does not

provide any timing bounds on its operations.

The asynchronous model is more general but algorithms are harder to design

in this model due to the lack of timing bounds[17]. Yet this model is very

attractive since it has simple semantics, its algorithms are easier to adapt

to real life applications due to the lack of any strict timing constraints and

such algorithms are guaranteed to work with arbitrary timing bounds. [8]

The agreement problems outlined in 2.6 have been proven not solvable in an

asynchronous model with crash failures[12], nevertheless these are solvable in
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the synchronous model. The impossibility result for asynchronous systems

revolves on the impossibility of distinguishing between failed processes and

slow processes due to the lack of timing constraints.

It might be tempting to define reasonable upper-bounds in an asynchronous

system, to be able to reason synchronously about the system. However, the

aim of these models of synchrony, is to provide means of being able to prove

properties about the system and there is no way to guarantee that such

bounds will hold deterministically. Nevertheless, such approach has to be

taken when all other measures fail [8].

2.5.2 Failure Model

During an execution, a component is said to have failed, if its behaviour

differs from that specified by the underlying algorithm. On the other hand,

correct components are ones which abide by the behaviour specified by their

respective algorithm. A Failure Model specifies to what degree, this be-

haviour is tolerated to deviate, for the study of some underlying algorithm.

2.5.2.1 Process Failures

Figure 2.5: Types of Process Failures. (source [14])

A process is said to have failed, when it deviates from the algorithm which

describes it. Upon failure, any other components under direct control of this

failed process are assumed to also fail - and remain in this state unchangingly.

Figure 2.5, gives a diagramatic classification of different kinds of Process

Failures.

The most general of these failures, are the Byzantine Failures. Such

failures are denoted by arbitrary behaviour by the failed processes - processes

can exhibit incorrect behaviour by sending incorrect messages or ommitting
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messages which should be sent. Likewise, such failed processes can react

non-deterministically to received messages. Such abstraction can be seen

as a process operating maliciously either intentionally or unintentionally -

example due to miswritten code or user error. Byzantine Failures were first

defined in the seminal paper [18], where the Byzantine Generals Problem is

defined.

Crash Recoveries happen in processes whose operation is transient - such

processes fail, remain in the failed state for some time and then go back to

correct operational state. A process can continuously and repeatedly experi-

ence this behaviour. Processes which are transient failure resilient, generally

store their internal state in some reliable storage medium. Whenever such

processes recover, apart from consulting the stored state, the current state of

the system is requested from the interacting peers of the distributed system.

Ommission failures occur when a process fails to send or receive a mes-

sage. Such failures can be caused by link failures and also due to network

congestion.

Crash failures Crash failures (or fail-stop failures) occur when a process

fails and remains unchangingly in the failed state. A process can experience

a crash failure in an arbitrary stage of execution, however under such model,

no invalid messages are sent (in real life this is generally handled by transport

layer protocols). In this work, we will focus mainly on Crash Failures. [14].

2.5.2.2 Link Failures

An interconnecting link may be considered as nonoperational if messages

get garbled or are lost. The former case can be handled trivially with check-

sums. Lost messages on the other hand can be somewhat more difficult

to handle[8]. From the point of view of processes, link failures appear as

ommission failures - link failures may be the reason why certain messages

are ommitted. In particular, in the case of network partition, such situation

can give rise to various problems. For example consider a link failure causes

a partition of network into two parts A and B. Processes in part A will

think that all processes in part B have failed whereas processes in part B

will think that all processes in part A have failed - yet both sets of processes

will continue to operate in isolation.

Link Failures can be transient - certain messages are successfully delivered
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whereas others are lost. In practice, this happens due to router convergence

delays[16]. When abstracting about process communication, it is common

to assume a direct link between every communicating peer. In general, this

direct link is most of the times an abstraction of the networking system which

incorporates various other devices such as routers, switches, bridges, cables

etc. The underlying networking system provides higher protocols with point

to point communication seemless of the complexities involved. Moreover

transport layer protocols (such as TCP) also handle convergence delays upto

a limit - through mechanisms such as retransmission and windowing. On the

other hand, a sender can ensure that a message was delivered by continuously

retransimitting until an acknowledge is received[14].

In this work, only Process failures are considered. Links are assumed to be

perfect.

2.6 Recurring Agreement Problems in Distributed

Computing

Earlier on in this chapter, a number of recurring distributed problems were

outlined. In this section we will study these problems in further detail.

2.6.1 Reliable Broadcast

Reliable Broadcast truly is a term which captures a number of broadcast

primitives - different abstractions for reliably sending messages to a group

of processes.

Broadcast abstractions provide different degrees of reliability: Regular Re-

liable Broadcast ensures that all correct processes deliver the same set of

messages, Uniform Reliable Broadcast ensures broadcast agreement between

both fault and non-faulty processes, Total Order Broadcast further ensures

that all processes in the system deliver the messages in the same order

whereas Terminating Reliable Broadcast further ensures that a process will

not keep waiting to receive a message if no process has ever seen that mes-

sage.

The Regular Reliable Broadcast algorithm, ensures that all correct processes

agree on the message to deliver. A regular reliable broadcast algorithm

satisfies the following properties [14]:
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• Validity: If a correct process p broadcasts a message m, then p even-

tually delivers m.

• Agreement: If a correct process delivers a message m, then all correct

processes eventually deliver m.

• Integrity: For any message m, every process delivers m at most once,

and only if it was previously broadcast.

Regular reliable broadcast ensures agreement amongst all non-faulty pro-

cesses. However, there can be a situation where the sender manages to send

a message to one process and fails. The sender then fails without man-

aging to deliver the process to any other process. Immediately afterwards

the unique receiver of the message fails too, without having the opportu-

nity to propagate the message it has received to the other nodes. In such

a situation, there is inconsistency amongst the faulty and correct processes.

Such a situation can be detrimental in certain situations and hence the Uni-

form Reliable Broadcast fixes this anomaly by strengthening the broadcast

specification with the following property [14]:

• Uniform Agreement: If a message m is delivered by some process

pj (correct or faulty), then m is eventually delivered by every correct

process pi

Moreover, it is sometimes desirable to ensure that all broadcast messages

(involving different senders) are delivered in the same order, globally by all

processes. For example in the context of the p2pfs, consider the situation

where one process alters the first character of a file, whereas another process

tries to change the first character to uppercase. Clearly reordering the two

operations, yields different results - hence it should be ensured that broad-

cast updates to files on the p2pfs are totally ordered. Total Order Broadcast

ensures all process do not just agree on the set of messages received, but

also the sequence of these messages. It also satisfies the following property

[14]:

• Total order: If correct processes p and q both deliver messages m

and m′, then p delivers m before m′ if and only if q delivers m before

m′.
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2.6.2 Consensus

The consensus abstraction deals with having nodes in a network trying to

agree on a common value. The nodes themselves, initially propose values

to one another and after that the consensus algorithm terminates, all nodes

should have decided on the same value.

The most basic consensus abstraction is the Regular Consensus. A regular

consensus algorithm satisfies the following properties [14]:

• Agreement: No two correct processes decide differently.

• Validity: If a process decides v, then v was proposed by some process.

• Integrity: No process decides twice.

• Termination: Every correct process eventually decides on some value.

Again as with the case of Regular Reliable Broadcast, there can be a situ-

ation where faulty processes decide differently (before failing), than correct

processes. In order to restrict this situation, Uniform Reliable Broadcast

satisfies another property [14]:

• Uniform Agreement: No two processes (correct or faulty) decide

differently.

The problems with achieving reliable consensus is that of having processes

which fail at any point during the consensus algorithm - processes can end up

having different views of the set to be agreed upon. In [12], an impossibility

result on the solvability of consensus in an asynchronous system, is given.

This result states that even with simple crash failures, no algorithm can

deterministically solve consensus in an asynchronous system. Nevertheless,

in real life there are various ways of circumventing this limitation (refer 2.7).

In a synchronous system, consensus is solvable for the crash failure model

but with a lower bound on the number of rounds - a round can be seen as an

exchange of messages between the various nodes of the system. It is shown

in [11], that if there are at most t failures, then consensus is solvable after

t+ 1 rounds.
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2.6.3 Atomic Commit

The Atomic Commit problem deals with having a group of processes in

a distributed system agreeing to perform an action consistently. Such an

abstraction is particularly used in the domain of distributed database trans-

actions - transactions may either be committed together or aborted together.

In a commit operation, the coordinator (the node initiating the commit

operation), will request to perform a commit. All nodes attempt to perform

the associate action and send Yes or No indicating whether this associated

action succeeded or failed. If the coordinator sees that all nodes succeeded

then it send a request to commit the result, otherwise it sends a request to

abort the commit.

The first Commit abstraction which is considered is the Blocking Commit.

This abstraction satisfies the following properties [14]:

• Agreement: No two processes decide to take different actions

• Validity:

1. If any process votes No, then abort is the action which will be

done.

2. If all processes vote Yes, and there is no failure, then commit is

the action which will be done.

• Weak Termination: If there is no failure, then all processes eventually

decide.

This abstraction, is said to be Blocking because if the coordinator fails on

particular stages in the algorithm, then the other nodes will not be able to

decide whether to commit or abort

This problem is overcome by the Non-blocking commit protocol. This ab-

straction replaces the Weak Termination property with the following prop-

erty [14]:

• Non-Blocking Termination: All processes eventually decide.

It has been proven in [8], that Atomic Commit is unsolvable in asynchronous

systems, whereas the t + 1 lower bounds on the number of rounds, is still

applicable for synchronous systems.
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2.7 Circumventing Impossibility Results for Asyn-

chronous Systems

Despite the fact that the agreement problems outlined here are unsolvable

in asynchronous systems, such problems tend to crop up so often, that ways

around these limitations had to be devised. In general, the correctness

requirements are relaxed, the synchrony parameter is strengthened, or both

[8]. There are three main techniques which are used: Partial Synchrony,

Failure Detectors and Randomisation.

2.7.1 Partial Synchrony

Partially Synchronous systems attempt to strengthen properties of asyn-

chronous systems, to obtain solutions to these distributed computing prob-

lems.

A Partially Synchronous model lies somewhere in between of a synchronous

and an asynchronous model. Such a model has bound ∆ on the message

delay and bound φ on the relative speeds of the processes (slowest process

takes at most φ multiplied by time taken by fastest process to perform the

same action). Partially synchronous systems try to strengthen the bounds

of asynchronous systems in some way. For example, a partially synchronous

system may assume that the timing bounds do exist but are unknown. Al-

ternatively, these bounds are also given a value which only applies after some

time. Such restrictions are not found in asynchronous system, yet are far

from those of totally synchronous systems [9].

2.7.2 Randomization

Randomization techniques allow processes to make probabilistic choices such

that the properties of the abstraction are satisfied with some known prob-

ability. Processes make use of random oracles to determine what action

to take at various points throughout their execution. Even though ran-

domization gives no full correctness guarantees, sometimes it is the only

practical way to avoid the limitations of the fully synchronous and asyn-

chronous models. However, despite not providing full reliability guarantees,

this model guarantees that the algorithms will eventually terminate.

Two important algorithms which solve consensus with randomization are
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the Ben-Or algorithm and the Rabin algorithm. The Rabin algorithm uses a

shared oracle, whereas the Ben-Or Algorithm uses truly distributed oracles.

[8]

2.7.3 Failure Detectors

Failure Detectors are distributed components which provide processes with

information regarding which processes have failed and which are still running

at a particular point in time. A failure detector is said to be unreliable if

it can suspect that a process is crashed, when in reality this process is still

running. However, these failure detectors can remove a suspected process p

from their failed set, as soon as a p is detected not to have crashed. Each

process in the system has its own private failure detector, and at any point

in time, their output (set of suspected processes) can be different - however

eventually these failure detectors are expected to converge their suspected

processes sets.

A Failure Detector is defined by a pair (c, a):

• c: A Completeness property specifying that all failed processes should

be eventually detected

• a: An Accuracy property restricts the number of mistakes made by

the Failure Detector.

Chandra and Toueg in [7], define two completeness and four accuracy prop-

erties. The Completeness properties are:

• Strong Completeness: Every process that crashes is eventually per-

manently suspected by every correct process.

• Weak Completeness: Eventually every process that crashes is per-

manently suspected by some correct process.

The Accuracy Properties are:

• Strong Accuracy: No process is suspected before it crashes.

• Weak Accuracy: Some correct process is never suspected.

• Eventual Strong Accuracy: There is a time after which correct

processes are not suspected by any correct process.
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Figure 2.6: Tabulating the failure detector properties into eight

classes (taken from [7] )

• Eventual Weak Accuracy: There is a time after which some correct

process is never suspected.

Note that properties such as Weak Completeness and Eventual Weak Accu-

racy require that some property will hold permanently. In practice, this is

never achievable because no process runs forever. Hence it is enough if such

properties are satisfied for times which are ”long enough” for the algorithm

to make progress.[7]

Figure 2.6, shows a taxonomy given in [7] showing different failure detector

classes according to the properties of accuracy and completeness. In [7] ,

Chandra and Toueg further show that a failure detector in any class of this

Taxonomy can be used to solve consensus. It is interesting to note that

the weakest1 failure detector class �W in this taxonomy, can also be used

to solve consensus. It is shown that �W is guaranteed to solve consensus

only if n > 2f where n is the number of processes and f is the number of

failed processes - there is a majority of correct processes. Furthermore, in a

related paper [6], it is proven that �W is the weakest failure detector class to

solve consensus - that no weaker failure detector class can solve consensus in

an asynchronous system. This is done by formalizing reducability of failure

detectors and showing that any failure detector which solves consensus, is

reducible to �W . It is also shown that if a failure detector solves consensus

with n <= 2f , then that failure detector is in a class stronger than �W .[8]

It is important to note, that since the failure detector is an external com-

ponent from the actual processes utilizing it, should the failure detector

continuously suspect the wrong processes, such a condition would affect the

1A Failure Detector class is said to be weaker in specification than another Failure

Detector class, if it can capture a larger number of failure detectors
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”liveness but not the safety” [7] of the underlying algorithm. For example,

a specifically written consensus solving algorithm utilizing such a failure de-

tector, should result in nodes which never agree but never in nodes which

agree inconsistently.

Failure detectors are quite an elegant approach to fault tolerant distributed

systems. However, ultimately, how can failure detectors be sure that a pro-

cess failed since they are still operating in an asynchronous environment?

Quoting directly from [7]: ”Since we specify failure detectors in terms of

abstract properties, we are not committed to a particular implementation.

For instance, one could envision specialised hardware to support this ab-

straction. However, most implementations of failure detectors are based on

timeout mechanisms”. This paper goes on to show a failure detector which

works with timeouts. Every time a process is detected to have been sus-

pected wrongly, its timeout is increased. The paper then states that despite

this not being exactly the accuracy property of �W , in most practical system

such a scheme would eventually ensure that there is a correct process which

is not suspected (Weak Accuracy of �W ) - recall that it is enough for such

a property to hold for periods which are ”long enough” for the algorithm to

be able to make progress[7].

2.8 Fault Tolerant Systems

Fault Tolerance is a property which specifies the degree by which systems

continue to operate reliably in the presence of failures. In the context

of distributed computing, fault-tolerance requires some form of replication

amongst at least two physically separate nodes. In his paper, Why do Com-

puters stop and what can be done about it? [13] [4], Jim Gray points out

that systems should be decomposed into units, which when fail, they do

not affect the operation of other units. It is further pointed out processes

are the ideal concurrent elements (as opposed to threads) since these do not

share state amongst them and hence fully satisfy this requirement. Processes

should then communicate with ”copy messages” such that all interaction is

message oriented and there is no shared state amongst processes. Schneider

in [22], points out various properties which an individual processor should

have for fault-tolerant operation. Processors satisfying these properties are

called Fail Stop processors. The properties satisfied by fail stop processors
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are:

• Halt on Failure: Upon failing, a processor should cease operation

immediately

• Failure Status Property: Processors should be notified when an-

other processor fails, and given a reason for this failure.

• Stable Storage Property: Processors should be able to store data

in some reliable medium which persists a node failure.

Furthermore, in [13], Gray applies this idea of fail stop processors to pro-

cesses which is referred to as fail fast. Gray states that through defensive

programming (such as checking all parameters, intermediate results and data

structures), one can detect instantly detect failures. Upon such eventuality,

the process should signal failure and stop. Such mechanism would avoid

further damage caused by the errors and ensure slow latency on detecting

errors. Renzel in [21], stresses this point even further by stating that the

higher the latency time between the occurence of the fault and the existence

of the error, the more complicated it becomes to perform a backward analysis

of the error.

2.9 Distributed Programming Languages

A distributed programming language is any language which can be used

to develop software which runs and controls a distributed system[1]. This

class of programming languages, can be subdivided into two subclasses -

1) ’traditional’ sequential programming languages augmented with libraries

for distributed programming and 2) concurrent languages with distributed

programming support.[1] The first type of languages are popular because

these basically extend on languages to which programmers are accustomed.

On the other hand, concurrent languages have gained popularity in the last

few years because of their inherent support of constructs for communicating

processes. Such languages utilize either of the two memory models outlined

earlier: shared-memory or distributed-memory (message-passing). When

programming distributed systems, message passing models have been found

to be generally more appropriate because the programmer does not need to

know where the other processes are located[1]. Distributed processes can
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even live on heterogeneous architectures - and all this does not affect the

programmer of the system itself. [1]

In the past few years, a number of distributed programming languages each

implementing its own flavour of message passing distribution, have been

proposed. Andrews in [1] suggests that these languages should be com-

pared according to their basic communication mechanism. Two classes of

languages are identified according to their communication mechanism:

• Send/Receive communication The languages rely on send and re-

ceive primitives for communications. Languages with send/receive

communication differ in the way in which communication is synchro-

nized. For example Occam and PFX for .NET (Parallel Extension

Framework)2 use synchronous communication with blocking send and

receive. Another distributed language with send/receive communica-

tion, is Erlang. Erlang uses asynchronous message passing with mail-

box style concurrency - messages are delivered to the application not

in the same way as they are received (or even sent), but in the order

that they are requested by the application.

• Remote Procedure Call Remote procedures call (RPC) languages

try to provide an abstraction of a normal procedure call. With such

languages, a process can call a procedure or function which executes

on another computer. After that this function terminates, it returns

the result back to the caller. One such implementation is Remote

Method Invocation (RMI) in Java. However, there are various argu-

ments against RPC’s. Steve Vinoski and Joe Armstrong argue that

wrapping a remote operation and making it look as if it were local,

will lead to problems because the failure modes of local and remote

operations are completely different[5]. Not being able to determine

whether a call is local or remote is also problematic when trying to

optimize the code.

Though when it comes to computational power, both models are equally

powerful, in practice every distributed language provides its own develop-

ment techniques for solving distributed programming problems (such as cop-

ing failure)[1]. Moreover, in languages such as Erlang, it is rather easy to

2These two languages are not really distributed languages - rather these are concurrent

languages.
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”mimic” RPC’s with custom behaviour [5].

2.9.1 Erlang

Erlang is a functional programming language designed from ground up with

a concurrency model in mind. Erlang follows the asynchronous message

passing model but it also provides various other features resulting in a novel

way to program reliable concurrent and distributed systems.

2.9.2 Programming in the presence of failures

The primary goal of this project is to provide basic building blocks for re-

liable distributed systems. Most of the distributed programming languages

mentioned leave the job of failure detection and failure handling to the hands

of the programmer. Moreover, no language takes into consideration software

errors which might be caused by the programmer forgetting to handle cer-

tain types of data. One language which stands up against such arguments

is Erlang, which as Joe Armstrong states, its purpose was to provide a

mechanism by which to ”program systems which behave in a reasonable

manner in the presence of software errors” [4]. Fault-tolerant distributed

systems require careful design and Erlang’s primary aim is to address this

requirement. Whereas Erlang does not directly solve the agreement prob-

lems outlined in section 1.2, Erlang does provide a language which by design

eliminates most classical problems incurred in distributed programming, fa-

cilitates the structuring of code to avail from the natural concurrency of

the underlying application and also provides a runtime environment with

advanced distributed operating systems capabilities. Moreover, Erlang also

helps overcoming problematic cases of unhandled datatypes, thanks to its

dynamic typing system which can, according to Armstrong[4], helps han-

dling instances which the programmer misses to explicitly handle in the

code.

These features set apart Erlang from other concurrent languages (such as

Occam) and concurrent/distributed libraries for traditional programming

languages (such as OpenMP for C++ and Parallel Extensions Framework

for .Net). In fact, these languages fail to define explicitly behaviour under

failure.
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2.9.3 The strength of Erlang

In his Phd thesis, Joe Armstrong identifies the major requirements for a

fault-tolerant system and later on specifies how each of these requirements

are met in Erlang [4]. These requirements are derived from the requirements

outlined by Gray[13], Schneider[22] and Renzel[21] (see section 2.8).

These requirements are discussed in the context of Erlang in [4]. The fol-

lowing is a subset of these requirements which are directly related to this

project:

• Concurrency: Erlang processes are very lightweight and the Erlang

runtime supports thousands of concurrent processes. Processes inter-

act by exchanging messages. In this project, the suite of Erlang be-

haviours will serve as an intermediate layer between user applications

and the system, hence fast turnaround is definitely a requirement.

• Seamless Parallel and Distributed Portability: Erlang abstracts

the distributed model into just mere parallelization. Processes com-

municating and interacting on a multicore machine, work well when

distributed amongst several nodes. This will help us structure the test-

ing and evaluation of code for this project - the libraries can first be

test as a parallel program (on a single machine) and then distributed

amongst a number of nodes.

• Failure Detection and Fault Identification: When a process fails,

all linked processes are notified with the failure and given a reason for

this failure. This will form the basis of failure detection in this project.

Moreover, Erlang also adheres with fail fast specifications of Schneider[22]

and Renzel[21] Erlang processes immediately stop with a reason when a

function is called with incorrect arguments.

