
Distributed Monitored Processes

Andrew Gauci

Faculty of ICT

University of Malta

Submitted for the degree of Master of Science

Faculty of ICT

Declaration

I, the undersigned, declare that the dissertation entitled:

Distributed Monitored Processes

submitted is my work, except where acknowledged and referenced.

Andrew Gauci

April 11

1

Abstract

Together with in an increase in system complexity, over these past years the rise of the internet
and service-oriented architectures has also brought an increase in distributed and component-
based systems. These trends have an adverse effect on system dependability, thus increasing the
need for software verification techniques, in particular ones for distributed systems.

For monolithic systems, runtime verification has been shown to be a highly effective tech-
nique for ensuring correct behaviour of a system. However, runtime monitoring of distributed
systems has proved to be a major challenge, and although various solutions have been proposed,
it is unclear which approaches are most appropriate in which context. Issues include, but are not
limited to where the monitoring processes should reside, avoiding monitor-induced information
exposure, how to handle dynamic system topologies and setting up monitors of new properties
at runtime.

In this thesis, we present mDPi, a π-calculus adaptation with explicit notions of monitoring
and location. Through this calculus we formally reason about, compare and contrast different
runtime verification techniques for distributed settings, investigating different monitoring strate-
gies through a family of bisimulations. We also present the novel migrating monitor approach,
capable of minimising exposure while also being applicable to systems admitting a dynamic
topology. We show how a simple specification language can be monitored in different ways by
presenting various conversions into mDPi monitors. Finally, a proof-of-concept implementa-
tion is also presented, whose aim is the discovery of practical aspects which emerge during an
implementation of the calculus.

2

He who loves practice without theory
is like the sailor who boards ship without rudder and compass,

and never knows where he may cast.

- Leonardo da Vinci

3

Acknowledgements

I would firstly like to express my gratitude to both my supervisors, Adrian Francalanza and
Gordon J. Pace, in equal measure for their consistent guidance, patience, and most importantly
of all for making this masters degree a fruitful and educational exercise.

Special thanks also go to my family and Emily, for their support when I needed it the most.
A final, but very special acknowledgement goes to my parents, who I can never thank enough
for all they have done for me. I wouldn’t have made it this far without them.

The research work disclosed in this publication is partially funded by the Strategic Educa-
tional Pathways Scholarship Scheme (Malta). The scholarship is part financed by the European
Union European Social Fund.

4

Contents

1. Introduction 10
1.1 Aims and Motivation . 10

1.1.1 Background . 10
1.1.2 Contributions of this Thesis . 12

1.2 Document Outline . 13

I Background 14

2. Runtime Verification 15
2.1 Overview . 15
2.2 Requirements Specification . 18
2.3 Monitoring Algorithm . 20

2.3.1 Synchronous vs Asynchronous Verification 21
2.3.2 Reaction to Violations . 22

2.4 The System and Environment . 22
2.4.1 Instrumentation . 23
2.4.2 Overheads During Synchronous Verification 24

2.5 Conclusions . 25

3. Runtime Verification In A Distributed Setting 26
3.1 Introduction . 26
3.2 Distributed System Characteristics . 27
3.3 A Motivating Example . 29
3.4 Distributed Monitoring . 31

3.4.1 Static Orchestration . 33
3.4.2 Static Choreography . 34
3.4.3 Dynamic Orchestration . 35
3.4.4 Dynamic Choreography . 36

3.5 Extracting A Temporal Order on Remote Events 37
3.6 Conclusions . 40

5

4. The π-calculus 41
4.1 Motivation For π . 41
4.2 The Calculus . 42

4.2.1 Syntax . 42
4.2.2 Action Semantics . 47

4.3 Structural Equivalence . 50
4.4 Bisimilarity . 51
4.5 Conclusions . 53

II The Theory 55

5. A Calculus of Distributed Monitored Processes 56
5.1 Overview . 56
5.2 The mDPi Calculus . 64

5.2.1 Syntax . 64
5.2.2 A Semantics For mDPi . 77

5.3 Configuration Equality . 98
5.3.1 Structural Equivalence . 98
5.3.2 Bisimilarity . 102

5.4 Results . 107
5.5 Conclusions . 111

6. Distributed Regular Expression Monitoring 112
6.1 Overview . 112
6.2 Regular Expressions To Orchestrated Monitors 117
6.3 Regular Expressions To Statically Choreographed Monitors 120
6.4 Regular Expressions To Migrating Monitors 122
6.5 Conclusions . 124

III Evaluation 126

7. Case Study 127
7.1 Overview . 127
7.2 Practical Considerations . 131
7.3 Observations . 134
7.4 Conclusions . 136

8. Related Work 137
8.1 Introduction . 137
8.2 Current Approaches . 138

6

8.3 Summary . 155
8.4 Conclusions . 158

IV Conclusions 159

9. Conclusions 160
9.1 Summary . 160
9.2 Future Work . 162

9.2.1 Continuation of Theoretical Development 163
9.2.2 Conversion of Specification Languages 164
9.2.3 Framework Extensions . 165
9.2.4 Application to Industrial Settings . 166

9.3 Concluding Thoughts . 166

A. mDPi Syntax and Semantics 167

B. Substitution in mDPi 170

C. System Projection 172

D. Proof (Pσ)P = Ppσ 174

E. Proof ((C ≡ R) ∧ (C
α
−→ C′)) ⇒ ((R

α
−→ R′) ∧ (C′ ≡ R′)) 179

F. ≈ΩP Is A Bisimilarity Up To Structural Equivalence 191

G. Monitoring Does Not Affect Computation 194

References 206

7

List of Figures

2.1 The runtime verification scenario. 17

3.1 A general distributed system architecture . 27
3.2 A Hospital Management System . 29
3.3 An orchestration-based approach. 32
3.4 A static choreography-based approach. 34
3.5 A migrating monitor approach. 36
3.6 An example space-time diagram . 40

4.1 The π-calculus . 43
4.2 An action Semantics for π . 48

5.1 Example π-calculus processes. 57
5.2 Example located π-calculus processes. 57
5.3 A Monitoring Scenario. 58
5.4 An Example Distributed Monitoring Scenario. 60
5.5 An Orchestrated Monitoring Scenario. 61
5.6 A Static Choreography-Based Scenario. 62
5.7 A Distributed System Verified By Migrating Monitors. 63
5.8 System Syntax . 65
5.9 Process Syntax . 66
5.10 Trace Entity Syntax . 67
5.11 Monitor Syntax . 68
5.12 An Example Trace. 73
5.13 Communication in mDPi . 83
5.14 Trace Analysis . 84
5.15 Extraction Of Temporal Orderings During Monitor Execution 85
5.16 Other Operators . 86
5.17 Structural Re-organisation . 87
5.18 Systems In Context . 88
5.19 Pre-LTS representation for S 1 . 89
5.20 Pre-LTS representation for S 2 . 90
5.21 LTS representation for S 1 obtained by ignoring monitor and trace behaviour. . . 91

8

5.22 LTS representation for S 2 obtained through ΩP. 94
5.23 Order ≤ on actions . 95
5.24 An Example Hierarchy On LTSs . 97

6.1 Regular Expression Syntax . 113
6.2 Conversion of E1. E2 . 117
6.3 Conversion of E∗ . 118
6.4 Conversion of E1 + E2 . 118

7.1 An example scenario of the implemented framework. 129

8.1 The GEM specification language. 143
8.2 An example MSC. 150
8.3 An example HMSC. 150
8.4 PT-DTL syntax. 152
8.5 A comparison of distributed monitoring frameworks. 156

9.1 Updated rules for handling the monitor vector. 163

9

1. Introduction

1.1 Aims and Motivation

1.1.1 Background
As systems become more complex, standalone architectures are becoming less common, and
distributed and component-based systems are becoming more frequent. This shift is empha-
sised further with the rise of the internet and service-oriented architectures. However, system
distribution also implies an increased level of complexity, as well as hampered dependability,
emphasising the need for software verification techniques tailored for distributed systems.

An increasingly pursued approach involves a process of runtime verification, concerned with
the formal verification of system traces. More specifically, runtime verification involves the
employment of an executable monitors which analyse the system’s execution against a set of
formalised requirements. Verification can either occur on the fly, during execution of the sys-
tem, or on a pre-recorded trace. A trace can be broadly considered to consist of the sequence
of internal states and/or events which the system goes through during its execution. In general,
applying runtime verification techniques to particular scenarios is a non-trivial task. Firstly,
one is to choose an appropriate specification language for the definition of safety properties
which the system is to adhere to. Next comes the design of an adjacent monitoring algorithm,
which verifies system correctness by comparing formalised requirements against the system’s
exhibited behaviour. Crucially, this approach is considered a lightweight verification technique,
implying that the complexity of associated algorithms must be tractable. Moreover, given that
the monitoring effort can be executed in conjunction with the underlying system, it is important
that implied verification overhead is minimised, in order to refrain from consuming an unrea-
sonable amount of resources otherwise available to the system. An advantage of verifying at
runtime involves identifying software faults in a timely manner, possibly applying reparations
to recover from anomalous states.

The following thesis is concerned with the study of runtime verification techniques applied
to distributed settings. The primary characteristic of distributed systems is that they consist

10

Chapter 1. Introduction

of autonomous, concurrently executing subsystems communicating through message passing
techniques. Communication mediums are assumed to be unreliable and an expensive resource,
typically considerably slower than local interactions. Moreover, subsystems (i) lack access to a
global clock, implying asynchrony amongst distributed locations, and (ii) each admit local, pos-
sibly confidential memory (i.e., no shared memory). By confidential we mean that knowledge
of said information is to be kept local to the subsystem. In the presence of sensitive informa-
tion, it is the responsibility of the monitoring framework to avoid unnecessary exposure of such
data, both during (potentially unsecured) interactions, as well as across remote subsystems. We
also consider the possibility of system configurations to change dynamically at runtime, in un-
predictable ways. These changes are characterised through the addition (or removal) of new
subsystems, as well as the evolution of the internal communication topology. Most service
oriented architectures involving dynamic lookup, peer-to-peer systems, as well as Enterprise
Service Bus architectures are instances of such systems.

As long as one only needs to verify each subsystem independently, runtime monitoring is no
different from that used on standalone architectures. However, when properties refer to traces
from more than one subsystem, various issues arise. In fact, the underlying system’s distri-
bution poses a major challenge to the application of runtime monitoring. More specifically, it
is unclear whether the monitoring effort should be placed at a central location, or distributed
accordingly. As long as the verified property concerns only public communication taking place
between subsystems, the former approach works well by employing a monitor which overhears
information as necessary. However, in the case of properties which refer to information local to
subsystems, more pressing issues arise. Clearly, exporting local information to a central mon-
itor is undesirable; not only does it unreasonably increase the communication overhead on the
system, but it also exposes potentially sensitive information. For instance, applying a central
monitor to some web service composition, with one of these web services entailing an online
bank is an unsound choice; it is undesirable for the bank to transfer its local bank account in-
formation to the central monitor in order to execute necessary verification.

We hence turn to the latter approach, entailing the distribution of monitoring functionality
across subsystems. By localising monitors, we avoid the need to expose information remotely,
which also results in a reduction of bandwidth overheads. However, identifying an optimal
instrumentation strategy for localised monitoring is not straightforward. This is especially
true when facing dynamic architectures, since it is unclear how an already installed monitoring
framework can be re-distributed at runtime to keep up with the system’s unpredictable develop-
ments. Consider for instance some peer-to-peer system, such that a property is to be deployed
over all contributing nodes; it is unclear how dynamically added nodes are to be instrumented
with additional monitors without the need for system recompilation and restart. Another major
issue is the lack of synchrony amongst subsystems, which means that certain consequentiality
properties may not be monitored in a complete manner [58]. More specifically, the lack of a
global clock means that the total order of events across different locations cannot always be

11

Chapter 1. Introduction

observationally determined, and is hence something we will have to live with.

1.1.2 Contributions of this Thesis
Our aim is to distill and identify the core aspects of distributed monitoring, presenting solutions
where possible. Although the field is vast, and admits numerous aspects which deserve in-depth
study, we shall focus on the formalisation of the scenario of interest, through which we are later
able to precisely reason about the application of different candidate monitoring approaches. To
this effect, we shall provide the following contributions described below.

• This thesis’ main contribution entails the presentation of mDPi, a π-calculus adaptation
with explicit notions of monitoring and distribution. Apart from studying distributed
monitoring at a formal level, this calculus aims to provide a general framework through
which alternate monitoring approaches are evaluated, compared and contrasted. This is
achieved through a family of bisimulations, which highlight differences, and/or ignore
uninteresting detail of behaviour associated to different monitoring strategies.

• The proposal of the migrating monitor approach represents another contribution; em-
ploying monitors which verify locally, and migrate as necessary when remote subsystem
behaviour becomes pertinent to the system’s overall correctness. This novel instrumen-
tation technique is our response to difficulties with monitoring dynamic architectures,
while minimising issues with information confidentiality. By adopting migration as a
language primitive, we argue that the global monitoring effort is re-distributable on the
fly, since monitors can be redirected to new locations according to information learnt at
runtime. Moreover, in the presence of confidential information monitors are transferred to
the relevant locations in order to localise the monitoring effort, thus minimising exposure.
Finally, we believe migrating monitors to allow for the monitoring of properties learnt at
runtime i.e., properties whose specification is partly known at compile time, only to be
later instantiated at runtime.

• We also formalise desirable properties of mDPi, culminating in a proof ascertaining that
the language is, in a sense, well-behaved. More specifically, we show that the defined
monitoring semantics does not affect the underlying system’s computation at a conceptual
level.

• Another contribution lies with an illustration of the calculus’ use by showing how a simple
specification language can be monitored in different through different monitoring strate-
gies, and is presented through various conversions into mDPi monitors.

• Finally, we present a proof-of-concept implementation, whose aim is the discovery of
practical aspects which emerge during an implementation of the calculus. These consid-
erations include issues with security, the implementation of monitor migration, as well
as a practical solution for achieving a monitoring framework in the face of both dynamic
and heterogenous environments.

12

Chapter 1. Introduction

1.2 Document Outline
The following dissertation is organised into four main parts as follows;

• The first part introduces necessary background topics required for an understanding of
the presented work. Chapter 2 provides an overview of runtime verification, discussing
its application, advantages and pitfalls. Chapter 3 discusses the extension of runtime veri-
fication to distributed settings. More specifically, we provide an overview of the extended
difficulties faced due to system distribution, motivate a broad taxonomy of approaches to
distributed monitoring, and also discuss the issue of obtaining a temporal ordering across
remote unsynchronised locations. Chapter 4 provides an overview of the π-calculus.

• The next part deals with our theoretical development. Chapter 5 entails our main contri-
bution, in the form of an in-depth presentation of the mDPi calculus. The chapter contains
a description of the language, its extensible LTS semantics, as well as a discussion of the
mechanism adopted for considering system behaviour at various levels of abstraction.
We also adopt the standard bisimilarity relation as a measure of behavioural equivalence
amongst mDPi systems, and use this tool to reason about various monitoring strategies.
Finally, this chapter provides an overview of a proof of mDPi monitors’ well-behaved
semantics wrt. its underlying system computation. Chapter 6 presents various conver-
sions of property specifications written using Regular Expressions into different mDPi
monitors, with each conversion broadly representing a different monitoring approach.

• The third part presents an evaluation of our work. Chapter 7 entails a proof-of-concept
case study. This is followed by chapter 8, which presents an in-depth overview of current
approaches to distributed monitoring, and also contains an a posteriori comparison of
current work to mDPi.

• The fourth part concludes presented work, presenting a short resumé and critical analysis
of contributions presented in this thesis, and also investigates possible future work which
may prove to be fruitful.

13

Part I

Background

14

2. Runtime Verification

The ever increasing ubiquitous nature of computing implies a growing need for correct soft-
ware. Numerous techniques have been proposed for verifying correctness, with all approaches
admitting unique characteristics for optimal application. This implies that, in general, no tech-
nique is best. The following chapter introduces runtime verification, an alternate approach
concerned with dynamically verifying correctness of system traces. In other words, given a log
of system behaviour as exhibited at runtime (i.e., a trace), its contents are subsequently anal-
ysed against a set of formalised requirements. Section 2.1 motivates this approach, presenting
an overview of the field in the process. Section 2.2 explores the issue of requirements specifi-
cation, which is followed by section 2.3 discussing associated monitoring algorithms. Section
2.4 identifies the role of the system during the design of a runtime monitoring effort. Finally,
section 2.5 concludes the chapter.

2.1 Overview
Ever since the inception of software engineering, there has been the need for correct software.
By correct we understand that the system behaves as intended by its requirements. However,
software faults i.e., deviations of a system’s expected and exhibited behaviour [60] are an un-
fortunate reality of software development. Moreover, said faults can be costly, especially for
systems of a mission-critical nature [25]. It is for this reason that we turn to the field of soft-
ware verification, concerned with the study of techniques for obtaining guarantees of software
correctness. Said guarantees are attained by ensuring that the system implementation conforms
to its specification. The complexity of system implementations of any appreciable size implies
that software verification is a non-trivial field. We broadly classify verification techniques under
two categories; referred to as static and dynamic analysis [24, 86].

Static analysis techniques involve the interpretation of software prior to their execution. Ver-
ification ranges from preliminary analysis at the source code level, to formal approaches for
proving correctness of system models. Techniques belonging to the former are best at identi-
fying certain types of faults, including the potential for memory leaks, nullity references and

15

Chapter 2. Runtime Verification

infinite loops [86]. Software metrics also fall under this category [52]. On the other hand, the
latter form of static analysis refers to model checking [23, 43] techniques. More specifically,
model checking extracts a mathematical model of possible system behaviour, and attempts to
prove its correctness with respect to a formalised set of requirements. These requirements are
specified through some appropriate formalism. Although model checking conceptually offers
the most guarantees by considering each possible execution path, it is intractable for systems of
any appreciable size [23, 25, 87].

Dynamic analysis refers to verification techniques which analyse systems’ runtime behaviour.
Advantages relating to dynamic analysis relate to (i) the tractability of algorithms adopted at
runtime, (ii) an increased confidence in system behaviour since we are dealing with implementa-
tions, rather than ideal models (which may not perfectly mirror the implementation), and (ii) the
increased precision, due to said algorithms (and execution) having access to information only
available at runtime. Relating to this latter point, certain aspects of system behaviour may also
depend on the execution environment, emphasising the need for dynamic analysis [24]. Said
dynamic verification often results in an analysis of select traces, whereby each trace is consid-
ered to represent a single execution path. Techniques belonging to this approach are based on
the observation that although verifying each possible trace is intractable, checking particular
traces against properties of interest (in a verification setting) is usually cheap. Testing [68] is
the most common form of dynamic analysis; its application involves the identification of a set
of representative system traces, whose verification gives sufficient confidence of the system’s
overall correctness [24]. Hence, the core aspect with respect to testing is the identification of
suitable traces, taking the form of test case scenarios. Advantages with testing include (i) its
scalability, and (ii) a relative ease of application (especially when compared to other more for-
mal approaches to verification). However, testing can only find the presence, and not prove the
absence of bugs [30], implying an inherent lack of coverage.

Runtime verification [24, 13, 25, 56, 60] offers an alternate approach, and is concerned with
the formal verification of system traces. Its operation is summarised in Fig. 2.1. Each trace
encodes a system’s execution or run, entailing a sequence of logged system events obtained
through a process of instrumentation (section 2.4.1). Typical events vary from simple variable
updates, to interactions with outside entities. Verification is achieved through an executable
monitor, responsible for checking the system’s runtime trace against a set of formalised re-
quirements. Hence note the crucial role placed in the extraction of the trace; subsequent mon-
itoring algorithms are based on a correct tracing semantics. Monitoring can either be executed
either at runtime (known as synchronous monitoring), or distinctly from system execution (i.e.,
asynchronous verification). Finally, given that synchronous monitors execute during system ex-
ecutions within the same environment, this implies that runtime monitoring should be pursued
as a lightweight verification technique [60].

The attractiveness of this approach is its illusion of a tractable approach for achieving perfect

16

Chapter 2. Runtime Verification

Figure 2.1: The runtime verification scenario.

coverage; by verifying exhibited behaviour, it appears as if no execution goes unverified. In
other words, runtime verification exploits the fact that we are mostly interested in behaviour
exhibited at runtime. Although faults may reside in other potential executions, we (mostly) do
not identify them until their occurrence (at runtime). Notice the use of the word ‘mostly’; this is
due to work on predictive analysis of possible traces constructed from extracted causal models
[65]. Note the change in philosophy as opposed to other techniques; techniques such as testing
and model checking try to identify incorrect behaviour prior to system deployment. On the
other hand, runtime verification guarantees that the system will never go beyond an inconsistent
state — but can reach said states. Hence, with runtime monitoring the verification process can
go beyond deployment. The handling of inconsistent states varies between monitoring frame-
works; whereas some [88, 88] are content with identifying incorrect behaviour, others go a step
further, by specifying a reaction to violations (in the form of feedback), thus steering the system
back to an acceptable state [25, 80, 65]. Hence, runtime verification can also be a crucial tool
in the development of fault-tolerant systems. Finally note that the runtime aspect of monitoring
algorithms imply the verification of properties relating to (i) safety, and (ii) bounded liveness
(i.e., an alternate form of safety) [24].

Runtime verification achieves a niche in the software verification field. It is advantageous
compared to testing on two fronts; (i) by offering elevated guarantees through a solution giving
the illusion of 100% coverage, and (ii) by avoiding the issue of test case generation, since it is

17

Chapter 2. Runtime Verification

the system execution which generates the trace to be verified (unlike testing, whereby test case
generation is a burden left to the user). Unlike model checking, runtime monitoring (i) offers a
tractable and scalable solution to formal analysis (albeit with less guarantees), and (ii) takes into
consideration the execution environment. These issues, coupled with unique advantages with
respect to fault tolerance, make runtime verification a novel field worth of further study. On the
other hand, runtime verification also admits certain issues. Firstly, since synchronous runtime
monitors execute within the same environment as the system (depicted above), then monitors
pose an overhead by consuming resources otherwise available to the system. Moreover, run-
time verification offers less guarantees as opposed to model checking [44]. Another issue is that
we require more effort (as opposed to testing) to both (i) formally specifying requirements, as
well as to (ii) instrument the monitor with the underlying system. Finally, we rely on a correct
tracing semantics, and a properly executing monitor in order for verification to occur correctly.
The interested reader is pointed to [60, 24] for more information wrt. the comparison of soft-
ware verification approaches.

Although runtime verification might seem as a bridge between model checking and dynamic
analysis due to its use of formalised specifications, it is conceptually more akin to testing [24].
This is due to both approaches being concerned with the dynamic verification of select traces,
sometimes referred to as oracle-based verification [60]. Runtime verification is generally pre-
ferred for mission-critical systems, whereas testing is the chosen method of verification when
the system runs under strict computational and memory consumption restrictions [24], or when
the necessity of software correctness is less urgent.

In truth, the difference between static and dynamic analysis is often overemphasised [33];
numerous techniques can be applied in complimentary fashion. For instance, one can use static
analysis to analyse system structure in order to generate representative test case suites [25].
Moreover, testing and runtime verification can also be complimentary [8, 24]; one could verify
the system trace generated by test cases. Static analysis is also often used in conjunction with
runtime verification. For instance, the approach in [43] considers the use of runtime monitors
to guide static analysis in order to reduce the state space. On the other hand, [87] builds a mon-
itoring framework on top of a static analysis tool.

We identify three key considerations during the design of a runtime verification framework;
(i) suitable requirements specification, (ii) design choices for an appropriate monitoring al-
gorithm, and (iii) an analysis of the underlying system, its environment and how the monitor
affects/integrates with both. We shall explore each in further detail throughout this chapter.

2.2 Requirements Specification
The first step for the design of a runtime verification framework involves identifying an ap-
propriate formalism. This language in turn allows us to precisely define necessary system re-

18

Chapter 2. Runtime Verification

quirements of interest. To this effect, the use of temporal logics has been intensely studied in
a runtime verification setting [13, 55, 25, 24]. Temporal logics [23] define logical assertions
qualified in terms of time, and are an important tool in specifying how systems should execute
i.e., by specifying temporal properties on traces. Numerous logics have been applied in a run-
time verification setting [72, 27, 25, 17, 37], each with unique characteristics. These include
issues of expressivity, the assumed time model [14], as well as varying application domains
[27, 25]. Given this wide variety of choices, we identify a broad set of factors to keep in mind
for identifying the most suitable specification language.

1. Properties of Interest — Properties typically of interest vary from behavioural require-
ments, to more quantitative aspects of execution. It is therefore our task to adopt a lan-
guage which is capable of encoding necessary specifications. Behavioural properties
include sequentiality (“Event a happens after b”), invariance (condition X on the state
should never be true), timing issues (“Event a should not take more than X minutes”) or
a combination thereof. On the other hand, quantitative aspects are more related to the
quality of execution, for instance related to performance profiling or throughput analysis
[36].

2. Monitoring Algorithm — In general, there exists a tradeoff between logic expressivity
and system overhead [25]. Therefore, given our interest in lightweight monitors [60], the
choice of logic is limited by what can be efficiently verified in both time and space. Other
design choices of the monitoring algorithm can also affect the choice of language, as shall
be discussed in section 2.3.

3. System Structure — The underlying system structure can also potentially affect the choice
of formalism. For instance, as shall be seen in chapter 3, we are faced with certain restric-
tions on what can be reasonably monitored within distributed systems. Also relating to
the previous point, physical limitations on system resources (as is common in for example
embedded systems [21]) may limit the choice of logic expressivity.

The interested reader is pointed to [25] for a more in-depth overview of logic characteristics,
and subsequent applications. Keep in mind that it is unusual for complete system specifications
to be available in a runtime verification setting [24]. This implies that we do not attempt to
classify each behaviour as either correct or incorrect. Instead, we mostly deal with partial spec-
ifications, formally specifying mission-critical aspects of system executions.

System properties are often categorised as ether properties of safety or liveness [60]. In
essence, the former dictates that something bad should not happen, whereas the latter states that
something good eventually happens. Falcone [34] summarises differences between safety and
liveness within the context of runtime verification as one of trace finiteness. In the case of safety
properties, their validity can always be falsified by a finite trace. However, liveness properties
cannot be falsified by finite traces, since any finite trace can be the prefix of an infinite one
satisfying the property. Unfortunately, this implies that the semantics of our gradually verifying

19

Chapter 2. Runtime Verification

monitors cannot handle liveness properties. Conversely, we are restricted to the monitoring of
safety properties during runtime verification. Some frameworks consider truncating traces for
considering liveness properties (i.e., bounded liveness) [26], which still however reduces to a
form of safety.

Finally, a few example formalisms used in a runtime verification setting include Linear Tem-
poral Logic (LTL) [72], Regular Expressions [83], Dynamic Automata with Timers and Events
(DATEs) [25] and the Duration Calculus [17]. LTL is perhaps the most popular, serving as a
theoretical basis for numerous runtime verification frameworks [45, 44, 40, 24]. More specif-
ically, LTL is a linear-time logic particularly adept at specifying regular properties of discrete
time systems [60]. Regular expressions have also been applied [74, 15], serving as an intu-
itive specification of temporal orderings on events. By being automaton-based, DATEs offer a
more graphical approach to property specification, while still achieving elevated expressivity.
The duration calculus is a real-time logic, involving the specification of properties over time
intervals.

2.3 Monitoring Algorithm
Given a high-level specification of system requirements, the next step involves verifying ex-
hibited behaviour for correctness with respect to the set of formalised properties. This process
is carried out in a runtime verification setting by an executable monitor, tasked with analysing
system traces and returning a verdict of their validity wrt. a set of desirable properties. Note
that the conversion between property and monitor is usually carried out in automatic fashion
[60].

Formally, given a set of n system properties pi ∈ ϕ s.t. ~pi� is the set of valid traces rep-
resenting property pi, the monitor is tasked with identifying whether trace T ∈

⋃n
i=1~pi�. In

other words, runtime verification is a problem of word inclusion [60], identifying whether the
trace extracted at runtime belongs to the set of traces characterised by the system requirements.
Apart from issues with the algorithm complexity (introduced in section 2.2), [60] identifies two
requirements for the design of the ideal monitoring algorithm

• Impartiality — such that a verdict is never given prematurely. In other words, a monitor
should never output its result if it is still possible for the remainder of the path to point to
an alternate verdict.

• Anticipation — whereby a verdict is given as soon as possible. Consequently, a monitor
should return its result as soon as the remainder of the path cannot change the verification
outcome.

In general, any given runtime verification framework is based on well-defined (i) monitoring
and (ii) tracing semantics. The former is necessary for specifying monitor operation during the

20

Chapter 2. Runtime Verification

analysis of traces against the set of requirements. The choice of specification language dictates
the definition of monitoring execution, thus usually comprising of an operational semantics
assigned to the language. On the other hand, the tracing semantics defines the extraction of
traces during system execution, and is hence an important part of the instrumentation process
(section 2.4.1). Both semantics are tightly bound; we need appropriate traces in order for
monitors to correctly analyse runtime behaviour. Conversely, traces which incorrectly encode
system behaviour nullifies subsequent monitoring efforts. The remainder of this section deals
with design decisions faced during the definition of a monitoring semantics. Section 2.4.1
discusses instrumentation approaches.

2.3.1 Synchronous vs Asynchronous Verification
The process of trace analysis can be performed either (i) on the fly as the trace is being gen-
erated (syncrhonous verification), or (ii) after the fact, once extensive knowledge of the trace
is available (asynchronous verification) [25]. In case of synchronous verification (also referred
to as online monitoring), the monitor is tasked with analysing the current execution, updating
its verdict incrementally with each pertinent system event. The monitor usually runs in parallel
with the underlying system (within the same environment), receiving trace events as they occur.
Moreover, the system sometimes waits for the monitor to complete its verification before pro-
ceeding. It is hence crucial for synchronous monitors to reach a verdict using as little resources
as possible. This implies that synchronous monitors rarely have access to long trace histories,
and each computational step must take reasonably efficient time. Moreover, given that these
monitors can only return a verdict on the trace seen so far, this minimally imposes the need
for three-valued logic; valid, invalid, or inconclusive [60]. On the other hand, asynchronous
verification (offline monitoring) involves the analysis of pre-recorded traces. Given that verifi-
cation is performed after the fact, this implies that complete, or at least extensive knowledge of
the trace is usually known, allowing for analysis using a broader class of languages (see [36]).
Efficiency can still be an issue with offline monitors, in that we are still intolerant to intractable
verification algorithms (given our interest in lightweight monitors). However, the urgency for
efficiency is somewhat relaxed, since offline monitors do not consume the system’s resources.

The main desirable aspect of synchronous verification is its timeliness; by keeping up with
the system execution the monitor (i) can exploit dynamic aspects of execution only available at
runtime, and (ii) allows for reactions to violations. The first issue is particularly useful when
dealing with the extraction of causal orderings on possible events [65], and will be crucial in
our design of a distributed monitoring framework at a later stage. The second issue is also
important, extending runtime verification as a valid tool for implementing fault-tolerant sys-
tems; allowing for the specification of corrective measures in case of software failure. On the
other hand, synchronous monitors only have access to partial traces, decreasing the class of
monitorable properties. Moreover, reaching a verdict can take a substantial amount of time,
depending on the duration of system execution. Finally, by running within the same environ-

21

Chapter 2. Runtime Verification

ment, the system consumes resources otherwise available to the system (more below). On the
other hand, asynchronous verification avoids this issue by proceeding distinctly from system
execution. Overhead is therefore minimised to the additional tracing effort for trace extraction.
However, although complete knowledge of the trace has its advantages, asynchronous verifica-
tion also implies that we cannot exploit the dynamic aspect of system execution. By extension,
verification after the fact makes it impossible for the triggering of compensations to violations.
This in effect limits the use of runtime verification as a flagging mechanism for property viola-
tions, limiting its usefulness on deployed systems [60].

2.3.2 Reaction to Violations
We are faced with a design choice when a system enters an inconsistent state. Although runtime
verification is mostly concerned with identifying faults in system behaviour, many frameworks
extend this notion by allowing for the execution of compensatory actions upon error detection
[24]. The specification of violation reactions often take the form of additional code snippets
associated to system properties. These actions serve the purpose of damage limitation, partially
or fully mitigating the error imposed by the exhibited fault. As discussed in the previous sec-
tion, there is an issue of timeliness with the execution of reaction violations. For instance, if we
specify the property that a system should not have memory leaks, by the time we detect an error
it will be too late, since the program would have already crashed. However, the property that
no unauthorised user should gain access to the system admits a straightforward compensation,
by terminating the user’s login session. As these examples show, the applicability of violation
compensations depends on the property. See [60] for a more comprehensive overview of vio-
lation reactions in a runtime verification setting. Example frameworks which support violation
reactions include Larva [25], Java-MaC [55] and Java-MOP [20].

A stronger take on corrective verification is runtime enforcement [34], which advocates a
proactive enforcement of correct behaviour (i.e., prior to error occurrence) rather than a reactive
approach after the fact. The approach in [34], adopts an internal memorization mechanism
tasked with reading an input sequence of events, generating a corresponding output sequence in
such a way that the desirable property is always fulfilled. Thus when a system is well-behaved,
the enforcement monitor is unobtrusive. However, if the system is about to exhibit a deviation
wrt. the desirable property, the internal memorization mechanism kicks in to prevent the fault.

2.4 The System and Environment
The underlying system and its execution environment are primary stakeholders in the design of
effective monitoring frameworks. Clearly, systems worth verifying come in different shapes and
sizes, and are implemented using different technologies. Moreover, the environment also admits
its own characteristics, ranging from software to hardware restrictions. These considerations
can substantially affect the design of a runtime monitoring framework, a fact which shall be

22

Chapter 2. Runtime Verification

made particularly apparent in chapter 3. The following section therefore entails the discussion
of (i) the instrumentation effort, and (ii) implied overheads during runtime monitoring.

2.4.1 Instrumentation
Instrumentation can be generally considered as the integration of the monitoring effort with the
underlying system [24, 25], and is considered on two levels;

(i) The implementation of a tracing semantics, and;

(ii) The choice of an appropriate monitoring arrangement.

The first issue relates to the implementation of a mechanism exposing necessary trace in-
formation, in turn allowing the monitoring effort to affect necessary verification. Numerous
approaches have been attempted to this effect, typically defining automatic derivations (of this
mechanism) from the requirements specification [25, 24, 60], while exploiting particular tech-
niques and/or technologies in the process. One such technique which has been particularly
successful includes Aspect Oriented Programming [54], with the associated AspectJ [53] as a
particular technology. Other approaches include the alteration of the underling operating system
kernel [78] or virtual machine [24]. Finally, although instrumentation is often performed in au-
tomated fashion in order to reduce manual errors, in doing so we implicitly bind the verification
framework with specific programming languages and/or technologies (used during instrumen-
tation). It is for this reason that certain runtime verification frameworks opt for manual (or
semi-manual) instrumentation, for maximum generality. One such framework includes EAGLE
[13].

An interesting dichotomy we identify is the potential distinction between static and dynamic
instrumentation. By static instrumentation, the necessary monitoring effort is installed once
prior to system execution, and remains unchanged throughout. Although correct, we identify
the possibility of adopting a more powerful dynamic instrumentation effort, dissecting the mon-
itoring effort into generic instrumenter and verifier components. The instrumenter is responsi-
ble for exposing the extracted trace (containing a sequence of events from a possible alphabet).
With the trace at hand, the verifier can subsequently execute necessary trace analysis to ob-
tain a verdict on the trace. What is appealing about this dynamic approach is the possibility to
start verifying new properties learnt at runtime (henceforth referred to as dynamic properties),
without the need for re-instrumentation and system restart. It is for this reason that we some-
times refer to dynamic instrumentation as a property agnostic approach (more in section 3.4.4).
However, keep in mind that this enhanced machinery comes at the cost of additional complex-
ity, which may not always be computationally permissible. It is also worth pointing out that this
latter approach is more amenable to asynchronous monitoring, since the instrumenter records
the trace at a possibly different rate than the verifier is willing to analyse.

23

Chapter 2. Runtime Verification

Installing necessary monitoring artifacts can be a sensitive activity, especially if we want to
perform optimal verification on runtime traces [24]. This notion of optimal monitoring typ-
ically refers to the use of minimal resources for obtaining reduced overhead (section 2.4.2).
However, other issues can also become relevant, including issues with security and information
confidentiality. In other words, by extracting information from the underlying system, monitors
may also unwittingly expose confidential information, thus posing a security risk. Moreover,
difficulties with achieving optimal verification can be magnified further according to the system
(and environment) architecture. It is for this reason that the configuration of our monitoring ef-
fort, also referred to as the monitoring arrangement, can be a crucial factor in our endeavour for
effective monitors. Consider for instance a distributed system, admitting numerous subsystems
at physically distinct locations. Choosing an appropriate monitoring arrangement given such a
scenario is not a straightforward task. More specifically, it is not clear which location(s) should
be responsible for the global verification effort. We can go further, by saying that the monitoring
configuration (given this scenario) is a strong factor in the efficacy of the distributed verification
process, especially wrt. overheads associated with monitor interactions across sub-systems for
verification purposes. We shall expand on this point in chapter 3.

Finally, an important issue to be kept in mind wrt. instrumentation involves the assumed level
of trust between monitor and system. In other words, system administrators may require assur-
ances on monitor behaviour in order to allow privileged, potentially intrusive monitors to run
adjacent to (critical) system executions. Not only can malicious monitors incorrectly alter sys-
tem executions, but also expose information. As designers of runtime verification frameworks,
it is our duty to work within assigned boundaries of confidence, and must also strive to present
required assurances if so required.

2.4.2 Overheads During Synchronous Verification
Given that synchronous monitors run in parallel with the system within the same environment,
it is unavoidable that the monitors consume resources otherwise available to the system. Said
resources take the form of both memory and time consumption. Monitors consume memory
through their necessity to keep state. On the other hand, computational time is consumed on the
occurrence of each event, with the monitor updating its verdict by taking into account new event
information. In general, this issue is tackled through efforts on minimising said overheads to
reasonable levels. What overhead is deemed reasonable depends on the scenario under consid-
eration. Whereas certain scenarios can afford some overhead, in other situations any non-trivial
overhead is deemed too much (perhaps eliminating runtime verification as a feasible approach
altogether). More specific memory or time restrictions are also possible, perhaps due to physi-
cal restrictions on the hardware.

Various optimisation approaches applied to runtime verification frameworks has also been
studied. [44] proposes a form of property rewriting for simplifying certain properties written

24

Chapter 2. Runtime Verification

in LTL [23]. On the other hand, [15] takes the approach of partitioning space, time, or both
forms of overhead, in the hope of alleviating the monitor’s impact on the system. [31] studies
the effect of monitoring on certain data structures, providing upper bounds on their size. [21]
proposes a form of properties admitting resource-bounded monitor implementations, achieved
by exploiting resource guarantees of synchronous language Lustre1. Said properties are sub-
sequently converted to Larva specifications, thus exporting resource bounded properties to a
wider audience of Java applications. Analogously, the framework Lola [27] achieves efficient
memory bounded monitoring of synchronous systems.

Finally, it is worth pointing out that the overhead imposed by the online monitor, however
small, may alter the underlying system’s behaviour [60, 25]. In other words, it is possible
that the system behaves differently had the computational time and memory consumed by the
monitor been available. This could lead to situations where the monitor slows the system down
in such a manner that it breaks a temporal property otherwise adhered to by the system had the
monitor not been present. Conversely, analogous situations could arise where the presence of
the monitor preserves properties which would have been broken had the monitor been absent.
In general, online runtime verification techniques do not only monitor system executions, but
in fact monitor system executions affected by the presence of the monitor. Simply put, by
observing systems we are altering their behaviour, implying a certain amount of uncertainty in
the system’s true behaviour. A theory has been developed [25], characterising a set of properties
written in a (subset of) duration calculus [17] which are speedup and slowdown invariant. In
other words, said properties remain valid even after a system has more/less resources available.

2.5 Conclusions
This chapter presented runtime verification, an alternate approach to software verification con-
cerned with verifying correctness of runtime traces. This approach favourably avoids the in-
tractability of exhaustive analysis, while offering elevated coverage guarantees. Nevertheless,
the field admits a set of non-trivial issues, requiring consideration during the design of a moni-
toring framework. These include the choice of formalism for the specification of requirements,
minimising overheads associated with the monitoring process, as well as issues with monitor in-
strumentation. More importantly, this chapter serves as an introduction to the following, where
we focus on the application of runtime verification techniques in a distributed setting.

1project website http://www-verimag.imag.fr/Synchrone,30

25

3. Runtime Verification In A Distributed
Setting

The following chapter explores the extension of runtime verification techniques to distributed
settings. More specifically, we recognise salient issues which enhance the difficulty in achieving
required monitoring functionality, and also propose solutions where possible. To this effect, we
identify a broad taxonomy of distributed monitoring approaches. Section 3.1 introduces the
problem, and is followed by section 3.2 which recognises distributed system characteristics
pertinent to the design of a monitoring framework. Section 3.3 defines an example scenario.
Section 3.4 motivates the broad taxonomy, from which the novel migrating monitor approach
is borne. Section 3.5 discusses difficulties with extracting temporal orderings on remote events.
Finally, section 3.6 concludes the chapter.

3.1 Introduction
As systems become more complex, monolithic architectures are becoming less common, and

distributed and component-based systems are becoming more mainstream. Furthermore, with
the rise of the internet and service-oriented architectures, a monolithic view of certain systems
is in certain situations not only undesirable, but also impossible [18]. At the same time, the
increased size of the systems and the additional complexity due to the distributed implementa-
tions, hamper their dependability, thus emphasizing the need for effective software verification
techniques tailored for distributed architectures. Moreover, the inherent concurrency and asyn-
chrony present in distributed systems imply elevated non-deterministic system behaviour [80],
thus significantly hampering the effectiveness of traditional approaches to software verification
used in monolithic settings. Hence, techniques involving the analysis of system traces become
more attractive, which get around non-determinism by letting the system choose the execution
path. The following chapter reviews and identifies the most salient issues wrt. the application
of runtime verification techniques in a distributed setting, culminating in a proposed broad tax-
onomy of distributed monitoring approaches. Moreover, we shall also present a novel approach
which is borne out of this taxonomy.

26

Chapter 3. Runtime Verification In A Distributed Setting

Runtime monitoring usually involves the instrumentation of additional code within the sys-
tem to signal relevant events, which are then processed by a central monitor to verify that certain
properties are not violated at runtime. As long as one verifies each of a distributed system’s com-
ponents independently, monitoring is no different than the above approach used for monolithic
architectures. However, when a property involves more than one subsystem simultaneously,
runtime verification becomes considerably more complex. This enhanced complexity is espe-
cially due to pertinent characteristics inherent to distributed architectures, discussed below.

3.2 Distributed System Characteristics
We consider distributed systems as a set of autonomous, concurrently executing sub-systems
communicating through message passing, as depicted in Fig. 3.1. Conversely, a distributed sys-
tem can be considered one whose components are partitioned across various environments. By
environment we refer to some computational space where sub-systems execute, and can differ
on physical location, operating system, hardware etc.. Nevertheless, we shall often use the term
environment and location interchangeably. Most internet-based and service-oriented systems,
peer-to-peer systems and Enterprise Service Bus architectures [18] are all instances of this set-
ting.

Figure 3.1: A general distributed system architecture

More precisely, a distributed system entails a set of n sub-systems and m channels. Each sub-
system denotes located computation, interacting through channels which serve as a communi-
cation medium. Similarly to monolithic systems, each sub-system’s execution is represented
through a sequence of states whose update is triggered by events. We assume communication
over channels to take an arbitrarily long (but finite) duration. This delay mirrors typical dis-
tributed settings which operate under restricted bandwidth limitations, which is considerably

27

Chapter 3. Runtime Verification In A Distributed Setting

slower than local interactions. On the other hand, no assumption is made on the message order-
ing, implying that the order of sent messages is not necessarily mirrored at the receiving end.
We adopt channels which are (i) synchronous (i.e., the sender receives an acknowledgement
from the receiver before proceeding), (ii) bidirectional (information can flow in both directions,
at different instances), and (iii) error-free, in that a sent message is always eventually received
(possibly after a number of retries).

We shall assume a general scenario whereby distributed systems operate absent access to
a global clock or shared memory. Instead, the system admits a set of local unsynchronised
clocks, with each sub-system admitting its local memory space. Moreover, it is impossible to
(i) precisely synchronise sub-systems’ clocks, and (ii) obtain a global snapshot of the system’s
state in a timely fashion [39]. The former is proven in [63], and is shown to be the result of
synchronising over an uncertain communication medium. Moreover, given that channel uncer-
tainty (including communication duration) cannot be completely resolved in a practical setting,
this implies a more general impossibility. The latter emerges from the voluminous information
transfer involved for such an operation, coupled with delays during channel communication.