Erlang was built to target robust code. The functional syntax of Erlang

might be a repelling feature for, however it reduces the amount of code re-

quired between four to ten times [10]. Generally, more code means more bugs

and hence these are suppressed as well. Moreover, thanks to the requirement

of non mutable state functions, Erlang cuts down on the shared state night-

mares of deadlock and race conditions [16] - this is because functions have no

internal mutable state due to single assignment. These problems can only

occur when interacting with the external world or when poorly handling
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asynchronous messages (example receiving messages out of order or when

assigning wrong priority). Erlang also boasts a number of industry strength

characteristics. The Erlang runtime machine provides advanced operating

systems features such as automatic memory management and distribution

of processes between nodes [3]. The Erlang runtime is also very robust with

uninterrupted uptime. Moreover, Erlang comes with OTP (Open Telecom

Platform) which provides standard patterns (or Behaviours) to extend fault

tolerant code. This library includes behaviours for: Supervisors, Generic

Servers, Generic State Machines and Event Logging [2]. Though not being

a mainstream language, support for Erlang is not hard to find. It is very

easy to interface Erlang with other languages. So, for example, Erlang can

be used to code a robust server core, whereas the application layer compo-

nents can be written in another language, with which developers are more

confident, and ultimately plugged in to form one system. Finally, there

is growing community of users which actively improves the whole Erlang

environment with libraries, documentation and even ports of the runtime

machine to different operating systems - highlighting the fact that Erlang is

actually gaining ground after twenty years from its inception.

Most, if not all, of these features are clearly missing in alternative con-

current languages or frameworks - making Erlang the natural language of

choice for various distributed projects. Among the various systems which are

running Erlang code underneath the hoods, one finds: the Facebook’s chat

server, Wings 3D - a 3D graphics engine and modeller, Amazon’s distributed

database SimpleDB and an on demand distributed computing routing mesh

at Heroku.

Erlang is usually criticized for its ”odd” syntax and programming style. Re-

cently, various clones of Erlang started emerging (such as Scala and Retlang

library for .Net) and are proposing to overcome this problem. However, in

doing so, these break the immutability Erlang boasts[20]. For this project,

the protocol suite will be coded in Erlang. This will ensure that its code is

availing itself from the benefits and robustness of Erlang. The application

logic will then simply attach to this code - this need not even be written in

Erlang itself. Erlang will serve as the layer which robustly performs critical

and recurrent tasks, which then interfaces with the user’s code.
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2.9.4 Conclusion

This section served to introduce the main concepts behind this project. Var-

ious aspects of distributed computing have been outlined. In particular, a

number of recurrent problems were outlined. These problems are the ba-

sis for the proposal in the next section. The requirements of distributed

programming languages for reliable code and robustness in the presence of

failures, where then outlined. Finally, Erlang is chosen as the implementa-

tion language for this project.
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Chapter 3

Implementation Framework

3.1 Introduction

Various literature exists on the subject of Distributed Agreement Protocols.

In particular, different algorithms have been proposed as a solution to the

main distributed agreement problems (outlined in the previous chapter).

In this thesis, various established algorithms are studied and implemented.

These algorithms are adaptations of the work of Nancy Lynch [19] , Leslie

Lamport [17], Toueg and Chandra [7], Guerraoui and Rodrigues [14].

In this chapter, a common framework for the implementation of such al-

gorithms in Erlang, is outlined. This chapter builds on Erlang’s features,

to achieve a framework which provides the necessary environment for the

implementation of such algorithms. In particular, this chapter proposes a

way on how the agreement algorithms shall be implemented, so as to bridge

the gap between theory and practice.

3.2 Distributed Computing Abstractions

Distributed computing consists of a number of hardware and software enti-

ties which compose the distributed system itself. From a conceptual view,

processes communicate to one another, however there are various other en-

tities which need to be considered such as nodes, failure detectors, links and

the network itself. In practice, these are all depend on the deployment envi-

ronment, so in this project an abstraction for these entities is done. These

abstractions are mainly influenced by the way Erlang deals with these enti-
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ties and the interface it presents to the programmer.

3.2.1 Processes

A distributed system is composed of a number of elements each performing

some form of computation[16]. In this project, any computational element

is abstracted with the notion of a process. A process is assumed to be

characterised by:

• Thread of Execution: Every process consists of the execution of

some code. Though no assumption is made on execution time, it is

assumed that there is no unjustified indefinite waiting, but processes

run to completion.

• Local Memory: Every process consists of a set of local variables.

The value of all these variable at a particular point, make up the state

of the process.

• Unique Identifier: Every process can be identified by a process iden-

tifier (PID). It is assumed that no ambiguity exists with processes

identification - that is despite the distributed environment, no two

processes (not even on distributed nodes) can have the same PID.

Note that this is a fair assumption to make because Erlang guarantees

such a property is true by encoding data about the node identifica-

tion in the PID itself. Another way by which to identify processes, is

through a global identifier. A global identifier is a systemwise unique

name, which is an alternative to using PID’s. Of course, with global

names, the responsibility of appointing unique names is on developer

himself.

• Mailbox: Processes can communicate by sending messages to PID’s

or global identifiers. When these messages are eventually posted to

the process’ mailbox - a storage place for these messages. The process

can then fetch these messages and read their content.

3.2.2 Nodes

It is probably best to think of a node as a distinct interacting computer.

However in reality, a node can consist of cluster of computers. Alternatively
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multiple node environments can interact on the same physical machine, with-

out the need for any message to touch the network [16]. So it is better to

think of a node as any form of replicated set of processes which together

form this single entity - the node.

In this project, every Erlang’s runtime environment (or shell), is considered

as a node. Every shell, hosts a number of Erlang processes. Multiple Erlang

shells can be opened on the same machine, or else every shell can be hosted

on a different machine.

A node is taken as the unit of failure - if a process crashes, all other processes

together in that node would crash. In terms of Erlang, this means that all

processes within a shell are linked, and the failure of one process, would lead

to the abrupt termination of all the other processes in that shell.

3.2.3 Communication Links

Interconnecting distributed nodes involves various infrastructure such as

routers and switches. This setup varies greatly depending on the underlying

network architecture. In this project, all this infrastructure is captured by

the link abstraction. A link exists between two nodes if a message can even-

tually be delivered between the two. This connectivity is the responsibility

of lower level protocols such as routing protocols.

In practise, a link might exist between two processes, but messages could

be lost in transmission. Hence, network communication is assumed to be

unreliable. Note that however, the network is assumed not to generate

messages on its own.

A simple workaround is used to overcome the problem of unreliable commu-

nication. Whenever a process Pi sends a message to Pj , this message can be

repeatedly sent by Pi until it receives an acknowledgement from Pj . Such a

mechanism would guarantee eventual delivery the message, given that none

of the two processes actually crashes. [14] Moreover, so as to avoid that Pi

blocks until the message is actually delivered by Pj , this repetitive sending

could be done by a separate process. Note that such a mechanism, does not

guarantee that every message sent by Pi will reach Pj - it could happen that

a message Pi sent is lost and Pi crashes before resending the message again.

Such a mechanism is typically handled by lower level protocols such as

TCP. Erlang makes use of such protocols [2], and hence the usage of such
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a mechanism is implied. Note also that links are assumed not to create

message erroneous message on their own (no creation).

3.2.4 Failure Detectors

In the previous chapter, the notion of failure detectors was explained. These

provide information as to which processes it detects as having crashed. Fail-

ure detector can only give information as to whether a process is alive or

not, but does not give information about the state of the processes (such as

its point of execution).

Moreover, in this project a Perfect Failure Detector is assumed. This means

that the failure detector classifies a process as having crashed, then that

process really did crash (accuracy). Moreover, it will eventually detect all

crashed processes (completeness). When this Perfect Failure Detector clas-

sifies a process as having crashed, it triggers a crash event. The prototype

of this event is given in listing in figure 3.1 below:

Figure 3.1: Prototype of the Perfect Failure Detector crash event

The failure detector triggers this event on all modules which utilize it. With

this event, it returns an argument Who, which denotes the name of the

process which crashed.

3.3 A Common Structure for all Algorithms

This section will present the overall structure of agreement algorithms imple-

mented. This structure serves as a common way to present these algorithms

in this project. Moreover, various syntactical details will be outlined and

briefly described. Later on in this chapter, an actual Erlang implementation

of this proposed layout, is presented.

The algorithms presented here will follow an Asynchronous Event-handling

Model[14]. Basically all algorithms here will have the format of an event and

its handler. The template for algorithms given in this presentations is given

below:
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Figure 3.2: Structure of algorithms given in this presentation

As can be seen in figure 3.2, algorithms consist of three main sections: a

State definition, a number of helper functions and a number of event han-

dlers. Prior to these there is also a module name and behaviours imple-

mented. All these are explained in detail below:

• Module Name: The module definition defines the name of the mod-

ule. It is used when external modules need to call functions or trigger

events locally defined in this module.

• Behaviours implemented: This concept comes directly from the

Erlang behaviours. In Erlang, a behaviour is a guarantee that this

module will implement a number of functions which are requested

by the behaviour module. Typically the behaviour module will then

callback these functions during its operation.

• State Definition: This State definition outlines the constituent ele-

ments of the State record. Simply put, the state record is a globally

available record which contains data stored by the algorithm until

some particular point in time. In practice, due to Erlang’s program-

ming methodology, internally this state is passed as a parameter to
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the handler function or to the message handling loop.

• Helper Functions: Helper functions are common routines which are

either used extensively, or which help structure the code better. These

functions are invoked from within the event handlers or from other

helper functions. These functions can take arguments and return a

value to its caller.

• Event Handlers: Event handlers define the actions which need to

be taken when an event is triggered. These actions are invoked in

isolation and each handler needs to be non blocking. Event handlers

are essentially what makes up the algorithm itself. These can be seen

as the entry points to the algorithm.

In a nutshell, every algorithm is presented as a sequence of responses to

particular events. During an execution of the algorithm, events received are

queued in chronological order. The program will then repeatedly dequeue

an event and execute the corresponding handler or wait for more events to

be triggered. Event handling is carried out asynchronously.

3.3.1 Types of event triggering

Events can be triggered in two ways. Firstly, an event may be directly-

triggered by some module through the use of the trigger keyword. The

other type of event triggering is predicate triggered event triggering. Such

events will be triggered when a particular conditional expression becomes

true.

3.3.1.1 Directly-triggered events

Directly-triggered events can be triggered from any module. Conceptually,

these can be seen as function calls which have asynchronous message han-

dling semantics - an event is triggered in a similar fashion to a function call,

however, the process handle them sequentially, even if multiple processes

trigger events to this process, at the same time. As an example of directly

triggered events refer to the listing in figure 3.3. The event header is given

on line 1, preceded by the upon directive. The upon directive essentially

helps create a distinction between normal helper functions and event han-

dlers. The remaining code, after the event header is the handler code. As an
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example of the directly-triggered event notation, a sample triggering is done

on line 4. This notation for triggering an event (and even external helper

functions) is identical to the MFA (Module Function Arguments) notation

of Erlang (Module name : function name( arguments...) ). Note that the

trigger keyword is used to signify that the event is invoked asynchronously

as opposed to a function call.

Figure 3.3: Syntax of direct triggered events and event handlers.

3.3.2 Predicate-triggered events

Predicate triggered events are triggered when some particular conditional

predicate becomes true. These are like runtime monitors for a particular

state (or sub-state) to be reached. When this happens, a local event is trig-

gered. As an example of predicate-triggered events, refer to the listing in

figure 3.4. Listing 3.4a shows the template code for a predicate triggered

event handler. On line 1, preceded by the upon keyword, there is the pred-

icate condition which will trigger this event. As an example, listing 3.4b

shows an event which is triggered when a set (Colours) gets an element with

value blue.

Figure 3.4: Syntax of predicate triggered events.
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3.4 Module Composition

The suite of Erlang behaviours given here is composed of a number of mod-

ules, each implementing some particular algorithm. Moreover, much of these

modules build on one another; several modules extend the functionalities of

other modules. This can be achieved rather easily through the use of be-

haviours. Essentially this creates a layered stack of modules which interact

with each other through well defined interfaces. These interfaces are simply

well defined events which may be triggered or which can be handled by the

module. Hence an interface for a module will consist of:

• External Events Handled: These are events, which can be triggered

by some external module and for which an event handler resides within

the module. These can be seen as asynchronous requests which can

be posted to the module.

• Callbacks Expected: A callback is an event which is triggered and

is expected to be handled by the user of this module. Typically these

events are triggered at ”milestone” points during the execution, and

signify that some operation requires attention. For example, a module

may invoke a callback when it has processed or received some form of

data.

Through these well defined interfaces, modules can extend and interact

with each other much like with interfaces and inheritance in Object Oriented

Programming. This is done by having modules which trigger events in other

modules. This latter module performs some processing and then it triggers

an event in the first module in the form of a callback.

As an example, consider a module for broadcasting messages called broad-

caster. This module is able send out messages, by handling the broad-

cast(Data) event. Moreover, when a message is received, it callbacks the

deliver(Data) event. Now consider, a module called namer, which is used to

send and receive names to other processes. It handles the send name(Name)

event when a name is to be sent and callbacks the received name(Name)

event, when a name is received. For the sake of the example, assumed that

the namer module, does some additional processing on the Name before

broadcasting it.
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Figure 3.5: An example of module layering

Figure 3.5 gives a possible composition of the two modules. The namer mod-

ule, makes use of the broadcaster module to transmit and receive names, and

perform additional processing on them. It should be noticed that the namer

module, not only requires to trigger the right event on the broadcaster mod-

ule, but also needs to implement the necessary callback function, expected

by the broadcaster module.

3.5 Delving deeper

In this section, a brief overview of various elements which make up the

language will be given. The essential constructs used throughout this pre-

sentation as well as standard notations, will be outlined. Note that this is

merely an overview and not a complete explanation of these tools or tech-

niques being used in this presentation. Most of these techniques are directly

borrowed from Erlang (or functional programming in general). The reader

is expected to be familiar with functional programming techniques.

3.5.1 Variables

As with any programming language, this language will have variables. Vari-

ables identifiers consist of an alphanumeric string starting with an uppercase

alphabetic character. In order to keep algorithms concise, in this presenta-

tion the single assignment is relaxed - state variables can be assigned mut-

liple values. However in section 3.2.4, a method to convert to pure single
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assignment, as used in Erlang, is described.

3.5.2 Atoms

Atoms are simply symbols (identifiers) which can be assigned. As an exam-

ple, yellow in Listing 3.4, is an example of an atom. Atoms are different

from enumerated variables, in that two atoms with different names, can

never match. Atoms are identifiers starting with a lowercase alphabetic

character. Atoms are one of the main elements of Erlang.

3.5.3 Comments

Comments can be written anywhere in the code by preceding the comment

with a % character. This comment will span until the first newline which is

encountered.

3.5.4 Tuples

Tuples are a way in which data elements can be grouped together as a

single entity. These are very much like records in conventional programming

languages. These can be used to group together different data elements, and

pass them together as a single variable.

3.5.5 Pattern Matching

Pattern Matching is a technique widely used in functional programming.

Simply put, pattern matching will ensure that a particular action is taken,

when data of a particular format is to be processed. Pattern matching can

be used in most of the constructs including if and case statements, and also

for function execution itself. A function can be declared with a particular

data pattern in the header. This function will only be executed when that

pattern matches the data at runtime (and no other function has pattern

matched). Putting a Variable, in the place of a pattern, will match all data

patterns. Although understanding pattern matching in practice, can be

rather straight forward, giving a complete explanation of this subject would

require a lengthy explanation. For this reason, for a complete explanation

of pattern matching please refer to [4].
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3.5.6 Sending and Receiving messages

Since this project deals with distribution over remote nodes, there must be

a way for communication amongst these nodes to take place. This is done

by using message sending and receiving constructs. These constructs are

taken directly from the Erlang language.

Sending messages is done through the use of the ! construct. This construct

has the following structure:

<PROCESS IDENTIFIER> ! <MESSAGE}

The semantics of this construct is that the message on the RHS of the

! is sent to the process identified by the process identifier given. Process

Identifiers are a way by which to reference processes, and these are explained

in more detail in a later section 3.2.1. Note that the message sent can be of

any type.

Receiving messages is done using the receive construct. This structure of

this construct is explained below:

receive

PATTERN1 -> ACTION

PATTERN2 -> ACTION

...

[ELSE -> ACTION]

end.

The receive construct waits until a message is available and then invokes an

action corresponding to the message type. Since a message can have different

types, pattern matching is done on the messages received to determine what

action to take.

3.6 An Implementation in Erlang

The various notions which have been outlined so far need to be implemented

in Erlang. This section gives an overview of the mapping between the ab-

stractions given here and how these were implemented in Erlang.
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3.6.1 Process structure

Every distributed node contains a particular organisation of Erlang processes

which together form the orchestration layer of every node. These processes

have structure shown in figure 3.6 below:

Figure 3.6: Organisational structure of processes in distributed

nodes.

3.6.1.1 Inter-node Communication

Every node contains one Main process. The aim of this process is to serve as

an incoming message gateway: all messages coming from external nodes will

be received by this process and forwarded to the associated receiver module.

It can be noted that for a process to be able to send a message to another
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node, it must know the PID of the receiver. This means that if it requires to

communicate with all processes, it would require to store all PID’s for the

processes from all nodes (even though such communication pattern is rarely

required). However, in the approach taken with the Main process, only the

PID of the Main processes is required to be known. Sender processes will

send their messages to the Main process of the destination node, which will

in turn take care of ”forwarding” the message to the corresponding receiver

process.

But how does the main process know which process is the intended receiver

of the message? Here some pure Erlang techniques come into play.

Since it is assumed that this suite is replicated on all nodes, the set of

processes for this suite is the same on every node. Moreover, as explained

earlier, Erlang provides a way by which to register process names - giving

names to processes which can be used for communication in the place of the

PID. Hence, each process can be given a pre-defined name and the same

names are used on all the nodes.

Now in order for the sender to indicate to the Main process, which process

is the intended receiver, it can send the pre-defined process name of the

receiver as part of the payload. In Erlang, this is achieved by sending the

message data which was originally intended to be sent, together with the

pre-defined name of the process, as a single tuple. When the Main process,

at the destination node, receives this message, it can read the registered

name of the process directly from the message, and forward it the original

message.

The actual ”forwarding” of this message will occur by triggering an event.

The event triggered is the received event. Its prototype is given below in the

listing in figure 3.7:

Figure 3.7: received event prototype

So now, if a process receives a message, a received event will automatically

be triggered. This means that the process does not need to block and wait

for some messages to be received, but rather when the message is received,

this event handler will be triggered.
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3.6.1.2 Utilizing the Erlang Failure Detector

A lot of emphasis has been made on the use of failure detectors as means

by which to abstract knowledge about failures. However, in figure 3.6, these

do not seem to have a directly associated process. The reason for this is

because here we are building on top of Erlang’s existing failure detector.

Erlang provides means by which to monitor processes for liveness. This is

done by linking processes together and setting up processes to trap EXIT

signals. When a process crashes, all the other processes will be notified with

this EXIT message.

The handling of the EXIT messages sent by Erlang’s failure detector are

handled in the Main process. The Main process is linked to all other remote

Main processes in the system. It also traps EXIT messages and triggers a

crash event to all processes on the node.

Internally, the Erlang’s failure detector uses a heartbeat mechanism to de-

tect failures. In terms of failure detectors as presented by Chandra and

Toueg in [7], this has the following implications:

• Completeness: Given that if a process crashes, it will not send out

any heartbeats and so, given that these messages could only originate

from the failed node itself, all monitoring nodes will detect its failure.

This is known as Strong Completeness.

• Accuracy: A heartbeat mechanism is, however, prone to network

delays especially when there is a network overload [8]. This could

lead to a situation where the failure detector would classify a process

as faulty, when in reality it is still alive. Moreover, Erlang’s failure

detector will not attempt to reassess the liveness status of a process

which is detected as failed - once a process is suspected to be failed, it

will not be classified as alive (unless the process is manually relinked).

This violates the accuracy property because it causes processes to be

falsely detected as having failed.

Hence Erlang’s failure detector can be merely seen as performing any spe-

cial failure detection. However, as limited as it is, it still helps separating

concerns about failure and failure detection from the rest of the code. More-

over, studying and devising reliable algorithms to ensure the strength of the

failure detector, would be another research project on its own.
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For this reason, it was chosen to work with the existing failure detector and

propose the extension of this failure detector for future work. In order to

partially ’patch’ this shortcoming, in this project, a simple approach was

taken - any process which is detected as failed will be sent a KILL message

to truly kill itself and broadcast that failure message to all other processes.

This technique ensures that the accuracy property is now satisfied, despite

inaccuracies due to network delays. Note that however, the process which is

detected as having failed, keeps doing its execution until it receives the KILL

message. During this period, it may even take conflicting actions with what

the process which detected it expects. This might break certain properties

of the algorithm. In this work, examples of where this might happen are

pointed out.

3.6.2 Local Processes Interaction

Figure 3.6 indicates that every node houses at least three other processes,

apart from the Main process. These are Reliable Broadcast, Consensus and

Atomic Commit. In reality, these are the classes of algorithms which are

implemented in this project - each class contains a number of algorithms.

Essentially, these are each handled by a separate process which maintains

the state of that particular algorithm.

These algorithms were each implemented in separate modules. This mod-

ule, essentially, handles events it receives and changes the state accordingly.

Below is a list of all the modules implemented:

• Reliable Broadcast

1. be rb: Best-Effort Reliable Broadcast

2. r rb: Regular Reliable Broadcast

3. u rb: Uniform Reliable Broadcast

4. c rb: Causal Reliable Broadcast

5. to rb: Total Order Broadcast

• Consensus

1. rf c: Regular Flooding Consensus

2. rh c: Regular Hierarchical Consensus
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3. uf c: Uniform Flooding Consensus

• Non-Blocking Atomic Commit

1. nb3p ac: Three Phase Commit

2. cb ac: Consensus Based Commit

Each of these modules will be explained in detail in the coming chapters.

3.6.3 A Design Pattern for all modules

All processes maintain an internal state by having a recursive function which

waits for new events, handles them and recurses with the new state. If this

is to be done in Erlang, it would look something like the code in figure 3.8.