The above restrictions are especially poignant to the design of a distributed monitoring frame-
work. Consider the lack of synchrony amongst remote clocks. This implies that it is generally
impossible for a monitoring framework to extract a total ordering on remote events, since we
cannot precisely relate remote timestamps assigned to events at differing locations. Instead, the
best we can do is extract a total ordering for each partition of local events, and a partial ordering
globally [58]. Section 3.5 promotes the use of causality in order to extract this partial global
order.

Although algorithms for the extraction of global state projections do exist (including [9]),
they are incompatible with our need for lightweight monitors (section 2.2). More specifically,
the voluminous nature of data transfer required for such operations dictates a high bandwidth
overhead on the underlying system. By extension, monitors operating in a distributed setting
are forced to operate without access to a global state. Predicates on the state have to also be
altered accordingly, by respecting state location. This point leads to a more general require-
ment; an efficient monitoring algorithm in a distributed setting is required to minimise remote
communication for monitoring purposes (as well as limiting consumption of memory and com-
putational time).

Moreover, we also consider subsystems admitting confidential information, which should not
be exposed globally or to other sub-systems. This issue is especially pertinent when handling
certain mission-critical components (such as an online bank, or a hospital’s medical record man-
agement module), as well as when a degree of competitiveness is prevalent amongst sub-systems
(including web-service compositions involving agents which provide competing products). In
general, it is the responsibility of a distributed runtime verification framework to respect infor-

28

Chapter 3. Runtime Verification In A Distributed Setting

mation locality, since failure to do so leads to data exposure. Data exposure can take the form
of

1. Exposure during remote communication across unsafe mediums, as well as

2. Exposure across non-privileged locations.

Finally, we consider the effect of the system’s topology wrt. to the distributed monitoring
effort. A distributed system can admit either a static or dynamic topology/architecture. The
former refers to systems whose contributing nodes are known at compile time, and remain
unchanged during computation. On the other hand, systems which admit dynamic architec-
tures admit configurations which evolve at runtime. Said dynamicity refers to the evolution of
(i) the number of contributing nodes, and/or (ii) the channel links between sub-systems. Dis-
tributed systems admitting a dynamic configuration have become more prevalent, and include
most login-based systems (since contributing users are coming and going at runtime), as well
as web services involving dynamic lookup (such as typical agent broker based scenarios). The
possibility of dynamic architectures enhances the difficulty of monitoring their behaviour at
runtime. More specifically, identifying which nodes participate in the monitoring of a sys-
tem property can often only be identified at runtime, since the system evolves in unpredictable
ways. It is this unpredictability which points to the need for a monitoring framework capable
of keeping up with the system’s evolution.

3.3 A Motivating Example

Figure 3.2: A Hospital Management System

Figure 3.2 depicts a typical distributed system, entailing a hospital management system run-
ning at the backend. The system is responsible for numerous activities, including appointment
scheduling, billing, help desk queries and most importantly, patient administration. Moreover,

29

Chapter 3. Runtime Verification In A Distributed Setting

the system admits an online front end, where both doctors and patients can log in for admin-
istrative purposes. Doctors have the capability to (i) register patients, (ii) view scheduled ap-
pointments and (iii) submit medical diagnoses, whereas patients can (i) book appointments,
(ii) submit queries and (iii) request the release of their medical record (containing the latest
diagnosis, past medical history etc). All associated confidential information is stored at the
backend, but can be periodically requested by doctors and/or patients if necessary. In general,
there exists a many-to-many relationship between patients and doctors, where one patient can
have more than one supervising doctor, and each doctor supervises numerous patients.

The above scenario shall serve as a running example throughout this dissertation. More
specifically, we shall focus on the runtime monitoring of (a subset of) the system’s patient
record management module. In general, this module admits mission-critical requirements, both
to ensure its correct operation in order to avoid the misplacement of medical records, as well
as to avoid leaking confidential information to unauthorised entities. To this effect, we are
particularly interested in verifying the protocol adhered to by the system in case of a patient’s
request for the release of her personal medical record, described below

1. The patient logs into the system.

2. A request is submitted (by the patient) for the release of her personal medical record.

3. The request is received at the backend.

4. The backend fetches the list of doctors enlisted as responsible for the patient’s care.

5. A request for the permission to release the record is submitted to each doctor.

6. If one or more doctors object to releasing the record, the patient request is denied. Con-
versely, all supervising doctors must consent to the patient’s request. If all doctors con-
sent, the record is released.

For security reasons, the system grants each patient at most one opportunity to release their
medical record from an online request. In other words, multiple requests are satisfied by at
most one response. This measure is in place to limit possible exposure of highly confidential
information. Any additional requests are manually handled outside the system.

The hospital management systems exhibits typical characteristics described in section 3.2.
Clearly, the system is distributed, since both the system’s contributing entities (backend, doc-
tors, patients) and the system’s memory space is partitioned into a set of distributed sub-systems.
Moreover, the notion of information confidentiality is of considerable importance. More specif-
ically, the backend admits sensitive medical records which should only be exposed to certain
entities, at appropriate moments i.e., to the patient and her supervising doctors. Data exposure
can take numerous forms; exposure of medical records across unreliable communication medi-
ums (in this case, the internet), as well as exposure across unauthorised entities (for instance

30

Chapter 3. Runtime Verification In A Distributed Setting

by incorrectly sending a patient’s record to another unrelated patient). Given that the system
front end happens to be online, this implies that the system globally operates within restricted
bandwidth limitations. Finally, the system admits a dynamic topology, since both patients and
doctors are logging in and out of the system at runtime, in unpredictable ways. Moreover, deter-
mining which entities participate during the handling patient requests is data dependant, since
the choice of doctors which contribute to satisfying a particular request can only be known at
runtime.

System correctness wrt. the handling of medical records and patient requests is of critical
importance. As we shall see in more detail in chapter 6, required correctness shall be formally
defined through properties on the system’s execution. These properties are enlisted below

• No patient is to be given another patient’s record as a response — This first property
prohibits the exposure of a patient’s record to another (unintended or otherwise).

• Multiple patient requests should be responded by at most one medical record release —
In other words, the second property ensures that the hospital management’s policy on
singleton releases of medical records are adhered to.

• The release of a patient’s record must be approved by supervising doctors — This final
property encapsulates our verification of the described protocol for the handling of patient
requests.

Validity of the above three properties offers elevated guarantees of the system’s trustworthi-
ness, which is why we shall strive to provide necessary assurances. However this is a non-trivial
task for reasons outlined in section 3.2. The following section shall hence investigate different
approaches to the monitoring of the above properties.

3.4 Distributed Monitoring
Section 3.2 motivated the enhanced difficulty of applying runtime verification in a distributed
setting (which is a consequence of distributed system characteristics). Presently, there exist
numerous architectures and tools addressing the runtime monitoring of distributing systems, to
varying degrees of success. We argue in favour of their broad classification across two main
categories; referred to as orchestration-based and choreography-based approaches.

In orchestration-based approaches, verification responsibility lies firmly with a central mon-
itor overhearing all information pertinent to the system’s global correctness, as seen in figure
3.3. Although this approach works seamlessly on monolithic systems, its application is not as
straightforward in a distributed environment. In the case where the monitored property con-
cerns only public communication between subsystems, this approach works well by construct-
ing a monitor overhearing all such communication, modifying its state accordingly. However,

31

Chapter 3. Runtime Verification In A Distributed Setting

when the system property involves local subsystem information, this approach is less than ideal.
Firstly, communication of local confidential information across remote locations leads to data
exposure. Furthermore, the volume of system event information required for centralised moni-
toring is substantial, often resulting in unreasonable bandwidth overhead. Finally, orchestrated
approaches pose a security risk by presenting a central point of attack, in the form of the moni-
tor, through which sensitive information can be tapped.

Figure 3.3: An orchestration-based approach.

Choreography-based monitoring takes a more dataflow dependent approach, whereby subsys-
tem events drive the choice of monitoring location; thus often leading to a distribution of moni-
toring functionality throughout the distributed system as seen in figures 3.4 and 3.5. In general,
choreography-based monitoring is more advantageous as opposed to orchestrated approaches.
By pushing verification locally, a choreographed monitoring approach minimises data expo-
sure and communication overhead by eliminating the need to report back to a central monitor.
This does not stop localised monitors from communicating over the communication medium,
however the volume of information for monitor synchronisation is usually substantially less.
Finally, removing the central monitor eradicates the security risk of providing a central attack
point. Nevertheless, applying choreography usually requires more complex instrumentation,
and is only applicable if all subsystems allow for the installation of local monitoring code. In
conclusion, although choreographed approaches are usually better, they should only be used in
scenarios where it is clearly advantageous to do so.

The choice of specification language is another crucial issue in a distributed setting. Apart
from issues such as the language expressivity, the most salient issue particularly relevant to
distributed systems is the dichotomy of static vs dynamic properties hinted at in section 2.4.1.
Static properties refer to properties whose specification is entirely known at compile time, and
remains unchanged throughout system execution. The set of events of interest to the verifica-
tion of static properties hence also remains unchanged, which points to the suitability of a static
instrumentation strategy. However, static properties are not sufficiently expressive in case of
dynamic architectures (section 3.2). Instead, we turn to the class of dynamic properties i.e.,
properties whose abstract specification is fully instantiated at runtime through learnt informa-

32

Chapter 3. Runtime Verification In A Distributed Setting

tion (sometimes referred to as contextual properties), and/or properties completely learnt during
system execution. Although this motivated dichotomy is not bound to distributed systems, dy-
namic properties are particularly pertinent to dynamic configurations by allowing us to quantify
over evolving configurations. One finds dynamic properties, for instance, in security-related
intrusion detection scenarios [29], where suspicious user behaviour can only be learnt at run-
time after observing the system to learn what typical behaviour looks like. The third property
presented in section 3.3 can also be considered dynamic, since the choice of contributing doc-
tor to monitor depends on (i) the patient, and (ii) supervision information (i.e., which doctor is
responsible for which patient) stored at the backend. Clearly, although dynamic properties are
more expressive than their static counterparts, the necessary machinery for dynamic instrumen-
tation (section 2.4.1) is considerably more complex, and once more should only be considered
when necessary.

These criteria lead to the possibility of four distinct instrumentation strategies for distributed
monitoring, namely (i) static orchestration, (ii) static choreography, (iii) dynamic orchestration
and (iv) dynamic choreography. The choice of approach often depends on necessity i.e., de-
pending on both underlying system characteristics and its properties worth verifying. We next
consider each approach.

3.4.1 Static Orchestration
Conceptually the simplest approach, static orchestration involves employing a central monitor
overhearing information over the communication medium, and verifying a set of pre-determined
properties. This approach is evidenced in [10], where web service compositions implemented in
BPEL [69] are monitored in orchestrated fashion. Advantages with this approach include (i) its
simplistic nature, both in concept and in application, and (ii) its applicability when monitoring
properties dealing with public information over the communication medium. However, static
orchestration admits prevalent issues discussed above. Namely, static orchestration may lead
to data exposure, poses a security risk, could also potentially result in unreasonable bandwidth
overhead and is also incapable of handling dynamic properties (hence, no dynamic configura-
tions).

Although a statically orchestrated approach is not applicable to the hospital management
scenario in section 3.3 due to its dynamic architecture, we identify other applicable settings.
Consider the example system presented in [10], entailing a virtual shop which interacts with an
online bank offering its services through a web service. The shop periodically makes a request
for a transaction on the client’s behalf, which is acknowledged by the bank upon completion.
Hence, we would like to verify the property that each transaction request is given a response
within a given time frame. Given that both the shop and the bank components are known a pri-
ori (and remains unchanged), this system admits a static configuration. A statically orchestrated
approach suffices in the case of the above property, since a central monitor can pair transaction

33

Chapter 3. Runtime Verification In A Distributed Setting

requests with bank acknowledgements. Nevertheless, the requirement of an overhearing moni-
tor exemplifies our understanding of data exposure, since sensitive bank information is exposed
to a remote central location.

3.4.2 Static Choreography
Static choreography involves breaking down specifications into parts which can be monitored
locally to subsystems, occasionally synchronising between monitors only when necessary, as
seen in Fig. 3.4.

Figure 3.4: A static choreography-based approach.

Current static choreograph based approaches include [80, 77, 57, 64, 88]. By monitoring
locally, statically choreographed monitors can avoid data exposure. Note that monitor inter-
actions for synchronisation purposes do not denote exposure. Moreover, localised monitors
reduce bandwidth overheads by eliminating the need to transfer event information to the central
monitor. Finally, we reduce security risks related to central attack points.

On the other hand, given that monitor distribution occurs once a priori to system execution,
this implies that a static choreography based approach is not resilient to dynamic configurations.
More specifically, all new nodes added after the start of execution remain unmonitored. Even
worse, nodes present at the start of computation, but which terminate at some point also halt
their local monitoring effort, possibly invalidating the global monitoring framework as a result.
By extension, statically choreographed monitors also cannot handle evolving system properties,
or properties learnt at runtime.

Consider the hospital management scenario, and its related properties (section 3.3). Given
that both patients and doctors are logging in and out of the system at runtime, it is unclear
where to place localised monitors. Moreover, patient requests arrive at random, and verifying
for instance the third property (no record is released unless approved by supervising doctors) is

34

Chapter 3. Runtime Verification In A Distributed Setting

dependent on the system’s current state (i.e., which doctors are currently marked as supervising
the patient). This makes it very hard to instrument an appropriate monitoring framework a
priori, since knowledge of both the patient request (happening at the dynamic patient node) and
the respective doctors whose approval we are required to verify can only be learnt at runtime.
On the other hand, we can feasibly monitor the virtual shop scenario presented in the previous
section. We can for instance adopt two local monitors — one at the shop and another at the
bank — such that as soon as a transaction request is monitored at the shop location, the former
monitor signals to the latter to check for a corresponding acknowledgement. If it arrives within
the specified time frame, the property is satisfied, else it is violated. Note that by localising
monitors we have both reduced associated overheads, as well as avoiding exposure of sensitive
transaction information to another location.

3.4.3 Dynamic Orchestration
Dynamic orchestration-based approaches involve the adoption of a central monitor remotely
observing sub-system behaviour, which however allows for the monitoring of dynamic proper-
ties too; possibly by adopting a dynamic instrumentation technique (section 2.4.1). An instance
of dynamic orchestration is seen in [1], involving the centralised monitoring of web services
against BPMN work flow specifications [16, 4]. Moreover, this approach allows for the deploy-
ment of the verification of contracts (representing system properties) on-the-fly, discovered or
made known at runtime. However, the approach in [1] exemplifies one of the main disadvan-
tages with dynamic orchestration; since subsystem events which contracts depend on are not
known beforehand, subsystems typically send to the central monitor all information which may
potentially be required during the verification of contracts instantiated at runtime, leading to
significant inefficiencies. In other words, not only is substantial volumes of information sent
to the monitor (leading to bandwidth overheads), but this overhead is often unnecessary, since
only a subset of sent information shall be eventually referred to during monitoring.

In general, the main advantage of dynamic orchestration over its static counterpart is the ca-
pability to handle dynamic properties. For instance, using a dynamically orchestrated approach
we can monitor the properties described in section 3.3. One could install a central monitor
which instantiates the first property on each patient request, and checks that the medical record
given as a response (if at all) by the backend always belongs to the same patient. However,
although the above strategy works, it leads to data exposure, since medical records are sent
remotely to the central monitor. One could easily anticipate that hospital management would
disapprove of the transfer of their records. In conclusion, dynamic orchestration still suffer from
the same drawbacks (bandwidth overhead, data exposure etc.) of more traditional orchestrated
approaches.

35

Chapter 3. Runtime Verification In A Distributed Setting

3.4.4 Dynamic Choreography
Dynamic properties are the key to monitoring systems whose architecture evolves during exe-
cution. Through information learnt at runtime, we can instantiate and verify new properties
accordingly. This can be rather easily achieved in an orchestrated setting, since necessary
monitoring occurs at one central location. However, achieving the same machinery through
a choreographed approach is considerably more challenging. The major problem with dynamic
choreography is that property decomposition and redistribution must occur at runtime. To the
best of our knowledge, presently no existing monitoring framework falls in this category.

To this effect, we propose the study of dynamic choreography through the use of a migrating
monitor approach i.e., employing monitors running locally to subsystems where confidential
information lies, before physically migrating to other locations when their behaviour becomes
pertinent to the system’s global correctness, as depicted in Fig. 3.5.

Figure 3.5: A migrating monitor approach.

Note that migrating monitors describe a choreographed approach, since (i) verification occurs
locally, and (ii) monitor placement is data driven. However, note that by adopting migration as
a framework primitive, we are also able to redirect monitoring effort at runtime as necessary.
In other words, we can choose which locations are worth verifying based on information ob-
tained at runtime. This leads to a monitoring approach which is dynamically re-distributable
on the fly, without the need for recompilation. By extension, new locations are also at the reach
of the monitoring framework. In effect, we believe migrating monitors to be tolerant to dy-
namic architectures, while admitting advantages pertaining to choreography-based approaches
i.e., minimising bandwidth overhead and avoiding data exposure.

Consider once more the third property of the hospital management scenario. This property
can be easily verified through a migrating monitor approach. On each patient request, a mon-
itor situated at the backend retrieves necessary doctor-patient dependencies. This information
is used to subsequently redirect a migrating monitor to each doctor responsible for that patient.

36

Chapter 3. Runtime Verification In A Distributed Setting

Each monitor listens for an event denoting a doctor’s disapproval; if it occurs (at any doctor
location) this monitor synchronises with the other monitor at the backend, in order to listen for
a subsequent record release event. If this event does indeed occur this implies that the property
has been broken, since the record would have been released even after a doctor’s order to the
contrary. Note that through this instrumentation strategy, all necessary verification is done lo-
cally, thus avoiding exposure.

We argue that migrating monitors are best implemented through a property agnostic approach
(section 2.4.1), such that each sub-system exposes a local alphabet a events which can be later
analysed by monitors. Through this approach, we can also verify properties learnt at runtime.
However, necessary instrumentation dynamicity can also be seen as a disadvantage of migrating
monitors, in that nodes need to be willing to install monitors known only at runtime. This point
leads to a question of trust; system administrators are to trust external monitors which (i) mi-
grate to and from the system as necessary, while (ii) having access to confidential information,
as well as (iii) potentially altering the underlying system’s execution.

These requirements may clearly be a step too far in certain scenarios. For instance, one might
question the integrity of the monitors themselves i.e., who is to say that monitors are not export-
ing local information to external entities? Additionally, there are no guarantees that monitors
(possibly coming from untrustworthy parties) do not import and execute malicious code, dam-
aging the system in the process. To get around this problem, one could require monitors to be
encrypted in such a way that each location can only view the monitoring effort intended for that
subsystem. Another interesting approach could involve proof-carrying code, in order to provide
assurances of the monitor’s trustworthiness. Finally, another issue with migrating monitors is
the more involving machinery required for their implementation; dynamic instrumentation cou-
pled with code mobility can be expensive. We shall return to both issues in chapter 7.

In conclusion, migrating monitors offer an alternate approach to distributed monitoring, whose
applicability is most rewarding when facing (i) strong information confidentiality restrictions
(ii) in a highly dynamic environment. Conversely, applying a migrating monitor approach
absent either precondition would result in an unnecessarily complex monitor instrumentation
approach.

3.5 Extracting A Temporal Order on Remote Events
Section 3.2 described our interest in distributed systems which lack a global clock (or equiva-
lently, local synchronised clocks). This design choice mirrors real-life distributed system im-
plementations, where perfect synchronisation is unattainable. The work presented by Lamport
[58] showed that, given this setting, the best we can do with is extract a partial order on events
across locations. To this effect, he formalised the notion of the happened-before relation, ex-
ploiting interactions amongst distributed sub-systems to define a temporal relationship amongst

37

Chapter 3. Runtime Verification In A Distributed Setting

remote events. More precisely, this relation first states that local events are ordered totally wrt.
their local timestamp. Moreover, a send event at one location and the corresponding receive
event at another (location) implies that the former must have happened before the latter. Fi-
nally, the happened-before relation is transitive, in that if event e1 happened before e2, with e2

happening before e3, then e1 happened before e3.

Definition 3.5.1. (Happened-Before Relation) The happened-before relation, denoted by ≤, is
defined as the smallest relation that satisfies the following properties

1. If ei happened before e j locally, then ei ≤ e j.

2. If ek
i is a send event at location k, with el

j being the corresponding receive event at l, then
ek

i ≤ el
j.

3. If ei ≤ e j and e j ≤ ek then ei ≤ ek.

In general, although distributed systems admit an inherent total ordering on events, the best
we can do is infer a partial order using runtime monitors, such as that implied by the happened-
before relation. This view can be modelled through a space-time diagram, exemplified in
Fig. 3.6. Moreover, given that a sub-system can only affect another by interacting with it,
this happened-before relation represents the notion of a causal ordering on events [58, 35]. In-
formally, given any two events pertaining to a happened-before relation, the former is said to
possibly be the cause of the latter (or they are unrelated). Conversely, the latter is (possibly) the
effect of the former. Numerous structures have been attempted in the literature which help dur-
ing inference of the happened-before relation, including Lamport Timestamps [58] and Vector
Clocks [35]. Both adopt the use of simple counters (acting as a logical clock) in order to keep
track of logical orderings on events.

Irrespective of the monitoring algorithm adopted, as designers of a distributed monitoring
framework it is our responsibility to extract (i) the (total) temporal order of events at a lo-
cal level, and (ii) as many temporal relationships between remote events as possible. From a
monitoring perspective, defining machinery which implements Def n 3.5.1 involves installing a
monitor at both ends of system interactions, listening to communication as it occurs and record-
ing causal orderings as necessary (possibly through the use of logical clocks). This approach
is exemplified in [80]. However, we believe this technique is only suitable for statically chore-
ographed approaches which install fixed monitors at each location a priori. What happens with
newly added locations? Clearly, given that no monitor is present at these new locations, we
cannot infer any order on their events. In general, this implies that extracting a temporal order
through system interactions is not ideal for systems admitting dynamic configurations, which
periodically require re-distribution.

We hence recognise the need to extract temporal relationships amongst remote events in a dif-
ferent way. This is presented by the monitored-before relation; an adaptation of the happened-
before relation which extracts a partial order by instead exploiting monitor execution. More

38

Chapter 3. Runtime Verification In A Distributed Setting

specifically, we propose the exploitation of the migration act’s sequential nature; events mon-
itored by the system at the previous location must have happened before those analysed at the
new location (after migration). In case where migration is not necessary, we can also exploit
monitor synchronisation over channels to infer a temporal succession of events. Once more,
this relation assumes a total ordering on events per location, extracted through the local clock.
Hence, monitoring events locally mirrors this ordering.

Definition 3.5.2. (Monitored-Before Relation) The monitored-before relation, denoted by ≤M,
is defined as the smallest relation that satisfies the following properties

1. If ei is locally observed before e j, then ei ≤M e j.

2. If a monitor observes ek
i at k, subsequently migrates to/synchronises with a monitor at l,

which later observes el
j, then ek

i ≤M el
j.

3. If ei ≤M e j and e j ≤M ek then ei ≤M ek.

Admittedly, it is possible for the monitored-before relation to be unfruitful, in that we are
dependent on the monitor keeping up with the system’s execution. In other words, it is conceiv-
able that the monitor is too slow to extract necessary temporal orderings, since by the time the
monitor migrates/synchronises, other pertinent events would have already happened. However,
what we lose in precision we gain in generality; whereas ≤ depends on the underlying system
execution presented to the monitor — which is (mostly) applicable to a statically choreographed
approach — through ≤M responsibility of extracting a temporal ordering falls on the monitor’s
execution. By extension, we can now define various instrumentation approaches to extract re-
quired information. We shall define an example mechanism which implements Def n 3.5.2 in
chapter 5.

Consider the scenario depicted in Fig. 3.6, describing event sequences at locations k and l,
such that a monitor eventually migrates from k to l taking an arbitrary duration (depicted by an
arrow).

Clearly, although ek
2 precedes el

3, the temporal ordering inferred by migration does not cap-
ture this relation. The area under the arrow denotes the imprecision of Def n 3.5.2; any events
which occur within that timespan are ignored. One can strive to minimise this duration by
employing faster communication mediums/optimising monitors, however this issue cannot be
completely factored out. Even worse, one cannot infer its precise duration due to asynchrony
amongst remote clocks. Consider for instance the monitoring strategy for dynamic choreogra-
phy described in the previous section. Clearly, by the time the monitor migrates to the doctor’s
location it might have been too late, since the doctor would have already rejected the patient’s
request without the monitor knowing.

39

Chapter 3. Runtime Verification In A Distributed Setting

Figure 3.6: An example space-time diagram

In conclusion, due example scenarios such as that depicted in Fig. 3.6, this implies that we
shall at most aim for a sound monitoring framework (i.e., a framework where all reported vio-
lations are true). On the other hand, we shall not strive for completeness — we recognise that
certain violations will go uncaught. We believe this to be an inherent limitation of distributed
architectures, and is an issue we shall not study further throughout this dissertation.

3.6 Conclusions
This chapter motivated issues relevant to the design of a distributed runtime verification frame-
work. More specifically, we saw the increased complexities of installing a monitoring frame-
work in a distributed setting, involving issues such as information exposure, bandwidth over-
heads and configuration dynamicity. This lead to the definition of a broad taxonomy on dis-
tributed monitoring approaches, identifying scenarios where each approach is best applied.
Moreover, we introduced the novel migrating monitor approach, employing monitors which
monitor locally, and migrate remotely when necessary. This chapter also described the diffi-
culty in achieving a temporal ordering on remote events. This lead us to the definition of an
approach which infers temporal orderings through monitor execution. We shall return to the
issues and techniques introduced above in chapter 5, where we propose a general distributed
monitoring framework.

40

4. The π-calculus

The following chapter presents an overview of the π-calculus; a formalism concerned with
the description of concurrent processes communicating through message passing techniques.
This language is particularly appealing due to its capability to describe evolving configurations.
Section 4.1 motivates the use of the π-calculus within the context of distributed monitoring
scenarios. Section 4.2 presents an overview of the calculus’ syntax, and defines an action se-
mantics. This is followed by sections 4.3 and 4.4, which present notions of structural and
behavioural equivalence for the language. Finally, section 4.5 concludes the chapter.

4.1 Motivation For π
We recognise the need to supplement our interest in distributed monitoring with a more for-

mal investigation. In turn, this will allow us to precisely study the scenario’s capabilities, as
well as its limitations. Our thoughts hence turn to the choice of formalism for the description
of required scenarios — a crucial choice since it shall dictate what can be described during our
formal analysis. To the best of our knowledge, no formalism exists which explicitly formalises
notions of distributed monitoring described in chapter 3. We therefore aim to to extend an ex-
isting formalism in order to satisfy our requirements. Hence, our immediate task becomes that
of choosing an appropriate formalism which serves as a suitable basis.

The choice of some process calculus is immediately appealing. Process calculi represent
the class of formalisms concerned with the modelling of concurrency and communication, and
are frequently used for modelling distributed systems. Initial attempts include calculi such as
CSP [49] and CCS [66]. Both languages are very good at structurally describing concurrent pro-
cesses, which communicate through channels (i.e., via message passing [28] techniques). These
channel links serve as a description of the system’s network topology, and remains unchanged
during computation (referred to as a static topology). Although successful, both approaches are
however unsuitable for our requirements. Their main limitation lies with their static communi-
cation topology, unsuitable for modelling modern systems which are highly dynamic, especially
with the proliferation of the internet. Dynamic systems involve systems which can grow, shrink

41

Chapter 4. The π-calculus

and move about during execution [67]. Hence, system dynamicity can take two forms; (i) in one
form, it is the channel links which move in a space of concurrent processes, such that it is the
communication topology which evolves; (ii) another form refers to process mobility, describing
the capability of processes to move within some computational space.

To this effect, we turn to the π-calculus [76, 46, 67], a formalism used for describing commu-
nicating mobile systems. The π-calculus was developed as an extension to CCS, enhancing its
capabilities with the ability to describe systems whose structure evolves during execution (hence
the term mobile). The core calculus admits two entities; processes and channels. Process repre-
sent computational entities, of which a finite number execute in parallel within a given system.
On the other hand, channels represent a communication link between processes. The crux of the
approach lies with the treatment of channels as names; used both during communication and as
data that processes exchange. This implies that a channel name received during one interaction
can be actively used as a communication medium in another. By receiving channel informa-
tion, a process acquires the capability to interact with other processes previously unknown to it.
Hence, a system’s structure wrt. its communication links can evolve over time, in unforeseeable
ways.

We believe the choice of the π-calculus to be a natural one, due to its inherent expressivity as
well its potential for extension, as argued in [76]. Moreover, the same text also proves that the
π-calculus is at least as expressive as the λ-calculus [11], taking interaction as its primitive. This
implies that we are dealing with a universal model of computation — our job is to subsequently
render explicit required distributed monitoring concepts, rather than increase the calculus’ ex-
pressivity. The following chapter serves as necessary background for an understanding of the
core π-calculus.

4.2 The Calculus
The following section presents a (i) first-order, (ii) synchronous, and (iii) polyadic π-calculus

variant. By first-order we refer to the capability of processes to pass on channel names and other
basic data types during communication (as opposed to higher-order calculi [76]). Synchronous
communication requires the sender to wait for acknowledgement of receipt at the receiving
end before continuing execution. Finally, a polyadic π-calculus allows for the transfer of value
tuples over channels, as opposed to monadic variants which permit transfer of one value at a
time.

4.2.1 Syntax
The syntax presupposes denumerable set of names c, n,m ∈ Chans, variables x, y, z ∈ Vars
and basic values a, b ∈ BV. Channel names can be thought of as references to communication
links. Moreover, knowledge of said names can be transferred between processes, and referred

42

Chapter 4. The π-calculus

to during further interactions. Variables act as information placeholders, whose content is up-
dated throughout computation. These variables can either contain (i) a channel name or (ii) a
basic value. The set of basic values BV refers to an unspecified collection of strings, integers,
booleans etc. and represents possible information transfer not involving channel information.
We shall consider identifiers u, v ∈ Idents = Chans∪Vars i.e., ranging over channels and vari-
ables. Lists of identifiers v1, . . . , vn are denoted as v̄, with lists of variables analogously written
as x̄. Processes P,Q ∈ Proc encode concurrent computation in the π-calculus; their syntax is
inductively defined in Fig. 4.1.

P,Q ::= stop | u!v̄.P | u?x̄.P | P ‖ Q | if u=v then P else Q | ∗P | new c.P

Figure 4.1: The π-calculus

We informally interpret each process as follows.

• Process stop is a terminal process, and does nothing.

• Process u!v̄.P outputs tuple v̄ on u, and proceeds as dictated by P (on completion of
transfer). The use of identifier u implies that output can either occur directly by referring
to a channel name, or indirectly through a variable containing a channel reference.

• u?x̄.P denotes a process which accepts a tuple v̄ on u, and substitutes values vi ∈ v̄ for
each instance of xi ∈ x̄ in P. Computation proceeds as dictated by the resulting process
(after substitution). Note that tuples v̄ and x̄ are required to admit the same arity, in order
for the input action to make sense.

• Process P ‖ Q composes processes P, Q in parallel. Both P and Q are taken to execute
concurrently, occasionally communicating through some shared name.

• if u = v then P else Q is the matching operator, and acts as a test on the identifier tu-
ples. The composite process subsequently decides on how to proceed depending on the
outcome of the test, thus operating as P if the test succeeds, or as Q otherwise.

• ∗P defines recursive processes, and loosely behaves as unbounded number of copies of P
composed in parallel. Hence, this operator is crucial when describing infinite computa-
tions.

• new c.P acts as a scoping mechanism for channel names, such that knowledge of c is
restricted to P. Conversely, P is s.t.b. the scope of c. Channel c can hence be internally
used for communication within P, but is unknown to outside processes.

43

Chapter 4. The π-calculus

We shall refer to processes u!〈〉.P, u?〈〉.P when channel communication occurs for synchro-
nisation purposes i.e., no information is passed over the channels. The π-calculus derives its
strength for describing evolving configurations from its treatment of channels as data. More
specifically, by allowing for the transfer of channel names, their scope can evolve during exe-
cution. In other words, knowledge of name c can be extruded to alternate processes at runtime.
Through this newly acquired information, these processes can now interact with other entities
previously unaware of each other’s presence. In general, knowledge of c is received as part of
a variable tuple (c = vi) ∈ v̄, and is eventually used during output xi!v̄.P or input xi?ȳ.P, by
substituting c for xi.

Binders

Variables in the π-calculus can be either free or bound in the standard manner. Variable instanti-
ation through binding is necessary in order for terms to make sense. Input operator u?x̄.P acts as
a variable binder, where variables xi ∈ x̄ are s.t.b. bound in P. On the other hand, free variables
describe a system’s capability for action; for P to send x, to send via the name referred to by x,
or to receive via x it must be the case that x is free [76]. All variables which are not bound in
a term are s.t.b. free. We shall use notation fv(P) to denote the set of free variables in P, and
bv(P) to denote those which are bound.

Example 1. Consider term P1 , (c1?(x1, x2).x3!(x1, x2).stop) ‖ new c2.(x4!c2.stop). The set
of free and bound variables work out in this case to

fv(P1) = {x3, x4}

bv(P1) = {x1, x2}

�

Given the finite description of P, it can be proven by structural induction that fv(P) and bv(P)
are finite [76].

Definition 4.2.1. (Closed term) A closed term is defined as a process P with no free variables
i.e., fv(P) = ∅. Intuitively this implies that a closed term is a process which does not need any
of its variables to be bound in order to obtain meaning.

The π-calculus also makes use of name binders, with new c.P implying that name c is bound
in P. Name binding is used throughout the calculus to specify channel scope, such that if c is
known to P then this process can make use of the channel to communicate. Moreover, processes
may eventually be bound to additional names during execution by scope extrusion and/or the
creation of new channels. Like variables, channels which are not bound in a name are s.t.b. free.
We use notation fn(P), bn(P) to denote the set of free and bound names in P. Therefore fn(P1)
and bn(P1) work out to

fn(P1) = {c1}

44

Chapter 4. The π-calculus

bn(P1) = {c2}

respectively.

Substitution

A consequence of variable binders is the notion of substitution, written

P{v/x}

to denote that identifier v is substituted for free instances of variable x in P. This notation is
extended to tuples, written P{v̄/̄x}, representing a sequence of operations P{vi/xi} for each (vi, xi)
pair in (v̄, x̄). Hence, substitution on tuples only makes sense if both the identifier and vari-
able tuples are of the same arity. Intuitively, substitution is necessary to assign a valuation to
a variable placeholder in P; its use is apparent when passing on received information during
input operation ? to the residual system (after communication). Note that in order for S {v/x}
to be well-defined, v must not be captured by any of the binding constructs ?, or new. If this
is not the case, we resolve the clash by renaming the capturing variable’s binding scope to a
fresh variable, i.e., one which is neither free nor bound in P. Variable renaming is performed
by substituting a free variable name with another.

Example 2. Consider process P2 , c?〈x1, x2〉.x1!〈x2〉.stop which receives tuple 〈x1, x2〉 on
c, and subsequently sends x2 on x1 (thus assuming x1 is substituted by a channel name). Now
consider placing P3 , c!〈d, 1〉.stop in parallel with P2 i.e., P2 ‖ P3; communication can now
occur over c. Process P2 hence substitutes tuple 〈d, 1〉 for 〈x1, x2〉 i.e., (x1!〈x2〉.stop){〈d, 1〉/〈x1, x2〉},
which evaluates to d!〈1〉.stop. Hence, through substitution we successfully modeled the infor-
mation transfer of 〈d, 1〉 from P3 to P2. �

We use notation Pσ to refer to substitution in its most general form; see Def n 4.2.2. Hence,
previous notation P{v/x}, P{v̄/̄x} are instances of Pσ. Function σ :: Vars → Idents is defined
as a partial function from variables to identifiers, mapping variables to specific values. Note
that the definition below assumes renaming of bound variables in case of unintended variable
capture. Moreover, overloaded notation vσ on identifiers returns v when v < dom(σ), and
σ(v) otherwise. This notation is extended to identifier lists. Finally, operator S E R denotes
domain co-restriction [82] of relation R to elements not in set S i.e., if R :: X ↔ Y, S :: X then
S E R , {x : X, y : Y | x < S ∧ (x, y) ∈ R • (x, y)}.

Definition 4.2.2. (Substitution Pσ) We define substitution of σ on P ∈ Proc, written Pσ, as
follows

45

Chapter 4. The π-calculus

Pσ ,

stop P = stop
((P1σ) ‖ (P2σ)) P = (P1 ‖ P2)
(uσ)!(v̄σ).(P1σ) P = u!v̄.P1

(uσ)?x̄.(P1σ
′) P = u?x̄.P1 ∧ (σ′ = x̄ E σ)

P = if (uσ)= (vσ) then (P1σ) else (P2σ) P = if u=v then P1 else P2

∗(P1σ) P = ∗P1

new c.(P1σ
′) P = new c.P1 ∧ (σ′ = {c} E σ)

Note that the result of substitution may not always be a well defined term — we may for
instance substitute a basic value for a variable which is to be used as a channel. However, we
shall avoid considering such scenarios throughout the text. The interested reader is pointed to
[76, 47] for a discussion of type systems which help in disallowing such scenarios.

α-Equivalence

Variable renaming through substitution gives us a notion of α-equivalence for π-calculus terms.

Definition 4.2.3. (α-equivalence) Two systems P1,P2 are said to be α equivalent, written P1 ≡α

P2, if we can obtain P2 from P1 in a finite number of variable renaming operations, and vice
versa.

In other words, two systems are deemed α equivalent if they are the same, except in their use
of bound variables [46]. Below are a few examples of α-equivalent systems.

new c.c!1.stop ≡α new d.d!1.stop
new c.(c!1.stop ‖ c?x.d!x.stop) ≡α new e.(e!1.stop ‖ e?x.d!x.stop)
new c.(c!1.stop ‖ c?x.d!x.stop) ≡α new e.(e!1.stop ‖ e?y.d!y.stop)

This preliminary notion of equality makes sense, since the name of variable placeholders
should not affect the process’ behaviour. Sections 4.3 and 4.4 provide more refined notions of
equality, pairing processes on notions of structural equivalence, and finally a notion of equality
based on exhibited behaviour.

Contexts

We shall often be interested in considering π-calculus terms as part of some larger environment,
also known as a context. As we shall see in section 4.2.2, reasoning about processes-in-context
give us the most profound understanding of their operation, by also considering their interaction
with the external surroundings. A context is informally considered a ‘process with a hole’ of
the form P ‖ , where can be replaced with any valid process. Moreover, although we are
interested in reasoning about processes when running in parallel with other entities, we also
include an additional context new c. for coinductive reasons [76, 67] — more below. The
property of contextuality serves as a means for formally reasoning about contexts (Def n 4.2.4).

46

Chapter 4. The π-calculus

Definition 4.2.4. (contextual relation) A relation R :: Proc ↔ Proc is s.t.b. contextual if it is
preserved by operators ‖ and new, hence adhering to the following two properties:

• (P1 R P2) ⇒ (((P1 ‖ Q) R (P2 ‖ Q)) ∧ ((Q ‖ P1) R (Q ‖ P2)))
• (P1 R P2) ⇒ (new c.P1 R new c.P2)

A relation is s.t.b. contextual if it is preserved by contexts. Contextuality is either included
as part of a relation’s definition, or subsequently proven as a property.

4.2.2 Action Semantics
The following section defines an action semantics for the π-calculus [47, 76, 67]. This choice
allows us to obtain a more general view of process behaviour, describing process computation
both internally as well as when placed within a larger computational environment (i.e., its
context) [47]. In turn, this allows for the compositional analysis of process behaviour, allowing
us to consider a process as the sum of its constituent parts’ execution. We model this view
of process behaviour through a Labelled Transition System (LTS), presented in Def n 4.2.5,
describing a process’ capability for action at each step in its computation.

Definition 4.2.5. (LTS) A labelled transition system is defined as a triple (S, Act,
a
−→) such that

• A set of states/configurations S;

• A set of action labels Act;

• A next state transition relation
α
−→ for each α ∈ Act.

Given an LTS representation for a π-calculus term, its states refer to intermediate configu-
rations (i.e., also processes) adopted by the term during its execution. The set of action labels
represent the process’ capabilities to send or receive messages from its external environment,
as well as the capability for internal computation. We shall henceforth use transition P

α
−→ Q to

specify that process P evolves to residual Q, affecting action α in the process. More specifically,
processes compute by performing one of three transitions;

• P
c?d̄
−−→ Q; the ability of process P to receive tuple d̄ on c, evolving to residual process Q

in the process.

• P
(b̄)c!d̄
−−−−→ Q; the capability of P to transmit tuple d̄ on c, afterwards evolving to Q.

Moreover, this judgement encodes the ability of P to export knowledge of bound names b̄
during channel output, such that b̄ ⊆ d̄ and c < b̄. In other words, we restrict the exporting
of names to those which are part of the transferred tuple in order to avoid unintended
capture of free names.

• P
τ
−→ Q; denoting an internal action executed by P, evolving to Q in the process.

47

Chapter 4. The π-calculus

The use of τ describes a silent action performed internally by subcomponents in P. We shall
therefore also combine the first two judgements to extract τ, in order to describe internal com-
munication within P.

Figure 4.2 presents the calculus’ transition rules, defined over closed terms i.e., fv(P) = ∅.
Through these rules we are able to describe process behaviour by extracting its LTS represen-
tation. Crucially, by adopting an LTS view (of process behaviour) we also obtain standard
coinductive equational reasoning through a notion of bisimilarity [67, 75, 47, 76] (section 4.4).

Notation 4.1. Overloaded notation fn(α) and bn(α) is taken to represent the set of free names
and bound names in action α. If α is an input label, then the set of bound names is empty.
However, if α is an output label of the form (b̄)αo, then the set of bound names is b̄. Names
which are not bound are s.t.b. free. Taking action α = (b̄)c!d̄ as an example;

fn((b̄)c!d̄) = {c, d̄}/b̄
bn((b̄)c!d̄) = b̄

P-In
c?x̄.P

c?v̄
−−→ P{v̄/̄x}

P-Out
c!v̄.P

c!v̄
−−→ P

Com
P

c?v̄
−−→ P′, Q

(b̄)c!v̄
−−−−→ Q′

P ‖ Q
τ
−→ new b̄.(P′ ‖ Q′)

[b̄ ∩ fn(P) = ∅] P-Open
P

(b̄)c!v̄
−−−−→ P′

new n.P
(b̄∪{n})c!v̄
−−−−−−−→ P′

[n ∈ v̄]

P-Rec
∗P

τ
−→ P ‖ ∗P

P-Eq
if v1 = v2 then P else Q

τ
−→ P

[v1 = v2]

P-Neq
if v1 = v2 then P else Q

τ
−→ Q

[v1 , v2]

P-Cntx1
P

α
−→ P′

(P ‖ Q)
α
−→ (P′ ‖ Q)

[bn(α) ∩ fn(Q) = ∅]

P-Cntx2
P

α
−→ P′

(Q ‖ P)
α
−→ (Q ‖ P′)

[bn(α) ∩ fn(Q) = ∅] P-Cntx3
P

α
−→ Q

new c.P
α
−→ new c.Q

[c < fn(α)]

Figure 4.2: An action Semantics for π

Rule (P-Out) describes a process’ capability to input v̄ on c, evolving to P{v̄/̄x}. Dually, rule
(P-Out) describes the capability of c!v̄.P to output v̄ on c, proceeding as P. These two capabil-
ities subsequently interact as described through rule (Com) (here we elide its symmetric rule)

48

Chapter 4. The π-calculus

to describe process communication. For processes to synchronise, we require corresponding
input and output action labels to match on (i) the communication channel c, and (ii) the value
tuple v̄. Note that bound names b̄ exported over the output action are now bound in residual
process new b̄.(P′ ‖ Q′). Hence, through communication the scope of channel names can be
extended beyond their original configuration. Finally, note the side condition on b̄ in order to
avoid unwanted capture of free names.

Rule (Com) however only describes the importing bound channel information from output
labels. In order to export names, we require rule (P-Open) which allows for the export of bound
name n on the output label of a known transition. However, we are restricted by the need for n
to be part of v̄, implying that we can only export names which are currently being output by the
process. In effect, (P-Open) implements the necessary mechanism for scope extrusion.

Rule (P-Rec) describes the unraveling of a recursive call, by executing a fresh copy of the
program in parallel. Rules (P-Eq) and (P-Neq) describe behaviour of the branching operator; if
the test on identifiers v1 = v2 returns true, the composite process executes as dictated by P, else
it proceeds as Q. Finally, rules (P-Cntx1), (P-Cntx2) and (P-Cntx3) allows for the deduction
of process behaviour when placed in a context. The former two rules describe behaviour when
placed in parallel with other processes, whereas the latter rule describes process behaviour when
encapsulated within a channel scope. In all three cases side conditions ensure no unwanted cap-
ture of free names as a byproduct.