Figure 3.8: Maintaining an internal state through recursive pro-

cesses in Erlang

Here, a loop function is defined. This function takes one argument - the

State. It waits until a message is received. The corresponding handler is

invoked depending on the message type. Note that the handler will update

the State (line 6) and then recurse with the new state. The new State is

function of the old state and the message received. Note that generally the

state consists of a tuple with a number of data values.

A more generic form of this design pattern, has been implemented as part

of Erlang/OTP modules. This is known as the gen server behaviour, which

is an implementation of a generic server. The gen server is written to make
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code more scalable and maintainable [4]. It also gives way to easier debug-

ging and easily provides features such as dynamic upgrades. Moreover, by

using the generic server, the code will be structured in a ’standard’ way -

making it easier for external programmer to understand and work with the

code.

In this project, all processes are implementations of the gen server be-

haviour. As mentioned, all algorithms listed in 3.6.2 have an associated

process. This process implements the gen server behaviour. Moreover, these

processes can be seen as a real-world implementation of the template for all

algorithms described here (refer to figure 3.2). The gen server provides the

roadmap from this template code to actual Erlang code.

The following section present another process template - this time, it shows

how everything discussed in this chapter can be implemented in Erlang.

3.6.3.1 Putting everything together

In order to present everything together, a template depicting the organi-

sational structure of source code, as implemented in Erlang, was devised.

In this section, various parts of this template will be discussed, and their

mapping with what has been discussed in this chapter, will be outlined.

Listing 3.9 shows the first part of this template code. Apart from the export

declarations (lines 7 to 11), this code is very similar to that in figure 3.2.

In fact, here the module name, behaviours implemented and state record

are defined. Here the gen server behaviour (line 4) and failure detector

behaviour (line 5) are implemented. The export statement on line 9 is used

to list out the functions which other modules can call to ’trigger an event’.

These exports are given as a list of function names followed by their arity:

so here two events are being published (some event1 and some event2). The

export on line 12, lists the functions which act as the callbacks implemented

for other modules. The crash event is triggered by the failure detector and

should be implemented by all processes using the failure detector.

Thus, in terms of code, an event is simply a function call defined in a module.

That function call will, however, not handle the event itself.

Listing 3.10 gives a definition of the two example events exported and also

of the crash callback. These consist (lines 26, 29 and 32) of just a gen server

cast. A gen server cast is simply an asynchronous request to a gen server
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Figure 3.9: Template with code for all algorithms implemented

(Part 1)

Figure 3.10: Template with code for all algorithms implemented

(Part 2)
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which is not expected to return anything back. Here a cast is sent to the

gen server started by this module (identified by the ?MODULE macro). No-

tice that in the cast, the second parameter is a tuple with all the parameters

of this event and an atom identifying the event. This tuple is the request to

be handled asynchronously by the gen server. The reason for not handling

these directly here is twofold. Firstly because at this point we have no ac-

cess to the State and secondly is to ensure that all requests are processed

sequentially.

Figure 3.11: Template with code for all algorithms implemented

(Part 3)

But where are these gen server casts handled? The gen server will invoke a

handle cast callback whenever a cast can be handled. Listing 3.11 defines the

handle cast for this process. Note that the handle cast function takes two

arguments (lines 66, 71 and 76): the first one is the request which was casted

to the server, whilst the second one is the State of the server. Note that this

function uses function pattern matching to choose which of the functional

clauses to invoke. Internally this handler will perform the algorithmic action

required to handle the request. Notice that this function returns a tuple

which holds the updated state. This state will be the one stored internally

by the gen server and which will be passed to the subsequent handle cast.

In the handle cast handlers, one can note that exactly before returning the

new state, a call to check predicates is made. This call is used as part of

the implementation of predicate triggered events (refer 3.3.2). Since there is

nothing like predicate triggered events in Erlang, a check is made exactly at
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the end of every gen server cast handler.

Figure 3.12: Template with code for all algorithms implemented

(Part 4)

Listing 3.12, shows how predicate triggered events are implemented. The

check predicates() function (line 50 onwards), takes the State as a parame-

ter. Here two predicate checks are made by calling predicate check1() and

predicate check2() - these internally check whether a predicate is satisfied,

and if so perform the associated action and return with the new state. Note

that here, there is a little subtlety involved: it could be that after check-

ing the predicates, an action is taken, however, at this point, the second

predicate check action could have caused the first predicate to be satis-

fied once again. This requires that the checks should be made again until

none of the predicates matches. This is handled on line 55, where the final

state after checking all the predicates is compared with the initial state of

the check predicates() function. If there a change in the State, then this

function recurses to recheck the predicates. Otherwise, the passed State is

returned.
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3.6.4 Working with Single Assignment

Being a functional language, Erlang has single assignment of variables. Es-

sentially this means that every variable can only be assigned a value once.

However, the algorithms presented in literature, never assume they are work-

ing with such a paradigm. However, as explained, every algorithm will be

implemented with the concept of a module which maintains an internal state.

In order to be able to change part of the state, it is required to create a new

variable with the new values, and copy the unchanged values from the previ-

ous state. This, however, does make the code longer and less readable, and

for this reason, the internal code of every event handler in this dissertation,

will not be presented using this single assignment.

3.7 Conclusion

The aim of this chapter was to gradually bridge the gap from theory to

practice - and propose how various concepts were implemented in reality. It

gave us the techniques by which all algorithms shall be described here and

finally showed, to some extent, how these can be implemented in reality in

Erlang.

The following three chapters will outline various algorithms for solving Reli-

able Broadcast, Consensus and Atomic Commit problems. These algorithms

are the core of this project and this chapter presented the techniques which

serve as a means to implementing these algorithms.
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Chapter 4

Reliable Broadcast

4.1 Introduction

The first class of agreement algorithms studied in this project, are Reliable

Broadcast algorithms. These algorithms deal with the transmission of mes-

sages which need to be delivered by all processes, including the sender itself.

These algorithms study this problem, whilst keeping process failures into

consideration. The algorithms presented here, assume the system model

outlined so far.

In this chapter, various Reliable Broadcast specifications are presented, each

having its own set of properties and characteristics. For each specification,

an algorithm attempting to achieve these specifications, is outlined. For all

algorithms, first the basic goal it attempts to achieve, is explained. Following

this, the algorithms are explained in further detail, and any subtle intricacies

are investigated. All of these algorithms are implemented in the framework

presented in the previous chapter.

4.2 Interface

All reliable broadcast algorithms, follow this interface:

• External Events Handled

– init()

Initializes the algorithm.
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– broadcast(Msg)

Sends Msg to all other processes.

• Callbacks Expected

– deliver( From, Msg )

Indicates that Msg was received from the process whose PID is

From.

4.3 Best Effort Broadcast

4.3.1 Overview

The Best Effort Broadcast is the weakest reliable broadcast specification to

be studied. It is a form of broadcast which does not provide any fault toler-

ance guarantees and is consistent as long as the sender does not crash whilst

broadcasting. Implementations for this broadcast specification is typically

found in non-fault tolerant code; however, this broadcast will be the basis

for various stronger algorithms, which wrap logic around it to address its

shortcomings.

4.3.2 Specification

The Best Effort Broadcast abstraction is a form of Reliable Broadcast which

only guarantees consistent delivery if and only if the sender remains alive

throughout the whole of the sending process. A Best Effort Broadcast ab-

straction should satisfy the following properties:

• Validity: If a correct process p broadcasts message m, this eventually

gets delivered by all correct processes in the system.

• Integrity: For any message m, every process delivers m at most once,

and only if it was previously broadcast.

4.3.3 Algorithm

Figure 4.1 gives an algorithm which implements the Best Effort Broadcast

specification. This algorithm is known as the Basic Broadcast algorithm.

The algorithm consists of just two event handlers. The broadcast event
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Figure 4.1: Basic broadcast algorithm

handler (line 9) is triggered by the user of this module, and it initiates a

best effort broadcast. It iterates through all the processes in the system

(denoted by Π on line 10) and sends them the passed message. Notice

that a helper function send to() is used, which sends the PID of the sender

(returned by self() function on line 5) together with the message itself.

The received event (line 13), is triggered whenever a new message is received

(as explained in section 3.6.1.1). This event indicates that some other pro-

cess has broadcasted a message which is returned to the user by triggering

a callback beb deliver.

4.3.4 Erlang Implementation

Despite being very short, there are still some points which are worth out-

lining. Firstly, a list with all PID’s (as required in line 10) can be returned

by calling node utils:get all peers() which returns a list with all the PID’s of

the Main process on each node. Having this list, it is worth noticing that

the predicate on line 10, can be neatly implemented using lists:foreach/2.

This function takes the list of all processes and the send to() function, as a

higher order function, which is almost identical to that on line 10.

4.3.4.1 Implementation Optimisations

There are not many performance considerations to be made for this simple

algorithm; however, one simple tweak was to use a failure detector, and
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avoid wasting resources to send to processes which are known to be crashed.

4.3.5 Evaluation

The suggested algorithm meets the Best Effort Broadcast specifications due

to the properties of links taken in consideration in this project (refer 3.2.3).

The message broadcasted, should eventually reach the destination, and since

this is sent to all processes, the validity property is satisfied. Moreover, the

integrity property, follow directly from the no creation and no duplication

properties of links (refer 3.2.3). The Basic Broadcast algorithm, however,

only guarantees agreement if the sender is not faulty.

Figure 4.2: Violation of agreement with the basic broadcast algo-

rithm with a faulty sender

Figure 4.2, gives a run of this algorithm. At point A, Process P1 starts a

broadcast, but crashes without managing to send messages to all processes.

As can be seen, processes P2 and P3, do receive and deliver the message,

however, process P4 does not. This could possibly leave the system in an

inconsistent state.[14].

In terms of performance, in general the algorithm suggested requires |Π|
messages to be transferred over the network with every broadcast event.
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4.4 Regular Reliable Broadcast

4.4.1 Overview

The Regular Reliable Broadcast protocol strengthens the specifications of the

Best-effort Broadcast by taking into consideration process failures and taking

the appropriate measure to ensure that the system still remains consistent.

Regular Reliable Broadcast is resilient to sender crash failures: it ensures

that either all processes get the message broadcasted, or that none at all

gets the message.

4.4.2 Specification

The Regular Reliable Broadcast guarantees that the all correct processes are

consistent with respect to the broadcast abstraction. Note that this protocol

does not, however, provide any guarantees on the state of the crashed pro-

cesses. A Regular Reliable Broadcast protocol satisfies the same validity and

integrity properties as the Best Effort Broadcast specification. In addition

to these it also guarantees an agreement property, as follows:

• Agreement: All correct processes deliver the same set of broadcast

messages.

• Validity: If a correct process p broadcasts message m, this eventually

gets delivered by all correct processes in the system.

• Integrity: For any message m, every process delivers m at most once,

and only if it was previously broadcast.

4.4.3 Algorithm

One particular implementation of the Regular Reliable Broadcast is the Lazy

Reliable Broadcast algorithm, given in the listing in figure 4.3. This algo-

rithm builds up on the Best-Effort Broadcast protocol to ensure that the

Agreement property is satisfied. It utilizes a failure detector (line 4) to en-

sure that correct processes will take over when a sender crashes. The notion

of the algorithm is that every correct receiver should broadcast the mes-

sages it received from some process which is detected to have crashed. In

this sense, a process which receives a message from a faulty process becomes

61



Figure 4.3: Lazy reliable broadcast algorithm
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a Relay for all the previously sent messages by that process. Hence every

process must keep track of the messages it received from all processes, in

order to be able to relay these messages when their sender crashes. These

are held in a map data structure, called From.

A basic run of this algorithm is given in the process/time diagram in fig-

ure 4.4.

Figure 4.4: A run of the lazy reliable broadcast algorithm with

faulty sender

In figure 4.4, process P1 starts a regular reliable broadcast (Point A) and

crashes shortly afterwards, in a way that the message is only actually sent to

process P2. Process P2 receives and delivers the message (point B). At this

stage, the system is in an inconsistent stage, because process P2 delivered a

message which processes P3 and P4 did note even receive. However, because

of the failure detector, process P2 knows or will eventually know that process

P1, the sender of the message, is dead. At this point, process P2 will relay the

message to the other processes in the system. In this run of the algorithm,

only one process (P2) was lucky enough to be sent the message before the

death of the sender. If more processes were sent this message, more than

one process would become a relay of the sender process. Since the job of

the relay process is to retransmit the message to all other processes, having

multiple relays would signify that the processes would receive the message

multiple times. But due to the fact that this is the same message being

received multiple times, the algorithm should only callback the rrb deliver()

event once.

In order to solve this problem, the Delivered, a set containing all the mes-

sages which have been delivered Delivered, is kept. Before triggering rrb deliver(),
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a check is made to determine whether the message has already been deliv-

ered (is an element of Delivered). This event will be triggered only when the

message has not already been delivered.

4.4.3.1 Dissecting the Algorithm

In the listing in figure 4.3, the state of the algorithm is given in lines 7

to 11. This state holds the set of correct processes, Correct and the set of

messages which have been received and delivered, Delivered. It also contains

a map between all processes and the messages received from each process.

The initial state is defined in lines 15 to 17 as a handler to the init() event.

Initially, the Delivered set is empty, the Correct Set holds all the processes,

and all the sets in the From map are empty. Broadcasting a message is the

same as the broadcast event of the best effort broadcast specification. This is

shown in broadcast handler (lines 19 and 20), where a best effort broadcast

event is triggered. It is important to note that the content of the message

being broadcasted is a tuple with the following structure:

{ Sender, Message}

The Sender contains the PID of the initial sender: because the message may

be relayed by other processes; however, these do not change this sender field.

The Message contains the data passed with the broadcast() event.

When a beb deliver event is callbacked (line 22), the message received is en-

tered in the Delivered set and a regular reliable broadcast deliver (rrb deliver)

event is triggered (line 25). This can only happen if this message has not

been previously delivered; that is if it is not a member of the Delivered set

(line 23). The message is also added to the From map to the set of messages

originating from the relay process.

So far no fault tolerant measures were taken. The remaining pieces of code

deal with the fault tolerant characteristics of the algorithm. First, however,

it is important to outline two scenarios which encapsulate the way failures

are detected and handled. Consider a system with a sender process which

broadcasts a message which crashes whilst broadcasting. There are two ways

in which a receiver process, which has been sent the message, detects the

failure:

1. The receiver process detects it has crashed before receiving the broad-

casted message.
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2. The receiver process detects it has crashed after receiving the broad-

casted message.

These two cases stem from the fact that no assumption with regards to

message ordering, is made. The algorithm being outlined here handles both

scenarios.

The first case is handled by lines 27 to 28 where after delivering a message,

the relay process of that message is checked to ensure that it still makes

part of the Correct processes. If this is not so, then it might be that this

process was one of the (lucky) processes who managed to get the message.

Hence, this message should be broadcast (best effort broadcast) to the other

processes - so as to ensure that all other processes managed to get the

message despite that the sender crashed.

The second scenario is handled in the callback of the failure detector (ie the

crash() event handler in lines 30 to 33). In line 32, all messages received

from the crashed process, are relayed to the other processes. This set of

messages is fetched from the From map.

All histories of failures can be classified as any of these two scenarios or of

a third scenario in which the sender process does not live long enough to

actually send the original message to any other process. The latter scenario

would still leave the system in a consistent state and its effect the same as

if the regular reliable broadcast event was not even triggered at all.

4.4.4 Erlang Implementation

The Regular Reliable Broadcast algorithm contains a number of elements

which will reappear in subsequent algorithms and require some attention

in their implementation. Particularly, one should notice that there are a

number of sets being used. These were implemented in Erlang by using the

sets module. This module provides routines to perform the common set

access and comparison operations required.

One important consideration deals with having a process broadcasting the

same message. If this happens, the algorithm given here would simply not

trigger a deliver event except for the first broadcast. In order to go around

this problem, a unique number is appended with the message. This way, if

the user actually rebroadcasts the same message, this number will have a

different value and the algorithm would not think it has already delivered
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this message. However, in the case when multiple relay processes broadcast

the same message, this number is not altered and hence the receiver would

determine that it has received a message which has already been delivered.

Another important consideration is the implementation of the map data

structure, used for the From map. This is implemented through the use of

the dict Erlang module. A dict provides a map (or dictionary) data structure

in Erlang.

4.4.4.1 Implementation Optimisations

The main aspect of the algorithm which entails further investigation, is

definitely the storage requirements of the algorithm. The Delivered and

From structures continue to get populated with every message which gets

delivered. It can be noted that, for the Delivered structure, it is not necessary

to store the whole message; a hash of the message would suffice. In this

project, the message is hashed with an md5 algorithm available in the Erlang

crypto module. Nevertheless, this set still grows indefinitely and even worse,

this techniques cannot be used with the From structure.

One attempt to solve this problem might be that of having each process

which delivers a message, acknowledge one another. When a process detects

that a message was delivered by all other processes, it can remove this

message from these sets. It turns out, however, that this method is prone

to network message reordering which would lead to inconsistencies in the

system. In order to solve this issue, it would be necessary to study the use

of timestamps for such system. This idea is suggested as part of the future

work and is outlined in section 9.

4.4.5 Evaluation

The Lazy Reliable Broadcast Algorithm meets the Regular Reliable Broad-

cast properties. It satisfies the integrity and validity properties due to the

underlying usage of the Best Effort Broadcast. It satisfies the Agreement

property because once a sender crashes, if a receiver exists, its failure detec-

tor will eventually cause a crash event and the message will be sent to the

other nodes. The Regular Reliable Broadcast provides fault tolerant prop-

erties which ensure a consistent state amongst all correct processes. It is

also rather efficient in terms of network utilization. The best case, when
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no failures occur, it requires |Π| message exchanges. Once a sender crashes,

the message will be sent by all receivers, to the remaining processes which

are alive, by all receivers. Hence, in the worst case, the number of messages

exchanged is in the order of |Π|2.

4.5 Uniform Reliable Broadcast

4.5.1 Overview

The Regular Reliable Broadcast protocol outlined in the previous section

provides a fault tolerant broadcast mechanism which guarantees agreement

amongst all correct processes. This, however, means that some process

might deliver the message and crash, without sending the message to the

other nodes. This can create problems if the delivery of such a message in-

volves interaction with some outer system, leaving an inconsistent side effect.

The Uniform Reliable Broadcast abstraction ensures that there is agreement

on the delivered message between both correct and faulty processes.

4.5.2 Specification

The Uniform Reliable Broadcast protocol ensures that the set of messages

delivered by faulty processes is subset or equal to the set of messages de-

livered by correct processes. This will result in changing the agreement

property of the reliable broadcast, into a uniform agreement property. The

uniform reliable broadcast specification guarantees the following properties:

• Uniform Agreement: Every message delivered by a process (correct

or faulty), will be delivered by all correct processes.

• Validity: If a correct process process p broadcasts message m, this

eventually gets delivered by all correct processes in the system.

• Integrity: For any message m, every process delivers m at most once,

and only if it was previously broadcast.

4.5.3 Algorithm

An algorithm to implement the Uniform Reliable Broadcast abstraction

needs to ensure that all nodes have received the message before actually
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delivering the message. By analyzing the algorithm given for the Regular

Reliable Broadcast (going back to figure 4.3), it can be noted that the uni-

form agreement is not guaranteed because the message is delivered (line 25)

before checking whether this needs to be sent to the other nodes (lines 27-

27). A naive patch may be to simply move the delivery of the message to

be done after checking whether this needs to be sent to the other nodes - ie

putting line 25 after line 28. However, this still is not correct as a process

may crash before detecting that a sender process has crashed, but after that

it delivers a message - possibly violating Uniform Agreement.

Another approach may be to always relay the messages immediately and

then deliver the message after that all messages have been sent. There is

still a subtle problem with such an approach: just because a message is

sent, it does not mean that it will get delivered. Referring to section 3.2.3,

it was noted that messages might be lost, and eventual delivery could only

be guaranteed if the sender does not crash. Hence, in this case, if the deliver

event is triggered after sending to all, and then the process crashed, it could

be that some other process still does not receive the message broadcast.

This would violate the uniform agreement property.

In order to solve this problem, a process should only deliver a message,

when it is sure that all other processes received it.

Listing 4.5 presents the All-Ack Uniform Reliable Broadcast algorithm which

is an implementation of the Uniform Reliable Broadcast protocol. The Al-

gorithm ensures that the messages has reached all processes before actually

delivering it. This is done by having each process immediately rebroad-

cast each message. Moreover, since every process will broadcast the same

message, every process also keeps note of the processes from which it has

received the message. Whenever a process, determines that it has received

the message from all other correct processes, then it can deliver the message

- since now the process knows that all other processes have received the

message.

A basic run of this algorithm is given in figure 4.6. This run consists of three

correct processes performing a uniform reliable broadcast. Process P1 starts

the broadcast by sending the message to the other participants. When P2

and P3 receive the message, they also broadcast the message to the other

processes. In the run given here, process P2 would have received the message

from the rest of the processes at point marked A. At this stage, it can deliver
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Figure 4.5: Uniform Reliable Broadcast algorithm
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Figure 4.6: A run of the all-ack algorithm for uniform reliable broad-

cast

the message. Process P3 receives the message from all nodes at point B, and

the same happens for process P1 at point A.

4.5.4 Dissecting the Algorithm

In the algorithm in figure 4.6 the state contains a Delivered set and a Correct

set, whose purpose is the same as in the regular reliable broadcast. It also

contains two other data items: Pending and Ack. Pending is a set containing

messages which have not yet been received from all processes and hence

cannot be delivered. Ack is a mapping between messages and a set with

processes from which that message was received.

As hinted earlier, this algorithm delivers a message only when it has been

received from all other processes. The can deliver() helper function (lines

15 to 16) checks whether the Correct set is a subset or equal to the set of

processes from whom this process have received a particular message. This

checksly whether a message has been received from all correct processes.

It should be noted that this algorithm requires three distinct structures to

hold messages: the Pending and Delivered sets and the Ack map. It is worth

analysing whether each of these serves a purpose - yields some information

which cannot be inferred from the other structures. The necessity of the Ack

map is rather obvious: to determine the processes from which the message

has not yet been received. The requirement for two different sets Delivered

and Pending, is more subtle to analyze. However, it is important to note

that the message will only be delivered when it is received from all process.