Example 3. Consider processes P3 , c1!〈c2〉.stop, P4 , c2?〈〉.stop, P5 , c1?〈x〉.x!〈〉.stop,
such that

new c1.(new c2.(c1!〈c2〉.stop ‖ c2?〈〉.stop) ‖ c1?〈x〉.x!〈〉.stop)

i.e., new c1.(new c2.(P3 ‖ P4) ‖ P5). Given this initial configuration, process P3 communicates
over c1 with P5, exposing knowledge of channel c2. This latter process subsequently synchro-
nises with P4 over c2. Hence, by extruding knowledge of channel c2, P5 learns about P4 (of
which it was previously unaware), with which it subsequently synchronises. Let us describe this

behaviour through the above rules. By rule (P-Out) we infer transition c1!〈c2〉.stop
c1!〈c2〉
−−−−→ stop.

Moreover, by (P-Cntx1) and (P-Open) we infer

new c2.(c1!〈c2〉.stop ‖ c2?〈〉.stop)
(〈c2〉)c1!〈c2〉
−−−−−−−−→ stop ‖ c2?〈〉.stop ...(i)

Now consider the execution of c1?〈x〉.x!〈〉.stop. By rule (P-In) we deduce

c1?〈x〉.x!〈〉.stop
c1?〈c2〉
−−−−→ x!〈〉.stop{〈c2〉/〈x〉} ...(ii)

Note the corresponding action labels for transitions (i) and (ii), which combine by rule (Com)

49

Chapter 4. The π-calculus

to describe the interaction of P3 and P5 over c1 i.e.,

new c2.(c1!〈c2〉.stop ‖ c2?〈〉.stop) ‖ c1?〈x〉.x!〈〉.stop
τ
−→ new c2.(stop ‖ c2?〈〉.stop ‖ c2!〈〉.stop)

The scope of c2 has therefore been extended to the residual of P5. We next add the scope for
channel c1 through rule (P-Cntx3), resulting in

new c1.(new c2.(c1!〈c2〉.stop ‖ c2?〈〉.stop) ‖ c1?〈x〉.x!〈〉.stop)
τ
−→

new c1.(new c2.(stop ‖ c2?〈〉.stop ‖ c2!〈〉.stop))

which describes the first computational step taken by the original configuration. Sub-process
new c2.(stop ‖ c2?〈〉.stop ‖ c2!〈〉.stop) can now perform internal communication over c2.

Rule (P-Out) dictates output c2!〈〉.stop
c2!〈〉
−−−→ stop, whereas (P-In) describes process input

c2?〈〉.stop
c2?〈〉
−−−→ stop. These latter two transitions combine by (Com) to give c2?〈〉.stop ‖

c2!〈〉.stop
τ
−→ stop ‖ stop. By rules (P-Cntx2) and (P-Cntx3) twice we infer

new c1.(new c2.(stop ‖ c2?〈〉.stop ‖ c2!〈〉.stop))
τ
−→ new c1.(new c2.(stop ‖ stop ‖ stop))

Through the above transitions we have hence described the required computation, where knowl-
edge of c2 was transferred on c1, which was in turn used during an eventual interaction. �

4.3 Structural Equivalence
The syntax described in Fig. 4.1 is too discriminating; it forces us to syntactically distinguish
between terms which can be considered equivalent. To this effect, we introduce the notion
of structural equivalence (Def n 4.3.1), which allows us to abstract over inessential details of
process structure without affecting its meaning. Our understanding of structural equivalence is
defined through a set of equational rules, and is based on the approach presented in [47].

Definition 4.3.1. (Structural Equivalence ≡) Structural equivalence relation ≡ :: Proc↔ Proc
is defined as the least relation which (i) extends α-equivalence, (ii) is an equivalence relation,
(iii) is contextual, and (iv) satisfies the following equalities

(P-Extr) new n.P ‖ Q ≡ P ‖ new n.Q n < fn(P)
(P-Com) P ‖ Q ≡ Q ‖ P
(P-Assoc) (P ‖ Q) ‖ R ≡ P ‖ (Q ‖ R)
(P-Stop1) P ‖ stop ≡ P
(P-Stop2) new n.stop ≡ stop
(P-Flip) new n.new m.P ≡ new m.new n.P

50

Chapter 4. The π-calculus

Condition (i) emphasises that structural equivalence is a more refined notion of equality than
α-equivalence (Def n 4.2.3). Condition (ii) implies that ≡ is reflexive, symmetric and transitive.
Condition (iii) implies that reasoning about structural equivalence can be applied to process
sub-terms. Rules (P-Com) and (P-Assoc) define commutativity and associativity of parallel
composition operator ‖. Rules (P-Stop1) and (P-Stop2) serve as a form of garbage collection,
removing terminal processes and unnecessary bound names. Rule (P-Flip) negates the order
of defined bound channels. Finally, rule (P-Extr) is the most involving, by describing scope
extrusion based on process structure. If name c bound in Q is not free in P, then knowledge of
c can be extruded to the latter. Clearly, if c is free in P, exporting its name should be disallowed
to avoid inadvertent name capture.

4.4 Bisimilarity
The notion of bisimilarity is a long studied form of behavioural equivalence within the context
of the π-calculus. More specifically, we are now able to compare process behaviour based
on their LTS representations. Informally, two processes are bisimilar if we cannot distinguish
between their behaviour. The reasons for its appeal are numerous, and are discussed below
(based on [75]).

1. Bisimilarity is accepted as the finest equivalence relation one could impose on processes.
In other words, we are able to pair the most processes by comparing their behaviour.
Moreover, proof of equality through coarser forms of equivalence relations (including
structural equivalence) implies that the processes are also bisimilar.

2. The notion of bisimilarity admits desirable mathematical properties, the most important of
which is its straightforward coinductive proof technique [50, 67, 76]. Proving behavioural
equality of two processes simply involves proving the existence of a bisimulation relation
(between the pair) adhering to certain properties — more below. Moreover, efficiency
of its associated algorithms are of significant aid in automating (or semi-automating)
behavioural proof techniques in certain cases [41].

3. Bisimilarity can be used to abstract over uninteresting detail of system behaviour. Clearly,
what information is deemed irrelevant depends on the particular scenario. However, once
said information is identified, it can be ignored in straightforward fashion. For instance,
a particular scenario may dictate that we do not care about input actions, as long as ex-
hibited output behaviour is identical. Admittedly, it is unclear at this point what we mean
by the abstraction of uninteresting detail. However, we shall make extensive use of this
property in chapter 5.

4. The compositional approach to the analysis of process behaviour derives its strength from
the definition of bisimilarity. This is particularly true due to its check locality, and its lack
of hierarchy (on checks) [75]. The former implies that one need only verify the immediate

51

Chapter 4. The π-calculus

transitions emerging from processes under consideration. On the other hand, the latter
implies that no ordering on the checks is required, as long as we ascertain validity for
each process pair. This is in sharp contrast with inductive proofs, which require a precise
ordering on checks.

Notions of bisimilarity and co-induction are intimately intertwined [75]. However, note that
this work should not be considered as an investigation of either concept — we are simply moti-
vating their use. The interested reader is pointed to [50, 67, 76, 75, 47] for in-depth discussions
of both, and applications for their use.

We next attempt to formalise the notion of bisimilarity. More precisely, two processes are
deemed bisimilar if they match each other’s actions. The term bisimilarity shall henceforth re-
fer to to a particular form which is weak up to silent actions. In other words, weak bisimilarity
ignores silent actions, as long as processes’ external actions match. The rationale behind this
approach is the fact that we should not be able to discern any difference in behaviour based on
actions which cannot be observed. In general, weak bisimilarity has been accepted as a more
natural form of behavioural equivalence (as opposed to its strong counterpart, which also pairs
τ actions) [47], and shall be adopted throughout this dissertation.

Bisimilarity equivalence is based on the definition of the bisimulation relation, which is de-
fined over LTS structures (Def n 4.2.5). The process of abstracting over τ actions is provided by
the weak action, defined below.

Definition 4.4.1. (Weak action
α̂
⇒) We define the weak action for α ∈ Act, written P

α̂
⇒ Q as

follows

• P(
τ
−→)∗Q if α = τ

• P(
τ
−→)∗P′

α
−→ Q′(

τ
−→)∗Q if α is an external action.

Hence, P
α̂
⇒ Q signifies that process P evolves to Q in a number of steps. Moreover, this

sequence of transitions depends on α. If α = τ, then this transition sequence represents an arbi-
trarily long succession of silent actions. However, if α is an external action then the occurrence
of α is preceded and succeeded by (arbitrarily long; possibly empty) sequences of silent actions.
Using this notion of the weak action we can now define the bisimulation relation.

Definition 4.4.2. (Bisimulations) Given LTSs (S 1,Act1,−→1), (S 2,Act2,−→2), we say a relation
R :: S 1 ↔ S 2 is a bisimulation, if whenever (PRQ),

• (P
α
−→ P′) implies ((Q

α̂
⇒ Q′) and (P′ RQ′))

• (Q
α
−→ Q′) implies ((P

α̂
⇒ P′) and (P′ RQ′))

52

Chapter 4. The π-calculus

Hence, a relation between processes is a bisimulation if it adheres to the transfer property
i.e., if each action from one LTS can be paired by a weak action from the other (and vice versa).
Based on the bisimulation relation we can now define the notion of bisimilarity.

Definition 4.4.3. (Bisimilarity relation ≈) The bisimilarity relation, denoted by ≈, is defined to
be the union of all bisimulation relations.

Given that ≈ is the union of all bisimulations, ≈ is itself a bisimulation relation by the defini-
tion of set union. Moreover, it is also the largest bisimulation relation, since all other bisimu-
lations are a subset of this relation. Hence, the definition of ≈ is a coinductive one, and admits
a straightforward proof technique. To show that two systems S 1, S 2 are bisimilar, we simply
need to exhibit a bisimulation containing the pair (S 1, S 2) since the bisimulation is guaranteed
to be in ≈. Relation ≈ can also be shown to be contextual, as well as an equivalence relation [46].

Example 4. Consider systems

P6 , c1?〈x〉.c2!〈〉.stop, P7 , c1?〈x〉.if x = 1 then (c2!〈〉.stop) else (c2!〈〉.stop)

Process P6 first communicates on c1, then synchronises on c2 and eventually terminates. On the
other hand, P7 also receives a value on c1, but exhibits branching behaviour depending on the
value received on c1. However, on further inspection we notice that both branches exhibit the
same behaviour, also synchronising on c2 before terminating. In conclusion, although P7 may
take an additional internal step to decide which branch to compute, we expect both P6 and P7

to externally exhibit identical behaviour. This statement is proven by exhibiting a bisimulation
between P6, P7, and is defined below.

{ (c1?〈x〉.c2!〈〉.stop , c1?〈x〉.if x = 1 then c2!〈〉.stop else c2!〈〉.stop) ,
(c2!〈〉.stop , c2!〈〉.stop) }

Hence proving our observation. Note that although we have shown P6, P7 to be behaviourally
equivalent, the rules in Def n 4.3.1 do not define P6, P7 as structurally equivalent i.e., P6 . P7.
We have therefore seen a witness example of the fact that behavioural equivalence is a more re-
fined notion of equality than that based on structure; we can pair more processes behaviourally
than structurally. �

4.5 Conclusions
This chapter presented an overview of the π-calculus; we introduced its syntax, assigned an ac-
tion semantics, defined an appropriate form of structural equivalence ≡, and also motivated the
use of bisimilarity relation ≈ as the most refined form of behavioural equivalence. Moreover,
we saw how the π-calculus is the most adept formalism for describing concurrent computations

53

Chapter 4. The π-calculus

of dynamic systems. This notion of dynamicity partly coincides with our understanding of dy-
namic architectures presented in section 3.4.4. Most importantly however, the above language
serves as a theoretical foundation for the formalism presented in chapter 5.

54

Part II

The Theory

55

5. A Calculus of Distributed Monitored
Processes

The next chapter proposes a generalised framework capturing varied distributed monitoring
approaches (introduced in chapter 3). To this effect we present mDPi, a π-calculus adaptation
with explicit notions of monitoring and distribution. The reader is firstly acquainted with an
informal account of the setting we are out to achieve. We next show how mDPi describes
required scenarios through an overview of the language. This involves (i) an interpretation of
the language syntax, followed by (ii) an extensible LTS semantics allowing for the expression of
mDPi term behaviour at different levels of abstraction. Later on we also consider different forms
of equality, allowing for the comparison of terms on a structural and behavioural basis. The
latter part of the chapter is focused on proving results for our framework, achieved through the
use of introduced machinery. Throughout this chapter keep in mind that we restrict our interest
to a non-interfering form of monitors i.e., monitors which do not affect process computation.
Moreover, our interpretation of the monitoring semantics are at a theoretical level, and do not
encode practical considerations such as time and memory consumption (i.e., we do not consider
system overhead).

5.1 Overview
We are interested in formally studying the runtime monitoring of distributed systems. Our aim is
to precisely reason about the scenario’s capabilities, as well as its limitations. Chapter 2 saw the
introduction of runtime verification, employing runtime monitors tasked with verifying system
traces (representing effected behaviour) correct with respect to some requirements. We later
explored the extension of this approach to distributed settings in chapter 3. This chapter high-
lighted the need for such extension, as well as discussing additional complexities introduced by
distribution (which we are still bound by during subsequent analysis). Moreover, the chapter
described a broad taxonomy of possible approaches to the monitoring of distributed systems,
together with additional considerations regarding their suitability. The following chapter aims
to formalise the concepts introduced by distributed monitoring.

56

Chapter 5. A Calculus of Distributed Monitored Processes

To this end we shall present mDPi, a π-calculus adaptation with explicit distribution and
monitoring capabilities. Serving as motivation for our approach, we start by considering the
setting described by the standard calculus (chapter 4), and incrementally build up to our scenario
of interest. Given the location agnostic approach taken by the π-calculus, this implies that
distribution is at most an implicit concept. In other words, π-calculus terms can be considered as
concurrent processes P1, P2....Pi running independently (at unspecified locations), occasionally
synchronising over channels c1, c2...c j. An example scenario is shown below.

Figure 5.1: Example π-calculus processes.

Process P1 eventually communicates with P2 over channel c2, as well as communicating with
P3 over c1. At this stage it is unclear whether all three processes are executing locally to one
another, whether all three are located remotely, or some arrangement in between. Given our
interest in describing distributed computation, our next step is to explicitly introduce located
executions. This is achieved by introducing the notion of locations, as highlighted in Fig. 5.2.

Figure 5.2: Example located π-calculus processes.

57

Chapter 5. A Calculus of Distributed Monitored Processes

Distribution is made explicit by assigning P1 and P3 a common location k, whereas P2 is
located remotely by residing at l. Hence, the set of localised processes collectively make up
the distributed system’s computational effort. Also notice the introduction of systems S 1, S 2.
Systems hence serve a structural purpose, organising various concurrent processes into com-
putational entities partitioned per location. In general, a distributed system can be viewed as
a collection of located systems. Communication can now be effected locally between two pro-
cesses at the same location, or remotely between processes at differing locations. We argue
that the distinction between local and remote communication is a crucial one — implementing
the latter is more expensive than the former in a distributed setting, not to mention possible
restrictions on remote interactions. The capability of distinguishing between communication
forms (i.e., local or remote) will eventually allow us to reason about the operation of both at the
calculus level.

We next consider the extension of π with explicit notions of monitoring. For clarity, we first
enhance one location k with monitoring capabilities, and later extend this setting to distributed
systems. The addition of a monitoring semantics requires two further concepts; (i) traces, and
(ii) monitors. A trace serves as a log of past process behaviour, subsequently verified by in-
dependently executing monitors for correctness against a set of requirements. Order of logged
events is crucial for the monitoring of temporal properties (see chapter 2), and is hence some-
thing we have to cater for. The addition of said entities gives us the setting in Fig. 5.3.

Figure 5.3: A Monitoring Scenario.

The setting in Fig. 5.3 describes three entity categories actively participating in computation;
processes, monitors and traces. All three execute independently, but in certain cases can affect,
or are the result of, each other’s execution. Processes P1, P2...Pi entail the system’s primary
computational aspect, whose behaviour we are interested in verifying. Moreover, said processes

58

Chapter 5. A Calculus of Distributed Monitored Processes

generate trace entities T1,T2...Tn as a side effect during execution. One trace entity represents a
permanent log of a single process event, and is generated dynamically (during process computa-
tion). By permanent, we understand that the log cannot be subsequently consumed or destroyed,
only analysed. Trace entities are considered passive, incapable of independent computation —
their purpose is to bridge the system’s computation and monitoring effort. Moreover, each trace
entity is assigned an additional counter value (shown in Fig. 5.3), representing its position in
the local ordering of events. This counter encodes a temporal order on trace entities, with the
resulting sequence taken to represent the system’s local trace.

Monitors M1,M2...M j can be considered as a form of augmented processes. Crucially, their
purpose is the analysis of traces as a check for adherence of process execution to requirements.
This is made possible by a special monitor operator which interfaces with trace entities (dis-
cussed below), allowing for monitors to analyse logged trace information. We allow for the
execution of multiple monitors for better separation of concerns — distinct monitors can be
tasked with verifying different properties, increasing modularity. Given traces’ non-consuming
nature, this in effect allows for monitors to analyse the same trace for adherence to different
properties. In general, the set of depicted monitors make up the system’s global monitoring
effort. As evidenced in Fig. 5.3, apart from analysing traces, monitors can also communicate
over channels to synchronise their verification effort. Note that although chapter 2 introduces
the possibility of monitors interacting with processes for the purpose of reacting to violations,
we disallow this occurrence in our proposed setting. One could explore such avenues in future
work, perhaps through a form of direct communication between monitor and process (currently
disallowed). Hence, our framework is only interested in identifying incorrect process behaviour.

We have so far achieved an event-based, asynchronous monitoring framework of monolithic
architectures (see chapters 2 and 3). Concurrently executing processes generate a trace, which
is eventually analysed by monitors. Given that we are so far dealing with one location, this im-
plies that the order on trace entities is total. The next step involves extending the above scenario
to distributed settings (i.e., admitting more than one location), thus formalising the monitoring
of distributed computations. The result looks like Fig. 5.4.

Analogously to process distribution, the monitoring of distributed systems involves the par-
titioning of monitoring functionality across locations. Monitors can (i) analyse traces, and (ii)
synchronise their efforts at both local and remote levels (relative to the monitors’ location).
Moreover, the distributed scenario admits a trace per location, with each system imposing its
own local ordering on events. In general, the distributed setting admits a set of remote unsyn-
chronised clocks, with one clock assigned to each location. We represent this clock through
a counter which explicitly assigns a counter value to each trace entity, and is incremented on
each assignment. We require our tracing semantics to produce well-formed traces i.e., no two
trace entities at common location k can have the same counter value. The result is a mechanism
which allows for a temporal comparison of local trace entities, which however are mutually

59

Chapter 5. A Calculus of Distributed Monitored Processes

Figure 5.4: An Example Distributed Monitoring Scenario.

incomparable at a remote level.

Can we obtain a globally ordered trace, allowing for the comparison of remote traces? Al-
though such functionality would have been a great asset, chapter 3 highlighted the difficulty
(impossibility?) in achieving perfect synchrony amongst remote entities, implying that we can-
not synchronise remote clocks. Hence, an implementable algorithm which extracts a global
ordering is, in general, unattainable. Issues with synchrony of remote traces highlights our need
to study monitoring in a distributed setting — we are faced with physical limitations on what
what can be reasonably verified when faced with distribution. We also consider said limitations
as a generalisation of our need to differentiate between local and remote interactions. mDPi
respects said restraints, instead extracting a partial (section 3.5) ordering on remote events
through the execution of monitors (more below).

Recall the broad taxonomy of monitoring approaches identified in chapter 3. We recog-
nise that the arrangement of said monitors throughout the distributed configuration dictates the
choice of monitoring approach. For instance, consider Fig. 5.5, depicting a distributed system
monitored through an orchestrated approach. The monitoring effort is placed at a central loca-
tion G, with monitors remotely analysing localised traces. The depicted approach is considered
static if the set of monitors M1...Mn remains unchanged during system execution. However, a
dynamic orchestrated approach allows for the monitor configuration to change at runtime, al-
lowing for properties to evolve / the addition of new properties (see chapter 3).

60

Chapter 5. A Calculus of Distributed Monitored Processes

Figure 5.5: An Orchestrated Monitoring Scenario.

The scenario depicted in Fig. 5.6 differs from that in Fig. 5.2 (apart from admitting an extra
location h) by avoiding the analysis of remote traces, exhibited in the latter scenario with M3

remotely analysing T2. Hence, Fig. 5.6 depicts a static choreography based approach. Monitors
analyse trace entities locally, and communicate remotely to synchronise the global monitoring
effort. However, this implies that processes at location h are not monitored in Fig. 5.6. Perhaps
knowledge of said processes were not known to other locations at the start of computation (i.e.,
the global system admits a dynamic configuration). In effect this points to the need for dynamic
choreography, the final scenario presented in chapter 3. More specifically, we motivated the use
of migrating monitors as a vehicle for studying dynamic choreography.

The monitors depicted in Fig. 5.7 analyse traces exclusively at a local level, before phys-
ically migrating to remote locations when the said systems’ behaviour becomes pertinent to
the distributed system’s global correctness. Clearly, this approach does not stop monitors from
communicating remotely for synchronisation. Note how the dynamic addition of locations (as
is the case for location h, which is now verified) can now be handled, by directing monitors to
relocate to new locations at runtime.

As a result, monitors in mDPi admit two additional capabilities (over processes); (i) the abil-
ity to analyse trace entities, and (ii) the ability to migrate between locations. Both capabilities
shall be encoded in our prospective calculus. Moreover, the increased modularity of our mon-
itor definitions, coupled with the separation of the monitoring and tracing semantics points to
a property agnostic approach (chapter 3). In turn, this allows us to spawn monitors at runtime

61

Chapter 5. A Calculus of Distributed Monitored Processes

Figure 5.6: A Static Choreography-Based Scenario.

(possibly tasked with verifying new properties), which eventually migrate to different locations
as required.

Both processes and monitors have been designed to communicate over a set of channels.
However, given our interest in a non-interfering form of monitors (i.e., no reaction to viola-
tions), it is key to consider whether monitors can interfere with processes communication (and
vice versa). At this stage, we are faced with a design choice. One approach is to statically
restrict both monitors and channels to use a disjoint set of channels. Although this option is
potentially viable, it is unclear how the static enforcement of the partitioning of channels would
work at runtime, especially when faced with name extrusion during computation (chapter 4).
Moreover, this option places unnecessary resource constraints on the use of channel names; a
channel can be sometimes used by monitors, and at others used by processes. As a result we
might needlessly be restricting the application of valid monitoring approaches. We therefore
take an alternate approach, allowing for processes and monitors to use the same channels. To
avoid interference, we propose a partitioning of channel communication at the semantic level.
In other words, we shall define the capability of processes to interact with other processes ex-
clusively, with monitors only interacting with monitors. We argue that through this choice we
alleviate the need for static enforcement at each computational step. Moreover, by imposing
this requirement at a behavioural level we can produce a proof to ensure that (given the defined
semantics) both interaction forms are always disjoint (more below).

We have so far motivated the distributed monitoring setting formalised by mDPi. The next
step involves making use of this tool in order to distill and identify the core aspects of distributed

62

Chapter 5. A Calculus of Distributed Monitored Processes

Figure 5.7: A Distributed System Verified By Migrating Monitors.

monitoring at a theoretical level. More specifically, we are primarily interested in proving three
statements (in no particular order) identified as fundamental to the motivation of our approach

• Does monitoring affect computation? It is imperative that the monitoring approach we
put forward does not affect the original process computation. If this were not the case,
we would be employing monitors which could potentially alter the same processes’ be-
haviour they are trying to verify. We would like to prove the impossibility of such scenar-
ios, in order to ensure that we avoid said contradictory situations. At a theoretical level,
monitors can effect process computation in two ways; (i) by admitting the capability to
directly influence processes through some operator, and/or (ii) through interference over
channel interactions. The impossibility of (i) should easily follow, since no monitor oper-
ator will be defined which directly interacts with processes. On the other hand, assurances
that communication interference does not occur requires proof, especially since we have
defined this requirement behaviourally. However, once such a result has been proven, we
can rest assured of our non-interacting form of monitoring semantics, without the need
for static checks. This requirement can be eventually relaxed when considering controlled
interfering monitoring techniques, such as during runtime enforcement [34].

• Is choreographed monitoring equivalent to orchestrated monitoring? Chapter 3 intro-
duced the possibility of monitoring distributed systems either at a local (choreographed)
or global (orchestrated) level. The aforementioned chapter also explored advantages and
disadvantages of each, with each approach admitting ideal scenarios of application. We
conjecture that both approaches are to some degree equivalent. In other words, we expect
to be able to verify the same property classes using both approaches. Conversely, using
either approach should not impact monitors’ expressivity wrt. the set of verifiable prop-
erties. Such considerations require a delicate understanding of the language semantics,

63

Chapter 5. A Calculus of Distributed Monitored Processes

since monitoring behaviour for both approaches do indeed differ at some level. More
specifically, the location of orchestrated monitors will invariably differ from that of their
choreographed counterparts. This points to the need for considering system behaviour
at different levels of abstraction; in certain circumstances we shall consider behaviour
extensively (i.e., considering additional notions such as location information), whereas in
others we shall ignore certain ‘uninteresting’ details. We shall return to the consideration
of system behaviour at different abstraction layers at a later stage.

• Do migrating monitors preserve locality? The migrating monitor approach emerged dur-
ing our discussion of dynamic choreography. This approach derives its strength from
its adoption of monitor migration as a primitive construct. We further conjectured that
this approach respects locality (chapter 3). The term ‘locality’ in our framework takes
the form of localized analysis of trace entities i.e., trace analysis only occurs at a local
level. Clearly, localised trace analysis does not stop monitors from remotely synchro-
nising. However, it forces monitors to avoid exposing confidential trace information at
a remote level. This advantage, together with tolerance to dynamic architectures were
put forward as migrating monitors’ main advantages. We aim to provide assurances of
locality for migrating monitors, in the form of a proof. In turn, this could go a long way
to providing guarantees of the approach’s trustworthiness.

We shall come back to the above questions at a later stage of our consideration of mDPi, after
obtaining enough mathematics allowing for the formalisation of the required statements.

5.2 The mDPi Calculus
The next section is dedicated to describing the calculus in detail; at first by introducing the lan-
guage operators and necessary concepts, followed by the definition of a language semantics. In
addition, we introduce machinery which allows for the analysis of system behaviour at different
levels of abstraction, in turn facilitating eventual consideration of the three questions posed of
our framework at the end of section 5.1.

5.2.1 Syntax
We next present the mDPi language. The syntax assumes denumerable sets of channel names
c, d, b ∈ Chans, location names l, k ∈ Locs, basic values a, b ∈ BV and variables x, y ∈ Vars;
identifiers u, v range over Idents = Chans ∪ Locs ∪ Vars and lists of identifiers v1, . . . , vn are
denoted as v̄.

Channels names act as communication links, referred to by processes and monitors alike.
However, although both processes and monitors have access to the same channels, they do not
immediately interact. Moreover, channels are location agnostic, and can be referred to by any

64

Chapter 5. A Calculus of Distributed Monitored Processes

located entity privy to knowledge of their existence. Location names represent some located
environment where entities can execute. Each entity is hence assigned a location. Importantly,
location information allows us to statically determine which entities are local and remote to
some particular entity under consideration. The set of basic values BV represents some unspec-
ified collection of strings, booleans, integers, doubles etc.. Finally, variables act as information
placeholders i.e., containing either a basic value or a channel name.

The syntax in mDPi mirrors the above scenario, adopting four syntactic categories; (i) sys-
tems, (ii) processes , (iii) monitors and (iv) traces. We give a brief informal account of the
intended interpretation of each class, together with their corresponding syntax.

Systems

The set of systems S ,V ∈ Sys is inductively defined in Fig. 5.8 (with P, Q ranging over pro-
cesses).

S ,V ::= k~P� | S ‖ V | new c.S

Figure 5.8: System Syntax

• Located processes are represented through k~P�, denoting that process P is located at k.
Hence, each process is syntactically tagged with its location. Moreover, any computation
emanating from P must be performed whilst in its located form.

• S ‖ V represents two systems executing in parallel. Both systems might reside at the
same location (hence marked with the same k), or they might be remote (i.e., tagged
with differing locations). Both S and V execute independently, and can communicate by
exchanging information (more below).

• Knowledge of channel c extended to system S is written as new c.S . The scope of c is
said to be restricted to S . Hence, c can be used internally for communication within S ,
but is unavailable for use with other systems. Clearly, the scope of c may change as a
result of interaction through scope extrusion.

Hence systems serve a structural purpose by assigning location to processes, arranging them
in parallel and demarcating channel scope. Note that knowledge of locations cannot be scoped.
Instead, the presence of located processes can be learnt at runtime through name extrusion, by
exporting channel names linking to new processes. This process may happen to reside at (i)
a known location, or (ii) at a previously unseen location. As a result, the dynamic addition of
new locations is at most implicit in mDPi. At this stage the reader might also question the lack

65

Chapter 5. A Calculus of Distributed Monitored Processes

of monitor and trace entities in the above definition. This is borne out of the design choice to
consider both as special forms of processes, for reasons of expression succinctness. We shall
explicitly differentiate between processes, monitors and traces through appropriate syntax.

Processes

Processes P,Q ∈ Proc represent the system’s computational aspect, with Proc representing the
(infinite) set of syntactically valid processes inductively defined in Fig. 5.9

P,Q ::= stop | u!v̄.P | u?x̄.P | new c.P | if u=v then P else Q | P‖Q | ∗P |

{M}n | T

Figure 5.9: Process Syntax

• stop represents the terminal process, which does nothing.

• Process u!v̄.P represents a process which transmits list v̄ on channel u, and continues as
P. The contents of v̄ can be either identifiers or basic values. We shall use notation u!〈〉.P
when an empty list is sent on u. In this case process output is used for synchronisation
purposes.

• Input of v̄ on channel u is represented by process u?x̄.P. Assuming that v̄ is well defined
(i.e., of the same arity) with respect to x̄, each entry vi ∈ v̄ is substituted for each instance
of xi ∈ x̄ in P, with the process’ computation resuming through the resulting process after
substitution of each variable. Notation u?〈〉.P is used when no data is expected on u.

• Process new c.P serves an analogous purpose to that exhibited at the system level, this
time restricting knowledge of c to process P. This construct hence serves as a form of
channel scoping at the process level. We shall eventually see how to elevate channel scope
from the process to the system level, thus allowing for scope extrusion across remote
processes.

• if u=v then P else Q serves as a test of identifiers and basic values. If the test for equality
returns true the computation resumes through P, else we execute Q. This operation is also
elevated as a test of tuple equality in the standard manner.

• Overloaded operator ‖ represents concurrency at the process level. Much like parallel
systems, P ‖ Q describes processes P and Q executing independently, and possibly syn-
chronise through some interaction. We shall later see how mDPi takes the approach of
elevating processes (along with monitors and traces) to the system level prior to affecting
computation.

66

Chapter 5. A Calculus of Distributed Monitored Processes

• ∗P represents recursive computation, with the composite process denoting an unbounded
number of copies of P executing in parallel.

• Syntax {M}n represents a monitor M tagged with counter value n. We shall elicit the
structure of M below. However, for now note that at the process level we can syntac-
tically determine which entities are acting as monitors. This is provided by identifying
which entities are encapsulated in { }n parenthesis. Counter value n is used by M during
monitor execution to keep track of trace entities analysed at the current location under
consideration, as well as to extract partial orderings at a remote level. Counter n is usu-
ally initialised to 1.

• Trace entity T is dynamically generated during process execution, logging process be-
haviour pertinent to the monitoring process. We shall expand on the structure of T in the
next section. Note that trace entities are permanent, in that once generated they cannot be
altered or consumed. Moreover, monitors are the only structures capable of interfacing
with traces for analysis.

This concludes our exposition of processes. Processes encode located turing-complete com-
putation, and is hence capable of representing any distributed implementation. Moreover, we
believe the syntax to be straightforward, minimally extending the calculus seen in chapter 4.
Monitors and traces can be immediately identified through appropriate syntax (with monitors
encapsulated within parenthesis, as well as using an additional a counter).

Traces

Traces serve the purpose of recording past process computation of interest in a runtime veri-
fication setting. In other words, traces encapsulate the necessary information which allow us
to determine whether processes are behaving as required. We shall take an event-based ap-
proach, recording individual process activities. Logs of said activities are then organized into
sequences, thus encoding the temporal ordering of events in order of occurrence. Each event is
represented through trace entity T ∈ Trc, whose syntax is described in Fig. 5.10. Informally,
we consider the encoding of process events through process output. This choice simplifies our
language by avoiding the necessity of an additional operator representing an event. Hence,
channel output e!v̄ (effected by a process) can be taken to encode the occurrence of event e,
with event parameters v̄. For minimality we shall therefore only consider the logging of process
output.

T ::= t(c, d̄, n)

Figure 5.10: Trace Entity Syntax

67

Chapter 5. A Calculus of Distributed Monitored Processes

One trace entity represents a record of the occurrence of some process output on c, while
transmitting d̄. Moreover, this event occurred locally at (logical) timestamp n. We encode a
temporal ordering of trace entities per location, implying that the interpretation of each n is
bound to the entity’s location. In other words, since each trace entity is located i.e., is of the
form k~t(c, d̄, n)�, this implies that t(c, d̄, n) is the nth trace entity generated at k. Moreover, we
cannot infer the location of T wrt. other trace entities located remotely to k.

Trace entities serve as the individual building blocks for trace sequences. Hence, whereas a
trace entity records a log of an individual event, a trace represents a system’s execution; entailing
the sequence of effected events.

Definition 5.2.1. (Traces) A trace is defined as a set of trace entities of the form k~t(c, v̄, n)�.

A trace is a hence a set of located trace entities. Order on said entities is inferred from counter
value n. However, n is only ordered per location, implying that this sequence is partitioned on
a per location basis. Hence, a trace can be interpreted as a set of sequences, with each sequence
representing a sub-trace at a distinct location. Given the notion of well-formed traces, we shall
semantically define the generation of traces such that no two trace entities admit the same values
for k and n. Moreover, we conjecture that our semantics should preserve well formed-ness of
traces at each step. We shall expand on the generation of distributed traces at a later stage.

Monitors

We next explore monitors M,N ∈ Mon whose syntax is described in Fig. 5.11. Monitors ex-
ecute independently of processes in the global system configuration. Moreover, they do not
contribute to the system’s execution in the traditional sense. Rather, their purpose is to anal-
yse traces generated by processes at runtime in order to discern whether process behaviour is
correct with respect to requirements. Recall that monitors are encapsulated within {M}n, with
n representing a counter value used for two purposes; (i) to keep track of the trace analysed
sequentially (thus avoiding the re-analysis of the same entities), and (ii) to extract a partial
ordering on trace entities at a remote level. We shall use notation k{[M]}n to denote a process
containing just monitor M with counter value n at location k i.e., as syntactic sugar for k~{M}n�.

M,N ::= go u.M | u!v̄.M | u?x̄.M | new c.M | if u=v then M else N | M ‖N | ∗M |

setC(u).M | ok | fail | stop | m(c, x̄, k).M

Figure 5.11: Monitor Syntax

68

Chapter 5. A Calculus of Distributed Monitored Processes

• ok and fail are both terminal monitors, which hence do nothing. The former is used to flag
that a property has been satisfied, whereas the latter flags property failure. Hence, both
terminal monitors are used to signify the outcome of the runtime monitoring process.

• Overloaded operators stop, u!v̄.M, u?x̄.M, new c.M, if u = v then M else N, M ‖ N, and
∗M take an analogous interpretation to their process equivalent. These operators are fun-
damental in giving monitors sufficient expressive power, subsequently used to encode
the monitoring of high-level properties. We can for instance encode branching of moni-
toring behaviour, and even specify channel scope amongst monitors (which can later be
extruded). Parallel composition through ‖ takes an augmented meaning at the level of
monitors; it allows for (i) the separation of concerns, (ii) localisation of monitoring, and
(iii) concurrent verification. ∗M gives monitors the ability to verify properties over in-
finite process computations, and is hence crucial when translating certain specification
languages (including regular expressions). Finally monitors can use channels to synchro-
nise their monitoring effort. Take for instance system k~P1 ‖ {M1}

1� ‖ l~P2 ‖ {M2}
1�,

whereby we want to verify that P1 first generates an event e1, which is followed by event
e2 at P2. Without using monitor migration, how could we go about monitoring such a
property? Assume monitors M1 and M2. What we require is M1 to start listening for a
trace entity denoting the occurrence of e1. Once the required trace entity is analysed, M1

synchronises with M2, thus triggering M2 to start checking for e2. Once confirmed, M2

proceeds to ok.

• Monitor operator m(c, x̄, k).M is the only operator in mDPiwhich interfaces with trace en-
tities. This operator describes a monitor’s request to analyse trace entity t(c, d̄, n) located
at k, substituting di ∈ d̄ for xi ∈ x̄ in M (assuming x̄ is well defined wrt. d̄). Intuitively,
a monitor of the form {m(c, x̄, k).M}n requests the nth trace entity at location k, as long as
it logs process output on channel c. If this log (at k) records some output on a different
channel, the trace entity is ignored.

• Operator go u.M instructs monitor M to migrate to the location specified by u, re-aligning
its counter in the process. Identifier u can either refer to a specific location k, or some
variable x which is later instantiated during monitor execution. The use of variables
allows us to dynamically redirect monitor location on the fly. In general, a located monitor
of the form l{[go k.M]}n evolves to k{[M]}n

′

, where n′ is the value of the counter assigned to
last trace entity generated at k, incremented by 1. Although the necessity of the counter
update is admittedly unclear at this stage, we will return to its use at a later stage. For now,
it suffices to keep in mind that monitor re-alignment serves to extract a partial ordering
on remote traces, in this case by exploiting migration’s natural sequential semantics.

• On the other hand, we also require a mechanism which extracts an ordering on remote
trace entities without resorting to migration. This need is borne out of the three alternative
methods (discounting migrating monitors) for monitoring distributed architectures (see
chapter 3). This mechanism is provided by operator setC(u).M, which re-aligns M’s

69

Chapter 5. A Calculus of Distributed Monitored Processes

counter to the last counter value assigned to some trace entity at u, plus 1. We shall
expand on the extraction of remote partial orderings in the next section. Similarly to the
use of identifiers for go, u is either a location, or a variable which is instantiated during
execution.

Notation m(c, 〈〉, k).M shall be used when we do not care about logged information of data
transferred on c. This concludes our exposition of the mDPi syntax, expressed through an infor-
mal interpretation of the language operators. However, although we have seen each individual
operator, there is still much to be said about the collective operation of the monitoring and
tracing semantics, which enable the runtime verification of (distributed) process behaviour. To
this end, the next section presents an overview of the mDPi tracing semantics for generating
distributed traces, followed by a discussion of monitor operation for the extraction of partial
orderings on traces (both locally and remotely).

Note that although monitors are special processes, the syntax disallows the definition of some
entity which is part monitor, part process. In other words, one cannot define some entity which
sometimes behaves as a process, and at others behaves as a monitor — it either behaves com-
pletely as one or the other. This property shall be useful during our formalisation of the language
semantics.

Trace Generation

We have so far described traces as a sequence of trace entities, ordered by counter values.
Consider example system

S 1 = k~P ‖ t(c1, d̄, 1) ‖ t(c1, ē, 3) ‖ t(c2, v̄, 2)�

we can infer that process P first output d̄ on c1, then v̄ on c2, and finally ē on c1. The order
of trace entities at the level of the expression is unimportant; order is rather inferred from the
assigned counter values (and location). Due to restrictions on remote synchronisation (chapter
3), we opt for a local ordering on events. Hence, given system

S 2 = k~P1 ‖ t(c1, d̄, 1) ‖ t(c2, ē, 2)� ‖ l~P2 ‖ t(c3, v̄, 1) ‖ t(c2, z̄, 2)�

we infer that at location k, P1 first output d̄ on c1 then ē on c2, whereas at location l process
P2 first output v̄ on c3 then output z̄ on c2. Although we have a total ordering on trace enti-
ties per location, we have partitioned said traces across locations. In other words, given any
trace entity pair from two remote locations, their order is mutually incomparable — there is
no way how we can statically discern which event occurred first. Referring to the above ex-
ample, event 1 at k could have occurred before event 1 at l, after event 2 (at l) or in between
events 1 and 2 (at l). Analogous reasoning could be effected for any pair of remote trace entities.

70

Chapter 5. A Calculus of Distributed Monitored Processes

The problem of trace generation hence lies with the extraction of a temporal ordering per
location. Consider next system S 3 = k~c1!v̄1.c2!v̄2.stop�. Clearly, S 3 will eventually evolve to
k~stop ‖ t(c1, v̄1, 1) ‖ t(c2, v̄2, 2)�, where information regarding both process output operations
have been logged. However, had S 3 been something of the form k~c1!v̄1.c2!v̄2.stop ‖ t(d, v̄, 1)�,
the system instead evolves to k~stop ‖ t(d, v̄, 1) ‖ t(c1, v̄1, 2) ‖ t(c2, v̄2, 3)�. Note how the latter
two trace entities generated by effecting two output operations now have different counter val-
ues, due to the occurrence of a prior trace entity (at that location). This trace could have been
generated during some prior computation. Had this trace been located at a different location
(such as in k~c1!v̄1.c2!v̄2.stop� ‖ l~t(d, v̄, 1)�), its presence would not have affected the subse-
quent generation of trace entities at k.

In general, generating trace entities on the fly requires knowledge of the last assigned counter
value per location. Moreover, this information is to be regularly updated on the assignment of
a counter value to each trace entity generated. We identify two ways for extracting required
counter information. The first involves static analysis of the system, identifying the trace entity
at k with the largest counter value. Although this approach avoids introducing additional ma-
chinery in our calculus, we consider it to be inelegant and impractical. This is especially true
since such analysis is potentially expensive (especially with larger system implementations),
and would have to take place on the generation of each trace entity. We instead adopt an al-
ternate approach, by introducing the counter state acting as a monotonically increasing logical
clock maintained per location. This state is modeled through a function δ ∈ ∆ :: Locs → N
mapping each location to a natural number. Informally, we exploit this mapping in order for
δ to keep track of a counter value per location. In other words, δ encodes a logical clock per
location, used for extrapolating localised temporal orderings on trace entities.

The counter value at location k is obtained through function application i.e., δ(k). Updating
the counter state is also encoded in straightforward fashion through function overriding [82],
written f ⊕ g. The result is an update of function f , whose mapping is updated according to the
values of function g. Given counter state δ and location k, we define inc (over counter states)
which increments the counter value assigned to k by one.

Definition 5.2.2. (Counter state update) Given counter state δ, and location k ∈ dom(δ), we
increment the counter value assigned to k through operator inc :: (∆ × Locs) → ∆, defined as
follows

inc(δ, k) , δ ⊕ {(k, (δ(k) + 1))}

We use inc to update the counter state on the generation of each trace entity. The initial
counter state δi prior to system computation is assumed to map all locations to the value 1.
Hence, the first trace entity generated at each location will be assigned the first position in the
local trace. Counter state δ is updated accordingly through inc on the generation of each trace
entity at k, by incrementing the counter value for that location. Therefore, δ contains the next
counter value to be assigned at each location throughout system execution. Finally, we assume

71

Chapter 5. A Calculus of Distributed Monitored Processes

δ to be total, thus ensuring that the next counter value assigned to each location is always known.

As we shall see in the next section, the counter state is also of use during monitor re-
alignment. For instance, a monitor shall update its counter upon migration to the value held
by the counter state for the monitor’s new location. Analogously, operator setC(k) queries
the counter state for the value of the latest counter value for k, updating its monitor’s counter
accordingly. Hence, monitors will have the capability to directly interface with the counter state.

It is clear that we require knowledge of the counter state in order to fully determine how
systems compute. Moreover, different counter states can generate alternate event orderings,
implying that the counter state can also indirectly affect the system’s monitoring effort. With
the importance of the counter state in mind, the runtime semantics needs to be defined in terms
of configurations C,R which take the clock into account i.e.,

C,R ∈ Conf :: ∆ × Sys

where notation δ . S specifies that system S has counter state δ. We shall later consider the
effect of the counter state on system equality. Does the counter state contribute to the system’s
structure? Should behavioural equality consider behaviour of the counter state? We shall return
to the issue of system equality in section 5.3.

Trace Analysis

The mechanism adopted by mDPi monitors during trace analysis is tightly bound with the use
of adjacent counters. As previously discussed, said counters are used for two purposes; (i) to
keep track during sequential trace analysis, and (ii) during monitor re-alignment. This latter
use of counters is crucial in obtaining a partial ordering on remote trace entities. More specifi-
cally, monitor counters are analogous to Lamport Timestamps [58] i.e., a logical clock adapted
to instead extract the monitored-before relation (section 3.5). Consider Fig. 5.12, describing
two event sequences at locations k and l together with their corresponding trace entities (i.e.,
depicting an example trace).

Suppose we want to monitor that a process output on c2 at location k, followed by an output
on c1 at l never occurs. An appropriate monitor implementing an orchestrated approach entails

M = G{[m(c2, 〈〉, k).setC(l).m(c1, 〈〉, l).fail]}1

Note how this monitor analyses the sub-traces at k and l remotely from central location G. Let
us consider M’s execution on the above trace. M starts off by analysing the trace entity at lo-
cation k with counter value 1, as requested by operator m and the current counter value. In
general, in order for monitor operator m(c, x̄, k). to analyse some trace entity it has to match on
(i) the channel under consideration (ensuring that the monitor is analysing information on the

72

Chapter 5. A Calculus of Distributed Monitored Processes

Figure 5.12: An Example Trace.

event/channel it is interested in), (ii) the counter value (ensuring that the monitor is analysing
the next trace entity in the temporal order defining the the trace), and (iii) the monitor’s location
of interest k. In this case, since M is interested in an output on channel c2, and the first trace
entity at k logs some process output on c1, the monitor ignores the first entity by incrementing
its counter. Therefore, M evolves to G{[m(c2, 〈〉, k).setC(l).m(c1, 〈〉, l).fail]}2.

The second trace entity in the sub-trace at k however records an output on c2. This implies
that all three conditions are satisfied for monitor trace input to occur; this second trace entity
(i) exposes some output on c2, the same channel which M is interested in, (ii) is next in line for
analysis by M (i.e., counter values match), and (iii) is located at k, the same location where M
is currently interested in monitoring. Hence, M next computes to G{[setC(l).m(c1, 〈〉, l).fail]}3.
The counter is also incremented upon trace input, forcing the monitor to avoid re-analysing the
same trace entity. Note that t(c2, v̄2, 2) is not consumed even after analysis by M — the trace is
left untouched for verification by other monitors if so required.

We have thus seen the operation of sequential trace analysis when dealing with one loca-
tion. However, the monitor has reached a stage in its computation where its’ interest lies with
a sub-trace at alternate location l. The monitor is hence instructed to dynamically re-align its
counter value when switching its analysis of the trace at k to that at l, depicted in Fig. 5.12
by a vertical arrow. More specifically, if we wish to re-align a monitor to location l, then the
act of re-alignment refers to an update of the monitor’s counter to the next trace counter value
at l. For instance, if we update the counter value to the next value assigned at l at the instant
shown in Fig. 5.12, we infer that ek

1, ek
2 must have occurred prior to el

2, el
3. In general, counter

re-alignment implies that any event which occurs at the new location post re-alignment must
have occurred after events which the monitor analysed at the prior location, thus extracting a
temporal ordering on remote trace entities. Clearly, this extracted ordering is however partial.

In general, monitor re-alignment represents our adopted mechanism for the extraction of a
monitored-before relation (section 3.5). The act of re-alignment can be effected in one of two

73

Chapter 5. A Calculus of Distributed Monitored Processes

ways: (i) during migration, effectively exploiting the sequential aspect of migration, or (ii) ex-
plicitly through monitor operator setC(k).M, whereby if a monitor wants to start analysing the
trace at an alternate location it can request its counter to be re-aligned. In both cases, the next
trace counter value at l is obtained through the counter state. Given that we are exploiting dy-
namic monitor execution to extract remote temporal orderings at runtime, we hence require our
asynchronous monitors to, in a sense, keep up with the rate of trace generation in order to extract
a best-effort temporal ordering between remote trace entities. By best-effort we mean that the
precision of the extracted underlying temporal ordering across remote locations depends on the
monitor’s efficacy; the faster the monitor, the more remote trace entities we can recognise as
temporally ordered. After re-alignment, the monitor starts operating as if it is local to the new
location’s trace (i.e., sequentially analysing trace entities as shown above). In case of migra-
tion, the monitor is truly local to the new location’s trace. On the other hand, when re-aligning
through operator SetC the monitor is physically remote, but logically re-aligned to act as if a
local monitor. Through this mechanism we achieve a concise solution for the monitoring of
both local and remote traces in uniform fashion.

Given that M is an orchestrated monitor, it achieves a temporal ordering on remote traces
through SetC. At that point in the system’s computation, the only event to have occurred at l is
el

1. M hence computes to G{[m(c1, 〈〉, l).fail]}2, updating its counter to 2. Through re-alignment
we hence infer that all trace entities henceforth generated at l with counter value ≥ 2 must have
happened after events seen at k. Trace entity el

2 is eventually generated at l, which happens
to record information of process output on c1 (implying that the monitored property has been
violated). This trace is input by the monitor, thus evaluating to terminal systemG{[fail]}3 flagging
that the property has been violated.

Another Example

We briefly consider the implementation for an alternate monitoring approach for the scenario
depicted in Fig. 5.12. Consider systems S 1 = k~P1�, S 2 = l~P2� as generic systems responsible
for the generation of the above trace. We next consider an implementation of the same property
through a static choreography-based approach. To this effect, we shall adopt two monitors
M1 = k{[m(c2, 〈〉, k).c!〈〉.stop]}1 and M2 = l{[c?〈〉.setC(l).m(c1, 〈〉, l).fail]}1; one each at each
location k and l. Hence, the global system takes the form

k~P1� ‖ new c.(k{[m(c2, 〈〉, k).c!〈〉.stop]}1 ‖ l{[c?〈〉.setC(l).m(c1, 〈〉, l).fail]}1) ‖ l~P2�

Note the use of scoped name c for monitor synchronisation. Let us consider the above system’s
execution during trace generation and analysis. At some point, event ek

1 occurs at process P1,
generating trace entity k~t(c1, v̄1, 1)�. M1 is the only monitor interested in analysing traces at
k (statically identified through the use of operator m). However, as before, M1 is uninterested
in process output on c1 and hence ignores the trace entity. The system therefore collectively
evolves to

74

Chapter 5. A Calculus of Distributed Monitored Processes

k~P1
′� ‖ k~t(c1, v̄1, 1)� ‖ new c.(k{[m(c2, 〈〉, k).c!〈〉.stop]}2 ‖

l{[c?〈〉.setC(l).m(c1, 〈〉, l).fail]}1) ‖ l~P2�

M1 waits for the generation of the required trace entity, whereas M2 waits for the go-ahead
from M1 before starting its computation. At some point event el

1 also occurs. However, although
the generated trace is eventually of interest to M2 (since it logs output on c1), this monitor is
still waiting for synchronisation on c, and hence does nothing. Event ek

2 eventually occurs at P1,
generating trace entity k~t(c2, v̄2, 2)�, which is of interest to M1. The monitor hence analyses
the trace, and upon confirmation synchronises with M2 on c resulting in

k~P1
′′� ‖ k~t(c1, v̄1, 1)� ‖ k~t(c2, v̄2, 2)� ‖ k{[stop]}3 ‖

l{[setC(l).m(c1, 〈〉, l).fail]}1 ‖ l~P2
′� ‖ l~t(c1, v̄5, 1)�

M1 hence computes to a terminal process. It has completed its verification at k, and has
signalled to M2 to start verifying at l. M2 immediately forces an update to its counter value
through operator SetC, thus extracting a temporal ordering on events through synchronisation.
Any trace entity at l analysed by M2 after the counter update is guaranteed to temporally suc-
ceed all trace entities encountered by M1 prior to synchronising. Since el

1 has already occurred
at l, M2’s counter takes the value of 2 by order of SetC. Upon completion, M2 waits for a trace
entity logging some output on c1 at l. Event el

2 eventually generates l~t(c1, v̄6, 2)�, breaking the
monitored property. This property violation is identified by M2, which analyses the latter trace
and signals failure by evaluating to fail i.e.,

k~P1
′′� ‖ k~t(c1, v̄1, 1)� ‖ k~t(c2, v̄2, 2)� ‖ k{[stop]}3 ‖

l{[fail]}3 ‖ l~P2
′� ‖ l~t(c1, v̄5, 1)� ‖ l~t(c1, v̄6, 2)�

Systems S 1 and S 2 proceed in their execution unaware of property failure, with events ek
3,

ek
4 and el

3 occurring after the violation. In other words, our monitors are limited to flagging
errors. The above example concludes our informal tour of the mDPi semantics. A more formal
treatment shall be provided in section 5.2.2.

We have seen two approaches so far; implementing orchestrated and statically choreographed
monitors. Whereas the former approach used central monitors which analysed traces remotely,
the latter adopted monitors which analysed locally, and synchronised remotely. Note how this
latter approach avoided the exposure of trace information across locations by monitoring locally.
This was not the case for orchestrated monitors, which exposed traces by remotely analysing
their contents. We can also define a migrating monitor implementation for the same property,
taking the form

k{[m(c2, 〈〉, k).go l.m(c1, 〈〉, l).fail]}1

The monitor starts its computation at k, before migrating to l to complete verification of the
property. Counter re-alignment is effected during migration, exploiting the operator’s sequential

75

Chapter 5. A Calculus of Distributed Monitored Processes

nature. Note the similarities in the definition of the orchestrated and migrating monitors. This
is achieved through elevated encapsulation provided by migrating monitors; defining necessary
monitoring functionality through one monitor while achieving a choreographed approach. This
is in contrast with the statically choreographed approach, which required two monitors. The
advantage with migrating monitors is highlighted further when dealing with dynamic architec-
tures. However, the cost of migrating monitors is the adoption of an expensive go operator as a
language primitive.

In general, we consider monitors as an executable form of system properties written in some
high-level specification language. Hence, verifying properties written in some language simply
requires us to define a translation from the language to an mDPi monitor. One can go further,
by defining multiple translations of the same language; one for each distributed monitoring
approach. The above examples show that, at least for certain properties, mDPimonitors are suf-
ficiently expressive to monitor alternate distributed monitoring approaches (chapter 3). Clearly,
the expressivity afforded to our monitors dictate what specification languages we can encode,
and which approach fits best. As a result, we do not focus our attention to one specification
language, but rather focus on the monitoring semantics. If we prove that mDPi monitors ad-
mit desirable characteristics, this would imply that any property verified through our monitors
would also adhere to said characteristics.

Further Considerations

We extend standard notions of variable binders, substitution, and α-equivalence (presented in
chapter 4) for mDPi. Note that monitor operator m(c, x̄, k).M acts as an additional variable
binder (on top of c?x̄.P and c?x̄.M), binding x ∈ x̄ in M. The use of binders implies the notion
of variable substitution. See appendix B for the full definition of Sσ i.e., substitution in its most
general form. Crucially, since trace entities are closed terms (fv(T) = ∅) this implies that substi-
tution does not affect trace information — one would not want to alter permanent logged event
information. The definition of Sσ assumes renaming of bound variables in case of variable cap-
ture. Variable renaming through substitution presents the preliminary form of α-equivalence,
elevated to configurations in case of mDPi; two configurations are deemed α equivalent if they
are the same, except in their naming of bound variables [47]. Since locations and counter values
admit concrete values (i.e., are not contained within variables), configurations have to match on
both location and counter values in order to be α equivalent. This preliminary notion of equality
makes sense, since the naming of variable placeholders should not effect system behaviour. Sec-
tion 5.3 shall provide more refined notions of equality, pairing configurations on more involving
concepts such as equality based on structure, and finally a notion of equality based on exhibited
behaviour. We shall also apply the barendregt convention [47] to mDPi terms. In other words,
we consider mDPi terms up to α-equivalence, by ensuring that all bound identifiers are distinct,
and are chosen to be different from present free identifiers within the context the term is being
used.

76

Chapter 5. A Calculus of Distributed Monitored Processes

The notion of contexts is also crucial in mDPi— we shall often be interested in considering
mDPi terms as part of some larger environment consisting of other systems. Reasoning about
configurations-in-context give us the most profound understanding of their operation in its most
general form, by considering how a system may also interact with its external surroundings
(section 4.2.1). A context in mDPi is considered a ‘configuration with a hole’ of the form
δ B S ‖ or δ B new c. , where can be substituted with any valid system. We next elevate the
property of contextuality over configurations (as opposed to processes in case of π; Def n4.2.4).

Definition 5.2.3. (contextual relation) A relation R :: Conf ↔ Conf is said to be contextual if
it is preserved by operators ‖ and new, hence adhering to the following two properties:

• (δ B S 1 R δ B S 2) ⇒ ((δ B (S 1 ‖ V) R δ B (S 2 ‖ V)) ∧ (δ B (V ‖ S 1) R δ B (V ‖ S 2)))
• (δ B S 1 R δ B S 2) ⇒ (δ B new n.S 1 R δ B new n.S 2)

Contextuality is either included as part of a relation’s definition, or subsequently proven as a
relation property.

This concludes our informal introduction of the mDPi language. However, before moving
on we consider the issue of dynamic architectures in mDPi. The specification of dynamicity is
derived from our interest in studying certain monitoring approaches when faced with dynamic
architectures. You may recall chapter 4 introducing two possible forms of dynamicity in the
π-calculus; dynamicity of channel links, and process mobility [47]. The former comes part
and parcel with the π-calculus (and its extensions) due to inherent name extrusion. mDPi is no
different, allowing for channel names to be extruded and used at runtime. The latter form of
dynamicity refers to (i) the dynamic creation of new locations, and/or (ii) process migration.
However, given that location information is not scoped in mDPi, this implies that the addition
of new locations on the fly is at most implicit. Moreover, we do not allow for processes to
migrate between locations, implying that a process is tied down to its location for the duration
of its computation. Note that monitor migration should not be taken as a form of dynamic
architecture, since monitors do not actively participate in system computation (in the traditional
sense) — their purpose is rather to verify system behaviour. In conclusion, process mobility is
not explicitly studied in mDPi. Nevertheless, it would be interesting to explore the effectiveness
of monitoring approaches when faced with said mobility, and is left as future work.

5.2.2 A Semantics For mDPi
Our next task is to assign an appropriate formal semantics to the mDPi language. However,
although we have an informal understanding of the language operators, there still are unresolved
challenges. As section 5.1 at the beginning of the chapter hinted, we are often required to
consider system behaviour at different levels of abstraction. More specifically, this section
proposed the need to expose different aspects of system behaviour, depending on the statement

77

Chapter 5. A Calculus of Distributed Monitored Processes

we are required to prove. Consider systems S 1 and S 2 below.

S 1 = k~c!d̄.stop� ‖ k{[m(c, x̄, k).ok]}1, S 2 = k~c!d̄.stop� ‖ l{[m(c, x̄, k).ok]}1

Both systems admit a simple process outputting values d̄ on c at k. However, S 1 and S 2 are
not perfectly identical, due to differences in their monitoring effort. Whereas the former per-
forms runtime monitoring at a local level, the latter monitors remotely due to being situated at
different location l. Identifying such differences are hence crucial in certain scenarios — the
former might represent a choreographed approach whereas the latter represents an orchestrated
monitoring effort. Therefore, we require our language semantics to be capable of identifying
differences in computation location. However, in other scenarios location may be deemed to
be not pertinent. For example, we may not be interested in monitors’ location, as long as both
systems are monitored for the same properties. In such cases, we want our semantics to ig-
nore/abstract over information of entities’ runtime location. Clearly, we have so far only shown
one example exposing the need for abstraction on system behaviour (over location information).
In fact, our need is more varied, as evidenced by a further three possible scenarios below.

Scenario 5.1. Do S 1 and S 2 admit the same behaviour, factoring in location?

Scenario 5.2. Do S 1 and S 2 admit the same behaviour, disregarding location?

Scenario 5.3. Do S 1 and S 2 admit the same process behaviour, disregarding monitor be-
haviour?

Scenario 5.1 requires that we match systems based on both their processing and monitoring
efforts, as well as considering the located aspect of computation. Hence, the first scenario re-
quires the finest possible analysis of system behaviour, matching on additional monitoring and
located aspects of computation (apart from the standard matching of process computation). As
discussed above, we expect to be able to distinguish between S 1 and S 2 at a formal level.

On the other hand, Scenario 5.2 requires a coarser analysis of system behaviour. In this case,
we are not interested in where computation takes place, as long as both processes and monitors
otherwise exhibit the same behaviour. In case of S 1 and S 2 both would be considered identical,
since the difference in location for monitoring computation would be ignored. Similar analysis
shall be useful when considering whether different monitoring approaches are equally expres-
sive; as long as our monitoring approaches can verify the same property classes, we do not care
where the monitoring is effected.

The third scenario 5.3 exposes another form of information abstraction, this time ignoring a
particular aspect of system execution. In this case we are uninterested in monitor behaviour,
as long as process computation matches. Such analysis would once more render S 1 and S 2

as equivalent. We shall perform similar analysis when proving that the monitoring semantics
do not affect process computation. This is achieved by proving that any system and its un-
monitored counterpart produce the same computation, disregarding monitor behaviour.

78

Chapter 5. A Calculus of Distributed Monitored Processes

More scenarios can be thought of. We may for instance consider localised monitors only, or
process computation disregarding location. Even more scenarios are introduced when consid-
ering the effect of traces on system behaviour. Throughout this dissertation we shall however
limit ourselves to focusing on scenarios which allow us to formalise the required statements
outlined in section 5.1.

Keeping the above challenges in mind, we next explore how to, at a mathematical level, en-
code system behaviour. To this effect, we opt for an action semantics due to its well-documented
advantages [47, 67, 76];

• To obtain standard coinductive equational reasoning through bisimilarity relation ≈ (Def n

4.4.3),

• while also allowing for the compositional analysis of system behaviour.

More specifically, we expose system behaviour by describing a system’s capability to per-
form actions, either internally or externally with its context. Although internal actions are
undetectable to a system’s environment, external actions are used to describe possible interac-
tions with outside entities. In effect, this gives us a more general view of system behaviour,
describing computation when in isolation, as well as within some larger computational endeav-
our. This view of processes is given in terms of a Labelled Transition System (see Def n 4.2.5),
where transition labels represent the system’s action capabilities at each stage in its computation.

The next question lies as to how we shall go about extracting different LTS representations
at various levels of abstraction (exemplified above). In general, each scenario requires differ-
ent LTS semantics, which however admit only slight modifications in terms what actions we
allow. These modifications dictate the degree to which we choose to abstract information (for
that scenario). For instance, whereas scenario 5.1 would require its LTSs to record location
information within their labels, scenario 5.2 would opt for LTSs which ignore location details.
A naı̈ve approach would require the definition of a transition system for each alternate view of
system operation. Hence, analysing system behaviour under a new scenario requires us to define
an alternate transition system exposing pertinent information in each case. Although correct,
we view this approach as inefficient and inelegant, which is why opt for an alternate mechanism.

Instead, we exploit the underlying similarities inherent to all LTSs, giving rise to a prelim-
inary LTS representation of system behaviour, termed a pre-LTS. Given that mDPi introduces
notions of monitoring and distribution, this preliminary representation extends standard LTS
views by decorating transition labels with

(i) location information, specifying locations that participated in the action;

(ii) action modality, specifying whether it is a process, monitor or trace action.

79

Chapter 5. A Calculus of Distributed Monitored Processes

A pre-LTS representation is hence enriched with extensive knowledge of system behaviour.
This implies that obtaining a particular view of system behaviour (as is required in scenarios
5.1, 5.2 and 5.3) simply involves abstracting unnecessary detail from the pre-LTS labels. In-
formation abstraction is formally achieved through filter function Ω over labels, encapsulating
logic of how abstraction is performed. Informally, we consider a pre-LTS to contain too much
information of how systems behave for any particular scenario. Hence, we define a way how
to abstract non-pertinent information (encapsulated in a filter function definition), in order to
obtain an LTS containing just enough information to suit our needs. Simply put,

pre-LTS + Ω = LTS (5.1)

Given that Ω operates exclusively on transition labels, the result after filtering is another
transition system. Notice the simplicity in achieving an LTS representation; given a system’s
pre-LTS (extracted through a standard rule set), in order to obtain an LTS we simply need to
define how Ω filters information. In other words, obtaining different views of system behaviour
involves the reuse of existing derivation mechanics, instantiated for each valid definition of Ω.
By extension, obtaining a particular view simply requires the motivation of an appropriate Ω.
Our setting hence becomes

Such that we can obtain various LTS representations from a pre-LTS.

However, although the above approach is convenient wrt. summarising LTS semantics defini-
tions, it admits undesirable repercussions. More specifically, by encoding extended information
on transition labels, a pre-LTS exhibits a rather intensional view of system behaviour i.e., it
exposes information of both the system’s internal and external operation. The addition of tags
to τ actions effectively results the partitioning of τ. In other words, added tags force us to
distinguish between different forms of internal actions. For instance, although actions τp and
τm represent internal actions, we can now deduce that the former was performed by a process,
whereas the latter was performed by a monitor. Moreover, although this example considers ac-
tion modality, τ is partitioned further when also considering location tags. The loss of the silent
action is undesirable; we cannot, at a pre-LTS level, consider behavioural equality which is

80

Chapter 5. A Calculus of Distributed Monitored Processes

weak up to silent actions. In truth, comparing behaviour of pre-LTSs results in something akin
to strong bisimilarity [76], also requiring the matching of τ tags. However, weak bisimilarity
(section 4.4) is seen as a more natural form of bisimilarity as opposed to its strong counterpart
[47]. It is for this reason that we shall endeavour to re-obtain an extensional view at the level of
the LTS, abstracting over internal actions by reobtaining the silent action.

The reader might at this stage question why we tag τ actions in the first place. Wouldn’t
it be simpler to generate tag-less τs in our transition rules? Although the above issue would
be resolved, we argue that, at a preliminary level, we do require the capability to distinguish
between internal actions. This necessity is borne out of subsequent filtration based on label
tags. In other words, there may be scenarios which are not interested in certain types of τs. The
added tags hence allow us to decide which τs to keep, and which shall be ignored. Consider an
example scenario where we are not interested in monitor behaviour. Certainly this implies that
all monitor behaviour, both external and internal, is to be ignored from the pre-LTS. Had we not
tagged τs prior to filtration, we would have had no way to distinguish between say, a process or
a monitor internal action.

In conclusion, apart from benefits wrt. the use of an action semantics, we believe our ap-
proach to be additionally advantageous on two fronts;

1. It avoids repetition, by presenting a modular way for extracting different LTSs. Each LTS
focuses on different aspects of system computation i.e., representing behaviour at various
levels of abstraction.

2. We identify a hierarchy on LTSs, depending on the filter functions used for their deriva-
tion. This hierarchy shall be exploited to prove statements at a particular level, which are
then automatically valid for coarser abstraction levels.

The second advantage is admittedly vague at present; we shall elucidate this point throughout
the forthcoming section. For now it suffices to say that we shall exploit the relationship between
a pre-LTS and its various LTS views in order to obtain a hierarchy wrt. the level of encoded
information. We subsequently make use of this hierarchy at the proof level, thus avoiding the
need to re-prove results for each LTS. Simply put, if we prove some result when considering
more information, the result should still hold when dealing with less. The next section presents
a general transition rule system for the extraction of a pre-LTS, and is followed by an in-depth
treatment of filter functions. We subsequently define the extraction of an LTS through the use
of filter functions on a pre-LTS. Section 5.3 formalises configuration equivalence at a structural
and behavioural level. Finally, section 5.4 presents our results wrt. the statements we set out to
reason about (presented in section 5.1). Section 5.5 concludes the chapter.

81

Chapter 5. A Calculus of Distributed Monitored Processes

The Pre-LTS

We next present the transition rules of our pre-LTS, defined over closed configurations i.e.,
configurations of the form δ B S where fv(S) = ∅. The transition labels denote judgements on
a system’s action capabilities. We employ five distinct actions:

• C
c?d̄
−−→ R; the ability of configuration C to receive tuple d̄ on c, evolving to residual

configuration R in the process.

• C
(b̄)c!d̄
−−−−→ R; the ability of configuration C to transmit tuple d̄ on channel c, evolving to

R after effecting the action. Moreover, this judgement encodes the ability of C to export
knowledge of bound names b̄ during channel output, such that b̄ ⊆ d̄ and c < b̄. In other
words, we restrict the exporting of names to those which are part of the transferred tuple
in order to avoid unintended capture of free names.

• C
(b̄)t(c,d̄,n)
−−−−−−−→ R; the ability of C to expose the nth trace entity information of some logged

process output of d̄ on c. The addition of the counter value to judgements shall be used
to synchronise trace analysis based on the extracted ordering of events. Similarly to the
output action, trace exposure can simultaneously export names, also bound by d̄ as before.

• C
m(c,d̄,k,n)
−−−−−−−→ R; denoting the ability of C to read information logged by the nth trace entity

at location k recording process output of d̄ on c, as well as evolving to R in the process.

• C
τ
−→ R; denoting an internal action executed by C, evolving to R in the process. Both

forms of communication (i.e., process and monitor comm.), trace analysis, as well as
other computational steps (such as migration) shall be represented by an unobservable τ
action.

An mDPi term can, at any stage of its computation, perform one of the above five actions.
As motivated above, for generality we extend all actions with additional information, including
(i) location information, denoting which location(s) participated in the action, and (ii) modality
µ ∈ (Mod = {p,m, t}), recording whether it was a process, monitor or trace action.

For instance, action τ〈p:l,k〉 denotes a process internal action involving locations l and k whereas
τ〈m:l,l〉 denotes a monitor internal action, local to (both produced and consumed at) location l;
the explanations for actions (b̄)c!d̄〈µ:l〉 (resp. c?d̄〈µ:l〉) are similar; here the location tag l denotes
the source (resp. destination location) of the communication action. We restrict modality of
actions t(c, d̄, n)〈t:k〉 and m(c, d̄, l, n)〈m:k〉 to t and m respectively, since only traces and monitors
are capable of effecting the aforementioned actions.

Notation 5.1. We shall take αµ,l ∈ Actµ,l to represent the set of actions tagged with modality and
location information. Through this notation we elide other sets; for instance αl ∈ Actl represents
the set of actions tagged with information location (only). Overloaded notation n(α), fn(α) and

82

Chapter 5. A Calculus of Distributed Monitored Processes

bn(α) is taken to represent the set of names, free names and bound names in action α, such that
n(α) = fn(α) ∪ bn(α). Taking action α = (b̄)c!d̄〈p:k〉 as an example;

fn((b̄)c!d̄〈p:k〉) = {c, d̄}/b̄
bn((b̄)c!d̄〈p:k〉) = b̄

Note that tagged information is neither free nor bound. We now move on to an exposition
of the rules. As we shall see mDPi admits an extensive list of transition rules, which is why
we present the rules in smaller digestible chunks. See appendix A for a complete listing of the
calculus’ syntax and semantics.

Outp

δ B k~c!d̄.P�
c!d̄〈p:k〉
−−−−→ inc(δ, k) B k~P� ‖ k~t(c, d̄, δ(k))�

Inp

δ B k~c?x̄.P�
c?d̄〈p:k〉
−−−−−→ δ B k~P{d̄/̄x}�

Outm
δ B k{[c!d̄.M]}n

c!d̄〈m:k〉
−−−−−→ δ B k{[M]}n

Inm

δ B k{[c?x̄.M]}n
c?d̄〈m:k〉
−−−−−→ δ B k{[M{d̄/̄x}]}n

Com1
δ B S

(b̄)c!d̄〈µ:k〉
−−−−−−→ δ′ B S ′ δ B V

c?d̄〈µ:l〉
−−−−→ δ B V ′

δ B S ‖ V
τ〈µ:k,l〉
−−−−→ δ′ B new b̄.(S ′ ‖ V ′)

[b̄ ∩ fn(V) = ∅]

Figure 5.13: Communication in mDPi

Rules (Outp) and (Inp) describe the ability of configurations to perform process output and
input. The former interacts with the latter to describe a synchronous form of process commu-
nication with side effects. Rule (Outp) describes the ability of system k~c!d̄.P� to evolve to
k~P� while effecting action c!d̄〈p:k〉. The novel aspect of this rule is that process output also
generates trace entity k~t(c, d̄, δ(k))� as a side effect, permanently logging information of output
of d̄ on c at k. The generated trace is assigned the next counter value to be assigned at location
k, obtained from the counter state (through δ(k)). The value mapped by the counter state for k
is subsequently incremented (through inc) in the residual configuration. Rule (Outp) is hence
responsible for formalising the generation of a temporal order on trace entities per location. On
the other hand, process input is described through rule (Inp) is standard [47, 76, 76], with d ∈ d̄
received on c being substituted for x ∈ x̄ in P. Both actions are tagged with (p : k), denoting that
the action was effected by a process at k.

83

Chapter 5. A Calculus of Distributed Monitored Processes

Monitor communication is (i) synchronous, and (ii) side effect free. Clearly, we are not inter-
ested in verifying monitor behaviour in the same way we are for processes, which is why we do
not log monitor actions. We opt for synchronous communication to facilitate synchronisation
between monitors. Monitor output and input operations are described through rules (Outm) and
(Inm) in the standard manner [47, 76, 76]. In this case, both actions are tagged with (m : k),
describing a monitor action at k.

Rule (Com1) is central to our semantics as it describes both process communication as well
as monitor communication (we elide symmetric rule (Com2); see appendix A). For commu-
nicating sub-systems to synchronise, the rule requires that the corresponding input and output
labels agree on the channel of communication, c, the values communicated d̄ (these two are
standard) but also on their modality, µ: this way monitor actions having modality m should not
interfere/interact with normal process communication carrying labels with modality p. Note
that (Com1) does not require location information of input/output actions to match, thereby per-
mitting cross-location communication for both processes and monitors. Importantly though, it
aggregates source and destination location information relating to communication as part of the
τ label from these premise labels. Note the side condition on exported names b̄ in order to avoid
unwanted capture of free names.

Tracee
δ B k~t(c, d̄, n)�

t(c,d̄,n)〈t:k〉
−−−−−−−→ δ B k~t(c, d̄, n)�

MonTri

δ B k{[m(c, x̄, l).M]}n
m(c,d̄,l,n)〈m:k〉
−−−−−−−−−→ δ B k{[M{d̄/̄x}]}n+1

Mon1
δ B S

(b̄)t(c,d̄,n)〈t:k〉
−−−−−−−−−→ δ B S δ B V

m(c,d̄,k,n)〈m:l〉
−−−−−−−−−−→ δ B V ′

δ B S ‖ V
τ〈t:k,l〉
−−−→ δ B new b̄.(S ‖ V ′)

[b̄ ∩ fn(V) = ∅]

Figure 5.14: Trace Analysis

We next take a look at formalising trace analysis in mDPi. This form of communication is
asynchronous and persistent, such that the contributing trace entity is never consumed. Rule
(Tracee) describes the capability of trace entity k~t(c, d̄, x)� to expose logged information by
performing action t(c, d̄, n)〈t:k〉. This label exposes that the trace entity logged some process
output of d̄ on c. Importantly, the action also includes counter value n encoding the position
of the trace entity in the local trace at k. This is counter is used to synchronise monitors and
traces with respect to the extracted temporal ordering of events (more below). The above label
is tagged with (t : k), denoting an external trace action at k. From this we can also infer that the
process action logged by the trace entity also occurred at k.

84

Chapter 5. A Calculus of Distributed Monitored Processes

Rule (MonTri) describes a monitor’s capability to read trace entity information through oper-
ator m. Monitor trace input exhibits analogous behaviour to process and monitor input capabili-
ties, with the exception of alternate judgement m(c, d̄, l, n)〈m:k〉. Apart from standard information
including the communication channel and the values communicated, this label also adds a snap-
shot of the monitor’s counter value n for location l at the instant of trace input. Its purpose is
to record the next trace entity (located at l) required by the monitor at that instant during its
computation, also used for synchronisation purposes (below). Clearly, given that the action is
performed by a monitor (at k) it is tagged with (m : k).

The actions derived from the last two rules interact to perform trace analysis, formalised by
rule (Mon1) (and symmetric rule (Mon2); see appendix A). Once created, trace entities repeat-
edly expose logged information (giving the act an asynchronous flavour), which is eventually
input by monitors. The rules once more require the corresponding trace exposure and monitor
trace input labels to agree on (i) the communication channel c, (ii) value tuple d̄ (as is standard),
but also on (iii) the counter value n and (iv) location of trace exposure k matched with the loca-
tion whose trace the monitor intends to analyse. Intuitively, matching said actions additionally
on their counter value and intended trace location forces monitors to input the nth trace element
(located at required location k) during each stage in its computation. It is important to note
that we are not required to match actions on their effected location (i.e., k , l in certain cases),
implying that remote trace analysis is allowed. Moreover, we require the input and output ac-
tions to be of modality m and t respectively. The resulting trace analysis act is represented by
an internal τ action aggregating location information, and is assigned modality t. This choice
allows us to differentiate between monitor communication and trace analysis. Had we tagged
the action with modality m, this would not have been possible. Note the presence of the side
condition, enforced to avoid unwanted capture of free names in the residual.

Gom
δ B k{[go l.M]}n

τ〈m:k,l〉
−−−−→ δ B l{[M]}δ(l)

SetCm
δ B k{[setC(l).M]}n

τ〈m:k,k〉
−−−−→ δ B k{[M]}δ(l)

Incm
δ B S

(b̄)t(c1,d̄,n)〈t:l〉
−−−−−−−−−→ δ B S δ B k{[M]}n

m(c2,ē,l,n)〈m:k〉
−−−−−−−−−−→ δ B k{[M′]}n+1

δ B S ‖ k{[M]}n
τ〈m:k,k〉
−−−−→ δ B S ‖ k{[M]}n+1

[c1 , c2]

Figure 5.15: Extraction Of Temporal Orderings During Monitor Execution

Rule (Gom) describes a monitor’s ability to migrate from locations k to l through operator go,
and is represented through monitor internal action τ〈m:k,l〉 (also aggregating source and destina-

85

Chapter 5. A Calculus of Distributed Monitored Processes

tion information). Upon migration, the monitor’s counter is re-aligned to δ(l), the value mapped
by the counter state for the new location. (SetCm) describes operator SetC’s behaviour, forcing
the monitor counter’s re-alignment to a specific location passed as a parameter. Finally, rule
(Incm) describes monitor behaviour when the trace entity at current counter value n (at location
l) does not concern the channel currently of interest to the monitor (represented through side
condition c1 , c2). In such cases, the monitor simply increments its counter value, thus ignor-
ing the trace entity. This behaviour is represented by a monitor internal action, tagged with the
same source and destination location (since only one location contributed to its execution).

Recp
δ B k~∗P�

τ〈p:k,k〉
−−−−→ δ B k~P ‖ ∗P�

Recm
δ B k{[∗M]}n

τ〈m:k,k〉
−−−−→ δ B k{[M ‖ setC(k). ∗M]}n

EQp
δ B k~if u=v then P else Q�

τ〈p:k,k〉
−−−−→ δ B k~P�

[u = v]

NEQp
δ B k~if u=v then P else Q�

τ〈p:k,k〉
−−−−→ δ B k~Q�

[u , v]

EQm
δ B k{[if u=v then M else N]}n

τ〈m:k,k〉
−−−−→ δ B k{[M]}n

[u = v]

NEQm
δ B k{[if u=v then M else N]}n

τ〈m:k,k〉
−−−−→ δ B k{[N]}n

[u , v]

Figure 5.16: Other Operators

The above rules describe the operation of the recursion and branching operators; both exhibit
almost identical behaviour for both processes and monitors. Rules (Recp) and (Recm) describe
the unraveling of a recursive call by creating a copy of the program (or monitor) in parallel. In
case of processes, the new copy is not bound by operator ∗, and can compute freely. However,
in case of monitor recursion the new monitor copy is forced to update its counter through SetC
before executing. Had this not been the case each copy would inherit counter value n assigned to
∗M. Thus, each copy would start its analysis from the same point in the trace. However, although
we want to describe recursive computation for monitors, we want each copy to progress in
its analysis of the generated trace, which is why we use SetC. Both rules hence allow for
the generation of an arbitrary amount of copies of the original entity. Rules (EQp), (NEQp),
(EQm) and (NEQm) are straightforward, allowing for the analysis of value tuples through the
conditional operator. Given branches P, Q (or M, N in the case of monitors), the composite
process (or monitor) chooses the next branch depending on the outcome of u=v.

86

Chapter 5. A Calculus of Distributed Monitored Processes

Opens
δ B S

(b̄)c!d̄〈µ:k〉
−−−−−−→ δ′ B S ′

δ B new b.S
(b,b̄)c!d̄〈µ:k〉
−−−−−−−→ δ′ B S ′

[b ∈ d̄]

Opent
δ B S

(b̄)t(c,d̄,n)〈t:k〉
−−−−−−−−−→ δ′ B S ′

δ B new b.S
(b,b̄)t(c,d̄,n)〈t:k〉
−−−−−−−−−−→ δ′ B S ′

[b ∈ d̄]

Splitp
δ B k~P ‖ Q�

τ〈p:k,k〉
−−−−→ δ B k~P� ‖ k~Q�

Splitm
δ B k{[M ‖ N]}n

τ〈p:k,k〉
−−−−→ δ B k{[M]}n ‖ k{[N]}n

Expp
δ B k~new c.P�

τ〈p:k,k〉
−−−−→ δ B new c.k~P�

Expm
δ B k{[new c.M]}n

τ〈m:k,k〉
−−−−→ δ B new c.k{[M]}n

Figure 5.17: Structural Re-organisation

Rules (Opens) and (Opent) handle scope extrusion in the standard way [47, 76, 76], by allow-
ing for new names to be exported over output or trace exposure actions. Knowledge of these
names is eventually made known to residual systems after communication/trace analysis. Both
rules require exported names to be part of the value tuple being communicated/exported, in
order to avoid unintended variable capture. Rules (Splitp), (Splitm), (Expp) and (Expm) serve
housekeeping purposes, by pushing out parallel composition and scoping to the system level.

87

Chapter 5. A Calculus of Distributed Monitored Processes

Cntx1
δ B S

α
−→ δ′ B S ′

δ B new b.S
α
−→ δ′ B new b.S ′

[b < fn(α)]

Cntx2
δ B S

α
−→ δ′ B S ′

δ B S ‖ V
α
−→ δ′ B S ′ ‖ V

[bn(α) ∩ fn(V) = ∅]

Cntx3
δ B S

α
−→ δ′ B S ′

δ B V ‖ S
α
−→ δ′ B V ‖ S ′

[bn(α) ∩ fn(V) = ∅]

Figure 5.18: Systems In Context

Finally, rules (Cntx1), (Cntx2) and (Cntx3) allow for system behaviour to be deduced when
placed in a context. (Cntx1) and (Cntx2) describe system behaviour when placed in parallel,
whereas (Cntx3) describes system behaviour when scoped. In all three cases side conditions
ensure no unwanted capture of free names as a byproduct.

Example 5. We can now formally express the execution of example system S 1 = k~c!d̄.stop� ‖
k{[m(c, x̄, k).ok]}1 introduced at the beginning of the chapter. By rules Outp and Cntx2 we infer
transition

{(k, 1), (l, 1)} B k~c!d̄.stop� ‖ k{[m(c, x̄, k).ok]}1
c!d̄〈p:k〉
−−−−→

{(k, 2), (l, 1)} B k~stop� ‖ k~t(c, d̄, 1)� ‖ k{[m(c, x̄, k).ok]}1

Note the introduction of trace entity k~t(c, d̄, 1)� recording the process output of d̄ on c at
k. The counter state has also been updated, incrementing the value mapped to k by 1. Hence,
the next trace entity created at k will be assigned the value 2, encoding a temporal ordering
on traces. At this stage the trace entity can repeatedly expose its information, represented by
transition

{(k, 2), (l, 1)} B k~stop� ‖ k~t(c, d̄, 1)� ‖ k{[m(c, x̄, k).ok]}1
t(c,d̄,1)〈t:k〉
−−−−−−−→

{(k, 2), (l, 1)} B k~stop� ‖ k~t(c, d̄, 1)� ‖ k{[m(c, x̄, k).ok]}1

by rule Trace2, allowing for the trace to be analysed by various monitors. Moreover, monitor
k{[m(c, x̄, k).ok]}1 exhibits the capability to read a trace entity i.e., by MonTri,

k{[m(c, x̄, k).ok]}1
m(c,d̄,k,1)〈m:k〉
−−−−−−−−−−→ k{[ok]}2

88

Chapter 5. A Calculus of Distributed Monitored Processes

Hence the monitor requests a trace entity (i) at location k, (ii) at trace order location 1, (iii)
regarding output on c. All three conditions happen to be satisfied by the generated trace entity.
By rules Mon and Cntx3 we derive transition

{(k, 2), (l, 1)} B k~stop� ‖ k~t(c, d̄, 1)� ‖ k{[m(c, x̄, k).ok]}1
τ〈t:k,k〉
−−−−→

{(k, 2), (l, 1)} B k~stop� ‖ k~t(c, d̄, 1)� ‖ k{[ok]}2

thus representing trace analysis as an internal τ action. Moreover, the action is tagged with
modality t, and locations k, k since both the monitor and the trace resided at the same location
during analysis. The full pre-LTS for S 1 is presented in Fig. 5.19.

Figure 5.19: Pre-LTS representation for S 1

�

Can we, at a mathematical level, identify differences in the behaviour of S 1 and system
S 2 = {(k, 1), (l, 1)} B k~c!d̄.stop� ‖ k{[m(c, x̄, k).ok]}1? Consider the pre-LTS for S 2 in Fig. 5.20.

Although the pre-LTSs for S 1 and S 2 are very similar, they admit minute differences. Con-
sider the difference in location information for labels m(c, d̄, k, 1)〈m:k〉 and m(c, d̄, k, 1)〈m:l〉, ef-
fected by respective monitors to exhibit their capability of externally analysing a trace (i.e.,
within the context). Since both monitors are at differing locations k and l, the added tags reflect
this difference. Another difference lies with actions τ〈t:k,k〉 and τ〈t:k,l〉, representing some internal
trace analysis. The difference in location information reflects the fact that the monitor in S 1

reads the trace locally, whereas that in S 2 reads the same trace remotely. On the other hand,

89

Chapter 5. A Calculus of Distributed Monitored Processes

Figure 5.20: Pre-LTS representation for S 2

if we ignore tagged location information and only consider actions and their modality, we can
abstract over differences in the above pre-LTSs. Hence, we can consider S 1 and S 2 to be be-
haviourally equivalent, as long as we abstract over location information (more below).

This concludes our overview of the pre-LTS semantics. Through the above rules we are
able to extract a preliminary LTS representation of system behaviour, whose judgements are
tagged with additional information. Clearly, what information is considered pertinent depends
on the scenario we wish to consider. In general, the volume of added information results in the
semantics being too discriminating in most cases — it forces us to distinguish behaviourally
between terms which for a certain scenario we want to consider as identical. We therefore
require a means which allows for the removal of non-pertinent information in such cases, and
is presented below.

Filter Functions

We have so far informally motivated filter functions as a mechanism which allows for the con-
sideration of system behaviour at various abstraction levels. This mechanism operates on pre-
LTSs, filtering transitions by removing non-pertinent information. Consider system S 1 and its
pre-LTS representation in Fig. 5.19. Suppose we want to consider’s the subset of S 1’s behaviour
relating to process actions, as required in scenario 5.3. The resulting LTS looks like Fig. 5.21.

This LTS is derived by ignoring labels tagged with modality m or t i.e., monitor and trace
actions. Moreover, since we are only interested in viewing one modality of system operation,
the modality tags for the remaining process actions are also filtered. The result is an LTS which

90

Chapter 5. A Calculus of Distributed Monitored Processes

Figure 5.21: LTS representation for S 1 obtained by ignoring monitor and trace behaviour.

exhibits process behaviour only. Although mention of traces and monitors are still syntactically
present, by filtering their behaviour we give the illusion that they do not compute.

Other scenarios may however dictate the need to abstract over different aspects of system
behaviour. We may for instance want to define some Ω which filters remote trace analysis,
or another Ω which only allows for monitor behaviour. To this effect, the following section
focuses on the precise definition of appropriate filter functions. We later make use of these
functions in the next section, formalising a generalised form of the above derivation process.
In other words, we do not tie down to a particular definition of Ω, but rather define a general
derivation mechanism which we can apply to various filter functions. In general, Ω shall serve
two purposes within our calculus:

• To formalise the process of behaviour information abstraction, thus obtaining an LTS
(from a pre-LTS) encoding a coarser view of system behaviour.

• To reobtain an extensional view of system behaviour, by reintroducing the silent action at
the level of the LTS.

We hence introduce the notion of a well-formed filter function, filtering label information in
a desirable way. Mirroring the above requirements, Ω is considered well-formed if it adheres to
two properties i.e.,

Definition 5.2.4. (Well-formed Ω) Filter function Ω is s.t.b. well-formed iff it adheres to the
properties of

• Visibility Restriction, and;

• Action Preservation.

Our notion of function well formed-ness hence depends on the definition of these two prop-
erties. The former intuitively forces filter functions to either (i) remove tags associated to τ, or
(ii) prohibit/ignore certain τs completely. Hence, the result after filtering a pre-LTSs transitions
is the reobtaining of unobservable actions, removing all tagged τs in the process.