When the message is received for the first time, it needs to be broadcast to all

other processes. The Pending set is used to determine whether the message
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is being received for the first time or not (line 31). This information can

also be acquired from the Ack set. However, the Pending set is also used in

the predicate check in line 38, to test whether its elements can be delivered

or not. Here, without this set, it would not be possible to determine which

are the undelivered message which need to be tested.

On the other hand, the Delivered set is used to avoid having a process,

deliver the same message more than once. The true necessity of this set can

be seen in histories such as the run shown in figure 4.7. Here P1 starts the

broadcast. Process P2 receives this message and rebroadcasts it, however

it crashes shortly afterwards. Note that since here a totally asynchronous

network is assumed, process P3’s failure detector can determine that process

P2 crashed, before actually receiving the message which was previously sent

from P2. In fact, at point A in figure 4.7, process P3 delivers the message

because it has been received from all correct processes. However, some time

after, at point B the message from process P2 is received, and unless the

Delivered set exists, it would not be possible to determine that this message

has already been delivered. The Delivered set hence, avoids the problem of

erroneously redelivering the same message.

Figure 4.7: Requirement of the Deliver set

4.5.5 Erlang Implementation

The Erlang implementation of this algorithm, uses the same techniques as

those presented in the algorithm of the Regular Reliable broadcast specifica-

tion. The sets module is used to implement the Delivered and Pending sets.

The Ack map is implemented using the Erlang Dict module. Note that in

line 23 of listing 4.5, all sets in the Ack map are initialised to empty set. This

initialisation is impossible to do in reality as it is impossible to initialize the
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map for all possible messages. However, in practice, if the entry in the Ack

map being accessed is not found, then it is taken as if it contains an empty

set.

4.5.5.1 Implementation Optimisations

As described in [14] and as hinted earlier, the storage requirements for this

algorithm can be greatly reduced. The algorithm given thus far does not

eliminate any messages from any of the Ack, Pending or Delivered structures.

However, it can be noted that once a message can be delivered, then it can

be removed from the Pending set. Moreover its associated set from the Ack

map can also be freed. This tweak will prevent the Pending and Ack sets

from growing indefinitely.

However, the message cannot be removed from the Delivered set. The ne-

cessity of the Delivered set was explained in section 4.5.4. Given that now

messages in the Pending and Ack will be removed immediately as all cor-

rect processes acknowledge, then identical messages can only be received if a

node crashed (one particular scenario is the run in figure 4.7). But problems

can be easily prevented if messages are only allowed from correct processes.

Hence, when a message is received, first the state of the sender is checked (in

the Correct set), and the message will be ”processed” only if it comes from

a correct process; otherwise it will be dropped. This would now curb the

need to keep a Delivered set, whilst still preventing messages to be delivered

multiple times.

4.5.6 Evaluation

The algorithm given here meets the Uniform Reliable Broadcast specifica-

tion. The integrity and validity properties are satisfied since these are pro-

vided by the Best Effort Broadcast. It satisfies the Uniform Agreement prop-

erty because every process only delivers the message once it receives it from

all correct processes - which means that there cannot be faulty processes

which deliver messages which are not delivered by correct processes.

In the best case (when there are no failures), the algorithm takes two com-

munication steps (one to send to all and one to receive from all), and ex-

changes |Π|2 messages. The worst case occurs when all senders crash in

sequence, each managing to send the message to just one participant. This
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would require |Π|+ 1 steps.

4.6 Causal Order Broadcast

In all the broadcast specifications outlined so far, the focus was on the

guaranteeing properties within a single broadcast operation and not on its

possible interaction with other broadcasts already taking place. In partic-

ular, due to the asynchrony of the network, a process could perform two

consecutive broadcasts with the receivers delivering the message from the

second broadcast before delivering the one preceding it. In certain systems,

such reordering may cause inconsistencies and hence must be prevented.

The reason is because such a delivery is said to break the causal order of

events - the second broadcast, may be an effect of the first one, however the

delivery of the messages violate such an ordering.

Figure 4.8: An example illustrating violation of causal ordering with

regular reliable broadcast

Figure 4.8 gives illustrates such a scenario (with regular reliable broadcast)

where the causal ordering is broken. Process P1 issues two consecutive

reliable broadcasts but process P2 delivers the message of the first broadcast

before the first. If say, the two broadcasts are associated with an operation

which is non commutative, process P2 will be in a different state than the

other two processes.

The example illustrated, is just one case of causal ordering. In fact, the

causal order relation m1 → m2, indicating that message m1 could have

caused the submission of m2 is valid in any of these cases [14]:

1. m1 and m2 were broadcast by the same process with m1 being broad-

cast before m2 (refer figure 4.9a)
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2. m1 was broadcast by process Pi and m2 by process Pj after the delivery

of m1 (refer figure 4.9b)

3. ∃m′ such that m1 → m′ and m′ → m2 (refer figure 4.9c)

Figure 4.9: Examples of Causal Ordering

The causal order broadcast will ensure that the delivery of messages con-

forms with their causal order relations. Two messages which are not causally

related, are said to be concurrent. The causal order broadcast does not de-

fine any delivery constraints on concurrent messages.

4.6.1 Specification

The causal order broadcast specification studied here guarantees the same

properties as regular reliable broadcast, together with a Causal Delivery prop-

erty. Its properties are:

• Causal Delivery: No process delivers a message mj , unless every

other message mi, such that m1− > mj , is delivered.

• Agreement: All correct processes deliver the same set of broadcast

messages.
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• Validity: If a correct process p broadcasts message m, this eventually

gets delivered by all correct processes in the system.

• Integrity: For any message m, every process delivers m at most once,

and only if it was previously broadcast.

4.6.2 Algorithm

Figure 4.10: The causal order broadcast algorithm

The listing in figure 4.10, gives the no-waiting algorithm for causal order

broadcast specification. The idea behind the algorithm is very simple. Every

process which needs to broadcast, always broadcasts a set of all messages

already broadcast and delivered, together with the message to be broadcast.

When a receiver receives the message and the set, it first checks whether any

of the messages in the set are undelivered, if so it first delivers them. Finally,

it delivers the message itself.
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Internally the algorithm stores two sets Delivered and Past. The Delivered

set is used to store all messages which have been delivered. The Past set

holds pairs of messages and sender PID’s.

When a message is to be broadcast, the Past set is reliably broadcast,

together with the message as a single tuple (line 17). When this message is

delivered by the receivers, first these check whether the message has already

been delivered (line 21 onwards). Following this, all messages inside the

received Past set are checked with the messages which were delivered. Any

messages not yet delivered will be delivered immediately (line 24). This is

why in line 21, all messages are checked to determine whether they had been

previously delivered or not. Finally, the message itself is also delivered (line

27). When a message is delivered, it is included in the Past message and

Delivered set.

One should note, that in line 22, messages are taken out of the Past set

and delivered. The order in which these messages are delivered is crucial.

Messages should be delivered in the same order in which they were added

to the Past set by the sender.

Note also, despite that a broadcast also sends the message to the sender

process itself, the algorithm immediately adds an entry into the Past set

for that message. This is done because in the time window between the

submission and delivery (by the same process), the process may submit

another message, and hence the previously sent message needs to be present

in the Past set.

4.6.2.1 Pruning the Past set

The main concern with the algorithm is the indefinite nature of the Past set.

Furthermore, this set is transferred on the network, with every broadcast

- posing an ever growing message size as time progresses. This problem,

presses to devise means to limit the size of this set.

The listing in figure 4.11, gives a method to ”garbage collect” the Past

set. The idea is to have every process to acknowledge to all other processes

as soon as it delivers a message. When acknowledgements for a message,

are received from all other correct processes, that particular message can

be removed from the Past set. This way, the size of the Past is no longer

indefinite, but rather decreases as all processes acknowledge delivery.
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Figure 4.11: Garbage collection algorithm for the Past set
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This mechanism keeps a mapping between every message and the processes

which acknowledged it (Ack). As soon as a message is delivered, but not

acknowledged, an acknowledgement is reliably broadcast to all processes

(lines 19-21). When this message is received, its sender is recorded in the

Ack map for that message, and if all correct processes have acknowledged

that message, then it is removed from the Past set (lines 23-27).

Figure 4.12: Run of the causal order broadcast algorithm

Figure 4.12 gives a run of the causal order algorithm. Basically, it re-

illustrates the same example given earlier in this chapter, but using the

causal order broadcast. The dashed lines represent acknowledges from pro-

cesses. For clarity, only the acknowledges to process P1 are shown. Process

P1 broadcasts two messages. Note that the first message arrives at process

P2 after the second message. However, since the second message’s past set,

contains the first message, process P2 first delivers the first message and then

the second message. At point A, P1 receives acknowledgments for the first

message from all other participants, and hence can remove the first message

from its Past set. At point B, all acknowledges for the second messages, are

received by P1, and hence it can remove this message from its Past set.

4.6.3 Erlang Implementation

The no-waiting algorithm for causal order broadcast was implemented in

Erlang using the framework outlined in this project. The distributed garbage

collection scheme for the Past set was also implemented. The sets module

was used to implement the Delivered and Past sets. The Ack map was

implemented with the Dict module.

It was mentioned that messages should be delivered from the Past set in

the same order in which they were added. This was achieved by having
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every process keeping a counter of the messages entered in its own Past set.

Moreover, when a message is to be added to this set, the counter is added

together with the message as a single tuple. This set is sent when a causal

order broadcast is made. The receiver will then convert the received Past

set to a list, and sort messages in the list in ascending order, according to

this number. Finally, messages are recursively read from the list, and the

original message is delivered.

One other thing to note is that the algorithm outlined here, does not allow

identical messages to be broadcast from the same process. However note,

that due to the technique just outline for ensuring the ordered delivery of

messages in the Past set, no two messages broadcast from the same process

can be identical. This is because, in the least, the count for the last message,

will be greater than any of the previous messages.

Finally, note that the initialisation of the Ack map, requires that an empty

set will be mapped with every possible message (figure 4.10, line 12). How-

ever, in practice, since a Dict is used, initially every message will be mapped

with nothing (not empty set). Hence, when an entry for a message is to be

entered for the first time (by checking whether it is currently mapped with

nothing), first the empty set is mapped.

4.6.4 Implementation Optimisations

As noted, the Delivered set will hold a copy of all message delivered. As done

in the implementation of previous algorithms, a hash of the message is kept,

instead of the message itself. This relieves some of the memory requirement

of the algorithm. Moreover, as soon as a message can be removed from the

Past set, its equivalent set in the Ack set is removed as well.

The problem of the Past set has been tackled with the use of the garbage

collection mechanism outlined. However, the Delivered set, still has indefi-

nite memory requirements. A tentative solution to this problem is suggested

for future work (see section 9).

4.6.5 Evaluation

The causal order broadcast guarantees that every message delivered obeys

the causal ordering relation, apart from guaranteeing the same properties as

regular reliable broadcast. The agreement, validity and integrity properties
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are guaranteed because of the underlying use of a regular reliable broadcast

abstraction. The causal delivery property is guaranteed thanks to the Past

set, which enables any causally related message which has not yet been

delivered, to be delivered.

In terms of performance evaluation, the basic algorithm exchanges the same

amount of messages as the regular reliable broadcast algorithm - ie has a best

case of |Π| (in a failure free run) and a worst case of |Π|2 message exchanges.

However, with the garbage collection scheme |Π|2 message acknowledges

need to be exchanged for every message broadcast.

4.7 Conclusion

In this chapter, a number of Reliable Broadcast specifications were inves-

tigated. First, the best effort Broadcast was outlined. This is the weakest

broadcast abstraction and only guarantees correctness if the sender does not

crash whilst broadcasting. Then the regular reliable broadcast was studied.

This specification guarantees that all correct processes agree on the set of

delivered messages. Following this, the uniform reliable broadcast was in-

vestigated. This broadcast abstraction guarantees that no faulty process

delivers a message which a correct process does not. Finally, the causal or-

der broadcast was outlined. This reliable broadcast specification guarantees

that all messages delivered, obey the causal order relation.

Established algorithms for each specification, were studied and implemented

in Erlang, using the implementation framework developed for this project.

Insights about the implementation, together with tweaks and optimisations

taken, were also outlined.
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Chapter 5

Consensus

5.1 Introduction

In this chapter, another class of agreement algorithms will be investigated:

Consensus. Consensus deals with having a system of processes which at-

tempt to decide on using a value, from various proposals. Each process may

propose a value, however, it is up to the consensus algorithm to decide on

which value all the processes should choose.

Unless proper care is taken, situations may arise which cause processes to

choose different values. In the light of process failures and network asyn-

chrony, algorithms need to be studied to tackle the consensus problem reli-

ably.

In this chapter, various consensus specifications will be outlined. Estab-

lished algorithms for these specifications will investigated, and finally also

implemented in Erlang.

5.2 Interface

Below is the generic interface for all consensus algorithms implemented in

this chapter:

• External Events Handled

– init()

Initializes the algorithm.
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– propose(Value)

Assigns Value as the proposal of the calling process.

• Callbacks Expected

– decide( Decision )

Indicates that the consensus algorithm terminated and decide

with value Decision

Note that certain algorithms require a Decision Function as a param-

eter to init. This decision function is used to choose a value from a set

of proposals. In order to guarantee agreement, this decision function

should be identical for all processes.

5.3 A Slight change

It might be noted, that the standard interface outlined, does not give way

to two or more instances of consensus to be in execution. This is because,

there is no way by which to distinguish, whether a propose is intended for

one consensus instance or the other. For this reason, in practice, all calls

and callbacks to consensus have another argument - the consensus identifier.

This argument will always come first in the argument list.

Hence if a process needs to propose to a three different instances of consen-

sus, it should simply trigger propose three times, each time with a different

consensus identifier. In the implementation framework, the Main process

takes care to check whether a consensus gen server for the particular iden-

tifier is started. If it is not started, it will start another instance for that

consensus identifier. From this point on, all calls with that particular con-

sensus identifier, are directed to the existing consensus gen server process.

This simple scheme makes it possible to have multiple instances of consensus

running at the same time.

5.4 Regular Consensus

5.4.1 Overview

The Regular Consensus specification provides the basic mechanism for dis-

tributed process agreement. Processes propose different values and one of

82



these values is globally chosen (decided) and returned to all processes.

5.4.2 Specification

The regular consensus specification ensures the same properties as a regular

reliable broadcast, but to a consensus scenario. The properties which are

guaranteed by regular consensus are:

• Termination: There exists a time at which all correct processes de-

cide some value.

• Validity: A decided value must be a proposed value.

• Integrity: Processes decide only once.

• Agreement: All correct processes agree on the same value.

5.4.3 Flooding Algorithm

In this project an asynchronous message flooding algorithm, proposed in [14],

was implemented. This algorithm is based on the simpler floodset consensus

solving algorithm. The floodset algorithm assumes a synchronous commu-

nication model, hence its correctness is not guaranteed in an asynchronous

system 1. Moreover, the floodset algorithm assumes an upperbound on the

number of failures and does not utilize a failure detector. Despite all these

problems, the floodset algorithm still sets the basis for the flooding consen-

sus algorithm implemented here. For this reason, it will be briefly outlined.

Following this, the changes done to achieve an asynchronous algorithm will

also be explained.

5.4.3.1 Simple algorithms based on Reliable Broadcast Protocols

In the previous chapters, various reliable broadcast protocols were outlined.

At this point, one might ask whether a reliable broadcast algorithm can

be used to implement the Regular consensus specification. It may appear

that a simple solution can be provided by having processes which broadcast

their proposals using some fault tolerant broadcast such as regular reliable

1Due to the forcing failure detector used here, in this case this would not be a problem.

However, in general, synchronous algorithms cannot be used in asynchronous systems
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broadcast. This broadcast ensures that all correct processes will see the same

broadcast messages. Hence, if all processes simply use this protocol and

broadcast their proposal to all, it is ensured that all processes will eventually

get an identical set of proposals (and hence can decide on a value based on

the same set of proposals), even when there are process failures. However,

there is one subtlety which makes the use of such protocols inappropriate.

This is because if a process crashes without managing to actually send its

proposals to anyone, the other processes would not be able to tell whether

a message from this process is underway or not. Despite that, the failure

detector of these processes should eventually signal that this process has

crashed, this would still not break the tie. Given that a message could

actually be on its way on the network, the waiting processes would not know

whether these can proceed or wait to receive something from the crashed

process.

Figure 5.1: Invalidity of Reliable Broadcast algorithms for imple-

mentation of consensus protocols

This problem is illustrated in figure 5.1. Here the most basic case, with just

two processes is considered. The two processes here are assumed to perform

regular consensus using a reliable broadcast abstraction as explained above.

Process P1 is faulty and crashes at point A. However, from process P2 point

of view, it cannot determine whether this process has sent its proposal or

not. Even though at point B, P2’s failure detector signals that process P1

has crashed, it can make no assumption as to whether process P1 has sent

its proposals or not, and hence will not be able to decide.

At this point, one might attempt to ”patch” this problem by ignoring mes-

sages received from crashed processes, however this would break the algo-

rithm so badly, that it gives way for inconsistent decisions to be taken. This

84



is because it might happen that a process detects a crashed process and

ignores its future message, whereas another process might first receive the

messages and then detect the node to have failed. Of course, since the first

process has ignored messages the second did not, the processes will have

different proposal sets on which to decide. An example of this run is shown

in figure 5.2.

Figure 5.2: Invalidity of implementing consensus algorithms using

Reliable Broadcast Algorithms, even when ignoring messages from

crashed processes

In figure 5.2, three processes propose values by broadcasting their messages.

Process P1 fails shortly after finishing its broadcast. Process P2 receives P1’s

message, before actually detecting that this has failed. At this point it can

decide because it has received all proposals. On the other hand, process P3,

detects that that P1 failed (Point A) before receiving its proposal. Moreover,

if this proposal will be received, it will be ignored, and hence P3 can make

a decision based on its current proposal set. Given that it has not seen

proposals from process P1, its proposal set will be different than that of P2

and hence, it could decide differently.

For this reason, the reliable broadcast algorithms cannot be used directly

to build consensus algorithms, but we will need to look at alternative algo-

rithms to solve this problem.

5.4.3.2 The Floodset Algorithm

The idea behind the floodset algorithm is to ensure that all processes as-

semble an identical set of proposals and decide on that set. The algorithm

consists of rounds. In each round all processes broadcast (best-effort broad-

cast), their proposal sets. The floodset algorithm also assumes upper bound
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f on the number of process failures.

The number of rounds required by the floodset algorithm depends on f .

If no failures occur, then just one round would be enough; in which every

process waits for the proposal sets of the other processes, and then decides

some value. If failures occur, these could cause processes to only broadcast

their message to a subset of the participants. Such a situation will cause

processes to have different proposal sets, and hence may possibly decide

differently. The floodset algorithm overcomes this problem by performing

f + 1 rounds. This way, at least one round is ensured not to contain any

failures, and hence all proposal sets will be identical from this point on.

Listing 5.3 gives an adaptation of the floodset algorithm (given by Lynch in

[19]). Note that the initialisation of the floodset algorithm requires two pa-

rameters: Max failures and Func. Max failures will initialize the maximum

number of failures (referred to as f). Func is the decision function which

will be applied to set of proposals, when all proposals have been gathered.

These two parameters are held in the state, together with other data ele-

ments: Proposals set with the proposed values from the other processes, the

current Round number and Correct this round set containing the PID’s of

processes from whom a proposal was received in the current round.

The algorithm here works by gathering proposals which are broadcast using

the best effort broadcast() . The proposal sets received are stored together

with the currently seen proposals in the handler of the best effort broadcast

deliver event (line 27). Every time a Proposal set is received, its owner is

marked as being correct by storing its PID in the Correct this round set (line

28). When this set is filled with all the processes (ie it is equal to Π), or

the synchronous time limit for receiving messages has been exceeded (line

30), then the current round is over. As a reminder, note that the floodset

algorithm is devised as a solution for consensus in synchronous systems,

and hence there is a well defined deadline for receiving messages. Here, it

is assumed that once this limit is exceeded, the timedout receiving propo-

sition (line 30) will evaluate to true. At the end of the round, it should

be checked whether this is the last round, (round f + 1), in which case the

decision function should be applied to the proposal set, and the decide()

event is callbacked (lines 33-34). If this is not the final round, then the

Correct this round set should be emptied, Round number incremented and

Proposals set broadcast.

86



Figure 5.3: The Floodset Algorithm
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Figure 5.4: A run of the floodset algorithm with one process failure

Figure 5.4 gives a run of the floodset algorithm between three processes and

with f = 1. Processes P1 and P2 broadcast successfully, however, process

P3 only sends its proposals to P2 (Point A). Hence at the end of round 1,

the processes do not have identical proposal sets. In round 2, which is the

final round, P3’s proposal set is sent to P1, by P2 and hence all proposal sets

are identical and the decision function can be applied.

The floodset algorithm solves consensus for any number of crash failures in

a synchronous system. In particular, if f = |Π| − 1 then this algorithm will

solve consensus for all possible failures in the system. However, its reliance

on synchronous deadlines makes it unsuitable for usage in an asynchronous

system. Moreover the lack of failure detection results in lots of message

exchanges and communication steps (rounds). The following section will

describe an algorithm, based on the original floodset algorithm, which tackles

these problems and implements the regular consensus specification.

5.4.3.3 Algorithm

This section outlines the flooding algorithm for Regular consensus. This

algorithm is based on the synchronous floodset algorithm, but addresses its

shortcomings for asynchronous systems. This algorithm is also free from

the inconsistency issues discussed when investigating the possibility of us-

ing reliable broadcast algorithms to implement consensus protocols (see sec-

tion 5.4.3.1).

Listing 5.5 gives the flooding algorithm for regular consensus. This algo-

rithm reduces the number of rounds required over the number of rounds

required by the floodset algorithm. This is done by using an array Cor-
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Figure 5.5: The Flooding Consensus Algorithm
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rect this round with indexes being the round numbers and the elements be-

ing sets with PID’s of the processes whose proposal has been received. The

Proposals set is also an array with the round numbers as indexes and ele-

ments being the proposals received for the corresponding round. When a

value is proposed (lines 28 to 30), the value is added to the first Proposals set

and broadcast. Note that when broadcasting (line 30), the message consists

of three elements: an atom identifying the message type (proposal set), the

Round Number and the set of proposals. When this message is received (

beb deliver handler lines 32-34), the received proposals are inserted in the

corresponding Proposals set for the received round number. The PID of the

sender are also inserted in the Correct this round set for the received round

number.

A round ends whenever proposals are received from all currently correct

processes and there has not been a decision (line 36). If a failure has been

detected (ie the correct processes for the round and one before do not match

(line 38), then another round is required. The proposals seen so far, are

broadcast so as to disseminate its Proposals and enable other processes to

progress. It should be noted that all previous proposals will be ”brought

forward” in the new round - this is because when a process broadcasts its

proposal set (line 45), this will also be received by this same process.

Note that unlike the floodset algorithm, there is no strict deadline for receiv-

ing the proposal messages. Instead, for each process, the algorithm either

receives proposals or detects that it has crashed. The eventual delivery prop-

erty of the link guarantees that if proposals are sent, these will be received,

whereas the properties of the perfect failure detector guarantee that any

crashed node will be detected. This guarantees that one of these two possi-

bilities will hold for all the processes during a round, eventually terminating

it.

If for the last two rounds, no failure is detected (ie there are two successive

equal sets of PID’s, in the Correct this round structure) then a decision

can be made (lines 38-41). The decision is made by applying the decision

function Func (which was passed as an argument to init()) on the final set

of proposals.

After a process decides, it broadcasts this decision (line 41) to the other pro-

cesses. This is done because the process which managed to decide, might

have received proposals from a process which only managed to send its pro-
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posals to this process before crashing. Hence, these processes would detect

the crashed process and not decide. However, in the following round, instead

of receiving the proposals of the process which decided, these will receive

the decision and hence trigger decide() without need for further rounds.

Figure 5.6: A run of the Flooding Algorithm with one process fail-

ure

Figure 5.6 shows a run of the flooding consensus algorithm between four pro-

cesses. Here, the first three processes are correct and manage to broadcast

their proposal. However, process P4 crashes whilst broadcasting its propos-

als and only manages to send its proposal to P3 (point A). As soon as this

message is received by process P3, this process would have received proposals

from all correct processes. Moreover, since Correct this round[0] = Π, this

process can now decide. At point B, P3 decides and broadcasts its decision

to the other processes. In the meantime, processes P1 and P2 detected the

crash of P4 and hence moved on to round 2 without being able to make a

decision (Note that strictly speaking, these processes broadcast their pro-

posals on the beginning of round 2, but this is irrelevant in this example

and hence is left out for the sake of simplicity). In the second round, these

processes receive the decision and hence decide immediately.

Note that it is not possible for two processes to decided differently. This

is because for a process to decide, there must be two consecutive rounds

without detecting a failure. Moreover, at the end of the first round, the

proposals are broadcasted to all. Hence, even if the failure detectors of

different processes do not detect the same failed processes, the proposal sets

would still be exchanged at the end of the first round and hence if the two
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decide, they will decide the same.

5.4.3.4 Erlang Implementation

The implementation of this algorithm, in Erlang, uses lots of the modules

and techniques already outlined in the implementation of previous algo-

rithms such as the usage of the sets module, for the Correct set.

The Correct this round and Proposals arrays where implemented using Er-

lang’s Array module. This provides a data structure with conventional array

like access, which is much more convenient and efficient to use for this pur-

pose than the conventional lists.

Another important feature demonstrated in this algorithm is the use of the

decision function Func. This function should be passed as a parameter to

init(), and then used when deciding. In Erlang, this can be implemented

using Higher Order Functions in almost the same way as shown here.

5.4.3.5 Implementation Optimisations

As opposed to the reliable broadcast, every consensus algorithm has definite

stopping point during its execution - after that a decision is reached, nothing

will affect the decision. Thus, after that a decision is reached, all that needs

to be kept is the Decided variable. The rest of the elements of the state can

be given the value null, and Erlang’s garbage collector will take care to free

memory it previously occupied.

Note that such a technique could not be done with the reliable broadcast

implementations, because all algorithms require data structures whose con-

tent was required to guarantee correctness. In this case however, just storing

the decision (or a flag indicating that the consensus algorithm has dedided)

is enough.

5.4.3.6 Evaluation

The flooding algorithm for regular consensus ensures that all correct pro-

cesses will decide on the same value. It also guarantees all properties of

consensus. Termination is guaranteed because each process will progress

to the |Π|’th round, unless a decision is reached earlier. At this point, it

will decided and hence terminate. Validity is satisfied because the Proposals

is only populated with proposals received - and no message is erroneously
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created on its own. Validity is guaranteed because once Decided is assigned

a decision, the predicate in line 48 will never evaluate to true, and hence

the algorithm would not decide again. Agreement is guaranteed because in

every round a process waits to receive the proposals from all processes. If

a process decides, then this means that it has received proposals from all

correct processes for two consecutive rounds, at which point it will broad-

cast its decision. If two or more processes decide, then their proposal sets

should be identical because these would have received proposals from the

same processes - and hence should have taken the same decision.

In terms of performance, the algorithm will terminate after just one round of

execution, if no process crashes. Every process crash, will introduce another

round of execution. With respect to the number of messages exchanged, in

every round |Π|2 proposal messages are sent. When a decision is reached,

another |Π|2 decided messages are transferred. In the worst case, the algo-

rithm requires |Π| rounds.

5.4.4 Hierarchical Algorithm

The previous section outlined a valid algorithm for Regular Consensus. Here

another algorithms is presented, which despite having different characteris-

tics, still satisfies the Regular Consensus specification.

The Hierarchical consensus algorithm, exchanges less messages than the

flooding algorithm. However, the decision taken, does not depend on the

collective proposals of the participants, but rather, on just the proposal of

one participant. The algorithm guarantees that this proposal will be the

decision taken by all processes, whatever the other processes may propose.

The algorithm works by sequentially ordering all processes. The first pro-

cesses in the ordering will have a priority in attempting to impose their pro-

posal as a decision - this can be seen as a hierarchy of processes, where the

higher up the processes are, the more the chance they have of imposing their

proposal on others. The algorithm works in rounds, where in each round

a particular process broadcasts its current proposal and locally callbacks

the decide() event. Initially the first process in the hierarchy broadcasts its

proposal and decides. No other process decides in this round, but as soon as

they receive the proposal from the current round leader, they change their

internal proposal to the value received from the round leader. A process

moves on to the next round, either when it receives the value proposed by
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the current round leader, or when it detects that the current round leader

crashed.

The listing in figure 5.7 gives the hierarchical consensus algorithm. Inter-

nally every process keeps the current Proposal, as well as the rank of the

process which proposed it (Proposer). Note that a way to rank processes is

assumed, here it is assumed that a rank(Pid) function exists, which returns

the rank of the passed PID. The algorithm also keeps an array with the

round number as index, and a boolean flag as element, indicating whether

the proposal has been received from the corresponding round leader.

At every round, the process whose rank is equal to the round number (line

31) is the round leader. The round progresses as soon as the leader process

has a value to propose, or crashes. The first leader will send its proposed

value to all other processes and decide (lines 32-34). Upon receiving this

proposal, the receiver processes, whose rank is higher than that of the leader,

may update their Proposal and Proposer values (lines 39-45). This will only

happen if the receiver has not yet received a proposal from a node with a

higher rank. If the received has already seen a proposal from a process with

a higher rank, then it is implied that either the current sender has crashed

and the next leader has taken over or that the two proposals are the same

- in both cases the proposal received should be ignored.

If the proposal from the current round leader has been received, or the

current round leader is detected to have crashed, then the algorithm moves

on to the next round (lines 36-37). Note that at every round, the round

leader will again broadcast its current proposal and callback the decide()

event.

The reason for each process having to wait for ”its” round to decide, rather

than decide()ing immediately after it receives the proposal from the current

round leader, is because of failures. This is further highlighted in the run

given in figure 5.8.

The run in figure 5.8, shows three processes. Note that there is an assumed

hierarchical ranking as follows: rank(P1) < rank(P2) < rank(P3). Hence

the first round leader is P1. This starts broadcasting its proposal but crashes

shortly afterwards. Note that this proposal actually reaches P3 but not P2

(point A). At this point, P3 adopts P1 proposal and moves on to round 2,

but does not callback the decide() event. In round 1, process P2 detects

that P1 crashed, and so can move on to round 2 as well. In round 2, P2

94



Figure 5.7: The Hierarchical Consensus Algorithm
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Figure 5.8: A run of the Hierarchical Consensus algorithm with

leader failure

is the round leader. Since P2 did not receive the proposal from P1, it will

decide() and broadcast, its own proposal as a decision. Process P3 receives

this proposal at point B, and hence it adopts this new proposal since it comes

from a process with a higher ranking than its existing proposal. In round

3, process P3 decides its current proposal, which is the one originating from

P2. Hence in this run, P2’s proposal is taken by all correct processes. This

shows why all processes need to wait for their round in order to decide() and

not decide() as soon as the proposal from the leader is received = as show

with process P3.

As can be seen from the run in figure 5.8, not all processes are required to

propose a value (P3 does not propose). Essentially, if there is no failure,

only the first process in the hierarchy needs to propose, and all the rest

will adopt its proposal. If there are failures, then only the originator of

the proposal reaching the first non-faulty process in the hierarchy, needs to

propose. Notice that the round leader, would propose it current proposal,

which it may have adopted from previous round leader, and not the proposal

which was triggered by the user of that process. Also note that if the round

leader does not yet have a proposed value, then the algorithm will wait for

that process to propose().

5.4.4.1 Erlang Implementation

The hierarchical consensus algorithm implementation uses the Erlang mod-

ules outlined so far - the main ones being the sets module for the Detected
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set and array module for the Delivered array. All elements of the Delivered

array can be easily initialized to false, given that the array is of fixed size.

One notable thing to mention is the implementation of the rank() function

itself. In this work, the rank function is passed as a parameter to the init

function, in order to allow the user to define his own ranking function. A

simple practical implementation of the ranking function, would be to simply

sort the node names given on startup (see appendix A), and give rank each

node according to this ordering.

5.4.4.2 Implementation Optimisations

The hierarchical consensus algorithm, given here exchanges |Π| messages at

every round. However, one should note that when broadcasting the proposal,

this can only affect the processes with higher ranks, since the other processes

will simply ignore them. Hence, the leader should only send to the proposal

to processes with higher ranks [14], and save on message exchanges.

5.4.4.3 Evaluation

The hierarchical consensus algorithm exchanges less messages than the flood-

ing algorithm. However, the decision does not depend on the proposals of all

the processes, but rather on the proposal of a single process, which imposes

this value on all correct processes. In situations where it does make a dif-

ference if not all proposals are seen, then this algorithm should be preferred

over the flooding algorithm for consensus.

The hierarchical consensus algorithm guarantees all properties of regular

consensus. It guarantees termination because at every round, a process

either receives the decision from the current round leader or else detects that

this has crashed - either conditions are guaranteed by the eventual delivery

of links and the strong completeness property of the failure detector. At this

point it moves on to the following round and hence eventually the process

will become a leader and the algorithm will terminate. Validity is guaranteed

because the decision is always the proposal of the round leader. Integrity is

satisfied because a Decided flag is kept to prevent a process from deciding

multiple times. Finally, agreement is satisfied, because every process always

adopts the decision of its leader and propose this decision - hence all correct

processes will decide the same value.
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In terms of performance evaluation, the algorithm requires |Π| rounds for

all processes to decide. Moreover, at each round |Π| proposals are exchanged

(assuming the process broadcasts its decision to all processes).

5.5 Uniform Consensus

5.5.1 Overview

The Uniform consensus specification, strengthens the regular consensus spec-

ification by ensuring decision agreement amongst all processes. The regular

consensus specification allows processes to decide and crash, without being

able to propagate their decision - causing the rest of the processes to possibly

decide on a different value. The uniform consensus specification prevents

this from happening - once a process decides, all processes are guaranteed

to decide with that same value, even if there are process failures.

5.5.2 Specification

The uniform consensus specification aims to achieve properties similar to

those which uniform reliable broadcast brings to regular reliable broadcast.

In guarantees that a faulty process could not have taken a decision different

from that taken by all correct processes.

Uniform consensus replaces the agreement property of regular consensus,

with a stronger agreement (uniform agreement) property. The properties

guaranteed by:

• Termination: There exists a time, at which all correct processes

decide some value.

• Validity: A decided value must be a proposed value.

• Integrity: Processes decide only once.

• Uniform Agreement: All processes agree on the same value.

5.5.3 Algorithm

The listing in figure ??, gives a uniform flooding consensus algorithm. This

algorithm is based on the floodset algorithm for solving consensus in syn-

chronous systems. In particular, it is based on the case where f = |Π| − 1,
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Figure 5.9: The Uniform Flooding consensus algorithm
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which would requires |Π| rounds. Conceptually, it can be seen that for a

decision to take place, then there can be a maximum of |Π|−1 failures (oth-

erwise there would not be any process left alive to decide). Hence, letting

f = |Π| − 1, would ensure that the floodset algorithm handles all possible

failures. Moreover, all processes only decide during the final round, at which

point it is guaranteed that all processes have an identical Proposals set.

At each round, processes exchange their internal proposal sets. After |Π|
rounds, all processes will have identical Proposals sets, because there should

have been at least one round in which there are no failures and all Proposals

sets were exchanged. Hence, at this point all processes will decide the same

value - satisfying the uniform agreement property.

At each round of the floodset algorithm, every process either receives the

proposal set from every other participant, or else the round times out and

the algorithm moves on to the following round. In the algorithm for uniform

consensus, a failure detector is used to determine whether to wait to receive

the proposals from a process or not. Internally, a Correct set is kept with

the PID’s of all processes which the failure detector does not detect as

having failed. Moreover, similar to the floodset algorithm, an array of sets

(Delivered) is kept to store the PID’s of processes from whom the proposals

were received at every round (lines 29-31). A process moves on to the

following round when it determines that it has received a proposal from all

correct processes (line 33).

Figure 5.10: A run of the uniform flooding consensus with one pro-

cess failure

Figure 5.10 gives a run of the algorithm for uniform consensus for three
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processes. Hence this algorithm requires three rounds to terminate. Process

P3 fails in the first round, after that its proposal is only received by P2. In

this round, process P2 receives proposals from all processes and hence can

move to the next round. Process P1 does not receive a proposal from P2,

but detects that it has crashed, and hence can also move to the following

round. In the second round, there is no failure and hence all correct processes

manage to see the whole set of proposals. Nevertheless, the proposals sets

are exchanged another time in round 3. Processes P1 and P2 decide in

this final round and can be sure that no faulty process has decided a value

different from their decided value.

5.5.4 Erlang Implementation

This algorithm was implemented using the framework outlined for imple-

menting these algorithms in Erlang. As in other algorithms, all event han-

dlers were implemented as gen server cast handlers. The sets module was

used for the implementation of the Proposals and Correct sets. The Deliv-

ered array was implemented using the Erlang/OTP Array module. It should

also be noted that the decision function, which is passed as a parameter to

the init event, was implemented as a higher order function.

5.5.5 Implementation Optimizations

As a simple memory optimisation, it is noted that the algorithm internally

keeps a Delivered set with the PID’s of processes at every round. However,

as soon as a process moves on to the following round, it would no longer

need this set, and hence could be discarded. Hence, at the beginning of

every round, the entry for the Delivered set of the previous round is emptied

(set to the atom null), and the Erlang garbage collector will take care of

freeing the occupied memory. Moreover, after deciding, the same technique

can be done to all the sets used internally by this algorithm.

5.5.6 Evaluation

The algorithm for uniform consensus ensures that if a process decides, all

other processes will decide with that same value. This is precisely the uni-

form agreement property of uniform consensus. This property is satisfied

because the algorithm ensures that there is a round in which there are no
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failures, hence all proposals sets become identical in that round, and hence

all processes which decide would decide with the same value. Moreover,

this property is only guaranteed with a perfect failure detector. Since the

failure detector in this project is not purely perfect, it could be that a pro-

cess incorrectly detects another as having failed, and hence does not wait to

receive proposals from this supposedly failed process. Even though that in

this project, once a process detects another one as having crashed, it sends

it a kill message, this message can take a long time to be delivered. If this

happens, the process which was supposed to have crashed, can still have

time to decide on a different proposal set then the other process’ proposal

set.

Figure 5.11: Violation of uniform agreement due the weak accuracy

of the failure detector

The run in figure 5.11 indicates the violation of the uniform agreement

property due to an inaccurate failure detector. Initially, processes P1 and

P2 incorrectly detect one another as having crashed, and send kill messages,

which take very long to be delivered (shown by the dashed lines). This causes

both processes to move on to the following rounds before waiting for one

another. Both processes reach the final round, and decide without having

seen each others proposals. Hence, each decide on a different proposal sets,

leading to different decisions. This simple example shows the true necessity

of a perfect failure detector, because this would not have such accuracy

problems.

The other properties of uniform consensus are also satisfied by this algo-

rithm. Termination is guaranteed because all processes eventually progress

from one round to the following because of the eventual delivery of messages

or of the detection of processes which have crashed (failure detector com-

pleteness. Validty is guaranteed because proposal sets are only populated
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with actual proposals. Finally, integrity is guaranteed since is a specific

check (line 33) to ensure that if the process has already decided, then it

would not decide again. In terms of performance evaluation, the algorithm

requires a fixed number of rounds. In fact, the best and worst cases of the

algorithm are the same (it always requires |Π| rounds. In each round, every

process broadcasts to all other processes, hence |Π|2 messages are exchanged

in every round. This results in the algorithm exchanging |Π|3 messages in

total.

5.6 Total Order Broadcast

5.6.1 Overview

In the previous chapter, different specifications of reliable broadcast pro-

tocols were outlined. In this section, another reliable broadcast protocol

will be outlined: total order broadcast2. As its name suggests, this reliable

broadcast specification guarantees that all distributed processes deliver all

broadcast messages in the same order. Note that such a protocol would be

stronger than the causal order specification because it guarantees ordering

amongst all messages, not just those which are causally related. Given such

a guarantee, this protocol can be very useful when certain non-commutative

operations are to be carried out - given a total order broadcast protocol these

operations can be globally executed in the same order.

5.6.2 Specification

The Total Order Broadcast specification is similar to that of the Regular Re-

liable Broadcast but with a global message delivery ordering. In the Regular

Reliable Broadcast there existed the possibility that due to the asynchrony of

the network, different processes deliver messages in a different order. This

situation can be seen in the run in figure 5.12 below. Here, processes P1

and P3 each start a regular reliable broadcast. Focusing on processes P2 and

P4, note that due the asynchrony of the network, these processes deliver the

messages in different orders. Note also that these broadcasts are not causally

related (no other message is exchanged between either node to define such

a relation), hence the use of a causal order broadcast protocol would not

2In certain texts, this protocol is referred to as Atomic Broadcast
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resolve this problem.

Figure 5.12: Violation of total ordering with regular reliable broad-

cast due to the asynchrony of the network

The Total Order Broadcast specification guarantees a total order property

which would ensure the identical order of messages delivered by all processes.

The properties satisfied by the total order specification are:

• Total Order: For any two messages m1 and m2, if a process delivers

m1 before m2, then all other process deliver these messages in that

same order.

• Validity: If a correct process p broadcasts message m, this eventually

gets delivered by all correct processes in the system.

• Integrity: For any message m, every process delivers m at most once,

and only if it was previously broadcast.

• Agreement: All correct processes deliver the same set of broadcast

messages.

5.7 Algorithm

The listing in figure 5.13 gives a regular consensus based algorithm for the

total order broadcast specification. This algorithm uses both the regular

reliable broadcast and regular consensus behaviours. Conceptually the al-

gorithm works by first reliably disseminating messages which need to be

broadcast. Following this, every process proposes a set of messages, it has
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Figure 5.13: Total Order Broadcast Algorithm
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seen, using a regular reliable consensus algorithm. The decision of this al-

gorithm, is the set of messages which will be delivered by all processes in

the current round. This set is identical for all processes and hence a deter-

ministic ordering function on this set will always order the messages in the

same way everywhere.

Internally, the algorithm keeps two sets Unordered and Delivered. The Un-

ordered set is used to hold pending messages in every round, before proposing

them using the regular consensus algorithm. Note that a Wait flag is used

(lines 31 and 32) to prevent the algorithm from proposing a new set of mes-

sages whilst a consensus is taking place. However, during this time period,

more messages might be broadcast and hence the need for the Unordered

set.

When the broadcast event is triggered (line 22), this causes the message

to be broadcast using the regular reliable broadcast specification (line 23).

This is done so that the rest of the processes will have an undelivered mes-

sage in their Unordered set and hence propose their Unordered set. The

Unordered set might not be proposed immediately, as explained earlier, but

the consensus proposal for the current round will eventually be made.

At this point, the necessity of executing a consensus might be unclear since

messages are being broadcast reliably. However, it must be noted that these

messages might arrive in different orders at different processes. Hence these

must be ordered in some way or another. This cannot be done unless every

process has an identical set on which to apply an ordering function. In order

to achieve this set, at the end of the round every process proposes its set

using regular consensus.

Note that the decision function of this consensus should return a set of

messages from the set of all proposed messages. Here the decision function

is passed as a parameter to the init event (line 20). A very simple imple-

mentation can be to simply return the set of all proposals, however if this

is very large, one could consider to just return a subset of all the proposed

messages, at a time.

As soon as this set is decided, the rc decide event is triggered (line 35). All

messages in this set should be included in the Delivered set and removed from

the Unordered set to prevent them from being erroneously re-proposed again

(lines 36-37). All messages in this set can now be delivered (lines 38-39). It

should be noted that here messages are extracted from the Decided set using
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some deterministic order - hence in the same order at all processes. At this

point, the algorithm enters a new round, in which the same operations are

carried out again.

Figure 5.14: A run of the consensus-based Total Order Broadcast

Algorithm

Figure 5.14 gives a run of a round of the consensus-based total order broad-

cast algorithm. Processes P1 and P3 broadcast messages. The delivery of

these messages causes the processes to propose it as a value for consensus.