91

Chapter 5. A Calculus of Distributed Monitored Processes

Definition 5.2.5. (Visibility restriction) Function F is said to be visibility restricting if, for all
µ : Mod, k, l : Locs,

F (τ(µ:k,l)) = τ ∨ τ(µ:k,l) < dom(F)

Informally, the action preserving property forces filter functions to, at most, filter information.
Given a pre-LTS label αµ,l, we can either (i) filter nothing, or (ii) remove its tagged modality, or
(iii) remove its location information, or (iv) remove both modality and tagged information, or
(vi) prohibit it. Hence, we can define a filter function which maps c?d̄〈m:k〉 to c?d̄〈m〉 or to c?d̄〈k〉,
but we cannot define Ω to convert m(c, d̄, l, n)〈m:k〉 to c?d̄〈m:k〉, since in doing so we would have
illegally altered system behaviour.

Definition 5.2.6. (Action preservation) Function F is said to be action preserving if, for all
α(µ:k,l) ∈ Actµ,l

(F (α(µ:k,l)) = (α(µ:k,l) ∨ α(µ) ∨ α(k,l) ∨ α)) ∨ (α(µ:k,l) < dom(F))

By declaring that certain actions can have an undefined output we are effectively saying that
Ω can be a partial function. In the case when we mark actions (either external and internal) as
having undefined output, we are implying our disinterest in considering said behaviour. Hence,
behaviour emanating from uninteresting actions is pruned from the resulting LTS; both at an
internal level, as well as removing how pre-LTSs interact with their context through some pro-
hibited external action. We argue this choice to be better than converting unwanted behaviour
to silent actions, since by doing so we would still be unnecessarily factoring in interaction with
the context. Note that we shall henceforth only consider well-formed filter functions. To avoid
repetition, the term ‘well-formed’ is henceforth assumed.

We next consider a few example definitions of filter functions, starting from ΩF . This func-
tion filters the least possible information, by mapping tagged τs to silent actions (only). In
doing so, ΩF returns LTSs containing the most information. The result of using ΩF is hence
twofold; (i) comparison of system behaviour using LTSs generated through this filter function is
the most discriminating (since all external actions are also matched according to their tagged in-
formation), and (ii) we nonetheless reobtain an extensional view by abstracting from additional
internal action information.

Definition 5.2.7. (Filter function ΩF) We define filter function ΩF as follows

ΩF α ,

{
τ if (α = τ〈m:k,l〉) ∨ (α = τ〈p:k,l〉) ∨ (α = τ〈t:k,l〉)
α otherwise

92

Chapter 5. A Calculus of Distributed Monitored Processes

Clearly, ΩF is well-formed, since it adheres to the above two properties. ΩF also happens to
be total, by mapping each action to another.

Consider next filter function ΩRT , which abstracts all remote trace analysis behaviour from
a pre-LTS. In general, function ΩRT is useful when we want to consider the subset of system
execution which does not perform remote trace analysis. Hence, if for example we consider
a system’s behaviour in full (through ΩF), and the same system’s behaviour through ΩRT and
prove that the resulting LTSs are bisimilar, then we would have proven that the system does not
perform remote tracing. Given that rules (Mon1) and (Mon2) represent trace analysis through
a silent action tagged with modality t, we can easily identify which of these actions involved
remote locations.

Definition 5.2.8. (Filter function ΩRT) We define filter function ΩRT as follows

ΩF α ,

τ if (α = τ〈m:k,l〉) ∨ (α = τ〈p:k,l〉) ∨ (α = τ〈t:k,k〉)
undefined if (α = τ〈t:k,l〉)
α otherwise

Marking the output for τ〈t:k,l〉 as undefined is equivalent to the statement that τ〈t:k,l〉 < dom(ΩRT).
This filter function once more converts tagged τs to their un-tagged counterpart (in order to sat-
isfy the visibility restricting property). However, note that although trace τ actions of the form
τ〈t:k,k〉 (i.e., analysed locally) are filtered, the remainder trace τs have an undefined mapping (and
are hence pruned).

Yet another filter function ΩP shall be defined to remove monitor and trace behaviour from
a pre-LTS i.e., allowing only process actions. Thus if for instance we prove that a monitored
system’s processing behaviour (extracted through ΩP) is equivalent to the same monitor-less
system, then we would have proven that monitoring behaviour does not effect the system’s pro-
cesses. This approach shall be crucial when proving the result that the monitoring semantics do
not effect process computation. Clearly, the removal of all monitor and trace behaviour renders
modality information redundant (since only process actions are permitted), and is hence also
removed.

Definition 5.2.9. (Filter function ΩP) We define filter function ΩP as follows

ΩP α ,

τ if (α = τ〈p:k,l〉)
c!d〈k〉 if (α = c!d〈p:k〉)
c?d〈k〉 if (α = c?d〈p:k〉)
undefined if (α = α〈m,k:l〉)
undefined if (α = α〈t,k:l〉)

93

Chapter 5. A Calculus of Distributed Monitored Processes

ΩP handles process actions in straightforward fashion, removing process τ tags, as well as
external process actions’ modalities. However, all monitor and trace actions of the form α〈m,k:l〉

or α〈t,k:l〉 respectively are ignored, hence pruning all pre-LTS behaviour concerning either mon-
itors or traces. We have informally seen the use of ΩP on the pre-LTS for S 1 at the beginning
of the section. Moreover, scenario 5.3 argued that systems S 1 and S 2 should admit identical be-
haviour, disregarding monitor behaviour. Can we confirm this observation on LTSs? Consider
Fig. 5.22, which depicts the LTS representation obtained for S 2 through ΩP.

Figure 5.22: LTS representation for S 2 obtained through ΩP.

By comparing Fig. 5.21 and Fig. 5.22 we can intuitively see that both systems admit the
same (filtered) behaviour. Both S 1 and S 2 exhibit the capability for action c!d̄〈p:k〉 after filtering,
implying that processes in S 1 and S 2 behave in identical fashion. In other words, by ignoring
monitoring behaviour we abstracted over differences in S 1 and S 2’s monitoring efforts. Clearly,
the above LTSs show a subset of the information encoded by the previous pre-LTSs. A more
formal treatment of behaviour comparison (for both LTSs and pre-LTSs) is presented in section
5.3.2.

Given that filtered actions contain varying levels of information, we can deduce an ordering
on said actions. For instance, actions tagged with both modality and location information are
more informative than those tagged with either modality or location only. Moreover, actions
tagged with either modality or location only are mutually incomparable; it doesn’t make sense
to say who has more information. The result is a partial order on action labels, depicted in
Fig. 5.23.

94

Chapter 5. A Calculus of Distributed Monitored Processes

Figure 5.23: Order ≤ on actions

We next extend ≤ to filter functions. In general, filter functions either pair tagged actions
(from a pre-LTS label) with a less informative equivalent, or prohibit certain actions completely.
Hence, if Ω1 ≤ Ω2 this implies that the former consistently filters more information than the
latter; see Def n 5.2.10.

Definition 5.2.10. (Ordering On Filter Functions) Given well-formed filter functions Ω1,Ω2,
we say Ω1 ≤ Ω2 iff

(α1, α2) ∈ Ω1 ⇒ (α1, α3) ∈ Ω2 s.t. α2 ≤ α3

The above definition also allows for Ω2 to pair more actions than Ω1. What happens if Ω1 �
Ω2, and vice versa? This implies that Ω1, Ω2 filter different kinds of information, implying that
we have a partial order on filter functions. An example of mutually incomparable filter functions
involve some Ω1 which filters modality, and Ω2 which filters location tags. We consider the
following ordering on the filter functions defined above

ΩP ≤ ΩRT ≤ ΩF

ΩF is the largest by filtering the least information, followed by ΩRT (which ignores remote
trace analysis), followed by ΩP ignoring all monitor and trace activity. Although the use of
filter function ordering is admittedly unclear at this point, its utility becomes apparent when
comparing LTSs in the next section. More specifically, the extraction of a hierarchy on LTSs
allows for (i) a hierarchy on their comparison (section 5.3.2), and (ii) its exploitation for proof
reuse (exemplified in results 5.3.1 and 5.3.2).

The LTS

We next formalise the extraction of an LTS, representing behaviour for given system S at a
particular level of abstraction. As equation 5.1 suggests, we require (i) a pre-LTS representation
for S , and (ii) a filter function Ω. Filter functions operate at the semantic level, by altering
transition labels from the pre-LTS. Intuitively, we obtain an LTS by filtering each pre-LTS

95

Chapter 5. A Calculus of Distributed Monitored Processes

transition of the form C1
α
−→ C2; thereby converted to C1

α′

−→ C2 such that Ω(α) = α′. We shall

use notation C
α
−→Ω C′ to refer to filtered transitions, signifying that transition C

α′

−→ C′ is filtered
through Ω. By extension, LTSΩ refers to an LTS obtained through Ω.

Definition 5.2.11. (Filtered Transitions) Given transition C1
α
−→ C2 s.t.α ∈ Actµ,l, well-formed

filter function Ω, the corresponding filtered transition is defined as

F-Tran
C1

α
−→ C2

C1
α′

−→Ω C2

[Ω(α) = α′]

Extracting an LTS from a pre-LTS is thereby a straightforward process, highlighting the at-
tractiveness of our approach. In order to obtain an LTS representation, we simply filter the
pre-LTS’ transitions, and associated action labels.

Definition 5.2.12. (Extraction of an LTS) Given pre-LTS (C,Act,−→) and well-formed filter
function Ω, we define an LTS (C′,Act′,−→′) as follows

• C′ , C

• Act′ , {x ∈ Act • Ω(x) }

• −→′ , {C1
α
−→ C2 ∈−→ | Ω(α) = α′ • C1

α′

−→Ω C2}

The result after filtering is another transition system, implying that standard LTS considera-
tions (including ≈) can be applied. The use of well-formed filter functions give rise to the notion
of a well-behaved LTS.

Definition 5.2.13. (Well-behaved LTS) An LTS is s.t.b. well behaved iff

• The LTS is faithful to the original pre-LTS, at most filtering information i.e., for all LTS

transitions P
α
−→Ω Q this implies that P

α′

−→ Q and α ≤ α′.

• It removes tagged τ actions.

We argue that the resulting LTS should abide by the above two properties in order to make
sense. If an LTS is not faithful to its pre-LTS, this implies that (a subset of) the former’s tran-
sitions express different behaviour than its pre-LTS, thus breaking the bond between the two.
Also, the second property promotes an extensional view of system behaviour by abstracting
over details of internal behaviour. Fortunately, both properties are safeguarded through the ap-
plication of well-formed Ω.

96

Chapter 5. A Calculus of Distributed Monitored Processes

Section 5.2.2 motivated orderings on both actions and filter functions. We argue that abstract-
ing more information leads to coarser forms of behaviour — the more information we ignore
the more systems we cannot distinguish. In general, given system S we can extract a hierarchy
on its LTS representations. This hierarchy ranges over all valid definitions of Ω. Assuming filter
functions Ω1, Ω2 s.t. Ω1 ≤ Ω2, LTSs generated by the former are therefore smaller than those
generated by the latter. In other words, the transitions of LTSΩ1 for S contain less than or an
equal amount of information than LTSΩ2 for the same S . Moreover, the former LTS might even
be a pruned version of the latter, since filter functions can choose to ignore transitions. This
gives rise to an ordering on LTSs.

Definition 5.2.14. (Ordering on LTSs) Given LTSΩ1 , LTSΩ2 s.t. Ω1 ≤ Ω2, then for all transitions
C1

α1
−→Ω1 C2, C1

α2
−→Ω2 C2 we say LTSΩ1 ≤ LTSΩ2 iff

C1
α1
−→Ω1 C2 implies C1

α2
−→Ω2 C2 and α1 ≤ α2

This observation can be extended to pre-LTSs, which will always contain the most informa-
tion. The pre-LTS hence serves as a greatest fixed point in the above hierarchy. We believe
that the partial ordering on filter functions (section 5.2.2) maps directly to a hierarchy on LTSs.
In other words, in order to determine whether an LTS is more informative than another (as-
suming they represent the same system’s behaviour), we simply need to compare their filter
functions. Using the above example hierarchy on a selection of filter functions, we deduce that
Pre-LTS ≥ LTSΩF ≥ LTSΩRT ≥ LTSΩP . Let us assume another filter function ΩM, which gener-
ates LTSs admitting only monitoring behaviour (defined in section 5.4). Clearly, ΩP is mutually
incomparable to ΩM, since both functions admit a disjoint set of action pairs (the former admits
process actions exclusively, whereas the latter admits monitor actions). However, ΩRT ≥ ΩM

since although monitor behaviour is unaltered by ΩRT , trace behaviour is removed by ΩM. This
gives rise to the hierarchy in Fig. 5.24.

Figure 5.24: An Example Hierarchy On LTSs

97

Chapter 5. A Calculus of Distributed Monitored Processes

The hierarchy on LTSs can be exploited when proving results. More specifically, we make
use of the observation that higher abstraction levels depict a subset of behaviour exhibited at a
lower level. Hence, if we prove a statement when considering more information, this statement
should also hold when faced with less (information). Finally, given that a pre-LTS always
contains the most information, then proving a statement at the level of the pre-LTS implies
truth of the statement for any LTS, irrespective of the filter function used. This technique is
exemplified in results 5.3.1 and 5.3.2. We first prove the former result at the pre-LTS level, and
then show that the result holds irrespective of the filter function used.

5.3 Configuration Equality
The mDPi syntax introduced in section 5.2.1 is too discriminating — it distinguishes between
terms which we may, at least in certain situations, choose to consider the same. Certainly,
reasoning about configuration equivalence is a vital tool allowing for a formal analysis of the
language properties. Therefore, we require a precise way how to identify equivalent configura-
tions. What configurations we consider to be equivalent can take multiple forms. We have so
far introduced α-equivalence, a more basic form of equality pairing identical systems, except
in their naming of bound variables. The following section introduces two additional forms; the
first which considers configuration equivalence based on structure, followed by a more refined
form of behavioural equality.

5.3.1 Structural Equivalence
We now define structural equivalence ≡, abstracting over inessential details of system structure
without affecting its meaning.

Definition 5.3.1. (Structural Equivalence ≡) Structural equivalence ≡ :: Sys ↔ Sys is defined
as the least relation which (i) extends α-equivalence, (ii) is an equivalence relation, (iii) is
contextual, and (iv) satisfies the following equalities

(S-Extr) new c.(S 1 ‖ S 2) ≡ S 1 ‖ new c.S 2 if c < fn(S 1)
(S-Com) S 1 ‖ S 2 ≡ S 2 ‖ S 1

(S-Assoc) S 1 ‖ (S 2 ‖ S 3) ≡ (S 1 ‖ S 2) ‖ S 3

(S-Stop1) S ‖ k~stop� ≡ S
(S-Stop2) new c.k~stop� ≡ k~stop�
(S-Flip) new c1.new c2.S ≡ new c2.new c1.S

The above equalities are an extension of Def n 4.3.1, applied to the standard calculus. Rules
(S-Com) and (S-Assoc) define commutativity and associativity of parallel composition (at the
system level). Rules (S-Stop1) and (S-Stop2) serve as a form of garbage collection, removing
terminal processes and unnecessary bound names. Rule (S-Flip) negates the order of defined
bound channels. Finally rule (S-Extr) describes scope extrusion at a structural level. If name c

98

Chapter 5. A Calculus of Distributed Monitored Processes

bound in S 2 is not free in S 1, then knowledge of c can be extruded to the latter. Clearly, if c is
free in S 1, exporting its name should be disallowed to avoid inadvertent name capture.

Structural equivalence has so far been defined at the system level, which is however only
part of a configuration’s contents. What about the counter state? Clearly, the counter state
can be considered part of a system’s structure, due to its role in guiding system execution.
Therefore, we argue that it does not make sense for structurally equivalent systems to admit
different counter states. As a result of this design choice, we can later prove that computation
emerging from structurally equivalent systems always matches (with the residual systems also
equivalent), a desirable property of ≡. We elevate the definition of structural equivalence over
configurations i.e., ≡ :: Conf↔ Conf, such that

S 1 ≡ S 2 implies δ B S 1 ≡ δ B S 2

thus matching δ on both sides. Given that δ is a function, proving equality of counter states can
be inferred from transition rules, or achieved through standard theory of relations [82].

We next present our first set of results, relating behaviour of structurally equivalent config-
urations. These intermediate results shall prove useful when reasoning about more involving
proofs in section 5.4. Lemma 5.3.1 proves that structurally equivalent configurations can imme-
diately match each other’s computation, with the residual configurations also being structurally
equivalent. This result has important repercussions; if structurally equivalent configurations
always match in their computation, then switching one configuration for the latter should not
affect overall behaviour (see lemma 5.3.5). Given that we are dealing with unfiltered transitions,
the proof proceeds at the level of the pre-LTS.

Lemma 5.3.1. ((C1 ≡ C2) ∧ (C1
α
−→ C′)) ⇒ ((C2

α
−→ C′′) ∧ (C′ ≡ C′′))

Proof. The proof proceeds by induction on the derivation of (C1 ≡ C2). In each case, we
consider possible transitions from C1, and prove that (i) at least one matching transition from
C2 exists, and (ii) the residual configurations C′,C′′ are structurally equivalent. Given that the
proof is at the level of the pre-LTS, matching of transition labels involves matching (i) the action
(including the communication channel and data tuple where applicable), (ii) the action modal-
ity, and (iii) location information. See appendix E for a complete listing of the proof, admitting
eight base cases (one for each equality in Def n 5.3.1, and another implicit case due to reflexivity
of ≡), and four inference cases; two resulting from symmetry and transitivity of ≡, and another
two due to ≡ being contextual. We present an example case below.

• (S-Com) : δ B S 1 ‖ S 2 ≡ δ B S 2 ‖ S 1

Hence, this case considers the situation where C1 = δ B (S 1 ‖ S 2). We are therefore required
to prove that ((δ B S 1 ‖ S 2 ≡ δ B S 2 ‖ S 1) ∧ ((δ B S 1 ‖ S 2)

α
−→ C′)) ⇒ (((δ B S 2 ‖ S 1)

α
−→

99

Chapter 5. A Calculus of Distributed Monitored Processes

C′′) ∧ (C′ ≡ C′′)). The structure of configuration δ B S 1 ‖ S 2 indicates the possible use of one
of six rules for the derivation of (δ B S 1 ‖ S 2)

α
−→ C′. We shall be considering each case.

–(Cntx2): The rule dictates that in this case C′ = δ′ B S1
′ ‖ S 2, such that (δ B S 1 ‖ S 2)

α
−→

(δ′ B S1
′ ‖ S 2) because δ B S 1

α
−→ δ′ B S1

′.

Using rule Cntx3 we can hence infer (δ B S 2 ‖ S 1)
α
−→ (δ′ B S 2 ‖ S1

′) which gives us the
required matching move, since the transitions match and δ′ B S 2 ‖ S1

′ ≡ δ′ B S1
′ ‖ S 2.

– (Cntx3): Analogous to the above argument.

– (Com1): Hence C′ = δ B new b̄.(S1
′ ‖ S2

′), α = τ(µ:k,l) such that (δ B (S 1 ‖ S 2))
τ(µ:k,l)
−−−−→

(δ′ B new b̄.(S1
′ ‖ S2

′)). By Com1 we can infer transitions (i) δ B S 1
(b̄)c!d〈p:k〉
−−−−−−→ δ′ B S1

′, (ii)

δ B S 2
c?d〈p:k〉
−−−−−→ δ B S2

′.

By rule Com2 we can hence infer (δ B (S 2 ‖ S 1))
τ(µ:k,l)
−−−−→ (δ′ B new b̄.(S2

′ ‖ S1
′)) which gives

us the required matching move, since the transitions match and δ′ B new b̄.(S1
′ ‖ S2

′) ≡ δ′ B
new b̄.(S2

′ ‖ S1
′).

– (Com2): Analogous argument to that given in case of Com1.

The last two cases deal with the case with monitor trace analysis between S 1 and S 2. Proof of
these cases is analogous to that given for system communication, with one difference; counter
state remains unaffected during trace import.

– (Mon1): Hence C′ = δ B new b̄.(S1
′ ‖ S2

′), α = τ(t:k,l) such that (δ B (S 1 ‖ S 2))
τ(t:k,l)
−−−→

(δ B new b̄.(S1
′ ‖ S2

′)). By Mon1 we can infer transitions (i) δ B S 1
(b̄)t(c,d,n)〈t:k〉
−−−−−−−−−→ δ B S1

′, (ii)

δ B S 2
m(c,d,k,n)〈m:l〉
−−−−−−−−−−→ δ B S2

′.

By rule Mon2 we can hence infer (δ B (S 2 ‖ S 1))
τ(t:k,l)
−−−→ (δ B new b̄.(S2

′ ‖ S1
′)) which gives

us the required matching move, since the transitions match and δ B new b̄.(S1
′ ‖ S2

′) ≡ δ B
new b̄.(S2

′ ‖ S1
′).

– (Mon2): Analogous argument to that given in case of Mon1.

Other cases are equally straightforward, with the exception of one i.e., proof of the case for
S-Extr, which follows the argument presented in [46]. �

100

Chapter 5. A Calculus of Distributed Monitored Processes

We next extend this result to configurations whose transitions are filtered. Since we have
proven lemma 5.3.1 on unfiltered transitions, the result should hold when dealing with less in-
formation. This implies veracity of the result irrespective of the filter function used, since by
Def n 5.2.4 a filter function can at most filter (i.e., never add) information. Nevertheless, given
S 1 ≡ S 2, we require the transitions emanating from S 1, S 2 to be filtered through the same Ω.
This is necessary since if transitions from both systems are filtered differently, then filtered tran-
sitions from S 1 might not match those from S 2.

Lemma 5.3.2. ((C1 ≡ C2) ∧ (C
α
−→Ω C′)) ⇒ ((C2

α
−→Ω C′′) ∧ (C′ ≡ C′′))

Proof. We hence know (i) C1 ≡ C2 and (ii) C1
α
−→Ω C′ to be true, and are required to prove (iii)

C2
α
−→ C′′ such that (iv) C′ ≡ C′′

By the definition of filtered transitions (Def n 5.2.11) we infer that (ii) was derived from a

transition of the form C1
α′

−→ C′ s.t. Ω(α′) = α ...(v) .

By (v), (i) and lemma 5.3.1 we infer that there exists some C′′ such that C2
α′

−→ C′′ and
C′ ≡ C′′ ...(vi) .

Since Ω is a function, then applying α′ to Ω will return the same result α. Hence, we obtain
filtered transition C2

α
−→Ω C′′ ...(vii).

The result follows by (vi), (vii). �

An immediate corollary of lemma 5.3.2 is given below, instantiating the result for filter func-
tion ΩP. We shall henceforth often consider our results wrt. this filter function due to its use in
result 5.4.

Corollary 5.3.1. ((C1 ≡ C2) ∧ (C1
α
−→ΩP C′)) ⇒ ((C2

α
−→ΩP C′′) ∧ (C′ ≡ C′′))

Truth of the above statement follows from lemma 5.3.2; instantiating Ω to ΩP renders the
above corollary immediately true. Notice the efficient proof reuse in the above lemmas. We first
exhaustively proved truth of the required statement (i.e., transitions from structurally equivalent
configurations match) at the level of the pre-LTS (lemma 5.3.1). Subsequent proof of this state-
ment for filtered transitions easily followed; we were not required to provide another exhaustive
proof (lemma 5.3.2). Moreover, extending this result to transitions filtered through ΩP was
immediate, suiting our particular needs (see results 5.3.4, 5.3.5, and 5.2). In other words, we
successfully exploited the hierarchy on LTSs (including the pre-LTS) to summarise our proofs,
as discussed in section 5.2.2. Lemma 5.3.2 can be further instantiated to any filter function
definition, as necessary.

101

Chapter 5. A Calculus of Distributed Monitored Processes

5.3.2 Bisimilarity
The definition of a labelled transition system semantics for mDPi yields a straightforward co-
inductive proof technique for formal reasoning about system behaviour through bisimilarity
relation ≈. We are interested in a form of bisimilarity which is weak up to internal actions
(i.e., weak bisimilarity), since we argue it is a form of behavioural equivalence which best fits
our requirements (see section 4.4). Weak bisimilarity is based on the notion of the weak action
(Def n 4.4.1); given that transitions can be filtered in case of LTS representations, we define the
weak filtered action below.

Definition 5.3.2. (Weak Filtered Action C1
α̂
⇒Ω C2) Given action α filtered by Ω s.t. Ω(α′) = α,

a weak filtered action C1
α̂
⇒Ω C2 is derived as follows.

C1
α̂
⇒Ω C2 ,

{
C1 (

τ
−→Ω)∗ C2 α = τ

C1 (
τ
−→Ω)∗ C1

′ α
−→Ω C2

′ (
τ
−→Ω)∗C2 α is an external action

Hence, a weak filtered action is derived from either (i) a sequence of filtered τ actions, or (ii)
an external filtered action α (derived from α′ through Ω) interspersed by an arbitrary amount
of (filtered) silent actions. Clearly, since all transitions have already been filtered, we may go
further by considering how each transition was filtered. For instance, an untagged τ must have
been derived from its tagged equivalent; same goes for the external actions. The weak filtered
action allows for the abstraction over internal actions in case of LTSs.

Relation R over LTS states is s.t.b. a bisimulation if adheres to the transfer property below.

Definition 5.3.3. (Bisimulations on LTSs) Given LTSs (C1,Act1,−→1), (C2,Act2,−→2) whose
transitions are filtered by Ω1, Ω2, we say a relation R :: C1 ↔ C2 is a bisimulation if, whenever
(C R R),

• (C
α
−→Ω1 C′) implies ((R

α̂
⇒Ω2 C′′) and (C′ RC′′))

• (R
α
−→Ω2 C′) implies ((C

α̂
⇒Ω1 C′′) and (C′ RC′′))

In general, we consider LTSs whose transitions are filtered using distinct Ω1, Ω2. Hence,
the above definition states that an action (filtered through Ω1) from the former LTS must match
a weak filtered action (obtained through Ω2) from the latter (and vice versa). In other words,
we do not care about the filter functions used for deriving our transitions, as long as the action
labels match.

We next extend the definition of bisimilarity to LTSs. Given that transitions emanating from
configuration C are filtered in the case of LTSs, we shall use notation Ω〈C〉 to refer to configura-
tion C, whose outgoing transitions are filtered through Ω. Informally, given two configurations

102

Chapter 5. A Calculus of Distributed Monitored Processes

Ω〈C1〉, Ω〈C2〉, we say that Ω〈C1〉 is bisimilar to Ω〈C2〉 (written Ω〈C1〉 ≈ Ω〈C2〉) if we can
exhibit a bisimulation containing the pair (Ω〈C1〉, Ω〈C2〉).

Definition 5.3.4. (Bisimilarity relation ≈) The bisimilarity relation, denoted by ≈, is defined to
be the union of all bisimulation relations.

Hence, relation ≈ is taken to be the largest bisimulation relation, since all other bisimulations
are a subset of ≈ (irrespective of the filter functions used for obtaining the LTSs). Conversely,
≈ can be considered to range over all combinations of well-formed Ω definitions. We use no-
tation ≈Ω to denote the use of ≈ while dealing with LTSs whose transitions are filtered by Ω

i.e., as shorthand for Ω〈C1〉 ≈ Ω〈C2〉. Crucially, the reader should not misinterpret this notation
into thinking we have defined a novel bisimilarity relation; we are still applying the standard ≈.
This notation is rather meant for situations when we want to refer to ≈ applied to LTSs, without
referring to particular Ω〈C〉. Analogously, notation Ω〈C〉 does not imply manipulation of C at a
structural level, this notation is simply used to specify that C’s transitions are filtered through Ω.

We have so far defined bisimilarity on LTSs by considering their filtered transitions. What
about bisimilarity on pre-LTSs? Since their transitions are unfiltered we apply standard def-
initions of bisimulation (resp. bisimilarity); see Def n4.4.2 and 4.4.3. However it so happens
that, over pre-LTSs, weak bisimilarity coincides with a strong form of bisimilarity ∼ [47], since
pre-LTSs do not admit silent τ moves. In other words, we are required to match tagged τ ac-
tions also on their additional tagged information. This side effect can be seen as the unintended
consequence of the rather intensional view adopted by the pre-LTS semantics.

Consider systems S 1, S 2 presented in section 5.2.2; We informally motivated their equiva-
lence, disregarding monitor behaviour through filter function ΩP. The required statement can
now be formalised as

{(k, 1), (l, 1)} B S 1 ≈ΩP {(k, 1), (l, 1)} B S 2

In order to prove this statement correct, we therefore have to exhibit a bisimulation contain-
ing the pair (ΩP〈{(k, 1), (l, 1)} B S 1〉,ΩP〈{(k, 1), (l, 1)} B S 2〉). LTSs representations for both
systems can be seen at Fig. 5.21 and Fig. 5.22 respectively. As these figures imply, both sys-
tems admit identical behaviour after filtering, implying that the bisimulation can be defined as
follows. For brevity we shall refer to T = {(k, 1), (l, 1)} and T ′ = {(k, 2), (l, 1)}.

{ (T B k~c!d̄.stop� ‖ k{[m(c, x̄, k).ok]}1,T B k~c!d̄.stop� ‖ l{[m(c, x̄, k).ok]}1) ,
(T ′ B k~stop� ‖ k~t(c, d̄, 1)� ‖ k{[m(c, x̄, k).ok]}1 ,

T ′ B k~stop� ‖ k~t(c, d̄, 1)� ‖ l{[m(c, x̄, k).ok]}1) }

Moreover, if we had to also consider full behaviour for S 1, S 2 then

{(k, 1), (l, 1)} B S 1 0ΩF {(k, 1), (l, 1)} B S 2

since we cannot exhibit a bisimulation which matches both systems’ behaviour. This is due

103

Chapter 5. A Calculus of Distributed Monitored Processes

to differences in monitoring location, exhibited in labels m(c, d̄, k, 1)〈m:k〉 and m(c, d̄, k, 1)〈m:l〉.
Given that ΩF (Def n 5.2.7) does not filter monitoring location, these differences persist at the
LTS level. Analogously, at the pre-LTS level (prior to filtering transitions) these differences are
more apparent i.e.,

{(k, 1), (l, 1)} B S 1 0 {(k, 1), (l, 1)} B S 2

See Fig. 5.19 and Fig. 5.20 for a graphical depiction of these differences on transition labels.

We have successfully formalised a modular approach for the comparison of system behaviour
at various abstraction levels. Moreover, although the above examples have compared systems at
the same level (i.e., filtered by the same Ω), we are also often interested in comparing behaviour
at different levels of abstraction. Consider {(k, 1), (l, 1)} B S 1 once more; by proving that

ΩF〈{(k, 1), (l, 1)} B S 1〉 ≈ ΩRT 〈{(k, 1), (l, 1)} B S 1〉

we can conclude that S 1 does not effect trace analysis at a remote level. Informally we are
comparing S 1’s behaviour in full, and the same S 1’s behaviour while prohibiting remote tracing.
If the resulting LTSs are bisimilar, then we have proven that no remote tracing could have
occurred. Hence, the above statement is intuitively true, since the monitor at S 1 analyses the
generated trace locally. However, this also implies that

ΩF〈{(k, 1), (l, 1)} B S 2〉 0 ΩRT 〈{(k, 1), (l, 1)} B S 2〉

since S 2’s monitor analyses the generated trace from l , k.

Finally, we present some results on the bisimilarity relation ≈. Consider first the effect of
filter function ordering on ≈. We have already established that if Ω1 ⊆ Ω2 then the resulting
LTSs from the former are less informative that those extracted from the latter. Hence, we can
pair more configurations through Ω1 than we can with Ω2; since LTSs from Ω2 admit more
information, then pairing configurations through the former is more discriminating. In other
words, by considering more informative LTSs we have to pair transitions on more information.
However, the more information we consider, the less likely will their transitions match. This
observation can be formalised as a predicate over ≈, and is proven below.

Lemma 5.3.3. (Ω1 ≤ Ω2) ⇒ (≈Ω1 ⊇≈Ω2)

Proof. We know that (i) (Ω1 ≤ Ω2) and are required to prove (ii) (≈Ω1 ⊇≈Ω2). Consider relation

R , {(C1,C2) | Ω2〈C1〉 ≈ Ω2〈C1〉}

The result follows by coinduction if we prove that R ⊆≈Ω1 . In other words, if we prove that a
bisimulation exists between configurations (C1,C2) ∈ R after their transitions have been filtered
by Ω1, then the proof is complete. We are hence required to prove the following two statements:

104

Chapter 5. A Calculus of Distributed Monitored Processes

(1) ((C1 R C2) ∧ (C1
α
−→Ω1 C′))⇒ ((C2

α̂
⇒Ω1 C′′) ∧ (C′ RC′′))

(2) ((C1 R C2) ∧ (C2
α
−→Ω1 C′))⇒ ((C1

α̂
⇒Ω1 C′′) ∧ (C′ RC′′))

Proof of (1):

We know (iii) C1 R C2 and (iv) C1
α
−→Ω1 C′ to be true, and are required to prove (v) (C2

α̂
⇒Ω1

C′′), and (vi) C′ RC′′.

By (iv) and F-Tran (Def n 5.2.11) we infer C1
α′

−→ C′ s.t. (α′, α) ∈ Ω1. Since Ω1 ≤ Ω2 we can

hence infer (α′, α′′) ∈ Ω2 s.t. α ≤ α′′ by Def n 5.2.10. Applying rule F-Tran to C1
α′

−→ C′ we

obtain C1
α′′

−−→Ω2 C′ ...(v).

By (iii) and the Def n of R we infer that Ω2〈C1〉 ≈ Ω2〈C2〉, implying that there exists a
bisimulation containing the pair (C1,C2). Therefore, by (iii), (v) and the Def n of R we obtain

• C2
α̂′′

⇒Ω2 C′′ ...(vi)
• Ω2〈C′〉 ≈ Ω2〈C′′〉 ...(vii)

By (vii) and the Def n of R we also immediately infer that C′ RC′′ ...(viii)

Let us elaborate on the derivation of (vi). By Def n 5.3.2 we know that (vi) was derived from
a sequence of transitions filtered by Ω2. However, given knowledge of (α′, α′′) ∈ Ω2 we know

that C2
α̂′′

⇒Ω2 C′′ was derived from a sequence of unfiltered transitions of the form

C2
α1
−→ Ci

α2
−→ Cii

α3
−→ ...C j

α′

−→ C j+1
α j+1
−−−→ ...

αn
−→ C′′

s.t. Ω2(α1...αn) = τ. Due to the properties of visibility restriction (Def n5.2.5) and action preser-
vation (Def n5.2.6) which Ω2 adheres to, we infer that α1...αn are tagged τ actions.

Our next step is to filter the above transition sequence using Ω1. Filtering transition C j
α′

−→

C j+1 is straightforward, since (α′, α) ∈ Ω1 i.e., resulting in C j
α
−→Ω1 C j+1 (by F-Tran). What

about the filtering of tagged τs? Since Ω1 is well-formed, this implies that the tagged τs are
once more converted to their tagless version. This implies that the transition sequence takes the
form

C2
α1
−→Ω1 Ci

τ
−→Ω1 Cii

τ
−→Ω1 ...C j

α
−→Ω1 C j+1

τ
−→Ω1 ...

τ
−→Ω1 C′′

which collapses to C2
α̂
⇒Ω1 C′′ ...(ix)

The result follows by (viii) and (ix).

105

Chapter 5. A Calculus of Distributed Monitored Processes

Proof of (2):

Analogous to the first case.
�

Informally, the above result proves that if we know two that LTSs are bisimilar, then smaller
LTSs (according to ordering ≤ on filter functions) are also bisimilar. This is a powerful concept;
by comparing filter functions we can infer an ordering on LTSs, and by extension an ordering
on their comparison through ≈.

The next two results prove useful in section 5.4, hence the consideration of ΩP. More specif-
ically, lemmas 5.3.4 and 5.3.5 relate relations ≡ and ≈. The first result proves that ≡ is a subset
or equal to relation ≈ΩP . In other words, we are required to show that equivalence at the struc-
tural level is equally or more discriminating than pairing filtered configurations (through ΩP)
according to their behaviour. Conversely, we are able to pair more configurations when compar-
ing filtered behaviour rather than when comparing structure. Moreover, filtered configurations
which are structurally equivalent must also exhibit the same behaviour.

Lemma 5.3.4. ≡ ⊆ ≈ΩP

Proof. We define relation R , {(C1,C2) | C1 ≡ C2}. The desired result is achieved by coinduc-
tion if we prove R ⊆≈ΩP .

To prove R ⊆≈ΩP , we are required to prove statement:

(1) ((C1 R C2) ∧ (C1
α
−→ΩP C′))⇒ ((C2

α̂
⇒ΩP C′′) ∧ (C′ RC′′))

(2) ((C1 R C2) ∧ (C2
α
−→ΩP C′))⇒ ((C1

α̂
⇒ΩP C′′) ∧ (C′ RC′′))

Proof of (1):

We know (i) C1 R C2, (ii) C1
α
−→ΩP C′ to be true, and are required to prove (iii) (C2

α̂
⇒ΩP

C′′) ∧ (C′ RC′′).

By (i) and Def n of R, C1 R C2 implies that C1 ≡ C2. Given that C1 ≡ C2 and (ii), by corollary
5.3.1 we infer (iv) C2

α
−→ΩP C′′, and (v) C′ ≡ C′′.

By (v) and Def n of R, we infer C′ R C′′...(vi). Moreover, knowledge of (v) implies C2
α̂
⇒ΩP

C′′ ...(vii).

The result follows by the conjunction of (vi) and (vii).

106

Chapter 5. A Calculus of Distributed Monitored Processes

Proof of (2):

Analogous to the first case.
�

The next lemma is crucial, simplifying subsequent reasoning about ≈ΩP . More specifically,
our aim is to prove that ≈ΩP is weak up to structural equivalence. In other words, when checking
residual configuration pairs to be in ≈ΩP it is sufficient to work up to structurally equivalent
terms. We look at ≈ΩP in particular due to its use in result 5.2.

Lemma 5.3.5. ≈ΩP is a bisimilarity up to structural equivalence.

The proof takes a coinductive approach, and can be seen in full in appendix F. We first define
relation R which pairs residual configurations (whose incoming transitions are filtered by ΩP)
up to structurally equivalent terms, and later prove that R is a bisimulation. From this it follows
that R is a subset of ≈, proving that if we pair up to structurally equivalent terms we will remain
in ≈.

5.4 Results
The following section presents our achievements with respect to the fundamental statements
presented in section 5.1. These achievements come in two forms; (i) we have successfully
formalised the required statements, and (ii) we also present a proof for the first statement i.e.,
proving that the monitoring semantics do not effect process computation. Certainly, the first
achievement is testament to the creation of a sufficiently rich calculus for our requirements.

Monitoring Does Not Affect Computation

Any given system contains process, monitor and trace components. Given system S we say that
its process projection, written S P, extracts/projects the system’s processing effort. See appendix
C for more details regarding projection, as well as the formal definition of S P. For now, it suf-
fices to say that by projecting, we syntactically extract the process components within S . This
implies that any monitoring behaviour exhibited by S is absent from S P, since monitors are no
longer present after projection.

The definition of process projection gives us a straightforward approach for encoding the
required statement. We proceed by comparing the computation of a system and its monitorless
equivalent (i.e., its process component). Given system S , if we prove that S and its process
projection S P are behaviourally equivalent (while disregarding monitoring behaviour), then the
statement is proven. In other words, if a system and its monitorless version exhibit identical
processing behaviour, this implies that the system’s monitoring effort does not effect process
computation. This statement can be written as

107

Chapter 5. A Calculus of Distributed Monitored Processes

(δ B S) ≈ΩP (δ B S P) (5.2)

Proof of the above statement is presented in appendix G and proceeds by coinduction, while
inductively exploiting the structure of S (and resultant S P). We hence define relation R = {S :
Sys | S ′ = S P • (δ B S , δ B S ′)} pairing each system with its process projection, and go on
to prove that R ⊆≈ΩP . However, we are faced with an additional challenge wrt. the effect of
traces on the above setting. More specifically, traces are generated as a side effect of process
computation of both S and S P. Although we successfully manage to ignore trace behaviour
through ΩP, we are still faced with the problem of handling traces syntactically generated at
runtime. In general, their creation during computation imply that residual configuration SP

′ is
not the projection of S ′ i.e., (S ′, SP

′) < R. As a consequence, R is not a bisimulation due to its
failure to adhere to the transfer property.

As a solution to this issue, we choose to, in some way, ignore traces generated by S and
S P. However, given that we want to prove that process computation is equivalent, and trace
entities represent persistent logs of events, traces generated by a system and its projection must
be identical. The required statement to prove therefore becomes

(δ B (S ‖ T)) ≈ΩP (δ B (S P ‖ T))

In other words, we are allowed to ignore generated traces, as long as they match on both sides.
To this effect, the definition of R is updated to

• S ′ = S P implies (δ B S) R (δ B S P)

• (δ B S) R (δ B S P) implies (δ B (S ‖ T)) R (δ B (S P ‖ T))

In order to prove R ⊆≈ΩP we hence have to prove validity of the transfer property for both
clauses defining R. We here consider proof of the first clause; see the appendix for the full
proof. In order to prove the transfer property for the first clause, we consider each S and prove
that if δ B S R δ B S P, then the following two properties hold:

(1) (δ B S
α
−→ΩP C′)⇒ ((δ B S P

α̂
⇒ΩP C′′) ∧ (C′ RC′′))

(2) (δ B S P
α
−→ΩP C′)⇒ ((δ B S

α̂
⇒ΩP C′′) ∧ (C′ RC′′))

We next present an example proof of the above statements in case of S = k~c!x̄.P�, S P =

k~c!x̄.PP�.

Proof. Proof of (1):

108

Chapter 5. A Calculus of Distributed Monitored Processes

We know (i) (δ B k~c!x̄.P�) R (δ B k~c!x̄.PP�), (ii) δ B k~c!x̄.P�
α
−→ΩP C′, and are required

to prove (iii) ((δ B k~c!x̄.PP�
α̂
⇒ΩP C′′) ∧ (C′ RC′′)).

Given the structure of configuration δ B k~c!x̄.P�, the only valid transition at this stage is

δ B k~c!x̄.P�
c!v〈p:k〉
−−−−→ inc(δ, k) B (k~P� ‖ k~t(c, v̄, δ(k))�) by rule (OutP)

δ B k~c!x̄.P�
c!v̄〈k〉
−−−→ΩP inc(δ, k) B (k~P� ‖ k~t(c, v̄, δ(k))�) by Def n of→ΩP

We can derive a matching transition for system k~c!x̄.PP� i.e.,

δ B k~c!x̄.PP�
c!v〈p:k〉
−−−−→ inc(δ, k) B (k~PP� ‖ k~t(c, v̄, δ(k))�) by rule (OutP)

δ B k~c!x̄.PP�
c!v̄〈k〉
−−−→ΩP inc(δ, k) B (k~PP� ‖ k~t(c, v̄, δ(k))�) by Def n of→ΩP

which satisfies (iii), since the transitions match, and (inc(δ, k) B (k~P� ‖ k~t(c, v̄, δ(k))�), inc(δ, k) B
(k~PP� ‖ k~t(c, v̄, δ(k))�)) ∈ R since (k~P�)P = k~PP�, with the counter states and generated
traces matching.

Proof of (2):

Analogous to the first case. �

We emphasise the necessity of the second clause defining R in order to pair residual configu-
rations. Had the second clause not been available, it would have been impossible to prove that
the pair (inc(δ, k) B (k~P� ‖ k~t(c, v̄, δ(k))�) , inc(δ, k) B (k~PP� ‖ k~t(c, v̄, δ(k))�)) ∈ R. An
analogous proof is presented for each S . Moreover, we also present two additional cases to show
that the result holds when systems are placed in context. Finally, the last case entails verifying
the required result for the second clause defining R. Note that the above proof makes use of
lemma (Pσ)p = Ppσ, presented in appendix D. This lemma proves that projection is invariant
under substitution, and is required during proof of the above statement in case of S = k~c?x̄.P�.

Global Monitoring Is Equivalent To Local Monitoring

Other than the location of communication, we expect orchestrated monitoring to behave iden-
tically to choreographed monitors. In other words, we expect to be able to verify the same
property classes using either approach, with monitoring location being the only discernible dif-
ference. Hence, if we abstract over monitoring locations, resulting system behaviour from both
approaches should be identical. To this effect, we make use of filter function ΩML which filters
monitor tags appropriately, and is defined below.