Processes P1 and P2 propose P1’s message since these deliver this message

first, whereas process P3 proposes its own message. At this point, the pro-

cesses execute a regular consensus algorithm. Note that processes deliver

reliable broadcast messages, whilst executing their consensus (example P2

at point A), but such messages do not trigger another proposal event.

When the execution of consensus is ready, and a set of messages is de-

cided, the message can be deterministically delivered in the same order by

all processes.

5.8 Erlang Implementation

Implementing this algorithm in Erlang, uses techniques explained for the

implementation of algorithms outlined so far. This algorithm uses two be-

haviours, defined previously in this work - regular reliable broadcast and

regular consensus. The implementation also uses Erlang/OTP sets module

for the implementation of the Unordered and Delivered set.

The algorithm requires that messages are extracted from the Decided set in

a deterministic order. In practice, this is done by converting the Decided

set to a list and then sorting this list. In this implementation, messages are
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sorted in an ascending order depending on their content. This sorting is re-

quired because the sets to list/1 function does not guarantee a deterministic

ordering.

5.9 Implementation Optimisations

The algorithm maintains a Delivered set of messages to avoid redelivering

a message multiple time. This set however grows indefinitely and would

require an ever growing amount of memory. In order to relieve this require-

ment, it suffices to only store hashes of messages. Hashes can be easily

computing in Erlang by using the crypto module.

5.10 Evaluation

The total order broadcast specification provides a reliable broadcast algo-

rithm with strict ordering guarantees - every process delivers messages in

the same order. This total order property is guaranteed processes use a

consensus abstraction to determine the set of messages to deliver at every

round, and then use a deterministic function to deliver all messages in this

set in the same order. This also guarantees agreement amongst processes on

the messages delivered. Validity is guaranteed because every message is first

disseminated to all other processes using a regular reliable broadcast (hence

all correct processes will see this message). Integrity is guaranteed because

processes only propose messages which they receive from on another.

With regards to performance, the algorithm exchanges exactly the same

number of messages as a those exchange by a reliable broadcast algorithm

and a regular consensus algorithm. Hence, in the best case (no failures), it

would require |Π|+ |Π|2 message exchanges.

5.11 Conclusion

This chapter explored the Consensus class of agreement algorithms. First,

the regular reliable consensus specification was outlined. Two algorithms

were explained for this specification: the flooding algorithm and hierarchical

algorithm. Each of these have different characteristics in terms of the way

the decision is made, and also in terms of performance. Following this the
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uniform consensus specification was outlined. It guarantees that no faulty

process decides with a decision different than that of all correct processes.

A reliable broadcast specification was also studied: total order broadcast.

This broadcast specification guarantees a global ordering of the messages

delivered by all processes. A consensus based algorithm for this reliable

broadcast specification, was analysed.

All the algorithms presented in this chapter, were implemented in the imple-

mentation framework outlined for this project. A number of implementation

considerations were mentioned, as well as some simple implementation op-

timisations.
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Chapter 6

Atomic Commit

6.1 Introduction

The last agreement problem to be studied in this work involves is the

Atomic Commit problem. The Atomic Commit problem deals in deter-

mining whether all processes can carry out a particular operation, or not.

If so, all processes would carry out the operation and are said to have com-

mitted. If at least on process cannot commit, then the operation should be

aborted by all processes.

This problem is typically encountered in a distributed database environ-

ment, where all processes are required to carry out an operation as a group

[8]. If committed, this operation is seen as having been carried out by all

processes together, and hence is seen as an atomic operation.

This chapter investigates different algorithms for this specification. Var-

ious considerations on popular synchronous implementations are outlined.

Finally, an asynchronous algorithm is also studied and implemented in Er-

lang.

6.2 Interface

The generic interface of the atomic commit algorithms is given below:

• External Events Handled

– init()

Initializes the algorithm
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– commit()

Starts a commit request.

• Callbacks Expected

– can commit() returns boolean

This callback event is used to determine whether the current pro-

cess can commit or not. Inside its handler, the process should

check whether it can commit and return a boolean, where true

indicates that it can commit and false indicates that it cannot.

– decide( Value ) where Value∈ {0, 1}
This callback marks the end of the commit algorithm. The de-

cided value indicates the outcome of the commit. If V alue = 1

then the commit action should be carried out, whereas if V alue =

0 then the commit should be aborted.

6.3 Specification

An algorithm for the Atomic Commit specification should satisfy the follow-

ing properties [14]:

• Uniform Agreement: All processes decide take the same decision

on whether to commit or abort.

• Integrity: If a process decides to abort, it cannot decide to commit

later on, and vice versa.

• Abort Validity: The operation should be aborted only if a process

cannot commit or a process crashes.

• Commit Validity: The operation can be committed only if all pro-

cesses agree to commit and no process crashes.

• Termination: All correct processes decide on whether to commit or

abort.

6.4 Synchronous Approaches

In the context of synchronous systems, there are two common protocols for

solving the atomic commit problem. These are the Two Phase Commit
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and Three Phase Commit protocols. The Three phase commit protocol is

an improvement of the Two Phase Commit problems, since it resolves a

blocking issue inherent in the latter protocol. For this reason, the Two

Phase commit protocol is referred to as a Blocking protocol, whereas the

Three Phase commit protocol is a Non-blocking protocol.

Both these algorithms are divided in two roles: the Coordinator role and

the Cohort role. The Coordinator is the initiator of the commit request. It

acts as a leader of the current commit action and orchestrates actions to the

cohorts. The Cohort’s role is that of checking whether the commit request

can be locally carried out or not, and indicating this to the coordinator. It

also aborts or commits the action as requested by the coordinator.

6.4.1 Two Phase Commit Algorithm

As explained earlier, this algorithm can be separated into two roles. First,

the Coordinator role is described. The Coordinator part of the Two Phase

commit algorithm is given in the listing in figure 6.1.

Figure 6.1: The coordinator’s role in the Two Phase Commit algo-

rithm
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As its name suggests, the actions within the Two Phase commit algorithm

can be divided into two consecutive phases. The first phase starts when

the commit event is triggered (line 14). In this phase, a query to commit

message is broadcast to all cohorts. This message indicates that a commit

operation is underway and that the cohorts should check whether the commit

operation can take place locally or not. The cohorts should then reply with

a reply yes or a reply no message indicating that the cohort can carry out

the operation or not respectively.

As soon as a reply yes message is received, the PID of the sender of such

message is included in an internal Replied set. If the coordinator receives a

reply yes message from all processes, then it can move to the second phase

(lines 20-21). In this phase, the coordinator sends a commit message which

instructs the cohorts to actually commit the operation.

On the other hand, if the coordinator receives a reply no message (line 23),

then the commit operation should be aborted. This is done by sending

an abort message to the cohorts, instructing them to discard the commit

operation.

Note that on line 23, the abort message is sent also if phase 1 timesout.

This means, that not all cohorts reply within a fixed time frame, after being

sent the can commit message. Such a timeout, in a synchronous system,

means that a cohort crashed and hence the commit operation needs to be

aborted.

The algorithm for the cohort role, corresponds with the messages sent by the

algorithm of the coordinator. The Cohort part of the Two Phase Commit

algorithm is given in the listing in figure 6.2.

Firstly, the algorithm handles the can commit message from the coordina-

tor. This message causes the cohort to callback the can commit event (line

27). This event is a check, to ensure whether the commit operation can be

done. If the can commit event returns true (the cohort can commit), then a

reply yes message is sent, otherwise a reply no message is sent (lines 28-34).

In the second phase, the algorithm callbacks decide(1) or decide(0), de-

pending on whether a commit or abort messages were received from the

coordinator, respectively.

Figure 6.3 gives a run of the two phase commit algorithm. Process P1

is the coordinator of the commit operation. It starts by broadcasting the

commit message to all processes including itself. The cohorts reply with a
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Figure 6.2: The cohort role of the two phase commit algorithm

Figure 6.3: A run of the Two Phase commit algorithm
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reply message to the coordinator. The coordinator receives replies from all

cohorts at point A, and so the algorithm moves to the second phase. In this

phase, assuming that all cohorts could commit, the coordinator broadcasts

the commit message which trigger, the decide callback events at all cohorts.

6.4.1.1 Blocking concerns

The use of the best effort broadcast raises concerns on the failure resiliency of

the algorithm, in particular on the event of coordinator failure in the middle

of this broadcast. It can be noticed, that despite the algorithm would not

commit or abort the operation, it would block waiting for such messages from

the coordinator. In particular, if a process receives a can commit message

and is ready to commit, but never receives the commit confirmation message

from the coordinator, it cannot decide whether to commit or not. This

happens because if it decides to commit, other processes might have received

an abort message in the mean time. Conversely, if it decides to abort, then

it could be that other processes did actually receive a commit message. This

would leave the process waiting blocked without taking any action. The

coordinator might recover in the meantime and be able to resolve the issue.

If this does not happen, however, the cohorts will remain waiting, whilst

possibly holding resources for ever.

It should also be noted, that if the best effort broadcast protocol is replaced

by a reliable broadcast protocol, then there might still be cases where the

cohorts remain blocked. In particular, if the coordinator crashes before send-

ing a single commit or abort message, then all cohorts would remain waiting

for these messages. Moreover, even if the cohorts are augmented with a

failure detector, these would still not be able to avoid these blocking prob-

lems, because this cannot provide information as to at what point during

its execution, the coordinator actually crashed.

6.4.2 Three Phase Commit Algorithm

The Three Phase Commit algorithm extends its two phase counterpart so

as to solve the blocking problems. It also replaces the best effort broadcasts

with reliable broadcasts as suggested in the previous section. The three phase

commit algorithm provides well-defined actions for every possible situation,

so that if blocking conditions similar to those of the two phase commit arise,

115



then process would be able to determine what action to take.

Figure 6.4: The coordinator role of the Three Phase commit algo-

rithm

The listing in figure 6.4, gives the coordinator part of the three phase commit

algorithm. The first two phase is very much identical to that of the two phase

commit algorithm except for the usage of the regular reliable broadcast. Also,

another set Ackd is locally kept by the coordinator. This set is used to

determine when the coordinator should move on to the third phase. When

in the second phase, the coordinator sends out a prepare message.

The actual difference between the two phase and three phase commit algo-

rithms is this prepare message. Consider a variant of the two phase commit
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algorithm which uses regular reliable broadcast instead of best effort broad-

cast. Such a variant would still be incorrect, even if there are strictly defined

timing boundaries for the maximum time taken for the reply from the coor-

dinator to be received. Note that if the coordinator fails in the middle of the

broadcast, but manages to send commit messages to some of the cohorts,

then these processes will now relay these messages to all other cohorts.

Since for this algorithm, a synchronous system is being assumed, a boundary

for receiving a message through a relay process can be established. How-

ever, this still does not solve the problem. Considering the case where the

coordinator manages to send the commit message to just one cohort process

and then crashes, it could happen that this cohort also crashes before relay-

ing the message to the other processes. However, it could have managed to

commit the action before crashing. Since the only relay process has crashed,

the rest of the processes would not be informed to commit, and would re-

main blocked. If these decide to abort the operation after that the operation

timesout, there would not be agreement with the crashed process (since this

actually committed). It is not difficult to see that this is the same prob-

lem solved by the Uniform Broadcast protocol. In fact, if a uniform reliable

broadcast is used in the two phase commit, the blocking problem would be

solved. Essentially, this is what the three phase commit is implicitly doing.

The prepare phase serves to turn the broadcast of the commit message, into

a uniform broadcast. All processes which receive a prepare message, will

”promise to commit” even if these do not receive any message from the co-

ordinator in the third phase. On the other hand, if processes do not receive

this prepare message, their default action will be to abort the operation.

The coordinator waits to receive acknowledges from all processes, and when

this happens it moves to the third phase and sends out the commit message

(lines 34-35). Note that the coordinator will send abort messages if there is a

timeout (coordinator does not receive a reply or acknowledge from a cohort

in the second and third phases) or in the case that it receives a negative

reply (lines 22-23) in the first phase.

Note that in the second phase, cohorts can only send ack messages. Cohorts

can only prevent the operation from taking place by sending a no reply in

the first phase. If the server does not receive an ack from some process, it

times out in phase 2 and sends an abort message (lines 31-32). Hence, once

the coordinator is in the second phase, the operation to be committed can
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only be aborted if the coordinator does not receive ack from some cohort

(is detected to have crashed by the coordinator). If the coordinator crashes

without sending out commit messages, the operation will still be committed

by all cohorts as soon as the second phase times out.

Figure 6.5: The cohort role of the Three phase commit algorithm

The listing in figure 6.5, gives the cohort part of the three phase commit

algorithm. There is minor difference from the two phase commit algorithm.

The difference is the use of the regular reliable broadcast, as explained ear-

lier. The cohort processes also send ack messages to the coordinator after

receiving the prepare message.

Moreover, it should be noted that there are well defined actions to be taken

when phase 1 and phase 2 timeout (the next expected message is not re-

ceived from the coordinator within some time boundary). In case the cohort

timeout while in phase 1 (no prepare or abort message is received from the

coordinator), then the operation will be aborted by all cohorts. Conversely,

if the cohorts timeout while in phase 2 (no commit or abort message is

received from the coordinator), then the operation will committed by all

cohorts. This is expressed using phase timeouts on lines 50 and lines 53.

A failure free run of the three phase commit algorithm is given in figure 6.6.

In this run, process P1 is the coordinator. It starts the commit algorithm

by reliably broadcasting the commit message to all cohorts including itself.

All cohorts reply with the result of their can commit callback. In phase 2,
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Figure 6.6: A run of the Three Phase commit algorithm

assuming all cohorts agreed to commit, the coordinator sends the prepare

message to all cohorts. All cohorts reply with an ack message. At this

point, the coordinator moves on to phase 3 and sends commit messages to

all cohorts. As soon as the cohorts receive this message, a decide(1) event

is triggered.

6.4.2.1 Erlang Implementation

Despite that in this project, the focus is on algorithm for the asynchronous

model, the Three Phase commit algorithm was implemented due to its

widespread usage. The algorithm utilizes the sets module for the internal

Replied and Ackd sets.

A short clarification might be needed on the implementation of the phase

timeouts. In the framework presented for the implementation of these algo-

rithms, this can be done by keeping an integer variable in the state, whose

value signifies the current phase of the algorithm. As soon as the algorithm

enters a new phase, it spawns a process which waits for a fixed time and

then casts a message to the local gen server with the value of the phase in

which it was triggered. The handler of this cast, would check whether the

internal phase is the same as that received in the cast, and if so then the

particular timeout action for that phase is carried out. Otherwise, no action

is taken.
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6.4.2.2 Application in Asynchronous Systems

As mentioned earlier, both the two phase commit and three phase commit

algorithms are relevant for synchronous systems. It is rather easy to show

that the three phase commit algorithm will incur problems in asynchronous

systems. This is because the phase timeouts cannot be implemented reliably.

As an example, in an asynchronous system, since network delivery times are

unbounded, some of the cohorts can timeout during a phase (due to network

delays), whereas others do not. If this happens in the last phase, when the

coordinator sends abort messages, the cohorts which timeout will commit

whereas those which manage to receive the abort message, will abort the

operation.

Surprisingly enough, the two phase commit algorithm, achieves correctness

even on an asynchronous system. If the cohorts do not impose any receive

timeouts (as in the case presented in this project), then the cohorts might

still block (if the coordinator crashes), but still do not break correctness

since no arbitrary action is taken - none of the processes decides to commit

or abort on its own. For this reason, a number of real world implementations

make use of the two phase commit algorithm despite its blocking problems

[8].

6.5 Asynchronous Consensus Based Algorithm

6.5.1 Overview

In the previous section, two algorithms tackling the commit problem in a

synchronous environment, were investigated. In this section, an algorithm

for asynchronous systems, based on the algorithms in the previous section,

is outlined. Similar to the three phase commit algorithm, this algorithm is

also non-blocking.

The idea behind the algorithm is very similar to a two phase commit algo-

rithm, which utilizes a regular reliable broadcast for the first phase and a

uniform broadcast for the second phase. This idea has already been outlined

in the previous section, and it was noted that this would be identical to

a three phase commit. However, this would not suffice for an asynchronous

system because if the coordinator crashes in the second phase before sending

abort or commit messages, the cohorts cannot determine whether they will
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ever receive any of these messages, since in such a system there cannot be a

phase timeout. Even when their failure detector determines that the coor-

dinator crashed, these processes cannot take any action (abort or commit)

because any of these messages can be on its way on the network, or relayed

from some other process.

This problem can be solved by using a uniform consensus in the second

phase. The idea is that at this stage every process will propose 0 (if it

cannot commit) or 1 (if it can commit), to the uniform consensus. The

decision function of this uniform consensus will decide 1, if and only if 0

is not proposed. Once there is a decision, this will indicate whether the

processes should commit (decision is 1) or abort (decision is 0).

However, it can be noted that this way, a cohort can crash and fail to

propose a value to the underlying consensus, and the consensus would still

decide 1 (commit). This is because when the uniform consensus algorithm

(and any other consensus algorithm) detects a participant failure, it simply

does not wait to receive a proposal from that particular participant but still

progresses to achieve a decision.

In order to resolve this issue, it should be ensured that all cohorts have a

value to propose (indicating whether they can commit or not). This can

be done by having cohorts broadcast this proposal to one another before

actually proposing it to the uniform consensus abstraction. This way, ev-

ery process first waits to receive a proposal from all other cohorts before

proposing to the consensus. Moreover, if while waiting for proposals, a co-

hort detects that another cohort crashed, it would immediately propose 0

to ensure that the commit is aborted.

Now that every cohort is waiting to receive a proposal from all other cohorts,

the requirement of doing the uniform consensus might be a bit unclear since

every cohort would already have all proposals. However, it suffices to notice

that whilst one cohort can receive a proposal from all, another cohort might

detect that that one cohort failed and not wait for its proposal. Should the

decision be taken at this point, the former cohort will commit whilst the

latter will abort, violating agreement. This indicates that issuing a uniform

consensus is still required.
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6.5.2 Algorithm

The asynchronous algorithm is divided into the coordinator and cohort roles.

Nevertheless, the roles are rather blurred because the coordinator no longer

has the role of receiving and orchestrating actions to the cohorts, rather the

cohorts act in a choreographic and non-blocking manner. In fact, the only

distinction between a cohort and a coordinator is that the latter starts the

algorithm (performs the first phase of the three phase commit) but does not

wait to receive from the cohort - from this point on its role is identical to

that of a cohort.

Figure 6.7: The coordinator’s role in the consensus based non-

blocking atomic commit algorithm

The listing in figure 6.7 gives the coordinator role in this algorithm. Note

that this listing also gives the state definition and initialisation of for the

whole algorithm. Internally the algorithm keeps two sets, Voted and Correct,

both used by the cohorts. It also keeps a flag indicating whether the cohort

has proposed or not. Note also that the uniform consensus algorithm is

passed the Min function which returns the smallest element of a set - this

will make the consensus always decide 0 if it is proposed, otherwise 1.
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The only code directly related with the role of the coordinator is the handler

of the external commit event (lines 22-23). This simply performs a reliable

broadcast to start the commit request, by sending a commit message.

Figure 6.8: The cohort’s role in the consensus based non-blocking

atomic commit algorithm

The listing in figure 6.8 gives the cohort role of this algorithm. Lines 24-31

give the handler of the commit message which is reliably broadcast by the

coordinator. This causes the node to callback the can commit event. The

can commit callback should check whether the commit operation can take

place and return a boolean indicating this result as explained in section 6.2.

After that the can commit callback returns, its result should be broadcast

to all other participants, to show the other processes that it has a proposal.
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All cohorts will wait to receive these proposals from each other. As soon as

this proposal is received, its sender is added to the Voted set (line 39). If the

proposal received is 0, indicating a request to abort, then the process does

not need to wait for further proposals but can immediately propose 0 to the

uniform consensus - because the commit should be aborted (lines 35-37).

If a proposal to commit (with value 1) is received from all correct processes,

and no process has been detected to have failed, then the process will de-

duce that the operation can be committed, and propose 1 to the uniform

consensus abstraction. Otherwise, if some process is detected to have failed,

then it will propose 0 to the underlying uniform consensus (lines 43-51).

When the uniform consensus decides with a value, that value is the decision

of the commit. This value is returned directly by the decide callback of the

commit operation.

Figure 6.9: A run of the non-blocking consensus based algorithm of

the Atomic Commit specification

Figure 6.9 gives a run of the consensus based non-blocking atomic commit

algorithm. This run consists of three processes, where P1 is the coordinator.

Initially P1 starts starts a commit request by reliably broadcasting the com-

mit message to all processes. When this message is delivered, each process

callbacks the can commit event and broadcasts its result through a best effort

broadcast abstraction. As soon as each process receives these results from

all processes, it will propose a value to the uniform consensus abstraction.

This happens at points A, B and C for processes P1, P2 and P3 respectively.

At this point, the processes propose their value to the Uniform Consen-

sus abstraction, which eventually decides whether the operation should be

committed or aborted.
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6.5.3 Erlang Implementation

The consensus based algorithm for non-blocking atomic commit was im-

plemented in Erlang using the techniques outlined throughout this project.

The framework outlined for implementing these event based algorithms, was

used. The sets module was used to implement the Correct and Voted sets.

The algorithms previously implemented were reused trough the use of Erlang

behaviours.

6.5.4 Evaluation

The consensus-based non-blocking atomic commit algorithm provides a de-

centralized approach towards the non-blocking atomic commit specification.

It satisfies the properties of the non-blocking atomic commit specification

and guarantees that either all processes commit or abort the operation. It

guarantees uniform agreement due to the underlying use of the uniform

consensus abstraction.It guarantees abort-validity because all processes first

wait to receive the result of the can commit callback from each other. It pro-

poses 0 as soon as it detects a failure or receives 0. The usage of the Min as

a decision function ensures that if 0 is proposed, it will be the decided value.

This decision function also guarantees commit-validity. Termination is guar-

anteed because whilst waiting, eventually processes are either detected as

having failed (due to the completeness property of the failure detector) or

their proposal is received. The uniform consensus abstraction also guaran-

tees termination hence its usage would not violate the specified termination

property. Finally, integrity is guaranteed also due to the integrity property

of the uniform consensus abstraction.