Definition 5.4.1. (Filter function ΩML) We define filter function ΩML as follows

109

Chapter 5. A Calculus of Distributed Monitored Processes

ΩML α ,

τ if (α = τ〈m:k,l〉) ∨ (α = τ〈p:k,l〉) ∨ (α = τ〈t:k,l〉)
c?v̄〈m〉 if c?v̄〈m:k〉

c!v̄〈m〉 if c!v̄〈m:k〉

α otherwise

Hence, well-formed ΩML abstracts over monitoring location, leaving other behaviour unaf-
fected (apart from filtering τ tags). Given monitorless system S , if we prove that S moni-
tored in orchestrated fashion is equivalent to S orchestrated in choreographed fashion, then the
proof is complete. In general, an orchestrated monitoring approach is represented through a
monitor of the form G{[MG]}1, where MG implements the monitoring logic executed at global
location G. Analogously, statically choreographed monitors are implemented through local
monitors k1{[MC1]}

1 ‖ k2{[MC2]}
1 ‖ ... ‖ kn{[MCn]}

1. Finally, migrating monitors take the form
G{[MM1]}

1 ‖ G{[MM2]}
1 ‖ ... ‖ G{[MM j]}

1. We arbitrarily choose to start migrating monitors at
central monitoring location G. The required statement to prove hence becomes

(δ B S ‖ G{[MG]}1) ≈ΩML (δ B S ‖ k1{[MC1]}
1 ‖ k2{[MC2]}

1 ‖ ... ‖ kn{[MCn]}
1)

≈ΩML (δ B S ‖ G{[MM1]}
1 ‖ G{[MM2]}

1 ‖ ... ‖ k j{[MMn]}
1) (5.3)

Thus implying that all three monitoring approaches are equivalent, ignoring monitoring loca-
tion. Clearly, the above considerations are based on systems of certain structure. We can ensure
required structure by defining an initial static check, in the form of a predicate on systems.
Proof of the above statement is left as future work.

Migrating Monitors Preserve Locality

We are interested in proving that remote trace analysis does not happen when using a migrating
monitor approach. The pre-LTS semantics allows for the immediate identification of remote
trace analysis, by identifying actions of the form τ〈t:k,l〉 s.t. k , l. Hence, our task becomes
that of ensuring that migrating monitors never perform said actions. If we consider monitorless
system S and a migrating monitor framework G{[MM1]}

1 ‖ G{[MM2]}
1 ‖ ... ‖ G{[MM j]}

1, the
required statement can be written as

ΩF〈δ B S ‖ G{[MM1]}
1 ‖ G{[MM2]}

1 ‖ ... ‖ G{[MM j]}
1〉 ≈

ΩRT 〈δ B S ‖ G{[MM1]}
1 ‖ G{[MM2]}

1 ‖ ... ‖ G{[MM j]}
1〉 (5.4)

Whereas ΩF〈δ B S ‖ G{[MM1]}
1 ‖ G{[MM2]}

1 ‖ ... ‖ G{[MM j]}
1〉 considers (monitored) system

behaviour in full, ΩRT 〈δ B S ‖ G{[MM1]}
1 ‖ G{[MM2]}

1 ‖ ... ‖ G{[MM j]}
1〉 considers the same

system’s behaviour while prohibiting remote trace analysis. If both LTSs are behaviourally
equivalent, then we would have proven that no remote tracing could have been performed by
the migrating monitors. Statement 5.4 is an example consideration of system behaviour at
different levels of abstraction.

110

Chapter 5. A Calculus of Distributed Monitored Processes

5.5 Conclusions
Throughout this chapter we presented mDPi, a distributed π-calculus with explicit monitoring
capabilities. The framework does not focus on one particular monitoring approach, but rather
encodes a generalised framework allowing for the formalisation (and comparison) of various
techniques. We defined an extensible LTS semantics allowing for the definition of behaviour at
different abstraction levels, considered structural equivalence and also adopted the bisimilarity
relation as a measure of behavioural equivalence. Here we saw an application of the pre-LTS
semantics, allowing us to focus on different aspects of a system’s computation as necessary.
With the necessary mathematics at hand, we later produced results regarding our framework’s
semantics. Importantly, we have proven that our monitoring semantics do not effect process
computation, thus providing added assurances of our monitoring framework. It is worth noting
that our approach also gives us an elegant approach for categorising LTS representations, which
we showed to have desirable repercussions. More specifically, this hierarchy was exploited for
proof reuse. Moreover, it was also proven that by comparing more informative LTSs, said com-
parisons hold when dealing with their less informative equivalent.

To the best of our knowledge, the formalisation of a general monitoring semantics through
a π-calculus adaptation is novel. However, the above framework should not be taken as a final
study to distributed monitoring — we recognise the need to explore the framework further.
For instance, although our monitors obtain temporal orderings through a mechanism analogous
to Lamport Timestamps [58], other approaches have been shown to be more fruitful in certain
scenarios (including Vector Clocks [35]). We believe our framework to be sufficiently extensible
to encode alternate approaches, for instance by enriching the monitor counter by adopting more
powerful data structures. Other future work includes the generation of more results (especially
proof of the remaining two statements), and also an investigation of our monitoring framework
when faced with mobile systems. We shall return to these issue when discussing future work
(see section 9.2.1).

111

6. Distributed Regular Expression
Monitoring

The following chapter illustrates the instrumentation of different monitoring approaches in
mDPi, expressed through the conversion of regular expressions to mDPi monitors. In other
words, temporal properties on remote process events are specified through some regular expres-
sion, from which we synthesise a monitor capable of verifying said properties. An overview
of the proposed approach is presented in section 6.1. Moreover, we shall provide multiple con-
versions in order to illustrate different monitoring strategies; converting regular expressions to
orchestrated (section 6.2), statically choreographed (section 6.3) and migrating monitors (sec-
tion 6.4). Finally, section 6.5 concludes the chapter.

6.1 Overview
Regular expressions allow for the intuitive specification of temporal orderings on events [74].
We shall therefore adopt their use as a simple logic allowing for the illustration of different
monitoring strategies (presented in chapter 3) in the mDPi calculus. Given system S , whose
behaviour we are interested in verifying against a set of properties ϕi ∈ Prop, our proposed
framework proceeds as follows

(i) Each property ϕi is first encoded through regular expression Ei;

(ii) An mDPi monitor Mi is next adopted as an implementation for Ei;

(iii) Monitor Mi is responsible for analysing trace T generated by S ;

(iv) The satisfaction of Ei by T is considered a violation of property ϕi.

The above setting hence employs numerous monitors for the analysis of the runtime behaviour
describing S , increasing modularity. Moreover, each Mi might refer to a monitoring configura-
tion which employs additional (possibly distributed) monitors, depending on the adopted mon-
itoring approach (more below). The design choice of admitting persistent traces hence comes

112

Chapter 6. Distributed Regular Expression Monitoring

to fruition, allowing for multiple monitors to analyse the same trace generated by S against
various expressions Ei. Crucially, note that our interpretation of expression satisfaction as a
property violation implies that we are monitoring for failure. Also, given that our synchronous
monitors operate on finite traces (i.e., traces seen so far), this implies that regular expressions
specify properties of safety. The following regular expression syntax shall be assumed.

E ::= (e, v̄) @ k | E. E | E∗ | E + E

Figure 6.1: Regular Expression Syntax

Expression (e, v̄) @ k serves as an atomic proposition in our language, denoting the occur-
rence of event e with parameters v̄ at location k. The addition of v̄ gives us a basic form of
conditions over event parameters. Concatenation E. E denotes sequential order. Union E + E
specifies that either expression must be satisfied in order for the compound expression to trig-
ger. Finally, for E∗ to trigger we require E to be repeatedly satisfied for an arbitrary number of
times. We shall use notation (e, 〈〉) @ k when we do not wish to impose a condition on the event
parameters.

Notation 6.1. We make use of notation E , Σ k : Locs. E′(k) to specify that, in order for E
to trigger, intermediate expression E′ must trigger at one or more locations k ∈ Locs i.e., as
shorthand for E = E′(k1)+E′(k2)+ ...+E′(kn) (assuming set of locations Locs = {k1, k2, ..., kn}).

Even through the above language is rather basic, we can still encode certain interesting prop-
erties. To this effect, consider the hospital management system scenario depicted in Fig. 3.2.
Clearly, the system handles confidential information relating to the patients’ medical records.
This implies that the system is to adhere to a set of mission-critical requirements, both to ensure
its correct operation in order to avoid the misplacement of medical records, as well as to avoid
leaking confidential information to unauthorised entities. We assume the following events in
order to specify the required properties; (i) req() @ p, denoting request of the personal medical
record by patient p, (ii) resp(p,b) @ d, indicating boolean response b by doctor d for the request
placed by patient p, (iii) sendRec(p1,{p2,r}) @ be referring to release of record {p2, r} (entailing
patient name p2 and her diagnosis r) to patient p1 at backend location be. Keeping these events
in mind, we express the following three properties (introduced in section 3.3) which the system
is to adhere to.

1. No patient is to be given another patient’s record as a response — Conversely, this state-
ment can be restated as a failure property of the form “If a patient request is given another
patient’s record as a response, then the property is violated”. Assuming a set of patients
Pat, this can be encoded as follows

Σ p : Pat • (req, 〈〉) @ p. (sendRec, 〈p, {p′, r}〉) @ be

113

Chapter 6. Distributed Regular Expression Monitoring

This first statement is an example temporal property across remote locations. The prop-
erty extends across all patient locations, such that if just one patient makes a request and
receives record {p′, r} s.t. p , p′ as a response, then the regular expression is satisfied
(and the property, violated).

2. Multiple patient requests should be responded by at most one medical record release —
For security, the hospital management wishes to minimise exposure of medical records.
To this effect, they adopt the policy of granting patients at most one chance to release
their records through the system. This statement is formalised as

Σ p : Pat • ((req, 〈〉) @ p)∗. (sendRec, p, {p, r}) @ be. (sendRec, p, {p, r}) @ be

If an arbitrary amount of patient requests are given as response at least two record releases,
then the property is violated.

3. The release of a patient’s record must be approved by supervising doctors — This prop-
erty can be restated as “If a patient’s medical record is released regardless of a doctor’s
disapproval, this implies that the property is violated”. Assuming set Doc of registered
doctors, the statement is written as

Σ p : Pat • (req, 〈〉) @ p. (Σ d : Doc • (resp, 〈p, false〉) @ d. (sendRec, 〈p, {p, r}〉) @ be)

This property involves three locations; if a patient request is rejected by one or more
doctors, and the patient’s record is released nonetheless by the backend, then the property
is violated.

We shall consider these three example properties throughout the remainder of this chapter, as
well as during chapter 7 during our discussion of the case study.

As highlighted by point (ii) above, properties ϕi expressed as regular expressions Ei are to
be implemented through mDPi monitors Mi. In other words, we exploit the monitors’ opera-
tional semantics (section 5.2.2) in order to execute necessary verification on traces. We specify
monitor implementations through conversion strategy ψ

ψ :: (E × Chans × Chans) → Sys

which takes (i) a regular expression, (ii) a start and (iii) finish channel, and returns a (set of)
located monitor(s). Synchronisation on the start channel instructs the monitor/s (in Mi) to start
its/their verification process. On the other hand, output on the finish channel signifies that a
sequence of analysed trace entities is included in the language expressed by Ei. Through ψ, we
can encode the verification of S for various expressions Ei, 1 ≤ i ≤ n.

114

Chapter 6. Distributed Regular Expression Monitoring

Definition 6.1.1. (Monitoring of Expressions) Given conversion strategy ψ, the monitoring of
system S wrt. expressions Ei, 1 ≤ i ≤ n, assuming corresponding start channels ci, 1 ≤ i ≤ n
becomes

S ‖ new co.(ψ(E1, c1, co) ‖ ... ‖ ψ(En, cn, co) ‖ G{[co?〈〉.fail]}1)

Each expression Ei is converted to its corresponding located monitor/s through ψ. Moreover,
we make use of an additional monitor co?〈〉.fail arbitrarily placed at location G, whose purpose
is that of reporting failure if any of the resulting monitors identify a trace satisfying Ei. Note
the use of channel co, whose scope is shared exclusively amongst monitors, and is used to re-
port failure. Also, the start of each monitor’s execution requires synchronisation on each start
channel ci.

The arrangement of the monitors in Mi dictate the monitoring approach taken by the result-
ing monitors. Given that chapter 3 introduced numerous broad approaches to the monitoring of
distributed systems, we shall hence provide multiple conversion strategies. More specifically,
three conversions ψG, ψC and ψM shall be provided. The former converts regular expressions
to an orchestrated monitor implementation. Moreover, given that mDPi describes a property
agnostic approach (section 3.4.4) by differentiating between its monitoring and tracing seman-
tics, ψG can be applied for both static and dynamic orchestration. In other words, ψG describes
necessary verification through a central monitor. We can either choose to start this monitor in
conjunction with the system (i.e., static orchestration), or we may spawn the resulting monitor
at runtime (dynamic orchestration). On the other hand ψC implements a static choreographed
based approach by generating a set of distributed monitors which analyse traces locally. Finally,
ψM monitors the required regular expression through a migrating monitor approach. Note that
although ψC and ψM both implement choreographed approaches, we are forced to distinguish
between their implementations due to the elevated encapsulation achieved through migrating
monitors, as well as the additional use of the go operator by the latter.

Although we do not encode practical considerations in mDPi (such as memory and time con-
sumption), we still require an element of efficiency from the aforementioned conversions. More
specifically, we expect the conversion process to create monitors whose size is linear wrt. the
property specification. It is for this reason that we do not consider conjunction and negation in
Fig. 6.1, due to implied exponential blowup.

Sokolsky et al. [74] recognise a set of design issues pertinent to the application of regular
expressions to a runtime verification setting. We next consider these issues with respect to our
work.

• Do we automatically include events in a regular expression into a relevant set? This
issue deals with the identification of pertinent events wrt. the expression under consider-
ation. We assign an implicit interpretation to our regular expression events (as opposed
to explicit event declarations). In order to expose the difference between approaches,

115

Chapter 6. Distributed Regular Expression Monitoring

consider expression E = a.b. An explicit interpretation of E would not be satisfied by
sequence ‘a, c, b’, since the expression makes no explicit reference to ‘c’. On the other
hand, an implicit interpretation ignores non-pertinent events, as long as the sequence pro-
jection of pertinent events satisfies E. The above sequence would hence satisfy E through
an implicit interpretation. This interpretation of implicit events happens to match the
monitoring semantics, where uninteresting trace entities are ignored by the monitor

• If there are more than one place to start evaluating a regular expression, when
should we start? Earliest or latest? — Given that the start of monitor execution is
manually specified through synchronisation on the input channel, this choice is left to
the user. However, synchronous mDPi monitors are typically expected to start as soon as
possible in order to keep up with the processes’ execution. More specifically, we require
our monitors to match the rate of trace generation in order to extract temporal orderings
on remote trace entities.

• If there are more than one place to end evaluating a regular expression, when should
we end? Earliest (shortest sequence), latest (longest sequence), or report all? The se-
mantics assigned to runtime monitoring usually assumes the identification of the shortest
satisfying trace, for three reasons. Firstly, waiting for the longest trace may be prob-
lematic, due to possibly infinite traces. Moreover, we are typically interested in the first
property violation; reporting each subsequent violation for the same property may lead
to redundancy [74]. This implies that for instance regular expression a∗.a is satisfied by
sequence ‘a’. In other words, a∗ is satisfied immediately, with ‘a’ satisfying expression
a (i.e., it is not a continuation of a∗). Finally, opting for the identification of the shortest
prefix is crucial for the design of a monitoring algorithm which adheres to the principle
of anticipation (section 2.3).

• How do we deal with overlapping sequences? Given expression a. b. a, and sequence
‘a,b,a’, the second occurrence of ‘a’ is taken to satisfy the first expression i.e., it does
spawn an additional monitor which starts verifying the same expression.

The following sections present the conversion of the regular expression syntax in Fig. 6.1 to
orchestrated, statically choreographed and migrating monitor implementations. Assuming syn-
chronisation channels c1, c2, c3, throughout these sections we shall often refer to two auxiliary
components;

(i) or(c1, c2, c3), such that a monitor listening on c3 will synchronise if output on either c1 or
c2 is detected i.e., as shorthand for

or(c1, c2, c3) ∧= ∗(c1?〈〉.c3!〈〉.stop) ‖ ∗(c1?〈〉.c2!〈〉.stop)

(ii) repl(c1, c2, c3), which repeatedly replicates synchronisation on c1 to channels c2 and c3

116

Chapter 6. Distributed Regular Expression Monitoring

i.e., as shorthand for

repl(c1, c2, c3) ∧= ∗(c1?〈〉.(c2!〈〉.stop ‖ c3!〈〉.stop))

Their use will become apparent during the definition of the expression conversions. Finally,
note that definitions for ψ throughout this chapter are based on the work presented in [22].

6.2 Regular Expressions To Orchestrated Monitors
The following section presents the conversion of regular expressions to an orchestrated mon-
itoring approach i.e., we present a definition for ψG. To this effect, we shall adopt a central
monitor (placed at global location G), performing remote trace analysis accordingly. We first
consider the matching of basic proposition (e, v̄) @ k; verifying this statement entails analysing
a trace entity recording output of v̄ on channel e, after synchronisation on start channel s.

ψG((e, v̄) @ k, s, f) ∧= G{[s?〈〉.setC(k). ∗(m(e, x̄, k).if x̄ = v̄ then (f !〈〉.stop) else (stop))]}1

Note the use of operator SetC, forcing the monitor to ignore traces generated prior to receiv-
ing the go ahead on start channel s. This addition effectively enables the extraction of temporal
orderings on remote events. The remainder of the monitor implementation is straightforward,
repeatedly analysing trace entities for one which matches the expression’s needs (i.e., matching
both on e and v̄). When one such trace entity is found, a signal on f is transmitted.

In order for expression E1. E2 to be satisfied E1 must be matched first, and once matched we
attempt to match E2. This internal signal is implemented through internal (scoped) channel c
(see Fig. 6.2).

Figure 6.2: Conversion of E1. E2

ψG(E1. E2, s, f) ∧= new c.(ψG(E1, s, c) ‖ (ψG(E1, c, f))

Matching E∗ is analogous to the matching of E, however with the addition of restarting
verification on each matching of E. Moreover, given that E∗ can be satisfied by zero iterations
of E, this implies that the finish channel is triggered upon synchronisation on channel s (see
Fig. 6.3). Note that internal components or and repl are also placed at G.

117

Chapter 6. Distributed Regular Expression Monitoring

Figure 6.3: Conversion of E∗

ψG(E∗, s, f) ∧= new s1, f1.(G{[or(s, f1, s1) ‖ repl(s1, f , s1)]}1 ‖ ψG(E, s1, f1))

Expression E1 + E2 is matched if either E1 or E2 are satisfied. The start channel is first
replicated in order to start concurrent verification for both expressions. If either expression sub-
sequently triggers on intermediate channels f1 or f2, this implies that the compound expression
is also satisfied, thus signalling on f (Fig. 6.4).

Figure 6.4: Conversion of E1 + E2

ψG(E1 + E2, s, f) ∧
= new s1, s2, f1, f2.(G{[repl(s, s1, s2) ‖ or(f1, f2, f)]}1 ‖

ψG(E1, s1, f1) ‖ ψG(E2, s2, f2))

We next present an example conversion, applied to the first property introduced in section
6.1.

An Example

Consider the first example property, specifying that no patient request is to be given another
patient’s record as a response. We formalised this requirement as

Σ p : Pat • (req, 〈〉) @ p. (sendRec, 〈p, {p′, r}〉) @ be

by quantifying over an unspecified set of patients Pat. For simplicity, we shall consider the
hospital management system to admit two patients i.e., Pat ∧= {p1, p2}. The property hence
becomes

((req, 〈〉) @ p1. (sendRec, 〈p1, {p′, r}〉) @ be) + ((req, 〈〉) @ p2. (sendRec, 〈p2, {p′, r}〉) @ be)

118

Chapter 6. Distributed Regular Expression Monitoring

We shall convert this property in stepwise fashion. Assuming start and finish channels s, f , the
central monitor takes the following form

new s1, s2, f1, f2.(G{[repl(s, s1, s2) ‖ or(f1, f2, f)]}1 ‖ A ‖ B)

where A, B represent the monitor implementations for expressions

(req, 〈〉) @ p1. (sendRec, 〈p1, {p′, r}〉) @ be , (req, 〈〉) @ p2. (sendRec, 〈p2, {p′, r}〉) @ be

respectively. Let us consider the definition for A (B is analogous). The top level operator
involves concatenation, implying that A = new c.(A′ ‖ A′′). A′ and A′′ involve the verification
of basic propositions (req, 〈〉) @ p1 and (sendRec, 〈p1, {p′, r}〉) @ be. Hence, A′ refers to monitor

G{[s1?〈〉.setC(p1). ∗(m(req, x̄, p1).if (x̄ = 〈〉) then (c!〈〉.stop) else (stop))]}1

whereas A′′ refers to

G{[c?〈〉.setC(be). ∗(m(sendRec, x̄, be).if (x̄ = 〈p1, {p′, r}〉) then (f !〈〉.stop) else (stop))]}1

where p′ refers to some patient location other than p1. The resulting monitor implementation
hence becomes

new s1, s2, f1, f2.(
G{[repl(s, s1, s2) ‖ or(f1, f2, f)]}1 ‖
new c.(
G{[s1?〈〉.setC(p1). ∗(m(req, x̄, p1).if (x̄ = 〈〉) then (c!〈〉.stop) else (stop))]}1 ‖
G{[c?〈〉.setC(be). ∗(m(sendRec, x̄, be).if (x̄ = 〈p1, {p′, r}〉) then (f1!〈〉.stop) else (stop))]}1

) ‖
new c.(
G{[s1?〈〉.setC(p2). ∗(m(req, x̄, p2).if (x̄ = 〈〉) then (c!〈〉.stop) else (stop))]}1 ‖
G{[c?〈〉.setC(be). ∗(m(sendRec, x̄, be).if (x̄ = 〈p2, {p′, r}〉) then (f2!〈〉.stop) else (stop))]}1

)
)

All the resulting components are placed at G, with the central monitoring configuration ef-
fecting remote trace analysis accordingly. Hence, although correct, using the above monitors
results in information exposure, particularly during the use of operator m(...). Admittedly, the
resulting configuration is not optimal — one could hand-code simpler monitors which achieve
the same result. For instance, an optimised version of the current implementation for component
A can be achieved by removing the use of intermediate channel c.

119

Chapter 6. Distributed Regular Expression Monitoring

G{[s1?〈〉.setC(p1). ∗(m(req, x̄, p1).
if (x̄ = 〈〉) then

(setC(be). ∗(m(sendRec, x̄, be).if (x̄ = 〈p1, {p′, r}〉) then (f1!〈〉.stop) else (stop)))
else stop

]}1

Analogously, one can imagine scenarios where the use of setC is made redundant in case
where the monitor does not require re-alignment of its counter to remote locations (i.e., the
monitor is interested in sequentially analysing events at one location). However, these con-
versions should be rather considered as proofs-of-concept; exposing that mDPi monitors are
sufficiently expressive to monitor regular expressions through different approaches. For better
performance, one could for instance apply monitor re-writing heuristics to eliminate said redun-
dancy, and is left as future work. Nevertheless, it should be noted that although not optimal, the
above conversion still generate monitors which are linear in the size of the expression.

6.3 Regular Expressions To Statically Choreographed Moni-
tors

We next consider a definition for ψC, implementing regular expressions through statically chore-
ographed monitors. As we shall see, the definition of ψC is analogous to ψG, excluding mon-
itoring location. More specifically, although we shall adopt the same compilation strategies
depicted in Fig. 6.2, Fig. 6.3 and Fig. 6.4, we strive to localise monitoring components in order
to avoid information exposure. For instance, monitoring (e, v̄) @ k locally involves applying the
same monitor used in case of orchestration, however placed locally to the event’s occurrence
i.e., at k.

ψC((e, v̄) @ k, s, f) ∧= k{[s?〈〉.setC(k). ∗(m(e, x̄, k).if x̄ = v̄ then (f !〈〉.stop) else (stop))]}1

The result defines the same monitoring effort as its orchestrated equivalent, while avoiding
exposure of trace information. Operator setC is once more used to force extraction of a tempo-
ral ordering on traces, by directing the monitor to ignore the trace subsequence generated prior
to synchronisation on s. An output on f is triggered once the required trace entity is analysed.

Converting concatenation E1. E2 is identical to its orchestrated counterpart (see Fig. 6.2).
However, note that the monitoring of E1 and E2 results in a set of localised monitors, unlike
their orchestrated counterparts placed at G. This implies that monitor synchronisation over
c may possibly involve remote interactions. Nevertheless, this interaction does not constitute
information exposure, since no trace information is sent over c.

ψC(E1. E2, s, f) ∧= new c.(ψC(E1, s, c) ‖ (ψC(E1, c, f))

120

Chapter 6. Distributed Regular Expression Monitoring

Compiling E∗ takes an analogous approach to Fig. 6.3. However, compiling E through ψC

results in a set of localised monitors. We are also faced with a choice wrt. the placement of
auxiliary components or and repl; given that we are distributing monitoring functionality it is
not clear where they should be placed. For now, we (rather arbitrarily) choose to place addi-
tional components at location G. Since these components are used solely for synchronisation
purposes, this implies that placing the components remotely does not imply exposure. Never-
theless, we can eventually optimise this definition to choose a more favourable location wrt. the
monitors verifying E. Given that E may in itself admit a compound expression (involving the
use of multiple monitors), it is in general not immediately obvious where this optimal location
lies. However, the study of such optimisations is potentially advantageous in order to minimise
the implied communication overhead imposed by monitors.

ψC(E∗, s, f) ∧= new s1, f1.(G{[or(s, f1, s1) ‖ repl(s1, f , s1)]}1 ‖ ψC(E, s1, f1))

The compilation of E1 + E2 adopts an identical strategy to Fig. 6.4. Note that intermediate
components are once more placed at monitoring locationG. Analogously, we may apply similar
optimisations for choosing optimal locations, and is left as future work.

ψC(E1 + E2, s, f) ∧
= new s1, s2, f1, f2.(G{[repl(s, s1, s2) ‖ or(f1, f2, f)]}1 ‖

ψC(E1, s1, f1) ‖ ψC(E2, s2, f2))

An Example

We next consider the second property specifying that multiple patient requests should be re-
sponded by at most one medical record release, written

Σ p : Pat • ((req, 〈〉) @ p)∗. (sendRec, p, {p, r}) @ be. (sendRec, p, {p, r}) @ be

We now consider our setting to admit one patient p1, such that the property is simplified to

((req, 〈〉) @ p1)∗. (sendRec, p1, {p1, r}) @ be. (sendRec, p1, {p1, r}) @ be

The statement at hand entails the concatenation of three expressions, resulting in a monitor
of the form

new c1.(A′ ‖ new c2.(A′′ ‖ A′′′))

where A′, A′′ and A′′′ represent monitors responsible for verifying

((req, 〈〉) @ p1)∗, (sendRec, p1, {p1, r}) @ be and (sendRec, p1, {p1, r}) @ be

These three monitors take the following implementations, according to ψC

A′ = new s1, f1.(G{[or(s, f1, s1) ‖ repl(s1, c1, s1)]}1 ‖
p1{[s1?〈〉.setC(p1). ∗(m(req, x̄, p1).if x̄ = 〈〉 then (f1!〈〉.stop) else stop)]}1)

A′′ = be{[c1?〈〉.setC(be). ∗(m(sendRec, x̄, be).if x̄ = 〈p1, {p1, r}〉 then (c2!〈〉.stop) else stop)]}1

A′′′ = be{[c2?〈〉.setC(be). ∗(m(sendRec, x̄, be).if x̄ = 〈p1, {p1, r}〉 then (f !〈〉.stop) else stop)]}1

121

Chapter 6. Distributed Regular Expression Monitoring

The monitor resulting from the compilation of the original expression hence takes the form

new c1.(
new s1, f1.(
G{[or(s, f1, s1) ‖ repl(s1, c1, s1)]}1 ‖
p1{[s1?〈〉.setC(p1). ∗(m(req, x̄, p1).if x̄ = 〈〉 then (f1!〈〉.stop) else stop)]}1)

) ‖
new c2.(

be{[c1?〈〉.setC(be). ∗(m(sendRec, x̄, be).
if x̄ = 〈p1, {p1, r}〉 then (c2!〈〉.stop) else stop)]}1 ‖

be{[c2?〈〉.setC(be). ∗(m(sendRec, x̄, be).
if x̄ = 〈p1, {p1, r}〉 then (f !〈〉.stop) else stop)]}1

)
)

The resulting monitor successfully encodes a statically choreographed approach, by distribut-
ing the monitoring effort. As one can see, certain monitors are placed at location p1, whereas
others are placed at the backend location be. Moreover, these monitors are always instructed
to analyse traces locally; operator m(...) is always directed to read trace entities generated at
its current location. However, one underlying assumption with the above conversion is that all
locations are available from startup, and remain unchanged during system execution. The next
section considers an example where locations are added at runtime, and the implied monitoring
approach necessary to handle such scenarios.

6.4 Regular Expressions To Migrating Monitors
The following section presents a definition for ψM, compiling regular expressions to mDPimon-
itors adhering to a migrating monitor approach. The following definition of ψM is an adaptation
of ψG; resulting monitors start their verification process at G, before migrating to pertinent lo-
cations as necessary during system computation. In other words, ψG and ψM diverge on their
monitor re-alignment strategy — whereas the former makes use of setC to extract temporal or-
derings on remote events, the latter uses operator go, exploiting migration’s natural sequential
semantics. However, by physically migrating to the event’s location we avoid the exposure of
information during trace analysis.

Given expression (e, v̄) @ k, this implies that we require a monitor which verifies event e
taking place at k. Hence, upon receiving the go ahead on s we instruct the monitor to migrate
to k before effecting its verification. Note that the use of go also implies monitor re-alignment,
by readjusting the monitor’s counter value to the next value at k (see Fig. 5.15; rule Gom).
Through this counter update, we force the monitor to only consider trace entities generated
after migration. Once local to the event, the monitor can analyse traces as necessary, however

122

Chapter 6. Distributed Regular Expression Monitoring

avoiding the exposure of traces. Upon analysing the necessary trace entity (with the required
parameters v̄), a signal on finish channel f is triggered.

ψM((e, v̄) @ k, s, f) ∧= G{[s?〈〉.go k. ∗(m(e, x̄, k).if x̄ = v̄ then (f !〈〉.stop) else (stop))]}1

The conversion strategy for concatenation, kleene star and union is identical to Fig. 6.2,
Fig. 6.3 and Fig. 6.4 respectively, defined below.

ψM(E1. E2, s, f) ∧
= new c.(ψM(E1, s, c) ‖ (ψM(E1, c, f))

ψM(E∗, s, f) ∧
= new s1, f1.(G{[or(s, f1, s1) ‖ repl(s1, f , s1)]}1 ‖ ψM(E, s1, f1))

ψM(E1 + E2, s, f) ∧
= new s1, s2, f1, f2.(G{[repl(s, s1, s2) ‖ or(f1, f2, f)]}1 ‖

ψM(E1, s1, f1) ‖ ψM(E2, s2, f2))

Once more, auxiliary components or and repl are placed at G. In general, the above conver-
sion describes monitors which start computation at monitoring locationG, subsequently migrate
as necessary to various locations (during system computation), and interact with the centrally
located auxiliary components to synchronise the global monitoring effort.

An Example

Consider the third property presented in section 6.1, stating that the release of a patient’s record
must be approved by supervising doctors. This property was defined as

Σ p : Pat • (req, 〈〉) @ p. (Σ d : Doc • (resp, 〈p, false〉) @ d. (sendRec, 〈p, {p, r}〉) @ be)

For simplicity, we shall now consider Pat ∧= {p1}, Doc ∧= {d1} i.e., a hospital management system
admitting one patient and one doctor. However, the system now admits a dynamic configuration,
by admitting the eventual login of a second doctor d2 during the system’s execution. Encoding
the above property on this setting using ψC is impossible, since we cannot place monitors local
to d2 at startup (given that the doctor has not logged in yet). However, using ψM we can generate
the necessary monitor to start at G, such that it eventually migrates as necessary to d2 during
system execution, once d2 has logged in. The property is hence expanded to

(req, 〈〉) @ p1. ((resp, 〈p1, false〉) @ d1. (sendRec, 〈p1, {p1, r}〉) @ be)
+ (resp, 〈p1, false〉) @ d2. (sendRec, 〈p1, {p1, r}〉) @ be))

Assuming start and finish channels s and f , the resulting monitor hence takes the form
new c.(G{[s?〈〉.go p1. ∗(m(req, x̄, k).if x̄ = 〈〉 then (c!〈〉.stop) else (stop))]}1 ‖ B), where B rep-
resents the monitor responsible for the verification of expression

123

Chapter 6. Distributed Regular Expression Monitoring

(resp, 〈p1, false〉) @ d1. (sendRec, 〈p1, {p1, r}〉) @ be)
+ (resp, 〈p1, false〉) @ d2. (sendRec, 〈p1, {p1, r}〉) @ be)

The monitor for B hence takes the form new s1, s2, f1, f2.(G{[repl(c, s1, s2) ‖ or(f1, f2, f)]}1 ‖
B′ ‖ B′′), where B′ represents the monitor tasked with verifying

(resp, 〈p1, false〉) @ d1. (sendRec, 〈p1, {p1, r}〉) @ be)

Analogously, B′′ verifies (resp, 〈p1, false〉) @ d2. (sendRec, 〈p1, {p1, r}〉) @ be). The implemen-
tation for B′ according to ψM is

new c1.(G{[s1?〈〉.go d1. ∗(m(resp, x̄, k).if x̄ = 〈p1, false〉 then (c1!〈〉.stop) else (stop))]}1 ‖
+ G{[c1?〈〉.go be. ∗(m(sendRec, x̄, k).if x̄ = 〈p1, {p1, r}〉 then (f1!〈〉.stop) else (stop))]}1)

The resulting monitor obtained through the compilation of the original expression hence be-
comes

new c.(
G{[s?〈〉.go p1. ∗(m(req, x̄, k).if x̄ = 〈〉 then (c!〈〉.stop) else (stop))]}1 ‖

new s1, s2, f1, f2.(
G{[repl(c, s1, s2) ‖ or(f1, f2, f)]}1 ‖
new c1.(G{[s1?〈〉.go d1. ∗(m(resp, x̄, k).if x̄ = 〈p1, false〉 then (c1!〈〉.stop) else (stop))]}1 ‖
+ G{[c1?〈〉.go be. ∗(m(sendRec, x̄, k).if x̄ = 〈p1, {p1, r}〉 then (f1!〈〉.stop) else (stop))]}1)
‖

new c2.(G{[s2?〈〉.go d2. ∗(m(resp, x̄, k).if x̄ = 〈p1, false〉 then (c2!〈〉.stop) else (stop))]}1 ‖
+ G{[c2?〈〉.go be. ∗(m(sendRec, x̄, k).if x̄ = 〈p1, {p1, r}〉 then (f2!〈〉.stop) else (stop))]}1)

)
)

The result is rather involving. Moreover, the conversion’s inefficiency once more comes to the
fore, with the often unnecessary use of synchronisation channels. One could encode simpler,
more compact monitors which sequentially migrate to alternate locations. Nevertheless, ψM

gives us an implementable algorithm for the automatic conversion of regular expressions to
migrating monitors. We conjecture this conversion to preserve locality, in that the resulting
monitor should never resort to remote trace analysis. However proof of this statement is left as
future work.

6.5 Conclusions
This chapter focused on the illustration of different monitoring techniques in mDPi, expressed
through regular expression conversions. Through these conversions we are now capable of

124

Chapter 6. Distributed Regular Expression Monitoring

specifying properties through a (simple) high-level specification language, from which we au-
tomatically obtain (i) orchestrated, (ii) statically choreographed, and (iii) migrating monitor
mDPi implementations. We saw how, at least for the monitoring of regular expressions, ap-
plying these three different monitoring approaches turned out to be very similar. In fact, all
three adopted the same conversion strategy (figures 6.2, 6.3 and 6.4), with differences in (i)
monitor location, and/or (ii) re-alignment policy (i.e., the use of either operator setC or go).
However, we do not wish to imply generality of this observation, which is perhaps a result of
the simplicity of regular expressions. Instead, we identify the necessity for future investigation
on the comparison of distributed monitoring approaches through more expressive specification
languages.

One issue which we identify regarding the presented conversions is the loss of completeness
of the resulting monitors, both remotely as well as locally. Although the loss of completeness
between remote locations is expected (section 3.5), it is undesirable locally. Consider for in-
stance Fig. 6.2 depicting the translation of E1.E2. The conversion triggers channel c upon the
satisfaction of E1, in turn starting the monitor responsible for E2. Upon synchronisation (on c),
this latter monitor is directed to start analysing events from that point onwards through monitor
re-alignment (i.e., through go or setC). The problem lies with the fact that there is nothing to
stop pertinent events from occurring in that duration. In other words, events which occurred
between the satisfaction of E1 and the triggering of E2 are ignored, potentially missing certain
violations as a result. Analogous scenarios can also be found for the conversion of E∗ and
E1 + E2. Two solutions are identified; we either (i) define separate conversions for local and
remote conversions, exploiting the sequential nature of the calculus operator m(c, x̄, k).M (in
case of the local conversion), or (ii) we enrich the semantics of setC, giving us control over the
monitor counter assignment. In this latter case, the value of the counter state from where the
latter monitor should proceed is passed during synchronisation.

125

Part III

Evaluation

126

7. Case Study

The following chapter identifies an implementable runtime verification framework for dis-
tributed settings, based on mDPi. Through this case study, our aim is also to identify practical
aspects possibly encountered during implementation the calculus. Section 7.1 identifies and
motivates these issues, as well as presenting the motivated framework. This is followed by sec-
tion 7.2, which considers the extent to which the framework is capable of solving the identified
issues. Section 7.3 explores observations extracted during our proof-of-concept implementation
of the proposed framework, achieved through Erlang. Finally, section 7.4 concludes the chapter.

7.1 Overview
We next present an architecture for the runtime monitoring of distributed systems i.e., au-
tonomous, concurrently executing systems communicating through message passing (chapter
3). Each system is assumed to run within different environments, and also potentially admits
confidential local information. The framework’s design has been driven by the mDPi calculus,
implying generality wrt. the choice of instrumentation strategy and specification language. In
other words, we present a meta-framework, implementing the necessary tools for monitoring in
a distributed setting, which can be later specialised for particular use.

Our immediate task becomes that of (i) defining a framework which achieves the monitoring
and tracing semantics presented in chapter 5, while also (ii) identifying practical issues during
the implementation of mDPi. As we shall see throughout this chapter, these issues include

• The implementation of monitor and trace operators — Mostly including difficulties with
monitor migration. More specifically, [38] highlights the difficulty with achieving code
mobility remotely, especially wrt. highly dynamic variant required by our framework,
which automatically migrates and executes code across locations on the fly. Other imple-
mentation issues also include the generation and analysis of traces, as well as issues with
monitor re-alignment. In other words, who is going to be responsible for extracting local
traces per location? By extension, who is responsible for administering the counter state?
Finally, we also require a uniform mechanism which hides implementation details as to

127

Chapter 7. Case Study

differences in local and remote trace analysis.

• Dynamic architectures — Although we have theoretically motivated the need for monitor-
ing distributed systems admitting dynamic topologies, implementing runtime verification
frameworks tolerant to such settings admits its own set of practical issues. For instance,
how are monitors able to migrate to newly discovered locations? Surely, migrating code
requires support at the receiver’s end in order for the monitor to execute at the new lo-
cation. How can we enforce required support? Also, as required by mDPi, we need to
implement a property agnostic approach which is tolerant to different needs (wrt. events
of interest) of the various monitors migrating to and from locations.

• Security Issues — Relating to information exposure across remote locations, as well as
issues with monitor tampering. An immediate worry is the overhearing of remote mon-
itor communication, as well as exposure of monitor logic (from which internal system
activity can be inferred) across unsecured interactions. Even worse, monitors can be al-
tered by malicious entities whose intent is to harm (or at least derail the monitoring of)
contributing systems, in effect exploiting monitors as a back door to circumvent security
mechanisms. We can go further, by identifying that internal system information is also
exposed across locations, by exposing monitor functionality between remote systems.
Clearly, possibilities for exposure, as well as unintended use of monitors are issues we
must strive to prohibit.

• Heterogenous Systems — In other words, considering implementation issues in face of
systems adopting various technologies and protocols. What if the distributed system ad-
mits a Java program on a Linux server, and a C# program running on Windows? Although
such details are inessential during theoretical development, they become a practical real-
ity during implementation, and is hence something we have to consider.

To this effect, we propose the architecture depicted in Fig. 7.1. The remainder of this sec-
tion is devoted to a description of how we achieve pertinent monitoring functionality. This
is followed by section 7.2, which considers the extent to which this architecture solves (or is
amenable to solving) the above issues.

Systems are considered to run within named environments; each environment can be taken
to represent a distinct location, and/or computational environment (i.e., admitting differences
in operating system, hardware etc.). Moreover, systems interact across environments by ex-
changing messages. We take a technology agnostic approach towards the implementation of
both the system and its interaction protocol. However, internal system execution, as well as
across-environment interactions represent events potentially of interest to the monitoring effort.
Informally, both forms of actions represent process output operations in mDPi.

The depicted framework is asynchronous, in that system and monitor execution are disjoint.
Each system generates a log of pertinent events (i.e., a trace per location), which is later analysed

128

Chapter 7. Case Study

Figure 7.1: An example scenario of the implemented framework.

by monitors. Based on their analysis, these monitors return a verdict on system behaviour. The
implementation of this distributed monitoring framework is realized through two components;
(i) a monitor manager at each environment/location, as well as (ii) an undetermined number
of monitors per location. These monitors implement mDPi operators (section 5.2.1), and are
hence additionally capable of (i) interacting and (ii) analysing trace records, both locally and
remotely, as well as (iii) migrating across locations. The monitor manager is a novel addition;
its responsibility lies as

• An instrumenter — intercepting pertinent events, and recording local traces. The mon-
itor manager is responsible for implementing the tracing semantics presented in mDPi,
thus gradually generating a totally ordered trace per location. The extraction of events
is left as a design choice, and can be done either manually, or automatically through the
exploitation of some particular technology (such as Aspect Oriented Programming [54]).
Nevertheless, each trace record is expected to entail (i) the event name, (ii) associated
parameters, and (iii) a (logical) timestamp wrt. its temporal ordering within the (local)
trace. Note that by implementing the tracing effort, this implies that the monitor man-
agers are also collectively responsible for administering the counter state (section 5.2.1).

129

Chapter 7. Case Study

Each monitor manager hence admits a monotonically increasing counter, which is used
to assign timestamps to (local) trace records.

• A monitor administrator — thus responsible for migrating local monitors to remote loca-
tions, as well as receiving monitors and spawning their execution locally. In other words,
monitor managers interact across locations to exchange monitors, which involves pausing
execution at the sender’s location and restarting the monitor at the receiver’s end (updat-
ing the monitor counter accordingly). We shall expand on the implementation of this
operation below. The monitor manager also acts as a trace query engine, with monitors
querying the monitor manager situated at location k for the nth trace entity. Finally, given
that the monitor manager administers the trace counter locally, monitors are also able to
query the monitor manager (at k) for the current counter value.

The monitor manager hence plays a crucial role in the implementation of the property agnos-
tic approach motivated by mDPi. Each monitor manager exposes a local alphabet of events,
from which a trace is generated accordingly. Monitors subsequently analyse traces, by query-
ing the monitor manager at the required location. In effect, this approach encapsulates a uni-
form interface for trace analysis both locally and remotely, hiding technology details for the
implementation of remote communication involved during (remote) trace analysis. Moreover,
monitor managers offer an elegant solution for the implementation of monitor re-alignment.
Operator setC(k) is achieved through a request for the counter value to the monitor manager at
k. Moreover, as we shall see below, monitor managers (in conjunction with the adopted monitor
implementation) also enable migration.

The framework admits an interpreted monitor expression strategy, entailing; (i) an mDPi
monitor expression, and (ii) an expression interpreter. The former specifies monitoring code
expressed as an mDPimonitor. Its description is best achieved through some language-agnostic
markup language, such as through an XML-based specification1. The expression interpreter is
an executable program capable of executing within the local environment. More specifically,
its task is to accept a monitor expression, and execute it accordingly. Most of the monitor op-
erations in mDPi are easily encodable in any turing-complete language, including branching
and recursion. We employ a lazy interpretation of expression ∗M, in that a copy of M is only
created when necessary. Clearly, an eager interpretation of the expression is impossible given
finite memory. Inter-monitor interactions (both local and remote), as well as the creation of new
channels depends on the native language’s support for point-to-point based communication.
This functionality is best implemented through sockets [84] for maximum generality (across
languages) — the socket’s port, ip pair are taken to encode the channel name. Parallel composi-
tion requires support for concurrent programming, possibly through the use of threads. Finally,
monitors are at most allowed to signal the violation (or satisfaction) of properties. This implies
that no compensatory actions are allowed. By extension, monitors do not directly interact with

1For the full specification visit http://www.w3.org/TR/REC-xml/

130

Chapter 7. Case Study

system executions.