In terms of performance evaluation, the algorithm can be split into three

parts. First, the transmission of the commit message requires the usage of

a regular reliable broadcast algorithm. In the best case, this requires |Π|
message exchanges and |Π|2 in the worst case. Then each process broad-

casts using best effort broadcast. This requires |Π|2 message exchanges in

all. Finally, the uniform consensus algorithm is used which requires |Π|3

message exchanges. Hence, despite providing some strong guarantees, this

algorithm is rather expensive in terms of message exchanges. Due to the ini-

tial broadcasts, it also requires at least two more steps than the |Π| rounds

required by the uniform consensus.

125



6.6 Conclusion

In this chapter, the Atomic Commit specification was investigated. First

an analysis of the algorithms tackling this problem in an asynchronous en-

vironment, was done. First the two phase commit algorithm was studied,

and its problems were outlined. Following this the three phase commit algo-

rithms was also investigated. Finally, an asynchronous algorithm for Atomic

Commit was studied. This algorithm is based on the uniform consensus

specification.

These algorithms were implemented using the implementation framework

outlined for this project. The intricacies as well as problems of some of these

algorithms, were outlined. Moreover, any special implementation techniques

were also described in this chapter.
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Chapter 7

Testing and Case-Study

7.1 Introduction

The last three chapters outlined three different classes of distributed agree-

ments, and assessed various specifications for each class. Algorithms for

each of these specifications were described and implemented using the im-

plementation framework outlined earlier. These implemented algorithms

form a suite of Erlang modules, in the form of behaviours, which are readily

accessible for any distributed application requiring these algorithms.

This chapter will study the testing strategy taken for this project. Testing

consists of different phases, each of which will be explained here. In the

second part of this chapter, a simple test scenario is outlined. The overall

layout of this case-study and, in particular, the usage of the suite of protocols

implemented here, is explained. This usage is then evaluated in the following

chapter.

7.2 Testing

Throughout the development of any application, testing is a crucial activ-

ity for ensuring the quality and correctness of the system being developed.

Ideally, testing is well planned and a systematic approach towards system

testing is devised. This section will outline the testing approach followed and

explain how it was carried out during the implementation of this project.
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7.2.1 Test Strategy

In this project, a bottom-up testing approach was followed. Tests were

carried out alongside the programming itself. A bottom up strategy starts

with testing the individual components of a system and then test at higher

levels of abstraction. This approach was taken, so as to be able to carry out

the testing of the system in parallel with the coding of the algorithms.

In the context of this project, three levels of testing were performed. These

are:

1. Function Testing: The testing of individual functions on their own

2. Module Testing: Testing a group of functions which together form

a module

3. System Testing: Testing the distributed system together.

In order to carry out these tests, different tools and techniques were used.

The following sections explain these techniques in more detail and present

examples of how this testing was carried out.

7.2.2 Function Testing

Function testing encapsulates all tests which are done to assess the robust-

ness of individual functions. In general, sometimes this involves testing a

group of two or three functions together due to their cohesive nature, how-

ever, these functions together do not achieve some practical distinct task

which deserves its own module. Rather, function testing should ensure that

every function gives the desired results with all possibilities of input.

In this project, function testing was done in two ways. Firstly, the most

trivial form of function testing are tests performed ”by hand” immediately

after writing a function. Such ad-hoc tests have low coverage and are not

really structured, however, these do test that the function works at least

works for certain forms of data. Such tests are carried out by directly in-

voking the function from the shell and testing it with different parameters

and their expected outcome.

The second form of function testing was done using Quickcheck. Quickcheck

is a tool devised to test Erlang code. It provides different tools for different

types of tests. For function testing the generator tool (eqc gen) was used.
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This is a tool which automatically generates a large number of testcases,

and ensures that the function obeys a particular property.

For example, an eqc gen with a property for testing the conversion of a list

to a set, might look like:

?FORALL({Values}),

{list(char())},

sets:from_list(Values) == sets:from_list(reverse(Values)).

This example, creates a generator of string Values which comes up with

various different strings, focusing on boundary cases ( [?]). For each case,

it checks that the conversion of a string to a set of characters, will give the

same set as when the reversed string is converted.

Quickcheck will attempt to find a counter example for which this property

does not hold. When a counter example is found, it will be reported to the

user. However, Quickcheck does not stop here. It will attempt to minimize

the counter example, so that the user will be able to track where the error

lies.

The test specified above, was actually devised for this project. Surprisingly

enough, this property is not guaranteed by the sets module - ordering affects

set equality. Quickcheck provided the following counter example:

sets:from_list([a,q]) /= sets:from_list(reverese[a,q])

A question about this problem was asked on the well known trapexit.com

Erlang forum, and the workaround suggested was used. It turns out that

the sets module uses a balancing structure which is affected by the order in

which elements are added. Hence, equality cannot be checked using the ==

operator, but rather through the use of other function calls provided by the

sets module.

The eqc gen test might seem limited to functions about which one can ex-

press some form of property. However, to test a function f , one can use a

property like f(V alues) == f(V alues) to ensure that the function does not

trigger an exception for all the Values generated by this Quickcheck tool.

This way, all tests will still run, and if an exception is triggered, it will be

reported.

Throughout testing, another tool which was widely used was the Erlang

debugger. The Erlang development suite comes with a fully flushed debugger
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which provides all functionality typically offered by such debuggers, such as

single stepping through code, breakpoints and variable inspection. Though

this is not a testing technique, this debugger did help a lot tracking down

problematic code after function testing, and hence deserved a mention!

7.2.3 Module Testing

A group of function which together perform some specific task, are usually

grouped into a module. In this project, every algorithm was written in a

separate module, hence, throughout this project, module testing actually

tested the functionality of a complete algorithm.

For this form of testing, Quickcheck was again rather crucial. However this

time, another tool offer by Quickcheck, was used: the eqc statem tool. This

tool tests Erlang processes which internally maintain a state - as is being

done by the gen server of every algorithm.

With this tool, a simple state machine is defined to express the behaviour

of the process. For example, here a state machine to model the behaviour

of the gen server process handling regular reliable broadcasts is given.

First, the state of the process will be defined. This state need not be the

complete state stored by the process being tested, but just the part which

needs to be tested. For this example the state will consist of simply the

Correct set, which holds the PID’s of all correct processes. The state machine

will invoke the broadcast and crash functions with different interleavings,

whilst ensuring the correctness of the process.

The state definition and initial states are given below:

-record(state, {correct}).

...

initial_state() ->

#state{correct=node_utils:get_all_peers() }.

This code will initialise the first Correct set as having a list with the PID’s

of all nodes. Following this, the state transitions are defined:

next_state(S, _, {call, r_rb, broadcast,[Data]}) ->

S;

next_state(S, _, {call, r_rb, crash, [Pid]} ) ->
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S#state{ correct = lists:delete(Pid, S#state.correct) }.

This next state function defines two transitions, one which takes place when

the broadcast function is invoked, whilst the other takes place when the crash

function is invoked. The first clause of the next state function defines the

effect of the broadcast function call on the internal state of eqc statem. The

first parameter, S, is the current state. The second parameter is not needed

(it holds the return value of the call in the third parameter). The third

parameter is a tuple indicating that a call is to be made. The tuple consists

of the atom call, the module, function name and a list of arguments to the

function. Thus, this transition is taken when r rb:broadcast(Data) is called.

Note that this function simply returns the state passed, indicating that this

call does not affect the internal testing state.

The second clause gives the state transition to be taken when a call to crash

is made. This call does affect the internal state - if a call to crash is made,

the PID of the process which crashed is removed from the internal list of

PID’s.

At this point, the internal state and how different calls will affect this state,

have been defined. What remains is to create a test case generator. This

is done by specifying what commands (functions) eqc statem can invoke.

These commands are specified by defining the command function. A sample

command function definition is given below:

command{S)->

oneof( [{call, r_rb, broadcast, [random_string()]},

{call, r_rb, crash, [random_element(S#state.correct)]}]).

The command function indicates that the issued test commands should be

one of those specified in the list passed to the oneof function. This list

specifies the two commands which can be invoked: broadcast and crash.

Note that in this definition, generators for the parameters are defined. The

random string function should generate random string which are passed as

parameters to the broadcast function. The crash function is passed a random

element from the list of PID’s in the state.

These snippets are an example of the usage of the eqc statem tool for mod-

ule testing in this project. Quickcheck’s eqc statem tool provides an effective

means by which to test the stateful nature of the various algorithms imple-

mented in this project. Whenever a particular sequence of calls triggers and
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exception, this is reported. Quickcheck will also attempt to ”shrink” this

sequence of calls, further simplifying the task of tracing the error itself.

7.2.4 System Testing

System testing attempts to verify the correctness of the complete suite of

algorithms implemented here. Though the module tests did at times involve

a number of modules, since certain modules cannot operate without others,

system testing tests the complete system of modules altogether.

The system of processes used for the algorithms here were first tested in a

localised environment (on the same machine). In Erlang, code can be written

in a way so that is requires minimal change when deployed on a localized or

distributed environment. This can be achieved because Erlang’s PID’s hold

information about the node where the process is located. If the global module

is used, almost no code change would be required, because processes can

be reference by using globally (anywhere in the whole distributed system)

registered names.

Hence, following this localized approach, the system was tested in real dis-

tributed environment. The deployment in a distributed system, makes the

system prone to different forms of failures which are not present in a localised

environment. Throughout testing, since crash-failures were assumed, a node

failure could be simulated by simply closing the Erlang shell for the system

of processes on that node. Nevertheless, with such an approach, certain con-

ditions could be very difficult to be simulated. For example, the algorithm

for regular reliable broadcast should ensure, that if a sender crashed after

broadcasting to just one of its peers, that peer should be able to relay the

message to all other processes, when it detects that the sender crashed.

Crashing the sender exactly after sending to only one other process is rather

difficult to do . Thus, for the purpose of testing, a number of delays were

inserted into such points in code. For example, a delay was inserted after

sending a message to a process. This gives time to close the shell of the

sender, exactly after having sent to just one process.

Finally, testing and debugging a system which is composed of remotely lo-

cated machines, can require a rather strenuous effort to keep hold of the

data being output on the different locations. However, the node diag mod-

ule, provides a means by which to start distributed nodes from one shell
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(refer appendix A). This is achieved through the use of Erlang’s rpc mod-

ule. A particular characteristic of Erlang, is that a process which is created

remotely, will have its standard output automatically redirected to the re-

mote shell from where it was created (from where the rpc was issued). This

provides a centralized way to ”debug” distributed processes. This way, the

debug data output by remote processes will all be sent to the shell which

started them (which is referred to as the ”monitor shell”). When outputting

debug data, every process precedes this data with the name of the node from

were it is originating, so that one can keep track from where the debug data

on the monitor shell, is originating.

7.2.5 Conclusion

This section outlined the testing approach taken throughout this project.

Moreover, the various tools and techniques used, which helped in testing

and debugging, were outlined. The next section will outline the design of a

real-world application for the algorithms implemented. Apart from serving

as a test case for a number of the algorithms implemented, it will help to

first handedly assess the benefits achieved from utilizing the implemented

distributed protocol suite.

7.3 Case-Study

7.3.1 Overview

In the Background chapter, various examples usages of the agreement al-

gorithms implemented here, were presented. Here, the basic semantics of

the serverless distributed file system p2pfs were informally described. In

this section, this example will be studied in detail, and an implementation

making use of the protocol suite implemented for this project, is described.

7.3.2 Description of the p2pfs filesystem

p2pfs is a distributed file system with fault tolerant characteristics. p2pfs

operates in a peer-to-peer basis, where every distributed node coordinates

with others to ensure that the local view of the filesystem is consistent with

that of the other nodes. This file system is assumed to operate in a sys-

tem model identical to that assumed for the development of the agreement
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algorithms implemented in this project. It works in an asynchronous envi-

ronment and assumes fail-stop node failures - this implementation will focus

on the graceful degradation as different nodes fail.

For simplicity’s sake, this file system is assumed to consist of just one root

directory with no subdirectories. Files can be created, accessed and deleted

from within this directory and all these changes should be reflected on all

participating nodes.

A filesystem, typically handles a number of calls which are issued by the

operating system. The filesystem implemented here will only handle a small

subset of these calls. The calls handled by the filesystem implemented here

are:

1. open

This is a call to open a file. It is issued by a process which needs to

access a file, before performing any reading or writing of the file.

2. read

This call reads data from the file.

3. write

This call writes data to the file. All data written should be reflected

at all distributed nodes.

4. close

Closes the file, and terminates the current access to a file.

5. unlink

Deletes a file from the filesystem. The file should be deleted from all

nodes, if not currently open by some node.

6. mount

Mounts the file system at a particular directory (called operating direc-

tory). If before mounting, this directory contains existing files, these

will be sent to all other nodes.

7.3.3 Assumptions and Considerations

Prior to implementation, a number of issues regarding the semantics of the

proposed filesystem, had to be taken into consideration. Moreover, to sim-

plify this test-case, a number of assumptions also had to be made.
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Firstly, one should note that when mounting the file system, different nodes

may have files with the same name already present in their operating direc-

tory. According to the semantics outlined above, these files should be sent

to all other nodes. However, since there cannot be two files with the same

name in the same directory, only one version of the file is to be kept. How-

ever, care should be taken to ensure that all nodes keep the same version

of the file. So as to ensure this, it is assumed that the most recent version

of the file should be kept. Note that though the clocks of the nodes are not

assumed to be synchronized, this would still ensure that the same version

of the file is kept by all nodes. In the rare case that two files have the same

timestamp, the file whose md5 hash is greater than the other, is kept.

In practice, first a call to mount is made, specifying the directory where the

file system should be mounted. Following this, any of the other operations

may be requested. However, it is assumed that the filesystem is first mounted

at all nodes, before any of the other operations are issued.

It should also be noted that due to the nature of the test-case, a number

of race conditions could arise. For example, if a node issues a read on a

file, does some other work, and then issues another read on the same file,

it could be that data was written to the file in the meantime. This would

lead to the second call to be reading from a different version of the file. This

situation also happens in a localized file system, if two processes open the

same file and save at different times, these would be overwriting eachother’s

work. This can be solved by using file locks, however for this scenario, this

would result in distributed file locks. These are beyond the scope of this

work, and are not implemented.

Finally, it should be noted that the operating system may issue two or

more concurrent calls to the file system. Since these two calls could be

possibly operating on the same file, if a write occurs whiilst a read is taking

place, this could cause the read to return inconsistent data (data from two

versions). For this reason, though the operating system may issue concurrent

calls, these calls are serialized by the filesystem and handled one after the

other. This would ensure that one read, would always return data from one

consistent version of the file.
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Figure 7.1: Organisational Layout of the Test Case
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7.4 Implementation

The organisational layout for the implementation of the proposed test case,

is given in figure 7.1. It shows the interaction of different processes and

components, all of which will be explained in more detail in this section.

At the topmost level, is the Operating System. This is the ”User’s View” of

the filesystem, where files are created, accessed and deleted using application

software such as text editors, image editors and so on. Whenever each of

these software applications access any of the files in the filesystem, this

triggers a system call which typically handles the call being requested (such

as reading and writing). Our testcase application needs to be able to capture

such requests and handles them - example when a write is done, this is sent

to all other nodes. However, these calls are handled by the kernel level and

hence it is typically very difficult to program a filesystem from scratch.

For this purpose, FUSE was used. FUSE (File System in Userspace) inter-

cepts the file system operations and lets them be handled by specially pro-

grammed application (the FUSE process). In this test-case, this is exactly

what is needed, since operations such as writing to a file, will be intercepted

and broadcast to all other nodes.

Hence the FUSE process will have handlers for the file system calls specified.

The problem is that the FUSE process has to be written in C, not in Erlang.

However, Erlang has a mechanism by which to interface to external pro-

grams. This is called the Ports Interface, which allows data to be sent and

received to and from an external program. The external application needs

to encode this data in a special way (which is done by C libraries which

come with Erlang). The Ports Interface process will then decode this data

and take the necessary actions. In this case, the external application with

which the Erlang code is going to be interfacing with, is the FUSE Process.

The FUSE Process will send information about the operation requested by

the Operating System, to the Ports Interface process.

The Ports Interface process will decode this information, and pass the re-

quested call to the Filesystem Handler Erlang process. The Filesystem Han-

dler is a process which receives external calls and handles them sequentially.

It is based on the gen server behaviour, with which was used extensively

in this project. Hence, for example, when the Port Interface makes a call

to the Filesystem Handler process, to indicate that a write was made, the
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latter will broadcast this write to the other nodes.

the Filesystem Handler process will make direct use of the distributed agree-

ment protocol suite implemented for this project. It will trigger events and

handle the callback events of the distributed agreement protocol suite. As

an example, when the operating system writes to a file, a broadcast event

should be triggered. On the other hand, when some other node writes to a

file, this node will receive a write message from that other node through the

deliver callback of the broadcast mechanism being used.

The callbacks will indicate that the current node should update its view of

the filesystem. In this filesystem, such updates can be reduced to deleting a

file and writing data to a file. Both the deletion and writing data to a local

file, can be handled from within an Erlang shell, through the use of the files

OTP module.

In reality, not all file system operations require interaction with other nodes.

Some of the operations only require a local action. These operations can be

handled solely by the fuse process process. The table in figure 7.2, gives the

actions required to be taken by the FUSE process and filesystem handler,

for all the filesystem calls.

Figure 7.2: Actions to be taken for all filesystem operations

As can be seen from the table in figure 7.2, the mount operation requires the

FUSE process to perform some initialisation to start the file system. This is a

standard initialisation required by all FUSE filesystems. As mentioned, the

FUSE process will notify the filesystem handler about this mount. Moreover,

it has been outlined, that initially any files already present in the Operating

Directory, need to be sent to all other nodes. Moreover, there was the issue

of identical filenames, which needed to be solved by keeping the versions

which have the latest timestamp. Hence, the filesystem handler needs to
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use a regular flooding consensus in order to decide which files to use. Thus,

as an action for the mount call, this process proposes all the filenames, file

contents and timestamps (as three lists). A flooding consensus is required,

because all files need to be seen before taking a decision. The decision

function should choose the files which have the latest timestamp.

As can be seen in figure 7.2, the open, read and close events do not require

any action to be taken by the filesystem handler process. In fact, these can

invoke the usual calls for carrying these operations locally.

As has been mentioned, the write call needs to be handled by some form of

reliable broadcast. It could be noted, that unless a total ordering is ensured,

different nodes will possibly end with different versions of the file, after that

all operations have completed. Hence, a total order broadcast algorithm will

be used for broadcasting the filename and data which needs to be written

at a particular offset. When this message is delivered by a remote node, it

will write this data to the specified file, at the specified offset.

Finally the last operation is the file deletion or the unlink call. This requires

to first check that the file is not open by all nodes, and if so, deleted from all

nodes. If however, the file is open at some node, the delete operation should

not be carried out by any node. Such an operation can be easily solved

through an atomic commit. Hence, the filesystem handler issues an call to

a consensus based non-blocking atomic commit. The can commit callback

event will check whether the file is open at that node, and if the file is not

open, then the file will be deleted.

Figure 7.3: Action taken for callbacks triggered by protocol suite

The table in figure 7.3 gives the actions to be carried out for every callback

event received by the filesystem handler process. The first callback, the

rc decide is invoked when the run of regular consensus chooses a list of

initial filenames and their content. These files should be written into the
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operating folder.

The to deliver callback indicates that some other node has issued a write on

a file. Hence the action for this callback is to write the data, at the specified

offest into the requested file.

The last two callbacks, can commit and decide deal with the consensus

based commit issued to determine whether a file can be deleted or not. The

handler of the can commit callback, should check whether the file is open

by the local node and return a boolean indicating whether it is open or not.

The decide callback will indicate whether the file should be deleted - a value

of 1 indicates that the file should be deleted.

This way, the test case scenario can be built. This case study involves

various components, but these all revolve around the distributed agreement

protocol suite implemented in this project.

7.5 Conclusion

This chapter presented different ways for assessing the distributed agreement

protocol suite. In the first part, different types of testing done throughout

development, were outlined. In the second part, a real world test envi-

ronment, involving a serverless distributed filesystem, was described and

implemented.
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Chapter 8

Evaluation

8.1 Overview

This chapters attempts to assess various aspects of this project. The im-

plementation of the testcase scenario, gives an insight on the applicability

of the distributed suite of agreement protocols. This chapter attempts to

outline most of these considerations. The benefits and challenges faced are

evaluated and the applicability and usability of the distributed agreement

protocols is investigated. Their actual benefit for distributed programming

is also analysed.

8.2 Benefits Achieved

The distributed agreement protocol suite, played a major role in the devel-

opment of the filesystem. Approaching the development of the filesystem,

with this library at hand, provides various advantages to having to build

everything from scratch.

8.2.1 Separation of Concerns

This project involved analyzing commonly encountered distributed comput-

ing problems. These problem are widely known and have already been

studied extensively. The solutions to these problems, however, are rather

intricate and require a deep understanding of the difficulties which arise

when attempting to give solutions to these problems. Primarily, alterna-

tive approached to solving distributed agreement problems are analysed.
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This project pinpoints these problems by giving counter-examples of runs

which would cause the ultimate goal not be reached (example not achieving

agreement in a run of consensus) and leave the system in an inconsistent

state. It could be noted, that these intricacies are sometimes rather subtle

to note, because of the complicate sequence of events which trigger them,

yet when they occur they could cause different kinds of problems. Doing

distributed programming requires a clear understanding of the application

domain and of the intricacies associated with distributed systems. The for-

mer will change from application to application, but the latter are common

to all forms of distributed systems. The protocol suite implemented in this

work, relieves the programmer from having to deal with these distributed

system caveats. Whilst the programmer concentrates on the application

logic, he would utilize the adequate algorithms from the suite, which un-

seeingly handle the intricacies incurred. At run time, the algorithms in the

implemented protocol suite, act as orchestrators for the application code

triggering parts of the users code at designated points in the algorithm.