Given the above setting, monitor migration is achieved in straightforward fashion through a
sequence of operations described below.

(i) As soon as an expression interpreter encounters an expression of the form go(k).M, it
requests its local monitor manager for the transfer of expression M to location k.

(ii) The interpreter terminates locally. Nevertheless, given that the monitor state is encoded
in the expression, this implies that residual monitor M is in a suspended condition.

(iii) The local monitor manager subsequently interacts with the monitor manager at k, trans-
ferring the monitor expression in the process.

(iv) Once the latter monitor manager receives the expression, it subsequently spawns a new
interpreter in order to execute it.

Expression M hence resumes execution at k, thus achieving required migration. This con-
cludes our discussion of how the framework in Fig. 7.1 achieves necessary monitoring func-
tionality.

7.2 Practical Considerations
The following section reviews the suitability of the proposed architecture wrt. the practical
issues identified in section 7.1.

The Implementation of Monitor and Trace Operators

We identified four potentially problematic operations at an implementation stage, including
trace generation and analysis, as well as monitor re-alignment through counter update and mi-
gration. The former three were adequately solved by the introduction of the monitor manager.
On the other hand, monitor migration requires a notion of code mobility [38] in order to trans-
fer a monitor’s execution across locations. This was successfully encoded in our framework
through the adoption of monitors as interpreted expressions, in conjunction with monitor man-
agers. More specifically, we have in effect simulated weak mobility through data transfer, at an
additional cost of adopting an interpreted language. Weak mobility refers to the capability of
transferring program code across locations (i.e., no state transfer).

However, the application of strong mobility may also be worth further consideration. Strong
mobility involves the transfer of an executing program by transferring (i) its code, as well as
(ii) its state — both explicit as well as implicit (such as the internal program counter, stack
etc.). The notion of strong mobility is a more powerful technique than its weak counterpart, and

131

Chapter 7. Case Study

may be required in the future if we require migration of more expressive monitors (especially
monitors requiring more complex state). Moreover, implementing migration through strong
mobility denotes elevated encapsulation of monitor functionality, since we do not depend on
the monitor manager for migration to occur. The resulting monitors may also be more efficient,
by eliminating our dependance on an interpreted language. On the other hand, strong mobility
also introduces new issues. Firstly, from a technology point of view, support for strong mobility
is rather sporadic [38], and very technology centric. In other words, a technology which has
been implemented for Java might not exist for C#. Moreover, to the best of our knowledge no
work has been carried out on mobility across languages, which is a big problem when facing
heterogenous environments (more below).

Dynamic Architectures

Monitor managers can also help in enforcing necessary support for runtime monitoring across
newly added locations. All we need is to ensure each system added at runtime to be instru-
mented with its local monitor manager. This monitor manager subsequently exposes an alpha-
bet of local events, and records the (local) trace as necessary. Moreover, monitors can now
query the monitor manager present at this new location for remote trace analysis (in case of
orchestrated instrumentation). Finally, existing monitors obtain the capability to migrate to the
new location, by transferring their expression to the new manager.

By extension, the possibility for dynamic properties should also be noted (section 2.4.1). In
order to monitor newly learnt properties at runtime, we can simply convert their specification
into an mDPi monitor expression, and start their verification on the fly i.e., without the need
for system recompilation and restart. Analogously, properties can also be altered at runtime, by
altering their expression.

Security Issues

Security within the presented architecture can be an important consideration for reasons out-
lined in section 7.1. In truth, the urgency for secure monitoring depends on the scenario at
hand. For instance, applying our framework within a private network is less of a risk than
monitoring internet-based systems. We next describe necessary security measures in face of (i)
unsecure communication mediums, and/or (ii) untrustworthy systems i.e., systems which are
not privileged to gain knowledge of each other’s internal activity.

Securing monitor interactions can be achieved through the use of public key encryption [70],
by assigning each monitor manager a public and private key. The former is readily available to
all other monitor managers, whereas the latter is confidential and is kept securely at each loca-
tion. In order to securely exchange monitor expressions, managers at the sender and receiver’s
location take the following steps

(i) The monitor manager at the sender’s location encrypts the expression with its private key.

132

Chapter 7. Case Study

(ii) This manager also obtains the public key at the receiver’s end, and proceeds to encrypt
the message with this latter key.

(iii) The encrypted expression is sent to the receiver’s monitor manager, which first proceeds
to decrypt the message with its private key.

(iv) The latter monitor manager again decrypts the message, this time with the sender’s public
key, thus obtaining the decrypted message.

(v) An analysis of this message is commenced; if it successfully describes a monitor expres-
sion then the message is accepted, else the message is discarded.

The above strategy ensures confidentiality of the transferred message, as well as authenticity
of both the sender and receiver. Moreover, the final step ensures that any message tampering
during transfer is detected, which prompts the monitor manager at the receiving end to discard
the received message (possibly requesting re-transfer). Note that an analogous approach can be
adopted for monitor interactions, perhaps by delegating necessary encryption and decryption to
their local monitor managers.

The next issue lies with exposure of information across locations. Consider monitor expres-
sion

k{[m(e1, 〈〉, k).go l.m(e2, 〈〉, l).fail]}1

which specifies that the occurrence of event e1 at location k followed by e2 at l denotes prop-
erty failure. Clearly, this monitor is first started at k, and eventually proceeds to l. However,
by placing the monitor at location k we have unnecessarily exposed the occurrence of event e2

at l. In general, exposing a monitor expression at one location indirectly exposes knowledge
of subsequent locations’ internal activity. Although this occurrence may not be problematic
in certain scenarios, others may prohibit such exposure. This is especially true when systems
admit confidential information (i.e., online banks, e-government services etc.), and/or an ele-
ment of competitiveness is present amongst contributing systems (such as the monitoring of
web services which offer competing products). To resolve this issue we propose the staggered
encryption of monitor expressions, in order to ensure that each component is only aware of
what it should check for, and to whom control should be passed. In effect, we are motivating
the signing of monitors. Using this approach, the above example takes the form

k{[m(e1, 〈〉, k).go l.m(e2, 〈〉, l).fail︸ ︷︷ ︸
publ︸ ︷︷ ︸

pubk

]}1

At its outermost level, the expression is encrypted through the public key belonging to the
monitor manager at location k. It is hence only this manager (at k) which can decrypt the
next operation in the monitor’s expression. However, crucially note that upon decrypting the
expression, the manager at k only knows (i) the immediate operation to carry out, and (ii) the

133

Chapter 7. Case Study

next location where the expression is to be sent. The remainder of the expression is encrypted
by the public key belonging to the manager at l, and can only be decrypted upon transferring the
expression to l through the execution of operator go. In truth, although this overlap of security,
runtime verification, and monitor signing was presented as more of a practical consideration, it
is an interesting field worth further study at a technical level, and is left as future work.

Heterogenous Environments

Applying our framework in the face of heterogenous environments is also achievable, as long
as we implement (i) a monitor manager, and (ii) an expression interpreter for each environment
configuration. In other words, each monitor manager implementation will be responsible for
extracting necessary information from specific systems (possibly using technologies specific
to the language used to write the system). Moreover, the use of (language-agnostic) sockets,
as well as XML-based specifications for describing monitor expressions allows remote mon-
itors and monitor managers (possibly written in different languages) to interact as necessary,
abstracting over inessential technology details across environments.

Similarly to programming languages such as Java and Erlang, an interesting approach we may
consider in the future is the view of the monitor manager as a virtual machine. In other words,
the monitor manager acts as an execution environment (at the process level, rather than at the
level of the operating system) within which monitors perform necessary verification. Apart from
providing a sense of standardization to the monitor’s execution environment — necessary in the
case of heterogenous environments — concurrent monitors may also provide better performance
through process-level concurrency, a fact which has been verified with Erlang processes [7].
Finally, the use of virtual machines provides isolation by executing monitors in a sandbox
environment. This provides standard (desirable) repercussions wrt. fault tolerance and security.
For instance, malicious monitors would not have access to memory beyond that afforded to its
monitor manager. Also, if the monitoring effort crashes at one location, it can easily be restarted
without affecting the underlying system.

7.3 Observations
Throughout the following section we shall discuss observations gathered during our proof-
of-concept implementation of the above framework. This implementation has been achieved
through Erlang [7]; a multi-paradigm programming language with strong emphasis on concur-
rency and distribution. The use of Erlang for a prototype implementation was a straightforward
choice, since its notion of distributed systems easily maps to our setting. The language empha-
sises the encapsulation of program logic into concurrent lightweight processes. By lightweight
we imply that processes are built as efficient language primitives, rather than expensive op-
erations (typically involving the operating system). Processes communicate through message
passing techniques (i.e., no shared memory). Moreover, the language offers native support for

134

Chapter 7. Case Study

distribution in a similar way to our understanding of named locations. More specifically, each
node on the network is taken to represent a computational environment for processes to execute
in, and is qualified through a unique identifier. Processes execute concurrently and interact both
locally and remotely through language constructs which abstract over differences in location.
Crucially, node identifiers explicitly provide processes a notion of located computation, map-
ping directly to the scenario in Fig. 7.1. Finally, it is interesting to note that Erlang has strong
support for fault tolerance techniques, implying that it could be an interesting tool for the study
of fault tolerant monitoring in the future.

Our first observation relates to the need for trust in the framework implementation. More
specifically, we require system administrators to trust a monitoring framework which (i) ex-
poses local information, both locally as well as to remote entities, (ii) may pose security risks,
(iii) accepts (and transfers) monitor scripts, which can expose internal activity, and by extension
(iv) allows for numerous script interpreters to be executed at runtime, consuming resources oth-
erwise available to the system . Clearly, this is quite a lot to ask, implying that the framework
may not be suitable in all scenarios. Although we have outlined solutions for certain issues
(including security, safety of running monitor scripts etc), these come at an additional resource
cost.

Secondly, the viability of migration through data transfer is driven by our encoding of the
monitor’s state through its expression. More precisely, the mDPi semantics dictate that in order
to determine a monitor’s next computational step, we only need to know (i) its expression, and
(ii) the counter state. Given that the counter state is simulated through monitor managers, trans-
ferring expressions should suffice; there is no need for additional references to memory-based
state. In fact, the only stateful component in a monitor’s description is the counter. However, its
current value is explicitly stated as part of the expression too. It is for this reason that weak mo-
bility suffices in our case. Nevertheless, we may require strong mobility in the future, especially
if more expressive monitors are adopted, or monitors with more complex state. Interestingly,
Erlang allows for hot swapping of code [7], which permits for dynamic update of programs
without the need for recompilation. However, although this particular technique might help
during extension of our prototype framework, to the best of our knowledge similar functionality
does not exist in more traditional languages. Finally, the notion of monitor managers as virtual
machines might also help for simulating strong mobility, since it gives us complete control over
the monitor state (both implicit and explicit).

Our third observation relates to our use of monitor expressions. In effect, we have presented
what can be considered a monitoring programming language i.e., we provide a language provid-
ing the necessary primitives in order to achieve the monitoring of distributed systems. Through
this language, numerous specification languages and/or instrumentation strategies can be ex-
pressed. Monitor code is written in a script which describes its operation, which is later inter-
preted across distinct entities. Although expression interpretation helps us in achieving weak

135

Chapter 7. Case Study

mobility, it is not a necessity. As discussed above, this is especially true if we execute monitors
within virtual machines. Irrespective of the execution strategy, by adopting a monitor language
we obtain complete control over the monitor’s instruction set, which admits desirable reper-
cussions wrt. security. More specifically, by disallowing for harmful monitor operators, it is
impossible for damaging monitor scripts to be devised. In other words, malicious users can at
most only derail the monitoring effort, not cause harm to the underlying system. Clearly, this
may change as soon as reparatory actions are introduced.

7.4 Conclusions
This chapter presented an implementable architecture for the realization of mDPi. Moreover, we
anticipated practical issues which might arise during implementation of the motivated frame-
work, and also offered possible solutions. These issues include problems with dynamic and/or
heterogenous systems, as well as potential security liabilities. Another source of discussion was
the implementation of monitor migration through two forms of code mobility. On the other
hand, we identify a potential source of weakness wrt. the associated level of monitoring over-
head. Although we do not measure said overhead throughout this dissertation, we recognise that
having a monitoring framework which is (i) is based on an interpreted language, and (ii) uses
encryption algorithms may require considerable resources, which goes against the principle of
adopting lightweight monitors (section 2.2).

Finally, our current prototype implementation written in Erlang is intended as a proof of
concept, and does not implement all the functionality described above. More specifically, this
implementation does not yet support dynamic or heterogenous environments (all systems are
Erlang nodes), and assumes a reliable network infrastructure (i.e., no implementation of security
algorithms). Nevertheless, we believe this chapter, along with the developed implementation,
should provide enough insight into the development of the full architecture if necessary.

136

8. Related Work

The following chapter is dedicated to (i) an in depth review of current runtime verification ap-
proaches in a distributed setting, and (ii) the comparison of related work to the mDPi framework,
thus also serving as an evaluation of our work. Section 8.1 introduces the chapter, presenting a
broad picture of the identified approaches. Section 8.2 goes into some detail on the operation of
each approach. This is followed by section 8.3, which summarises the identified tools, and also
conducts an a posteriori comparison to our work. Finally, section 8.4 concludes the chapter.

8.1 Introduction
The following section entails a detailed discussion of encountered candidate solutions for

the monitoring of distributed systems. In general, these solutions vary widely in their scope.
Some may be more focused on the monitoring of particular technologies (such as web service
compositions, or Enterprise Service Bus architectures). Most vary in their assumptions about
the underlying system’s operation. For instance, some approaches assume the availability of a
global clock, thus achieving synchrony across remote locations. In general, we shall look at the
mechanisms adopted by each framework, extracting their proposed solutions for pertinent issues
we identified in chapter 3. We shall especially keep a look out for (i) their classification wrt. the
identified taxonomy (i.e., identified as either statically choreographed, orchestrated approach
etc), (ii) the issue with asynchrony amongst remote locations, (iii) support for dynamic archi-
tectures, and (iv) the recognition of risks with monitoring in the face of confidential information.

We shall also be comparing approaches through an example scenario (where possible). How-
ever, given that (as we shall be seeing) certain approaches do not support dynamic architectures,
comparing approaches through the hospital management system presented in section 3.3 shall
not be possible. Instead, we adopt another scenario, involving a static architecture whose sub-
systems are known a priori, and remains unchanged throughout execution. More specifically, we
shall consider a travel agent responsible for booking holidays on the client’s behalf. The agent
interacts with the bank, hotel and airline booking agencies, booking the best deal which can
match the client’s request. One recurring property which we shall be looking to verify involves

137

Chapter 8. Related Work

the check that at no stage can the travel agent book flight and accommodation which exceeds the
client’s bank balance. In case that the framework supports reparation, a suitable compensatory
action in this case involves rolling bank triggered transactions in such a scenario. Also note that
this scenario admits confidential information (i.e., bank transactions, flight and hotel bookings),
which gives us a medium to check whether frameworks take precautions against the leaking of
such data.

8.2 Current Approaches
The following section describes six monitoring frameworks which attempt the verification of
distributed systems.

DMaC

DMaC [88] is a distributed extension to the Monitoring and Checking (MaC) framework
[56]. MaC is a runtime verification framework designed for the runtime monitoring of mono-
lithic systems, and is capable of monitoring various safety properties (including temporal prop-
erties). The MaC framework is based on a two-layered specification language called MEDL
and PEDL. The Meta Event Definition Language (MEDL) is a programming language agnostic
formalism used to express system properties, with its formal semantics and expressivity simi-
lar to past-time linear temporal logic (ptLTL) [23]. The Primitive Event Definition Language
(PEDL) complements MEDL by specifying the high-level events referred to in MEDL scripts
in terms of low-level system function calls and system data structures. Using this two-leveled
approach, a generalised runtime verification framework is hence obtained, potentially achieving
both language and platform independence.

On the other hand, DMaC is a choreography-based distributed runtime monitoring tool, fo-
cusing on the verification of systems specified using declarative networking techniques [62],
physically distributing the monitoring effort across a network. Such distribution is achieved by
integrating the MaC framework within distributed systems specified using the language NDLog
[62]. NDLog is a domain specific declarative language used for the abstract specification of
(i) network protocols and (ii) distributed architectures, and is based on specifying declarative
rules. These rules take the form p : − p1, p2, ... pn with each pi constituting a localised pred-
icate, parameterised using variables and/or containing boolean functions. Assuming predicate
link(@S ,D) which returns node D if there is a link between nodes S and D, an example NDLog
rule returning (for node S) all direct neighbours (that is, nodes with which node S has a direct
link to) is specified below

neighbour(@S , P) = link(@S ,D), add(D, P).

The above rule automatically adds all nodes directly linked to S into vector P.

138

Chapter 8. Related Work

Analogously to MaC, system properties specified within DMaC are specified using MEDL
at a high abstraction level. Consequently, MEDL scripts are complemented with an additional
PEDL script describing the distributed nature of the properties specified within MEDL. PEDL
scripts are composed of (i) an event recogniser, responsible for specifying where primitive
events are generated within the distributed system, and (ii) a locationer, which specifies which
nodes are responsible for the generation of composite events specified within the MEDL. A
typical MEDL script contains variables, imports primitive events (defined in PEDL), and con-
structs more complex events (using available primitive events as well as conditions).

Consider the following example MEDL script, which is based on a PEDL specification defin-
ing primitive events (i) airlineBooked(a,c,p) recognising that a plane ticket was booked with
agency a for client c for the price of p, (ii) hotelBooked(h,c,p) specifying that a booking was
placed at a hotel h for client c for the price of p, and (iii) bankBalance(c,b) stating that client
c has balance b (we shall assume that this event is triggered at the start of the client’s request).
Through these events, the following MEDL script raises an alarm when the cost of booking the
airline and hotel for any one client exceeds his bank account.

import event airlineBooked(a,c,p)
import event hotelBooked(h,c,p)
import event bankBalance(h,c,p)
var client, balance
event triggerBalanceSubtractionAirline(p) = airlineBooked(a,c,p) when (client = c)
event triggerBalanceSubtractionHotel(p) = hotelBooked(h,c,p) when (client = c)
event raiseAlarm = (airlineBooked(a,c,p) ∨ hotelBooked(h,c,p))

when((client = c) ∧ (b < 0))
bankBalance(c,b) -> {client = c; balance = b;}
triggerBalanceSubtractionAirline(p) -> {balance = balance - p;}
triggerBalanceSubtractionHotel(p) -> {balance = balance - p;}

The first three lines import the necessary events (defined through PEDL). The fourth line
declares required variables acting recording necessary state. The next three lines denote the
specification of composite events, such that (i) triggerBalanceSubtractionAirline(p) and trig-
gerBalanceSubtractionHotel(p) update the monitor’s recorded bank balance upon the booking
of an airline or hotel accomodation, and (ii) raiseAlarm flags the necessary violation when
booked airline and hotel accommodation exceed the client’s balance. The latter three lines of
the above script are specified to update auxiliary variables client and balance. Note that MEDL
extensions for the specification of sliding window event correlation have also been specified,
with the role of such extensions being the evaluation of simple statistics (such as the count and
average) over attributes defined within events and conditions.

139

Chapter 8. Related Work

The above MEDL script is first converted to location-agnostic NDLog rules through a process
of normalisation followed by conversion through a set of templates. The final step in the com-
pilation entails assigning locations to the resulting rules, and is executed by the planner com-
ponent. Choosing node locations for the resulting rules is non-trivial, and is done partly based
on the information specified in the PEDL script in conjunction with query optimisation tech-
niques. Although choosing the optimal set of locations is in general NP-hard, the authors claim
that approximate solutions using dynamic programming in conjunction with certain heuristics
provide reasonable location configurations. Moreover, given that network performance changes
over time, adaptive query optimisation techniques have also been considered as future work,
allowing for re-optimisation of monitoring configurations in an online fashion [88].

Given that the resulting rules (converted from the high-level MEDL script) are (i) compiled
prior to system execution to NDLog rules, (ii) executed at physically different locations, and (iii)
whose location remain unchanged throughout, this implies that DMaC is a static choreography-
based approach. DMaC does not consider issues such as dynamic architectures or information
confidentiality, and is instead focused on the minimisation of bandwidth overhead over static
architectures. More specifically, even though the approach is choreographed, given that rules
located at certain nodes can listen to remote events, this results in possible exposure. Note
that the architecture has been experimentally shown to produce acceptable bandwidth overhead,
with overheads reported to be around 11% [88]. Finally, from a practical point of view, one flaw
with the solution presented by DMaC is its tight binding with NDLog. Although the NDLog
language greatly facilitates distributed monitoring through its powerful declarative expressivity,
most full-blown industry scale distributed systems are not implemented using declarative net-
working techniques. Monitoring such systems using DMaC would hence involve (i) exposing
local system information stored within distributed tables, (ii) upon which NDLog rules can sub-
sequently operate, hence involving additional overheads. In truth, DMaC is perhaps best suited
as a formal tool for the verification of network protocols, whose description using declarative
techniques are gathering popularity.

Runtime Monitoring Based on MSC Assertions

The approach presented by Drusinksy et al. [77] presents a distributed synchronous runtime
verification approach of Service Oriented Architecture (SOA) [32] based system-of-systems
(SoSs). The term system-of-systems loosely refers to a set of goal-oriented systems, inter-
acting and sharing resources in order to achieve a common goal, and is hence not too unlike
our understanding of distributed architectures in section 3.2. Such task-oriented systems are
commonly designed in accordance with SOA principles and developed through web services,
so much so that SOA based SoSs can be viewed as a set of coordinated web services running
over the internet [77].

The authors argue that questions arise regarding the reliability of such systems due to their
(i) inherent concurrency, and (ii) unreliable communication mediums which they are forced to

140

Chapter 8. Related Work

make use of. Hence, the global system is monitored at runtime by comparing the system’s
runtime behavior against a set of formally specified system properties, thus enabling the veri-
fication of such systems in less-than-ideal situations. The presented approach is interested in
system of systems with no central agency coordinating workflow, which is why the resulting
monitoring functionality is executed in distributed fashion throughout the global system.

Message Sequence Chart (MSC) assertions have been proposed as an appropriate formalism
for property specification, and are based on UML MSCs and UML statecharts. The diagram
below specifies an example MSC assertion, specifying the property that the automated travel
agent stating that the cost of booking the flight and hotel do not exceed the client’s balance.

141

Chapter 8. Related Work

The property follows the sequence of interactions across locations i.e., the interactions be-
tween the client and the travel agent, as well as the travel agent with the bank and booking
agencies. If the property is satisfied, then the monitor simply checks that the travel agent re-
sponse (containing the booked flight and hotel) are sent to the client. However, if the property
is broken, the booked flights and hotel are canceled, in order to prevent the agent from spending
beyond the client’s means. The approach hence admits a notion of reparation. As depicted in
the diagram, the specification language also has access to local variables (whose state cannot be
shared amongst locations). In true UML-MSC fashion, the above assertion defines one task per
each entity of interest (client, bank, booking agencies etc.). However, unlike UML-MSCs each
task is represented by a statechart (instead of the standard timeline), with each task represent-
ing a progression of states. Each statechart represents an automaton-like structure by admitting
states and transitions, with the latter triggered by events occurring within the system. Each
state can contain associated code, executed each time that state is reached. Also, each transition
takes the form event[condition]/Action, such that each time the specified event occurs and the
associated condition is satisfied, the corresponding Action (in the form of Java/C++ code) is
executed. The condition is based on parameterised events. Also, note that the statecharts em-
bedded within MSC assertions also have a timer construct. However, each constructed timer
can only be used within the task it has been defined, thus avoiding the problem of asynchronous
clocks amongst remote locations. Finally, note that interaction between statecharts is hinged on
interactions across systems within the underlying SoS.

MSC assertions are monitored through the Runtime Execution Monitoring (REM) framework,
entailing a set of methods implemented for (i) observing the underlying application and (ii) up-
dating each statechart (within the assertion) as required. Hence, monitoring an MSC assertion
involves embedding the code (generated from MSC assertions) at each of the web services’ lo-
cation. Given that the resulting monitoring functionality is (i) compiled prior to execution, (ii)
installed across the SoSs with no central monitor, and (iii) remains unchanged throughout exe-
cution, then the approach presented by Drusinksy et al. is a static choreography based approach.
No explicit reference is made to issues of information confidentiality. Moreover, dynamic ar-
chitectures are also not handled, since new web services (such as in dynamically discovered
services) cannot be monitored on the fly. Although the above approach as presented in [77]
admit that the monitoring framework may operate using an unreliable communication medium,
it fails to characterise this unreliability. Finally, although the presented approach may yet be
feasible for other distributed architectures, its current implementation binds the framework’s
application to SOA based SoSs, and is hence not applicable to heterogenous environments.

GEM

Mansouri et al. present GEM [64], a generalised event monitoring framework based on a
declarative and interpreted rule-based specification language. The presented approach is also
event-based, basing its verification on the observation of (i) primitive events (basic observable
events within each systems) or (ii) composite events, relating primitive event sequences gen-

142

Chapter 8. Related Work

Ec ::= Ep || Ec&Ec || Ec + t || {Ec; Ec}!Ec || Ec|Ec || Ec; Ec

Figure 8.1: The GEM specification language.

erated throughout the distributed system. Moreover, the framework is based on the notion of
rules; triggering a sequence of reactions, upon the observation of an event. Similarly to mDPi
the GEM framework considers typical distributed systems to consist of numerous loosely cou-
pled subsystems, executing at physically separate locations and communicating via message
passing. Crucially, GEM considers subsystems to have no shared memory, while also acknowl-
edging unbounded communication delays with no guarantees on the preservation of message
order. It is also worth noting that the framework presupposes a global synchronised clock ac-
cessible to all subsystems, simplifying the problem of obtaining order in a distributed system.

Each subsystem is instrumented with an event monitoring service, consisting of three sub-
components, these being the (i) event generator, (ii) event monitor and (iii) event disseminator.
The event generator is responsible for observing the system’s behaviour and extracting primi-
tive events from the local system. The event monitor executes the specified rules by processing,
correlating and filtering events generated both locally as well as those received from remote
systems. Finally, the event disseminator transmits the occurrence of events (both primitive and
composite) to other remote monitors within the architecture, since these events may be pertinent
to the system’s global monitoring effort. The resulting framework is hence choreography based,
since events are observed locally and transmitted remotely. In fact, Mansouri et al. advocate that
centralised correlation and monitoring of event reports is not practical in very large distributed
systems due to the elevated bandwidth requirements. Interestingly, the approach taken by GEM
which interprets rules at runtime allows for additional rules to be loaded at runtime at each
local monitor, which hints to the monitoring of dynamic properties. However, the framework
does not explicitly mention the issue of dynamic architectures. Certainly, dynamically adding
new systems at runtime would require these new systems to have their local event monitoring
service installed prior to execution.

GEM specifications involve a two tiered approach, with the user tasked with specifying (i)
events and (ii) rules. Events can either be primitive or composite events. Primitive events can ei-
ther be generated by the underlying system, or adhere to either format every[<time expression>]
or at[<time expression>]. An example time expression includes (hour∗24 + day), and is used
when events are to trigger either periodically (through operator every) or at fixed points in time
(using at). A special ‘*’ wildcard operator can also be specified to match all possible events.
A composite event entails a set of primitive events combined through a set of operators, and
whose syntax is defined in Fig. 8.1.

where Ep denotes a primitive event, and t represents a time expression. Operators & and

143

Chapter 8. Related Work

| act as a conjunction and disjunction of events respectively, whereas operator ; checks for
event sequentiality. Operator + triggers the composite event t time units after the triggering
of the original event, hence effectively delaying the triggering of the event. Finally, operator
{e1; e2}!e3 checks that events e1 and e2 occur in sequence without interleaving of event e3. Note
that both primitive and composite events can specify an additional guard (a boolean condition
over the event attributes belonging to the event), acting as a filter on events. Also note that the
timestamp of each event can be extracted using the implicit @ operator. Given that all locations
are synchronised, the timestamp at one location is relevant to all other locations. However, al-
though the occurrence of primitive events is considered instantaneous, composite events may
span over time intervals. Hence, the start and end of an interval event’s time interval is ex-
tracted using the @ and |@ operators respectively. This information can then be used within
the associated events’ guards. Assuming that the travel agent emits primitive events of the type
bookFlight(cost,client), the following are a few example composite events.

• bookFlight.cost when cost > 500

• at[14 : 00] ; changeTemperature ; at[16 : 00]

• (x:bookFlight ; y:bookFlight) when ((x.client = y.client)&&((@x −@y) < 30M))

The syntax x:e simply assigns a variable name x to event e within the expression. The first
example specifies a primitive event which triggers on any flight booking which exceeds e500.
The second example specifies that events of type bookFlight should only be considered between
14:00 and 16:00, whereas the final example specifies the composite event which triggers when
the same client makes two bookings within a month or less.

Rules within the GEM framework take the form

rule <rule name> [detection window] { <event expression> ==> <action sequence> }

thus in a certain sense allowing for an update of the monitoring effort on the fly.
specifying that the action sequence is executed upon the triggering of the event expression.

The detection window is an additional mechanism which specifies that the monitor verifying
the associated rule should store the event history for all pertinent events (referred to by the rule)
for the duration specified. The result is a temporally ordered list of events per location, such that
the rule is re-evaluated on this list for each identified event (observed or received from a remote
location). Also note that possible actions include notifying, ordering and triggering events, as
well as the execution of control commands. These commands execute administrative tasks are
used for controlling the operation of monitors, including the addition, removal, pausing and
resuming of rules. Assuming the previous bookFlight(cost,client) event (at the travel agent) and
another event withdraw(amount,client) emitted by the bank which withdraws a specified amount
for that client, consider the following GEM script. More specifically, this script specifies a rule
that the booking of a flight followed by a withdrawal followed by another flight within 10

144

Chapter 8. Related Work

seconds or less (for the same client) indicates an incorrect double booking. If this is the case,
an additional alarm event is triggered.

The following is an example GEM script specifying a rule that when two successive rises in
temperature occur in a time period of less than 10 seconds such that their gradual change is
larger than 5 degrees, an alarm event is triggered.

event bookFlight(cost,client)

event withdraw(amount,client)

event alarm

rule setAlarm { x:bookFlight ; y:withdraw ; z:bookFlight

when ((x.client = y.client) && (y.client = z.client)

&& ((@z - @x) < 10))

==> trigger alarm; }

enable setAlarm

The following example specifies another example for the automated travel agent scenario,
specifying the recurring property that costs for booking a flight and hotel should not exceed the
client’s bank balance.

event bankBalance(client,balance)

event bookFlight(cost,client)

event bookHotel(cost,client)

event alarm

rule setAlarm { x:bankBalance & y:bookFlight & z:bookHotel

when ((x.client = y.client) && (x.client = z.client)

&& ((y.cost + z.cost) > x.balance))

==> trigger alarm; }

enable setAlarm

Note that the event expression specifies that primitive events bankBalance, flightBooked and
hotelBooked occur in any order. Like the previous example, this expression also specifies that
the client for each event is the same, and that the cost for booking the flight and hotel combined
exceeds the client’s balance. If the event expression is satisfied, then the alarm event is triggered.

One point worth noting is the framework’s solution to the issue of dealing with communica-
tion delays and loss of event ordering. Although the detection window mechanism (discussed
above) is helpful for the solution of the event ordering issue, it is insufficient as shown in the
following example. Say three events e1, e2 and e3 occur remotely within a time-span of 10
seconds, and their occurrence is detected remotely (by a remote monitor) in the order e1, e3, e2

within a timespan of 20 seconds. Although these events will be eventually ordered correctly
through their (globally valid) timestamp, there still remains the problem that certain rules may
trigger upon detecting e3, which might have acted otherwise had knowledge of e2 arrived be-
fore. An example composite event which exhibits such behaviour includes {e1; e3}!e2. Given the

145

Chapter 8. Related Work

detection of events (at the remote monitor) e1 and e3, the composite event incorrectly triggers,
since it has no knowledge that e2 will eventually be detected, and has in fact occurred between
events e1 and e3 (and is hence unsatisfactory to the specified composite event). The solution
proposed by the GEM framework for such circumstances is by using an event-specific delaying
technique, such that each event (both primitive and composite) is explicitly assigned a delay
duration before making any rule judgements. This delay allows for the arrival of additional
events which might alter the rules’ outcome. Events which arrive beyond this timeframe are
ignored. Hence, the previous composite event would be specified as ({e1; e3}!e2) + 20s, giving
the composite event enough leeaway for any additional events to be detected before taking any
decision whether to fire. Finally, note that the GEM framework uses a tree-based representation
of events allowing for the efficient evaluation of GEM rules. Each node represents an event,
and contains an associated guard and event history (as far back as dictated by rule detection
windows).

In conclusion, the GEM framework offers a valid solution to the monitoring distributed sys-
tems. Given that an event monitoring service is installed at each location, this implies that
monitoring functionality is distributed, and is hence a choreography based approach. Moreover,
although dynamic architectures are not explicitly mentioned, this framework hints to the moni-
toring of dynamic properties. On the other hand, GEM is based on a heavy assumption wrt. the
availability of a global clock. However, as we discussed in section 3.2, this is usually unattain-
able in typical distributed system implementations. Another issue involves GEM’s handling of
error-prone communication through event-specific delaying techniques, which entails setting a
fixed delay a priori for the firing of rule judgements. Although the framework requires the fixed
specification of delays, determining the optimal duration is often dynamic and unpredictable.
The framework partly attempts to get around the problem by interpreting the specified delay as
the tolerated delay, as opposed to the expected delay. On the other hand, one issue which is
completely ignored is that of information confidentiality; events are continually transmitted to
remote locations irrespective of whether they admit sensitive information to the local system.

Runtime Monitoring of Web Services Compositions through RTML

The approach presented in [10] is exclusively concerned with the runtime monitoring of speci-
fied web services implemented in BPEL. BPEL [69] is an XML-based executable scripting lan-
guage which coordinates interactions between web services, and is executed by a central BPEL
execution service in charge of executing such coordination. System properties are specified
through the Runtime Monitoring Specification Language (RTML), an event-based specification
focused on the specification of boolean, invariant, numeric and temporal properties. Note that
the presented framework supports automatic compilation and instrumentation, but not violation
reactions. The main motivation behind the approach is that web services are often developed
independently, and moreover often change without prior notification. Hence, this framework
serves as an additional check that web service compositions are operating as required. On the
other hand, note that by focusing on the interaction between web services, this approach ignores

146

Chapter 8. Related Work

the internal operation of each system.

The RTML specification language is based on a two-tiered approach, allowing for the speci-
fication of instance and class monitor formulas. Whereas instance monitors are concerned with
monitoring the behaviour of individual BPEL process instances, class formulas specify prop-
erties over all instances of a particular process. Events are the basis upon which formulas are
built, whereby four event types are recognised: creation and termination of a BPEL process,
as well as input and output of messages. Events can also be parameterised in order to extract
information regarding the event itself, such as for example msg(client.output = sendRequest),
which specifies an event triggered when the BPEL process representing the client outputs a re-
quest. Instance monitor formulas are specified using the following structure

b ::= e | Y b | O b | H b | b S b | n = n | n > n | ¬ b | b ∧ b | b ∨ b | true
n ::= count(b) | time(b) | b?n:n | n + n | n − n | n ∗ n | n / n | 0 | 1 ...

A boolean formula can either consist of (i) a past time LTL [23] operator (Y means b was
true in the previous step, O refers to b being true at least once in the past, H refers to b being
always true in the past, and b1 S b2 refers to b1 being true since the first time b2 was true), (ii) a
numeric comparison, (iii) a logic operator, or (iv) an event e evaluating to true when the event
occurred. A numeric formula can consist of count(b), returning the amount of times boolean
formula b was true, time(b), returning the total time duration b has been true, a conditional
expression (b?n1 : n2) returning n1 if b is true, or n2 otherwise, or an arithmetic operation on
other numeric formulas. Class monitor formulas are specified similarly to instance monitored
formulas, as evidenced by the class monitor syntax below.

B ::= And(b) | Y B | O B | H B | B S B | N = N | N > N | ¬ B | B ∧ B |
B ∨ B | true

N ::= Count(b) | Sum(b) | N + N | N − N | N ∗ N | N / N | 0 | 1 ...

Note that b and n refer to instance monitor formulas. Class monitor formulas also distin-
guish between boolean and numeric formulas. Additional operators include boolean operator
And(b), which returns true if instance monitor formula b is true for all instances monitoring
each individual BPEL process (i.e., quantifying over instance monitor formulas), and numeric
operators Count(b) and Sum(n). Operator Count(b) returns the number of BPEL processes
which satisfy b, whereas Sum(n) returns the total sum over the results returned by computing
n over each BPEL instance. These three operators hence act as the link between class and in-
stance monitor formulas. Also, note that an instance monitor is created for each reference to an
instance monitor formula specified within an class monitor formula. Finally, although instance
monitors terminate with its associated BPEL process, class monitors are persistent, and hence
remain active for the duration of the execution of the monitoring functionality. Note that the

147

Chapter 8. Related Work

above approach does not support the specification of conditions on event parameters. This lim-
itation hence stops us from specifying the running automated travel agent example. Consider
instead the following example properties specified using the above syntax.

• H ((O msg(client.input = successfulLogin)) ∧ msg(client.output = logout))

• count(sender.output = retrySend)

• Sum(¬(H msg(client.output = buyItem)) S msg(client.input = successfulLogin)) / Count(O
start)

The first two examples are instance monitor formulas, whereas the last formula is an example
class monitor formula. The first example specifies that it should always be the case that if a
logout event occurs, it must have been preceded by a login previously. The second example
counts the amount of sender retry events within some transmission protocol. Finally, the third
example is a typical statistic frequently used for marketing purposes, which returns the average
amount of clients logged in which have not yet purchased an item (from a virtual shop).

Web service composition specified through BPEL inherently implies a central authority (in
the form of an execution engine within an application server) coordinating web service calls.
The monitoring of such scenarios is hence achieved through an orchestrated approach, by in-
stalling the monitor at the central execution engine. More specifically, the presented solution
extends the original BPEL execution engine by a set of components, involving (i) the monitor
inventory, (ii) the monitor instances directory, (iii) the runtime monitor and (iv) the mediator.
The monitor inventory contains the set of monitors deployed within the extended engine. The
monitor instances directory specifies the set of currently running monitors. The runtime engine
caters for the monitor life cycle (for both instance and class monitors), by creating, terminating
and updating monitor states according to events observed within the engine. Finally, the me-
diator is the component responsible for intercepting events within BPEL processes, and alerts
the runtime monitor of these event occurrences. However, note that no support is mentioned
for dynamic architectures, in that all contributing web services are known a priori through the
BPEL specification. Also note that formulas are efficiently executed within monitors according
to a specified operational semantics, since evaluating the previously defined operators at worst
entails evaluating the operator on the current state and the stored computation on the previous
state.

Being orchestrated, the presented approach is conceptually simpler, avoiding complexities
introduced when distributing monitor functionality. Moreover, given that this approach focuses
on the verification of public interactions amongst web services, moreover by listening to infor-
mation passing through the (already central) BPEL engine, this implies that the framework does
not impose additional bandwidth overheads. Information confidentiality is also not an issue in
the above setting, since all monitored interactions are public. However, once more this solution
fails to specifically mention dynamic architectures. Moreover, the framework does not support

148

Chapter 8. Related Work

dynamic properties. In general, the work presented in this approach can be considered as an
adaptation of current work for the runtime monitoring of monolithic architectures.

Runtime Monitoring of System-of-Systems Integration

Similarly to the work presented in [77], Krüger et al. [57] present an approach for the runtime
monitoring of distributed system-of-systems. However, this approach is immediately distin-
guished from previous work SoSs on two fronts. Firstly, this approach is focused exclusively
on the runtime monitoring of the integration of system-of-systems (i.e., it is not interested in
systems’ internal operation). Moreover, whereas previous work is bound to monitoring SOA-
based system-of-system implementations, the presented approach focuses on SoSs whose sys-
tem integration is handled by the Enterprise Service Bus (ESB) architecture [18]. The ESB is a
modern approach toward the integration of loosely coupled, interacting systems with no central
authority to control information and execution flow. The framework provides a heterogenous
message-oriented middleware with expressive mechanisms for message interception, manipu-
lation, distribution, and also behaviour injection.

Property specification is based on a two layered approach, involving Message Sequence
Charts (MSCs) and High-Level Message Sequence Charts (HMSCs). MSCs are used to spec-
ify each individual system behaviour traits of interest, entailing the specification of interaction
patterns and causal communication relationships across systems. On the other hand, HMSCs
are used to specify interaction flows between MSCs. These flows can take the form of (i) al-
ternatives between behaviour patterns, (ii) iteration, as well as (iii) concurrent join, specifying
that two individual aspects of system behaviour (specified using MSCs) are to be monitored
concurrently. However, the framework does not support either parameterised events or condi-
tions, implying that the travel agent example cannot be specified through this language. Instead,
we present an example MSC specifying the interaction sequence between a client, server and
adjacent databases. The client first submits a request to the server. Upon receiving this re-
quest, the server triggers two queries to its local databases, and waits for a response. When
both (databases) comply with a response, a response is formulated by the server and sent to the
client.

149

Chapter 8. Related Work

Figure 8.2: An example MSC.

Each vertical axis specified within the MSC represents an entity which has an active role
within the monitored activity. This set of MSCs are related using HMSCs, as exemplified
below. Suppose during the processing of a client request (as specified through MSC entitled
PROC-REQ), the client also interfaces with a web service in order to request an optimal pricing
strategy (whose behaviour is specified through another MSC named REQ-STRAT), with this
behaviour looping indefinitely, the resulting HMSC combining the above two MSCs is defined
as follows.

Figure 8.3: An example HMSC.

MSCs PROC-REQ and REQ-STRAT are combined using a join operator to specify that both

150

Chapter 8. Related Work

behaviour traits are executed concurrently. Note that MSCs can synchronise on specific mes-
sage calls, such as the message call Response specified in MSC PROC-REQ.

The high level specifications specified through MSCs and HMSCs are translated into exe-
cutable state machines through a series of processes, generated through a sequence of projec-
tion, normalisation, automaton synthesis and optimisation. Projection involves mapping the set
of MSCs to the appropriate locations within the system. Normalisation involves adding and al-
tering certain structures in order to convert each MSC to an equivalent normal form. Automaton
synthesis converts normalised MSCs to state machines, which finally go through a process of
optimisation. Each state machine is defined through a set of states and transitions. Each tran-
sition entails a message name and direction (i.e., whether sending or receiving). Note that the
resulting state machines are always defined to be deterministic. Automatic property translation
and instrumentation are supported, and is achieved by generating aspects [53, 54] which instru-
ment the resulting state machines (translated from the MSC specifications) with the underlying
systems. However reactions to violations are not, with the monitoring algorithm only reporting
failure if properties are violated.

The resulting monitors are distributed across systems, with each message (transferred within
the system) encapsulating (i) the message content, (ii) sender information, and (iii) the monitor
state. Hence, this approach is choreography based, since monitor execution is spread through-
out the system. Also, the approach is implemented for ESB 2.0 architectures, which does not
yet support dynamic distributed architectures. Information confidentiality is not an issue when
monitoring system integration, since monitored information is already available on the bus. Is-
sues such as communication duration and delay, as well as difficulties with remote unsynchro-
nised systems are not handled. Perhaps the most helpful insight gathered from this approach is
the fact that choreography-based runtime monitoring of distributed system lends itself well to
system-of-system implementations whose integration is handled by an ESB architecture. This
is achieved by the architecture’s inherent message oriented communication methodology be-
tween distributed systems, which not only enforces loose coupling between systems, but offers
an intuitive event-based monitoring mechanism based on the interception and manipulation of
messages.

DiAna

DiAna[80] is a runtime verification framework focused on monitoring safety properties of dis-
tributed systems. The authors argue that it is generally impractical to monitor system properties
in a distributed setting specified through classical temporal logics, motivating the need for a
monitoring framework based on a language which respects physical distribution. More specif-
ically, temporal logics used during the runtime verification of monolithic architectures do not
lend themselves well to monitor instrumentation across distributed locations, since they are
usually based on the assumption of a readily available global state. To this effect, the presented
approach proposes the use of Past Time-Distributed Temporal Logic (PT-DTL), a distributed

151

Chapter 8. Related Work

F ::= @iFi

Fi ::= true | false | P(
→

ξi) | ¬Fi | Fi op Fi propositional
| � Fi | ♦Fi | � Fi | Fi S Fi temporal
| @∀JF j | @∃JF j epistemic

ξi ::= c | vi | f (
→

ξi) functional
| @Jξ j epistemic

→

ξi ::= (ξi, ..., ξi)

Figure 8.4: PT-DTL syntax.

variant of the Past Time-Linear Temporal Logic (PT-LTL) [23] which however explicitly intro-
duces the notion of location within its LTL expressions. This is mainly achieved through the
introduction of epistemic operators i.e. operators which reason about knowledge (more below).