8.2.2 Shorten development time

Utilizing this library, first of all helped developing this application in frac-

tion of the time, had it not been available. Coming up with fault tolerant

code, is rather hard since one generally needs to cater for a large number

of possible interleavings. This makes coding such systems rather hard and

non-straight forward. Having this protocol suite readily available for the

development of the filesystem, helped in modelling the system in terms of

the functionality provided by this suite. This relieves having to devise the

distributed agreement algorithms themselves, but rather the programmer

focuses on writing interfacing codes (or wrappers) for triggering events in

the existing algorithms and handling events these callback.

8.2.3 Structured Code

This suite of distributed protocols also provides fault tolerant guarantees.

Attempting to achieve these fault tolerant characteristics without this suite,

would have required us to constantly issuing to write checks to ensure that

a consistent state has been maintained after every operation. Undoubtedly,

there is a high possibility of these checks not being correct, in that these do
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not cater for all the exceptional cases. But apart from this, the code would

lack clarity and be less structured. This is because, ”traditional” techniques

for checking whether a call has succeeded would need to taken.

For example, the typical approach is to wrap every call which attempts

to receive from the network, with timeouts. Moreover, all functions which

attempt to send, will need to incorporate some logic to ensure that this

sending completed successfully. Having all this code, interspersed with the

application logic code, makes the latter less and less easy to follow.

In the code written for the filesystem testcase, no concern had to be ex-

pressed about node failures. On the contrary, the distributed algorithms in

the suite handle failures on their own. For example, the application code

always issues a broadcast in the same way, despite the number of failed or

correct nodes - it is the internal code of the broadcast algorithm, which

handles sending to just the correct nodes.

8.2.4 Agreement Algorithm Abstractions

Moreover, the concept of abstraction applies when using these algorithms.

A programmer using these algorithm does not need to know how these work

internally, and all the intricacies these try to address. However, had the

filesystem been built from scratch, the programmer would have needed to

understand these problems in their totality, and make sure that all effects

are catered for. However, with this suite of algorithms, it suffices for the

programmer to simply know the basic semantics of the algorithm and its

interface, in order to produce a correct piece of code.

8.2.5 Code Reuse

The suite of algorithms aids in putting code reuse to practice. When devel-

oping a distributed application with such a suite of algorithm, reusing the

existing algorithm helps in reducing the size of the code and making it more

maintainable. Code reuse is also a key aspect within the coding of the suite

itself - most algorithms make use of one another, and various Erlang/OTP

module are also used.
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8.2.6 Simplifies testing

The development of code with this suite, also helped reduce on testing. Test-

ing distributed code also poses a challenge and requires careful planning and

analysis. Using a library which has been already rigorously tested, definitely

gives an advantage over writing all distributed agreement algorithms from

scratch, and having to test these algorithms as well. Such a suite will help

reduce the amount of bugs and hence also reduce the time taken to track

down and fix these bugs.

8.2.7 Conclusion

Finally, it should be noted that thought the programmer does not need the

internal details, he need to be very well acquainted with the properties of

these algorithms. Moreover, just because a reliable algorithm is used, it does

not mean that the application using it will automatically inherit all its prop-

erties. The actions done by the application code itself, also play a great role

in the final properties of the application. However, ultimately, it should be

noted that given that care is taken to choose the right abstraction, and that

all interactions with other node, is made through these abstractions, then

the final code will be much easier to write, whilst providing the correctness

ensured by the underlying algorithm.

8.3 Assessing the Implementation Framework

In this project, an implementation framework was devised - in which all

agreement algorithms were then implemented. This framework provides a

common ground for developing all agreement algorithm in Erlang. Here the

effectiveness of this framework is evaluated, with respect to implementing

the standard algorithm into this framework.

8.3.1 Bridging Theory and Practice

This framework provides a standard way by which to implement algorithm

which are rather theoretical. For example, these algorithms expect the ex-

istence of a perfect failure detector to guarantee correctness. Part of this

framework, consisted of extending Erlang’s built-in failure detection mecha-

nism to match the properties of the failure detector expected here, as much
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as possible. Moreover, through the use of the gen server, it provides ways by

which to give event-like semantics to all calls - where function are handled

sequentially. Another example, is of the standard way to implement the

predicate triggered events.

8.3.2 Code Reuse

This framework makes the implemented algorithms easily reusable. Each

algorithm has a well defined interface by which its functionality can be ac-

cessed. The callbacks of every algorithms are specified in the form of Erlang

behaviours, hence the user is allowed to input ”custom” code into the al-

gorithm, whilst reusing the existing code of the algorithm itself. Moreover,

internally these algorithms also make use of one another through this tech-

nique of behaviours.

8.3.3 Structured and Maintainable Code

All algorithms implemented have a similar structure. This makes it easier to

understand and follow the code. Moreover, internally these algorithms are

modelled in the form of gen server behaviours. Apart that, the gen server

provided part of the implementation semantics required, it also is a very

commonly used and well documented Erlang behaviour. Hence this makes

the code more structured and more maintainable.

8.4 Evaluating the usage of Erlang

Having implementing this suite of algorithms in Erlang, the applicability of

Erlang can be evaluated from a better standpoint. In this section, a ”post-

mortem” analysis of the relevance of Erlang and the benefits it provided, is

presented.

Firstly the Erlang’s support for both localized (concurrent) and distributed

programming should be mentioned. This helped structure the testing of

this project. The algorithms implemented, were first tested locally and then

eventually in a distributed environment, with minimal code change.

This project really availed itself of the OTP libraries which come with Er-

lang. As explained, all the algorithms used various of built in modules for

some data structure - such as the sets, Array and Dict. Moreover, Erlang also
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provides various libraries which facilitate distributed programming such as

the global module (for distributed process name registration). Furthermore,

the implementation of the algorithms in this project, also make extensive

use of the gen server behaviour. Of course, similar libraries could be written

(or used if they already exist) in other programming languages. However,

given that all these are standard modules in Erlang, these would help in

making the code more maintainable and facilitates future modifications.

Certain aspects of the Erlang syntax were found very helpful during the

implementation of this project. For example, Erlang abstracts from the

”complexities” associated with distributed communication such as byte or-

dering, marshalling and . In fact, the communication constructs are as

simple as those found in pseudo-code, or in process calculi.

One aspect which was not really felt, was the significance of the single

assignment, with regards to producing correct code. It is claimed that this

helps tracking down bugs, because only a single action could have assigned

a value to a variable [4]. However, this particular benefits was not really

felt. Furthermore, this made the code rather obscure at time. For example,

figure 8.1a gives a line taken from the flooding consensus algorithm, as

presented here. Its actual implementation in erlang (figure 8.1b), takes

three lines, and is much less readable.

Figure 8.1: a) line 29 of the flooding consensus algorithm. b) Its

actual implementation in Erlang

Erlang’s pattern matching feature, was used extensively. For example, all

handle casts make use of pattern matching for to choose which handler to

invoke for each particular message type. Together with pattern matching,

guards were also occasionally used. These two constructs really did help

improving the readability of code.

Another effective feature of functional programming used throughout this
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project are Higher Order Functions. These were used for the decision func-

tion of consensus algorithms.

Finally, the lack of strict typing in Erlang, was also seen as an advantage

in itself. This is because it provides a means by which to write generic

functions which are not bound to a particular data type. So for example,

once a broadcast function was written, this would work with any form of

data be it numeric, a list or even a high order function.

8.5 How practical are the algorithms?

All the algorithms implemented here are based on theoretical algorithms -

each utilizing some various forms of mathematical constructs which might

require extra work to be implemented using the tools provided in conven-

tional programming languages. With Erlang being a functional language,

this work is reduced significantly since it provides native and library con-

structs to implement mathematical constructs such as sets, maps and the

notion of higher order functions. It also provides theory-like abstractions

for distributed communication such as simple communication primitives,

and process labelling. All this reduces the leap required from theory to

practice.

Nevertheless, in theory usually one tends to prioritize correctness before

performance requirements concerns. Whilst it is true that Premature opti-

mization is the root of all evil (Donald Knuth), a correct algorithm which

requires an unreasonable amount of memory to operate, exchanges enough

messages to hog most networks and takes forever to complete, is very much

likely to be scrapped in real life.

8.5.1 Network Requirement

Here it is important to distinguish between worst case scenarios and normal

or real world scenarios. Starting from broadcast algorithms, we see that most

algorithms require from |Π| to |Π|2 message exchanges. The lazy broadcast

algorithm for Regular Reliable Broadcast, has a best case which is the lower

bound for broadcast algorithms, |Π|. Its worst case scenario is when all

process fail in sequence (very rare in practice) and would now require |Π|2

message exchanges. It is noted the properties of the broadcast algorithm

147



are strengthened, the amount of messages required increase. This is, in fact,

what happens in the case of the All-Ack algorithm for the Uniform Broadcast

abstraction which suddenly has an average of |Π| message exchanges the

price for strengthening the agreement from just between correct process to

all participants (both correct and faulty).

Similar behaviour can be seen also with the consensus algorithms. In the

case of Regular Consensus, three algorithms were presented, each having

their own characteristics and network requirements. The flooding algorithm

is the most network demanding (requiring 2|Π|2| message exchanges in a run

without failures), but in turn, is the only one in which the decision depends

on all proposals. The Hierarchical consensus algorithm, reduces the number

of messages exchanges of the flooding consensus algorithm by half, however

the decision is imposed by one of the participants without considering all

other proposals first.

The algorithm for the total order broadcast uses an existing regular consen-

sus algorithm and a regular reliable broadcast algorithm. Thus, consensus-

based algorithm for the total order broadcast exchanges all the messages

exchanged by these underlying algorithms, as well as its own set of mes-

sages (which turn out to be |Π|). Similarly, the consensus based algorithm

for the non-blocking atomic commit, utilizes a uniform consensus algorithm.

Hence, this algorithm ultimately exchanges all the messages exchanged by

the uniform consensus algorithm, as well as another |Π2| messages. This

highlights the importance, that in practice one should choose the just right

protocol, and not use anything stronger than required. This is because,

whilst not affecting correctness, it would introduce unnecessary overheads,

which apart from increasing the network requirement, also affect the runtime

performance of the algorithm.

So far, the primary network requirement concern has been the amount of

message exchanges. The actual size of the message was always dependent, for

the most part, on the size of the data being broadcasted by the user. How-

ever, the Causal Order Broadcast algorithm also leaves one pondering about

the actual size of the messages exchanged. Without any optimisations, as

time progressed, this algorithm transferred message of ever increasing sizes.

In this case, these ever growing messages were catered for, by using a garbage

collection scheme to start pruning content of the messages exchanged. How-

ever, as noted, this is mechanism introduces new message exchanges which
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could increase the load on the network. Moreover, under conditions of heavy

network load network delays would cause this mechanism to slow down and

hence larger messages could be relayed on the network worsening the delays!

8.5.2 Memory Requirement

In the presentation of the algorithms given here, a lot of concern was ex-

pressed regarding the memory requirement of certain algorithms. It is noted,

that in the implementation of these algorithms, as soon as some structure

is no longer needed, it is removed from the recursive state (held by the

gen server behaviour). This would help relieve certain algorithms from the

amount of memory required. However, there are cases where it is not possi-

ble to free certain structure in a way that these remain consuming memory

for ever. An example of such structures are sets holding all the messages

which were delivered (such as the Delivered set in the regular reliable broad-

cast). It is not possible to do away with these structures, even when the

algorithm terminates, due to the asynchrony of the system.

Figure 8.2: Incorrect double delivery, due to freeing the internal

Deliver set

Consider the run of the lazy algorithm for regular reliable broadcast in

figure 8.2. Here, process P1 manages to send a message to P2 and P3, but

crashes shortly afterwards. Process P2 receives and delivers this message.

At point A, it also detects that P1 crashed, and hence relays this message to

P3. Process P3 receives this message and delivers it. However, at point B,

the original message from process P1 arrives and unless there is a set with all

delivered messages, P3 would end up delivering the same message again, as

shown. Such structures pose a limit on the practical side of the algorithm.

In order to solve this problem, one would require to devise higher algorithms
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which would ensure that the removal of elements from such structures, would

not result in inconsistent behaviour such as multiple deliveries. Due to time

constraints, in this project this problem could not be solved to its totality,

however a possible solution is mentioned as part of the future work.

8.6 Assessing the failure detector implemented

In this project, we chose to work on top of Erlangs native failure detection

mechanism, to build a perfect failure detector. The field of failure detectors

is a research area on its own there are various algorithms and important

results which would need to be studied before implementing a failure detec-

tor. For this work, it was decided to keep focus on the algorithms being

investigated and analyse these algorithms in future work. After all, the role

of the failure detector abstraction is this to help separate process monitor-

ing from the algorithm itself. However, most of the algorithms implemented

here require a perfect failure detector in order to guarantee correctness. This

means that the failure detector should satisfy both the Completeness and

Accuracy properties (see section ). The Erlang failure detection mechanism

utilizes a sheer heartbeat mechanism if a heartbeat is not received from

a process, then that process is taken as crashed. This approach is rather

problematic, because network delays could cause the failure detector to think

that a process has crashed, when in fact it would still be running.

At this point, a simple procedure to attempt achieving a perfect failure

detector was taken: as soon as a failure detector suspects a process, that

process is sent a message which forces it to crash. This would strengthen the

accuracy, since a suspected process would now truly crash. Note that since

the process will actually crash after that it is detected, it would still continue

its operation until it receives the message to crash possibly even sending out

further messages. However, since the system is asynchronous, and the failure

detector is also asynchronous, such behaviour could be allowed similar to

having message reordering, a failure detector can always be fast enough to

detect a failure, before all pending messages are received.

However such a perfect detector is not truly perfect. There could be cases

where it could break the underlying algorithm. A particular example was

mentioned in section 5.5.6. This happens because the process which is de-

tected as having failed, carries on in its execution, and ends up taking con-
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flicting actions which violate the properties of the algorithm.

This approach of constructing a Perfect Failure Detector is in reality just a

work around - since a failure detector operating on a busy network, would

cause it to kill other processes due to the network delays. In such networks,

it would be difficult to build a perfect failure detector, and usually one uses

some form of adaptable timeout mechanism to construct eventually perfect

failure detectors. However most algorithms described in this work, only

work with perfect failure detectors. Using a weaker failure detector, gener-

ally breaks the algorithm. However, there might be cases where with some

minor changes, the algorithm would still work fine with weaker failure detec-

tors. Example, in the case of lazy reliable broadcast algorithm, suspecting a

process would cause all messages received from that process to be rebroad-

cast. Hence as long as this broadcast also attempts to send to the suspected

processes, an eventually perfect failure detector can be used. Nevertheless,

such a failure detector could also cause the algorithm not to reach its goal,

example a consensus algorithm would not reach agreement. In fact, it can

be seen that the flooding consensus algorithm might not decide if processes

are suspected as crashed, but have not really crashed. The same happens

with the hierarchical consensus algorithm.

8.7 Conclusion

This chapter evaluated different aspects dealing with this project. Primar-

ily, the applicability of the implemented suite of protocols was assessed in

relation to its usage in the implementation of the test case scenario. Erlang

as a language of implementation was evaluated as well, and its promised

strengths, were assessed. The established algorithms were evaluated in terms

of their performance, and finally, insight was given regarding the failure de-

tector used throughout this project.
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Chapter 9

Conclusion and Future Work

No matter the amount of work that is done, there is almost always room for

improvement, In this section various possible improvements for this project

are outlined. Following this, the relevance of the work done is highlighted,

and then finally, this work is concluded.

9.1 Alternative Failure Detector

In this project, a Perfect Failure Detector was assumed throughout. Most

algorithms only work if such a failure detector is available. Moreover, a very

simple approach to attempt to achieve a Failure Detector, was taken.

In reality, failure detectors are an area of research on their own. Failure

detector algorithm are proposed in various literature, and these should be

taken into consideration for future work.

Moreover, weaker failure detectors, such as the Eventually Perfect failure

detector, should be studied. These might be more practical to build in the

real world, however, the algorithms for the Agreement problems presented

here, are much more complicated to build with such a failure detector.[6]

9.2 Approaching the indefinite growing of the state

Some of the algorithms outlined in this project, were more focused on achiev-

ing correctness, rather than seeking a practical implementation. In fact,

some of the algorithms store all messages received - resulting in internal

structures which grow indefinitely and require infinite memory. In this work,
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different kinds of optimisations were attempted, such as keeping hashes of

messages instead of the messages themselves. However, this does not re-

ally solve the problem and further investigation of this aspect needs to be

studied.

As an example, consider the algorithm for regular reliable broadcast. This

algorithm required a Delivered sets which holds all messages which were

delivered, and prevents messages from being incorrectly delivered multiple

times. For future work, a simple scheme is proposed in which all processes

acknowledge that they have received the message. When all processes have

received the message, then the local copy of the message would not be needed

any more and could be deleted. However, there could be situations where

this message which was deleted from the Delivered set, is received again,

and would be erroneously delivered again. Such a situation is shown for the

regular reliable broadcast algorithm in figure 9.1.

Figure 9.1: Need for the Deliver set

Here, the dashed lines indicate acknowledges for the message which was

initially broadcast by P1. For the sake of clarity, only the acknowledges

directed towards P3 are shown. In this run, process P3 receives acknowledges

from all other processes at point A. Hence it may remove this message from

its internal Delivered set. However, this same message is received again,

shortly afterwards, and hence would result in incorrectly redelivering this

message.

For future work, we propose to assess to use of timestamps (such as Lamport

timestamps) to be able to determine that this message has already been

delivered. The idea is that every process keeps a timestamp for every node,

and the message received is only delivered if it has a later timestamp. This
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method, however, would require that message sent by the same sender, do

not get reordered in the network - however such a property can be easily

satisfied by a transmission control protocol.

Hence here, we suggest the study of this idea even further, so as to possibly

come up with a solution for these ever growing sets.

9.3 Different Failure Model

In this project, only crash failures were taken into consideration. A process

was not expected, or even allowed, to recover once it had crashed. Doing

so, it might break the algorithm being executed.

However, there is a lot of study on agreement algorithms with transient or

even byzantine failures. Once again, the algorithms for these failure models,

are much more complicated than those for the crash failure model. However,

as part of the future work, it would be interesting to investigate these failure

models as well.

9.4 Analyse further specifications and agreement

problems

The work done in this project, by no means covers all specifications or stud-

ies all of the agreement algorithms. Various variations or even completely

different problems exist. For example, in this project, no probabilistic al-

gorithm was studied. However, in very large network, one usually has to

resort to such algorithms because of the massive amount of messages, and

computation rounds which would be otherwise required.

9.5 Relevance of work done

The work done in this project, studies the way a system of processes can

cooperate together, to solve different classes of agreement problems, in the

presence of failures and unreliability. In a time, where most applications are

moving away from a centralized approach to a more distributed environment,

guaranteeing correctness in a distributed system is always becoming more

of a priority.
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The work presented here, provides a suite of algorithms through which

correctness can be achieved without the need for central coordinators. This

entails a degree of fault tolerant operation, because nodes can fail, and the

system could still remain in operation.

Nowadays, various technologies work on this principle, such as cloud com-

puting, decentralized distributed databases and peer to peer technologies.

Hence such a suite immediately has strong applicability for the development

of such systems. Moreover, it could be used to explore the possibility of de-

centralising existing system, so as to achieve fault tolerant characteristics as

well being able to guarantee a reliable distributed service.

9.6 Conclusion

In this project, the problems associated with distributed programming were

analysed. In particular, the distributed agreement problems were studied in

detail. Erlang was chosen as the implementation language, and a common

framework for these algorithms, was developed using this language.

A number of distributed agreement specifications were then studied in de-

tails. Following this, algorithms for each of these specifications were also in-

vestigated and actually implemented in the framework developed in Erlang.

This provided a suite of reusable protocols which tackle these agreement

problems.

The relevance of this suite was then assessed with a real world scenario.

Using this suite, a decentralized file system was implemented. The benefits

achieved from such a suite, were then evaluated.
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Appendix A

Using the protocol suite

Here the details on how to use the protocol suite developed in this project,

are outlined.

A.1 Prerequisites:

• Erlang/OTP framework

• Open SSL: required by Erlang’s Crypto Module, which is used in this

project.

• Protocol Suite (found in the code directory)

A.2 Setting Up

Make sure that the following files are set up:

1. Erlang hosts file: This file is located in the home directory and is name

.hosts.erlang. The domain name of all machines with which the system

needs to connect should be put here

2. Erlang cookie file: This file is located in the home directory under

the name .erlang.cookie. This should contain a random string. The

content of this file should be the same on all nodes

156



A.3 Starting a shell

In the command prompt write the following.

erl -sname NODENAME -peers PEER1 PEER2 PEER3

A.3.1 Explanation

This starts the Erlang shell and assigns it the name NODENAME. Here

the name of the shell of all peers should also be specified in the form of

arguments to the -peers switch. Note that if the shells are not on the same

domain, then =name should be used instead of -sname, and all names should

be given as fully qualified domain names.

A.4 Initializing the Suite of protocols

In each Erlang Shell, write

node_utils:start_node().

Alternatively, if a shell is to be used as the monitor node (used for debug-

ging, all output is directed to that shell), the following should be entered to

initialize all Erlang shells:

node_utils:start_all_nodes().
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[14] Rachid Guerraoui and Lúıs Rodrigues. Introduction to Reliable Dis-

tributed Programming. Springer-Verlag New York, Inc., Secaucus, NJ,

USA, 2006.

[15] Maurice Herlihy. The art of multiprocessor programming. In PODC ’06:

Proceedings of the twenty-fifth annual ACM symposium on Principles

of distributed computing, pages 1–2, New York, NY, USA, 2006. ACM.

[16] S. Krishnaprasad. Concurrent/distributed programming illustrated us-

ing the dining philosophers problem. J. Comput. Small Coll., 18(4):104–

110, 2003.

[17] Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM, 21(7):558–565, 1978.

[18] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine

generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401,

1982.

[19] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 1996.

[20] Nilsson Niclas. The multicore crisis: Scala vs erlang.

http://www.infoq.com/news/2008/06/scala-vs-erlang.

[21] Klaus Renzel. Error handling for business information systems - a

pattern language. 1996.

[22] Fred B. Schneider. Byzantine generals in action: implementing fail-stop

processors. ACM Trans. Comput. Syst., 2(2):145–154, 1984.

159