Similarly to mDPi, this framework considers distributed systems consisting of a set of sub-
systems, each admitting a local local state. Inter-system communication occurs through asyn-
chronous message passing interactions (i.e., no shared memory) of indeterminate duration.
Moreover, the framework makes no assumptions on the preservation of message ordering. Note
that PT-DTL is an event based logic, thus verifying system properties through the interception
of system events. To this effect, the framework categorises events into three distinct categories;
(i) internal events which update local system states, (ii) send events, occurring (on the sender’s
side) when a system transmits a message, and (iii) receive events, triggered on the receiver’s
side when a message is received.

The intuition behind PT-DTL is that each expression is localised, by binding each expres-
sion to a subsystem. However, each localised expression may also refer to expressions whose
location is bound to remote remote subsystems, hence allowing expressions to refer to an illu-
sion of the global state. The underlying monitoring algorithm is subsequently responsible for
efficiently evaluating remote expressions in appropriate fashion, as shall be discussed below.
Fig. 8.4 presents the PT-DTL syntax; its novel addition over PT-LTL involves the addition of
@i, an epistemic operator which allows expressions to refer to remote expression evaluations
on the last known state of (remote) subsystem i.

A PT-DTL formula F is an expression over the global system constituting of (i) localised
expressions and (ii) localised formulas. The former serve as atomic propositions upon which
the latter are built on. A localised expression is represented by ξi, and consists of either con-

stant c, variable vi local to system i, or a tuple of expressions
→

ξi. Operator f (
→

ξi) represents a

function (such as + or -) — returning a non-boolean result — over
→

ξi, whereas P(
→

ξi) represents
a predicate (such as ≥). Localised formula Fi consists of either (i) a propositional formula (op

152

Chapter 8. Related Work

represents logic operators), (ii) a predicate over expressions, (iii) past-time temporal operators,
or (iv) epistemic operators. Temporal operators are analogous their PT-LTL equivalent, with
�Fi representing the value of Fi on the previous state, ♦Fi stating that Fi was previously true,
�Fi stating that Fi was always true in the past, and finally F1 S F2 being true if F1 has been
true since F2 was true. Epistemic operators @∀JF j and @∃JF j return true if all (or at least one)
subsystems j ∈ J satisfy expression F j. Operator @∀Jξ j admits an analogous interpretation,
applied over expressions. Refer to [80], section 5.2 for a formal definition of the logic seman-
tics. However crucially note that the specified semantics admit an efficient execution strategy,
with the evaluation of each operator referring to (i) the current state and (ii) its evaluation on
the previous state. The following are two example PT-DTL formulas based on those presented
in [80].

• @1 � (a == @2b)

• @
{ j:Subsystem • j} � ((@ jisInCriticalSection →

@
{i:Subsystem | j,i •i}(¬isInCriticalSection)) S@ jinitialised)

The first example specifies that at no time can variables a (located at subsystem 1) and b
(located at subsystem 2) be unequal. On the other hand, the second example specifies that from
the moment each subsystem is initialised, if any such subsystem is in its critical section, no
other subsystem can be in its critical section. Also, note how both formulas are localised. The
following example specifies the automated travel agent property, dictating that the airline and
hotel booking subsystems do not place bookings which the client cannot afford

@bank � (balance > (@airlineBookingAgencyflightCost + @hotelBookingAgencyhotelCost)

Note that we arbitrarily assign the localised expression to the bank subsystem, and use remote
expressions which return the cost of the flight and hotel at the airline and hotel booking agencies
respectively.

A PT-DTL formula is represented by its set of localised expressions, which are compiled prior
to execution into a set of local monitors, retaining this configuration throughout execution. This
implies that the framework is a static choreography-based approach. Resulting monitors subse-
quently evaluate operations locally, and also refer to the evaluation of remote expressions. The
execution of these monitors has been developed with two principles in mind; (i) Local monitors
should be computationally fast, and consume little memory overhead, and (ii) The number of
additional messages with regards to monitoring communication should be minimal. Moreover,
the monitoring algorithm adopts the knowledge vector construct, a conceptual tool which (i)
extracts a causal ordering on remote events from underlying system interactions, and (ii) dis-
seminates local expression valuations to remote monitors. More specifically, each subsystem
keeps a local copy of a knowledge vector, which contains evaluations of all remote expressions
evaluated within the system.

153

Chapter 8. Related Work

Each knowledge vector KV entails a vector of entries, with KV[j] representing the entry for
subsystem j. Each KV[j] contains (i) the sequence number, representing the last event seen
at subsystem j (referred to by KV[j].seq), and (ii) a set of values KV[j].values, containing the
set of formula and expression evaluations localised to subsystem j. The mechanism admits a
simple update strategy which transfers and updates knowledge vectors throughout the system.
Upon the observation of an internal event, all local formulas and expressions (local to that sys-
tem where the event has occurred) are re-evaluated, according to the new local state and the
local knowledge vector. If a send event occurs, the local knowledge vector sequence number is
incremented, the local knowledge vector is tagged to the outgoing message and sent with the
message payload. Upon detecting a receive event, the monitor at the receiving end extracts the
knowledge vector and updates knowledge of its remote expression evaluations. Said evaluation
is carried out for each KV[j], such that if the KV[j].seq entry of the received knowledge vector
is larger than the local KV[j].seq, then the whole KV[j] is updated locally to the received entry.
Once the local knowledge vector is updated, all local formulas and expressions are re-evaluated
in order to determine whether the knowledge vector update invalidates any local formulas.

The above algorithm is called the knowledge vector algorithm, and ensures that local formula
execution is based on the latest locally known evaluation of remote formulas and expressions.
Stale information (identified through smaller KV[j].seq values) are immediately discarded, en-
suring that only the latest information is considered. The knowledge vector is based on the
notion of vector clocks, and hence extracts a happened-before relationship on remote events
(section 3.5). It is for this reason that the described m onitoring algorithm is adept at verifying
causal properties. Note that no additional messages for the purposes of monitoring are required,
with an additional bandwidth overhead instead incurred over each message sent by the under-
lying system. The authors claim that the monitoring algorithm’s space and time complexity for
processing each recognised event e is Θ(mn), where m is the size of the local formula and n is
the number of subsystems constituting the distributed system [80]. Moreover, the authors also
claim that the knowledge vector size is in general linear to n (number of subsystems constituting
the distributed system), and can be independent of n in particular cases such as when all sub-
formulas containing epistemic operators are of the form @ jF j or @ jξ j (i.e., all sub-formulas do
not refer to remote expressions).

DiAna is a Java implementation of the choreography-based monitoring framework defined
above. The tool adheres to the Actor framework [2], with subsystems represented through com-
municating actors. Each actor is represented by (i) a unique name, (ii) an internal state, (iii)
an execution thread, and (iii) a set of procedures which can alter the internal state. Moreover,
actors communicate by asynchronous message passing with indefinite communication duration,
which mirrors distributed systems considered by mDPi. Hence, a distributed system is repre-
sented within through a set of actors (one for each subsystem). Finally, note that DiAna supports
property violation reactions, since it allows for the association of Java code with each formula,
eventually executed upon formula violation. Moreover, the framework also supports automated

154

Chapter 8. Related Work

instrumentation, since all formulas are converted to executable Java code automatically instru-
mented (at the bytecode level) with the underlying system. The resulting code monitors for an
update of a select number of variables (representing an internal event), as well as the sending or
receiving of a message.

The above approach is a valid attempt to distributed monitoring; by localising the monitoring
effort it achieves an efficient approach to the verification of causal properties in a distributed
setting. As previously stated, DiAnatakes a statically choreographed approach. Although dy-
namic architectures are not explicitly mentioned, it is clear that the framework is not capable
of supporting such configurations, reason being that vector clocks (and by extension, knowl-
edge vectors) are not tolerant to dynamic environments. Conversely, in order for the knowledge
vector algorithm to be effective, complete knowledge of the system’s contributing nodes must
be available a priori. Moreover, by employing knowledge vectors which export local event
knowledge to remote locations implies the possibility for data exposure.

8.3 Summary
The following section summarises the presented frameworks, and also presents an a posteriori

comparison to mDPi. This summary is given in tabulated form (following the above order), thus
allowing for direct comparison on specific issues. Note that to our knowledge, some solutions
fail to discuss certain issues we previously identified as pertinent to the design of a distributed
monitoring frameworks, which is why certain tools are incomparable on some criteria. More-
over, these tools vary on numerous issues, including (i) the scope of system implementations the
framework has been designed for (for example, some are tailored for web service compositions
only, others for ESB architectures), as well as (ii) framework implementation details (including
the choice of language, abstraction level etc.). We shall hence compare approaches at a concep-
tual level, using criteria identified below.

Synchronous vs Asynchronous — Specifies whether the monitoring framework verifies prop-
erties on the fly during system execution, or on a pre-recorded trace.

Reaction to Violations — Identifies whether the framework allows for the execution of some
violation reaction upon detection of a property violation.

Conditions — Refers to the capability of filtering events based on event parameters extracted
during their detection.

Numerical Queries — Refers to the explicit support for the specification of numerical queries
for the evaluation of statistical properties.

155

Chapter 8. Related Work

Instrumentation Approach — Classifies the presented framework under one of the instru-
mentation strategies presented in section 3.4 i.e., static/dynamic orchestration, static/dy-
namic choreography, or supporting multiple strategies.

Communication Model — Specifies whether the framework is defined for a system employ-
ing either message passing or shared memory communication.

Locality — Specifies whether the framework acknowledges the issue of information confi-
dentiality, while also presenting solutions for the monitoring of system behaviour while
avoiding exposure.

System Topology — States whether the framework only supports distributed systems ad-
mitting static configurations, or whether it also supports dynamic configurations which
evolve during execution.

Figure 8.5: A comparison of distributed monitoring frameworks.

Framework DMaC REM GEM RTML SoS Integr. DiAna mDPi

Synch. vs. Asynch. Synch. Synch. Synch. Synch. Synch. Synch. Asynch.
Violation Reaction × X X × × X ×

Conditions X X X × × X X

Num. Queries X × × X × × ×

Instr. Approach S. Chor. S. Chor S. Chora S. Orch. S.Chor S. Chor Gen.
Comm. Model M.Pass M.Passb M. Pass.c N/A M. Pass.d M. Pass.e M.Pass
Locality × × × N/A N/A × X

Syst. Topology Static Static N/A N/A Static Static Dynamic

aAlthough a static approach, partially supports dynamic properties
bRecognises possibility of unreliable communication medium.
cAdmits issues with communication channels involving order changing communication with unbounded delays.
dHandled by the ESB middleware.
eAssumes asynchronous, order-changing communication of indeterminate duration.

Some interesting trends emerge from the table above. Firstly, although all approaches readily
fit into our broad taxonomy (section 3.4), no current approach has yet identified the enhanced
complexities with monitoring dynamic architectures. In other words, current approaches all
assume that the underlying system remains unchanged throughout execution. mDPi is distin-
guished in this sense, in that it offers necessary tools for the monitoring of evolving configura-
tions. Tt is also worth notion that one approach partially supports dynamic properties. This is
achieved in similar fashion to mDPi in that it adopts an interpreted language whose rules can be
loaded at runtime.

156

Chapter 8. Related Work

By extension, to the best of our knowledge, the migrating monitor approach seems to be
novel. In other words, current tools do not employ monitors with additional capabilities of
moving across the system on the fly. However, while promising, it remains to be seen how
feasible this approach is in industrial settings, in that some may reject the flexibility of this pro-
posed instrumentation strategy (for fears of security). On the other hand, no current approach
identifies potential security risks with employing privileged monitors in a distributed setting
either.

The issue of information confidentiality has also been neglected so far. In other words, current
approaches do not recognise the hazards with employing monitors which import local informa-
tion available at remote subsystems. As a result, current approaches potentially result in the
exposure of information. Note that although mDPi recognises this issue, it is still possible to
define mDPi monitors which expose information (such as in the case of implementing an or-
chestrated approach). However, the framework also offers necessary support so as to avoid
unnecessary exposure. Clearly, the possibility avoiding exposure also depends on the property
at hand; for instance an invariance property across locations unavoidably leads to some form
of exposure. On the other hand, properties of sequentiality are amenable to monitoring while
avoiding transfer of local information.

Some commonalities; all current approaches define monitoring algorithms for distributed
systems communicating through message passing techniques. Moreover, most identify issues
of an unreliable communication medium to various degrees. More specifically, all accept that
interactions take some indeterminate duration. Whereas some approaches (including [64]) get
around this problem by assuming the availability of a global clock (which is unrealistic), others
attempt more sophisticated techniques by extracting a causal ordering on events through mech-
anisms analogous to Vector Clocks (see [80]). In this respect, our approach is perhaps closest
to the latter attempt, in that we adopt logical clocks (i.e., the monitor counter) for extracting a
(partial) temporal ordering on events. However, we recognise the possibility of adopting more
powerful mechanisms in the future.

Other distributed monitoring approaches allow for violation reactions, implying the need to
study its applicability in mDPi. Current approaches allow an unrestricted form of reactions, in
that the execution of some reaction at one subsystem can potentially affect other subsystems
too. However, we recognise the risk with this approach due to security issues mentioned in
chapter 7; what if the system admits malicious (or competing) subsystems, who purposefully
execute code in order to damage adjacent systems? Perhaps a more controlled form of violation
reactions is necessary, and is left as future work. Finally, the addition of numerical queries can
also be investigated in the future, allowing for the verification of non-functional requirements in
a distributed setting. This may be particularly interesting for instance in order to verify network
throughput, and/or failure rates within a network topology.

157

Chapter 8. Related Work

8.4 Conclusions
Numerous alternate approaches to the monitoring of distributed has been studied in the liter-
ature, with various degrees of success. In truth, current approaches are more focused on the
choice of appropriate specification languages, and the efficiency of their associated monitoring
algorithms. Although necessary, as a result other pertinent issues have been ignored throughout,
including the enhanced complexities with monitoring dynamic architectures, as well as moni-
toring in the face of confidential information. To this effect, mDPi might offer an appropriate
solution in such circumstances, especially due to its introduction of migrating monitors and as-
sociated proof of well-behaved semantics. This is not to say that mDPi is unsuitable for more
traditional scenarios. In fact, the language describes an alternate approach, by instead offering
a general monitoring framework through which various instrumentation strategies can be de-
fined, as opposed to forcing a particular approach from the offset. On the other hand, a more
fair comparison would require a concrete implementation of the framework defined in chapter
7, in order to (i) compare the framework’s applicability wrt. its applicability to industrial ap-
plications, and (ii) investigate overheads associated with executing the framework. This second
point is especially pertinent, since it is an issue we have not tackled throughout this dissertation,
and would allow for a direct comparison with other tools wrt. associated algorithm overheads.

158

Part IV

Conclusions

159

9. Conclusions

This chapter first presents an a posteriori summary of the work presented throughout this thesis,
and is followed by future avenues worth exploring as part of the future direction of this research.
The final section concludes this work by sharing some final thoughts.

9.1 Summary
Whether by choice or necessity, more and more distributed architectures are being adopted as
solutions to both business and computational problems. This shift is encouraged further by
the push for service oriented and component-based implementations, as well as the ever in-
creasingly ubiquitous presence of the internet. However, system distribution also implies (i)
an additional degree of complexity, as well as (ii) an adverse effect on dependability, due to
potential issues with performance when operating across unreliable communication mediums.
This implies a corresponding need for software verification techniques tailored for distributed
systems.

To this effect, this thesis focused on the study of runtime verification techniques applied
to distributed settings. Runtime verification is a lightweight software verification technique
concerned with checking whether system behaviour exhibited at runtime adheres to a set of
formalised requirements. Necessary verification is performed by a monitor, which analyses
the system’s trace representing exhibited runtime behaviour. However, although this approach
has achieved appreciable success on standalone architectures, system distribution poses a major
challenge to runtime monitoring. Firstly, it is not immediately clear whether it is best to cen-
tralise the monitoring effort, or whether to distribute monitors accordingly. Although the first
approach is computationally simpler, and may be adept in certain cases, it also runs the risk
of consuming excessive bandwidth, as well as issues with exposure of sensitive information.
On the other hand, although more flexible, distributing the monitoring effort is a more complex
task, especially when considering systems whose topology may evolve at runtime. We hence
presented a broad taxonomy of approaches to distributed monitoring, highlighting scenarios
where each approach fits best.

160

Chapter 9. Conclusions

This thesis’ main contribution lies with the development of mDPi, a location-aware calculus
with explicit notions of monitoring. mDPi has been designed with practical considerations in
mind, including the difficulty of total event orderings in distributed settings, as well as recognis-
ing differences between local and remote interactions. This calculus enabled the formalisation
of the distributed monitoring scenario, which in turn allowed us to model different monitor in-
strumentation strategies. Through the definition of an extensible LTS semantics we were also
able to consider system behaviour at various levels of abstraction. This allowed for the se-
lective reasoning about a number of pertinent issues, including the locality of communication
and trace analysis — which potentially represents data exposure — as well as distinguishing
between monitor and system computation (which, in turn, allows us to focus on either as nec-
essary). Moreover, through the use of the bisimilarity relation applied over different (filtered)
LTSs we were able to formalise three statements which we believe distill and identify the core
aspects of our approach. We provided a proof for the first statement, thus showing that mDPi
monitors do not affect process computation (at a conceptual level), and formalised the remain-
ing two questions, whose proof is left as future work. In truth, although we believe mDPi to be
a novel approach to formalising distributed monitoring through the use of a process calculus,
it is best considered as an initial study, with numerous avenues left for future analysis. One
limitation we immediately recognise with our current approach is the loss of completeness wrt.
the monitoring of properties, due to the lack of synchrony amongst remote locations. However,
this loss is, to a certain extent, beyond our control, since it is attributed to an underlying sys-
tem characteristic. It can be considered an achievement of our work that the calculus precisely
formalises the problem at hand, which in turn allows us to study possible approaches to the
problem. This immediately highlights a possible area of future work, involving the extension
of monitor counters to more powerful mechanisms for extracting temporal orderings across re-
mote events. Other issues which may benefit from future study include the application of mDPi
when faced with mobile systems (i.e., systems whose components migrate as well; formalising
mobile computational devices), as well as a study of distributed monitoring in face of failure
(more below). Other potential issues worth investigating include the extension of our approach
from a non-intrusive to an intrusive form of monitoring, allowing for (a controlled form of)
reparations in order to steer the system back to an acceptable state.

We also introduced the migrating monitor approach, employing monitors which verify lo-
cally, and physically migrate to remote locations when their behaviour becomes pertinent to
the system’s overall correctness wrt. property being verified. The calculus also succinctly
formulated this approach, by adopting migration as a language primitive. This formalisation
highlighted the potential of migrating monitors; we can adopt monitors whose next choice of
monitoring location depends on information learnt at runtime. This in effect describes a mon-
itoring algorithm which is tolerant to dynamic topologies, thus being able to keep up with the
system’s unpredictable changes. We also saw how migrating monitors offer potential solutions
to monitoring systems admitting sensitive information, by localising the monitoring effort. Fi-

161

Chapter 9. Conclusions

nally, migrating monitors also introduced the potential for dynamic properties i.e., properties
which can only be fully characterised at runtime, or even new properties learnt during system
execution. However, adopting migrating monitors can result in a heavy handed mechanism, and
is best used when necessary. In short, migrating monitors is an approach which is best applied in
face of system dynamicity as well as the presence of confidential information. To the best of our
knowledge, this technique is novel, in that no known related approach to distributed monitoring
motivates the use of mobile monitors. Moreover, it is worth noting that current approaches to
distributed monitoring fail to recognise the difficulty with monitoring dynamic architectures, or
the issue of distributed verification in the face of confidential information. Although we believe
migrating monitors to be a promising attempt to distributed monitoring, much more research
is required in order to ascertain its validity. One major worry thus far is that questions remain
about whether systems are willing to trust the flexibility associated to these monitors, especially
due to perceived security risks.

We have also shown how the calculus can be used to encode different monitoring approaches
for specifications written through regular expressions, enabling their comparison. The motiva-
tion behind the choice of regular expressions as an initial language is its simplicity; however
the focus of this task firmly lies with the comparison of different monitoring strategies. In turn,
this points to the need for studying the conversion of more expressive languages to mDPi mon-
itors, in order to study the expressiveness, as well as the limitations of our framework. Finally,
we presented a proof-of-concept case study implemented in Erlang, and whose purpose was
the identification of practical issues which arise during implementation of the calculus. Nu-
merous issues were identified, ranging from potential security risks associated with transferring
monitors across unsafe mediums (not to mention exposing internal system operation across lo-
cations), as well as difficulties with achieving an implementable framework across dynamic
and/or heterogenous environments. To this effect, we proposed the use of the monitor manager,
an additional component installed at each location which serves as an instrumenter (extracting
a local trace per location), as well as interpreted mDPi monitor expressions. By detaching the
monitoring and tracing effort, we were also able to achieve the property agnostic approach moti-
vated by migrating monitors. Nevertheless, considerable work is envisaged wrt. the application
of the motivated framework to real-life scenarios.

In conclusion, although the ideas presented in this thesis propose promising new develop-
ments wrt. the application of runtime monitoring on distributed settings, further study is re-
quired on proposed innovations in order to ascertain their viability both at a theoretical and
practical level.

9.2 Future Work
The following section discusses avenues for future work, and emerge both from current frame-
work limitations, as well as being a result of certain potentially fruitful distributed monitoring

162

Chapter 9. Conclusions

aspects which we have not been tackled throughout this thesis.

9.2.1 Continuation of Theoretical Development
Our first thought goes to the proof of the remaining two statements formalised in section 5.4,
thus proving that, in a sense, global monitoring can monitor the same properties verified in lo-
calised fashion, and that a properly defined migrating monitor approach preserves locality by
avoiding data exposure. Although we intuitively believe both statements to be possibly true, we
aim to be convinced of their veracity. Moreover, obtaining such proofs goes a long way into
justifying migrating monitors, and is hence something we strive for. We also recognise the need
to study theoretical properties of the mDPi calculus further. More specifically, we particularly
recognise the need for justifying the bisimilarity relation within the calculus by proving its con-
textuality wrt. the formally defined language semantics.

Another extension to the calculus worth studying involves a possible enhancement of the cur-
rent rudimentary logical clocks adopted by mDPi monitors. Currently, mDPi monitors employ
a single counter in order to extract a temporal ordering amongst remote locations, operating
analogously to Lamport Timestamps [58], however adapted to extract a monitored-before rela-
tionship amongst remote events (section 3.5). However, given the success of Vector Clocks as
a more powerful mechanism as opposed to Lamport timestamps [35], it may be worth studying
the application of these constructs within our language. Moreover, we believe mDPi to be easily
extendible wrt. the adoption of vector clocks, replacing the current counter with a list. Hence,
augmented mDPi monitors can be formalised as follows

{[M]}∆

where φ ∈ ∆ :: Locs → N represents a monitor vector i.e., a mapping from locations to natural
numbers, and represents the last counter value known by that monitor per location. Updated
rules for the execution of operators go and setC, as well as trace input hence take the following
form

Go’m
δ B k{[go l.M]}φ

τ〈m:k,l〉
−−−−→ δ B l{[M]}φ⊕ {l, δ(l)}

SetC’m
δ B k{[setC(l).M]}n

τ〈m:k,k〉
−−−−→ δ B k{[M]}φ⊕ {l δ(l)}

MonTr’i

δ B k{[m(c, x̄, l).M]}φ
m(c,d̄,l,φ(l))〈m:k〉
−−−−−−−−−−−→ δ B k{[M{d̄/̄x}]}inc(φ,l)

Figure 9.1: Updated rules for handling the monitor vector.

163

Chapter 9. Conclusions

Such that the monitor vector φ is updated on migration/re-alignment, updating the assigned
value for location l to the current value mapped by the counter state. Rule MonTr’i additionally
describes the handling of the monitor vector during trace input; when a monitor (at location k)
reads the next trace element from location l whose position (in the local trace) is dictated by its
monitor vector to be φ(l), the corresponding value recorded within the vector for location l is in-
cremented accordingly through the use of inc. Note that the action is also labelled accordingly.
One would also possibly imagine the addition of new rules, specifying necessary machinery for
migrating and/or interacting monitors to exchange local instances of vector clocks in order to
update each other’s extracted temporal orderings, thus achieving a collective effort by execut-
ing monitors wrt. the extraction of temporal orderings, similarly to the algorithm presented in
[35]. Note that since Vector Clocks simply entail a list of counter values used for monitoring
purposes, exchanging vector clocks amongst locations does not denote data exposure. Never-
theless, it remains to be seen what Vector Clocks can give us wrt. an enhanced mechanism for
the extraction of temporal orderings, and is left as future work.

Finally, other additions we are looking to study further include (i) the addition of reparation
for violation reactions, as well as (ii) the introduction of (a limited form of) real time operators.
One could for instance look at the monitoring of a class of properties characterised by a locally
synchronous, globally asynchronous specification. In such cases, the adoption of timers on a
per location basis becomes a possibility.

9.2.2 Conversion of Specification Languages
Although the conversion of regular expressions served as a valid first approach to the conversion
of specification languages to mDPi monitors, the study of other, more expressive languages is
required. In turn, the use of these languages serves as a tool which allows us to better under-
stand the capabilities, as well as limitations of the presented framework. Two languages which
immediately spring to our attention include PT-DTL [80] and (a subset of) Larva [25]. The
former is attractive to our setting since it represents a distributed extension of Linear Temporal
Logic [23], which is one of the most studied logics applied in a runtime verification setting. Its
introduction of epistemic operators which localise expressions fits perfectly with our notion of
located monitors. Moreover, although the logic has so far been used in a static setting, its use
of quantifiers over locations can be easily interpreted over dynamic configurations.

Being automaton based, Larva admits a straightforward conversion to a process calculus such
as mDPi[67]. Moreover, its introduction of communicating monitors over channels readily
fits with our definition of mDPimonitors, and can also be used as a tool for implementing a
form of synchronisation across localised Larva scripts. Moreover, the current understanding of
contextual properties can also be interpreted over dynamic configurations, in that an instance of
the monitor is spawned and migrated to each node which is added to the system at runtime. On
the other hand, one feature which has to be severely restricted involves the use of timers. The

164

Chapter 9. Conclusions

problem with implementing this feature is the lack of synchrony amongst remote clocks. In this
case, we are faced with a design choice; we can either disallow timers completely, or at most
permit their use on a per location basis.

9.2.3 Framework Extensions
We also plan to extend our study of monitoring distributed architectures beyond the the setting
defined in section 3.2. Our first interest goes to the study of monitoring under more sever failure
scenarios. More specifically, although we currently recognise that the communication medium
can be unreliable, and that system architectures are possibly dynamic (i.e., their nodes come and
go at runtime), we do not tackle the issue wrt. failure of interactions and/or nodes. For instance,
what happens if a monitor migrates to some location, which suddenly fails, taking down this
monitor in the process? Does this imply that the global monitoring effort is invalidated as a re-
sult? Analogously, we currently expect interactions to take an indeterminate by finite duration.
What happens if some node the monitor wishes to interact with/migrate to is currently unavail-
able? Does this mean that the whole monitoring effort is halted as a result? Perhaps in such a
scenario it may be possible to suspend monitoring of this particular location and continue with
the remainder of the monitoring task, in order to ensure progress. In general such scenarios
imply the need for studying fault tolerant monitoring i.e., monitoring in the face of failure. As
discussed in [7], fault tolerance, encapsulation and redundancy go hand in hand. It is for this
reason that the migrating monitor approach may be amenable to a fault tolerant monitoring ap-
proach, since we can easily replicate migrating monitors on the fly without the need for system
restart. Another, analogous application of the migrating monitor approach involves the study of
load balancing from a monitoring perspective; migrating monitors located at heavily stressed
nodes to other locations which can afford some overhead for monitoring purposes.

Another area worth further investigation involves the monitoring of mobile systems. In fact,
although mDPi allows for the study of architectures whose communication explicitly evolve, the
addition of new locations is at most an implicit concept thus far. However, extending the under-
lying processes’ mobility, including the ability to explicitly create new locations at runtime, as
well as the migration of processes (as seen in [47]) presents interesting new challenges from a
monitoring perspective. With the arrival of mobile computing and agent technology, such sys-
tems represent a whole class of innovative distributed architectures, and best of all can highlight
further the need for migrating monitors. In such scenarios it may for instance be interesting to
define monitors which follow around processes in order to verify their mobile behaviour. More-
over, this extension highlights further the difficulties with verifying dynamic architectures; how
can a static approach monitor a system which creates a new location at runtime? In short, mDPi
opens up a whole variety of alternate scenarios worth exploring, and is something we intend to
do as future work.

165

Chapter 9. Conclusions

9.2.4 Application to Industrial Settings
Work presented throughout this thesis is carried out at a conceptual level, considering poten-
tial problems and offering a calculus which formalises theoretical solutions to monitoring dis-
tributed settings. The next logical step involves applying the framework to more practical set-
tings, preferably on real-life industrial systems in order for the framework to reach an elevated
level of maturity. By extension, it is crucial to study the applicability of the novel migrating
monitor approach in real life scenarios. In truth, although this proposed approach is a promis-
ing development to the monitoring of distributed systems, further study of its applicability is
required.Clearly, with the myriad of distributed system implementations available today, even
verifying properties of sequentiality in a safe and confidentiality aware manner represents a step
forward in proving applicability of the calculus. On the other hand, applying the framework on
real-life case studies requires a more concrete implementation of the framework, preferably
implementing the mechanisms defined in chapter 7.

9.3 Concluding Thoughts
Applying runtime verification techniques to distributed settings enhances the complexity of an
already non-trivial field. More specifically, the effectiveness of a chosen monitoring approach is
more than ever subject to underlying system characteristics, including but not limited to issues
regarding asynchrony amongst its subsystems, the possibility of dynamic architectures as well
as the presence of confidential information. To this effect, we proposed mDPi, an initial formal
study of the scenario whose purpose is to distill and identify the core aspects of distributed
monitoring. We also presented the promising migrating monitor approach, which to the best
of our knowledge is the first approach to explicitly support dynamic topologies. Nevertheless,
the field is vast and requires substantial more research. We are hopeful that this study serves
as a springboard for further investigations, including a study of the framework’s applicability in
industrial settings, an exploration of current semantics’ limits and possible extensions, as well
as the conversion of more specification languages into mDPi monitors.

166

A. mDPi Syntax and Semantics

Syntax

S ,V ::= k~P� | S ‖ V | new c.S

P,Q ::= u!v̄.P | u?x̄.P | new c.P | if u=v then P else Q | P‖Q | ∗P | stop |

{M}n | T

T ::= t(c, d̄, n)

M,N ::= go u.M | u!v̄.M | u?x̄.M | new c.M | if u=v then M else N | M ‖N | ∗M |

setC(u).M | ok | fail | m(c, x̄, k).M
Semantics

Outp

δ B k~c!d̄.P�
c!d̄〈p:k〉
−−−−→ inc(δ, k) B k~P� ‖ k~t(c, d̄, δ(k))�

Inp

δ B k~c?x̄.P�
c?d̄〈p:k〉
−−−−−→ δ B k~P{d̄/̄x}�

Outm
δ B k{[c!d̄.M]}n

c!d̄〈m:k〉
−−−−−→ δ B k{[M]}n

Inm

δ B k{[c?x̄.M]}n
c?d̄〈m:k〉
−−−−−→ δ B k{[M{d̄/̄x}]}n

Com1
δ B S

(b̄)c!d̄〈µ:k〉
−−−−−−→ δ′ B S ′ δ B V

c?d̄〈µ:l〉
−−−−→ δ B V ′

δ B S ‖ V
τ〈µ:k,l〉
−−−−→ δ′ B new b̄.(S ′ ‖ V ′)

[b̄ ∩ fn(V) = ∅]

Com2
δ B S

(b̄)c!d̄〈µ:k〉
−−−−−−→ δ′ B S ′ δ B V

c?d̄〈µ:l〉
−−−−→ δ B V ′

δ B V ‖ S
τ〈µ:k,l〉
−−−−→ δ′ B new b̄.(V ′ ‖ S ′)

[b̄ ∩ fn(V) = ∅]

167

Appendix A

Tracee
δ B k~t(c, d̄, n)�

t(c,d̄,n)〈t:k〉
−−−−−−−→ δ B k~t(c, d̄, n)�

MonTri

δ B k{[m(c, x̄, l).M]}n
m(c,d̄,l,n)〈m:k〉
−−−−−−−−−→ δ B k{[M{d̄/̄x}]}n+1

Mon1
δ B S

(b̄)t(c,d̄,n)〈t:k〉
−−−−−−−−−→ δ B S δ B V

m(c,d̄,k,n)〈m:l〉
−−−−−−−−−−→ δ B V ′

δ B S ‖ V
τ〈t:k,l〉
−−−→ δ B new b̄.(S ‖ V ′)

[b̄ ∩ fn(V) = ∅]

Mon2
δ B S

(b̄)t(c,d̄,n)〈t:k〉
−−−−−−−−−→ δ B S δ B V

m(c,d̄,k,n)〈m:l〉
−−−−−−−−−−→ δ B V ′

δ B V ‖ S
τ〈t:k,l〉
−−−→ δ B new b̄.(V ′ ‖ S)

[b̄ ∩ fn(V) = ∅]

Gom
δ B k{[go l.M]}n

τ〈m:k,l〉
−−−−→ δ B l{[M]}δ(l)

SetCm
δ B k{[setC(l).M]}n

τ〈m:k,k〉
−−−−→ δ B k{[M]}δ(l)

Incm
δ B S

(b̄)t(c1,d̄,n)〈t:l〉
−−−−−−−−−→ δ B S δ B k{[M]}n

m(c2,ē,l,n)〈m:k〉
−−−−−−−−−−→ δ B k{[M′]}n+1

δ B S ‖ k{[M]}n
τ〈m:k,k〉
−−−−→ δ B S ‖ k{[M]}n+1

[c1 , c2]

Recp
δ B k~∗P�

τ〈p:k,k〉
−−−−→ δ B k~P ‖ ∗P�

Recm
δ B k{[∗M]}n

τ〈m:k,k〉
−−−−→ δ B k{[M ‖ setC(k). ∗M]}n

EQp
δ B k~if u=v then P else Q�

τ〈p:k,k〉
−−−−→ δ B k~P�

[u = v]

NEQp
δ B k~if u=v then P else Q�

τ〈p:k,k〉
−−−−→ δ B k~Q�

[u , v]

EQm
δ B k{[if u=v then M else N]}n

τ〈m:k,k〉
−−−−→ δ B k{[M]}n

[u = v]

NEQm
δ B k{[if u=v then M else N]}n

τ〈m:k,k〉
−−−−→ δ B k{[N]}n

[u , v]

Opens
δ B S

(b̄)c!d̄〈µ:k〉
−−−−−−→ δ′ B S ′

δ B new b.S
(b,b̄)c!d̄〈µ:k〉
−−−−−−−→ δ′ B S ′

[b ∈ d̄]

168

Appendix A

Opent
δ B S

(b̄)t(c,d̄,n)〈t:k〉
−−−−−−−−−→ δ′ B S ′

δ B new b.S
(b,b̄)t(c,d̄,n)〈t:k〉
−−−−−−−−−−→ δ′ B S ′

[b ∈ d̄]

Splitp
δ B k~P ‖ Q�

τ〈p:k,k〉
−−−−→ δ B k~P� ‖ k~Q�

Splitm
δ B k{[M ‖ N]}n

τ〈p:k,k〉
−−−−→ δ B k{[M]}n ‖ k{[N]}n

Expp
δ B k~new c.P�

τ〈p:k,k〉
−−−−→ δ B new c.k~P�

Expm
δ B k{[new c.M]}n

τ〈m:k,k〉
−−−−→ δ B new c.k{[M]}n

Cntx1
δ B S

α
−→ δ′ B S ′

δ B new b.S
α
−→ δ′ B new b.S ′

[b < fn(α)]

Cntx2
δ B S

α
−→ δ′ B S ′

δ B S ‖ V
α
−→ δ′ B S ′ ‖ V

[bn(α) ∩ fn(V) = ∅]

Cntx3
δ B S

α
−→ δ′ B S ′

δ B V ‖ S
α
−→ δ′ B V ‖ S ′

[bn(α) ∩ fn(V) = ∅]

169

B. Substitution in mDPi

Substitution is defined by using overloaded notation vσ on identifiers, which returns v when
v < dom(σ), and σ(v) otherwise. In other words, we elevate σ to a total function of the form
id ⊕ σ (id is the identity relation over variables). This notation is lifted over lists of the form
v̄σ, hence applying vσ for all vi ∈ v̄. Sσ is defined over two stratified levels i.e., at the system
and process levels. We first define substitution over systems (Def n B.0.1), which subsequently
pushes substitution to its process constituents (Def n B.0.2). Operator S E R denotes domain
co-restriction [82] of relation R to elements not in set S i.e., if R :: X ↔ Y then S E R , {x :
X, y : Y | x < S ∧ (x, y) ∈ R • (x, y)}.

Definition B.0.1. (Substitution Sσ) We define substitution of σ on S ∈ Sys, written Sσ, as
follows

k~P�σ , k~(Pσ)�
(S 1 ‖ S 2)σ , (S 1σ) ‖ (S 2σ)
(new c.S)σ , new c.(Sσ′) s.t. σ′ = {c} E σ

Definition B.0.2. (Substitution Pσ) We define substitution of σ on P ∈ Proc, written Pσ, as
follows

c!v̄.Pσ , (cσ)!(v̄σ).(Pσ)
u?x̄.Pσ , (uσ)?x̄.(Pσ′) s.t. σ′ = x̄ E σ

new c.(P′σ′)σ , new c.P s.t. σ′ = {c} E σ
if u=v then P′ else P′′σ , if (uσ)= (vσ) then (P′σ) else (P′′σ)

P′ ‖ P′′σ , (P′σ) ‖ (P′′σ)
∗Pσ , ∗(Pσ)

stopσ , stop

170

Appendix B

{go k.M}nσ , {go (kσ).(Mσ)}n

{u!v̄.M}nσ , {(uσ)!(v̄σ).(Mσ)}n

{u?x̄.M}nσ , {(uσ)?x̄.(Mσ′)}n s.t. σ′ = x̄ E σ
{new c.M}nσ , {new c.(Mσ′)}n s.t. σ′ = {c} E σ

{if u=v then M else M′}nσ , {if (uσ)= (vσ) then (Mσ) else (M′σ)}n

{(Mσ)‖ (Nσ)}nσ , {M ‖N}n

{setC(k).M}nσ , {setC(kσ).(Mσ)}n

{ok}nσ , {ok}n

{fail}nσ , {fail}n

t(c, d̄, n)σ , t(c, d̄, n)
{m(c, x̄, k).M}nσ , {m((cσ), x̄, (kσ)).(Mσ′)}n s.t. σ′ = x̄ E σ

171

C. System Projection

Systems are internally made up of process, monitor and trace components. Given this setting,
we are often interested in considering one aspect of a system’s configuration. For instance,
we may be interested in considering a system’s monitoring effort to reason about the proper-
ties being verified. Conversely, other scenarios may require us to focus on the system’s pro-
cessing aspect, disregarding monitors. To this effect we introduce notation S µ, representing a
projection of S at a syntactic level. The resulting system extracts exclusively components of
modality µ from the original system. Consider system S = new c1.k~c1!v̄.stop ‖ t(c1, ȳ, 1) ‖
{m(c1, x̄, k).d!〈〉.stop}2� The projection of S in case of each modality works out to

S p = new c1.k~c1!v̄.stop�
S m = new c1.k~{m(c1, x̄, k).d!〈〉.stop}2�
S t = new c1.k~t(c1, ȳ, 1)�

We next present the definition of process projection, due to its use when proving the result
that processing behaviour is unaffected by the monitoring semantics (Sec. 5.4). The definition
is presented over two stratified levels; at the system and at the process level.

Definition C.0.3. (Process projection at the system level S P) Process projection for system S ,
written S P is defined as

(k~P�)p , k~Pp�
(new c.S)p , new c.(S p)
(S ′ ‖ S ′′)p , S ′p ‖ S ′′p

Projection at the system level pushes projection to its internal constituents, with the case of
S = k~P� pushing projection to the process level.

Definition C.0.4. (Process Projection at the process level PP) Process projection for process
P, written PP is defined as follows

172

Appendix C

(u!v̄.P)p , u!v̄.(Pp)
(u?x̄.P)p , u?x̄.(Pp)
(new c.P)p , new c.(Pp)
(if u=v then P′ else P′′)p , if u=v then (P′p) else (P′′p)
(P′ ‖ P′′)p , (P′p) ‖ (P′′p)
(∗P)p , ∗(Pp)
(stop)p , stop
({M}n)p , stop
(t(c, d̄, n))p , stop

The definition of projection at the process level converts monitor and trace components to
stop, which does nothing. Unnecessary components are hence rendered inert. On the other
hand, process components are unaltered.

173

D. Proof (Pσ)P = Ppσ

Proof. By induction on the structure of P.

Base Cases:

– P = stop:
By defn. of PP, stopP = stop. We are hence required to prove (stopσ)P = stopσ.

LHS = (stopσ)P = stopP (Def n Pσ)
stopP = stop (Def n PP)

RHS = stopσ = stop (Def n Pσ)

Hence, LHS = RHS.

– P = {ok}n:
By defn. of PP, ({ok}n)P = stop. We are hence required to prove ({ok}nσ)P = stopσ.

LHS = ({ok}nσ)P = ({okσ}n)P (Def n Pσ)
({okσ}n)P = stop (Def n PP)

RHS = stopσ = stop (Def n Pσ)

Hence, LHS = RHS.

– P = {fail}n:
Same as in the case of P = {ok}n.

– P = {stop}n:
Same as in the case of P = {ok}n.

Inductive Hypothesis: (Pσ)P = Ppσ

174

Appendix D

Inductive Cases:

– P = c!d̄.P′:
By defn. of PP, (c!d̄.P′)P = c!d̄.(P′P). We are hence required to prove

((c!d̄.P′)σ)P = (c!d̄.(P′P))σ.

We shall write (c!d̄.P′)σ = c′!d̄′.(P′σ), where c′ and d′ are the result of substitution
as defined by σ. Clearly, c = c′ iff c < dom(σ) and d̄ = d̄′ iff ∀x ∈ d̄.x < dom(σ).

LHS = ((c!d̄.P′)σ)P = (c′!d̄′.(P′σ))P (Def n Pσ)
(c′!d̄′.(P′σ))P = c′!d̄′.((P′σ)P) (Def n PP)
c′!d̄′.((P′σ)P) = c′!d̄′.(P′Pσ)) (IH)

Clearly, substitution of σ on c!d̄.((P′)P) affects c, d̄ in the same way as before.
Hence, (c!d̄.(P′P))σ = c′!d̄′.(P′Pσ).

RHS = (c!d̄.((P′)P))σ = c′!d̄′.(P′Pσ) (Def n Pσ)

Hence, LHS = RHS.

– P = c?x̄.P′:
By defn. of PP, (c?x̄.P′)P = c?x̄.(P′P). We are hence required to prove

((c?x̄.P′)σ)P = (c?x̄.(P′P))σ.

Although c is free in term c?x̄.P′, variable tuple x̄ is considered bound. Hence, term
(c?x̄.P′)σ evaluates to c′?x̄.(P′σ′), whereσ′ = (x̄ E σ) / σ i.e., restricting the
domain of σ to all variables which are not in x̄. The value of c′ depends on whether
c ∈ dom(σ), as before.

LHS = ((c?x̄.P′)σ)P = (c′?x̄.(P′σ′))P (Def n Pσ)
(c′?x̄.(P′σ′))P = c′?x̄.((P′σ′)P) (Def n PP)
c′?x̄.((P′σ′)P) = c′?x̄.(P′Pσ

′)) (IH)

Substitution of σ on c?x̄.((P′)P) affects c, d̄, σ in the same way as before.
Hence, (c?x̄.(P′P))σ = c′?x̄.(P′Pσ

′).

RHS = (c?x̄.((P′)P))σ = c′?x̄.(P′Pσ
′) (Def n Pσ)

Hence, LHS = RHS.

175

Appendix D

– P = new c.P′:
By defn. of PP, (new c.P′)P = new c.(P′P). We are hence required to prove

((new c.P′)σ)P = (new c.(P′P))σ.

Channel name c is bound in term new c.P′. Hence, term (new c.P′)σ evaluates to
new c.(P′σ′), whereσ′ = (dom(σ) \ {c}) / σ i.e., restricting the domain of σ through
the removal of c.

LHS = ((new c.P′)σ)P = (new c.(P′σ′))P (Def n Pσ)
(new c.(P′σ′))P = new c.((P′σ′)P) (Def n PP)
new c.((P′σ′)P) = new c.(P′Pσ

′) (IH)

Substitution of σ on new c.(P′P) affects σ in the same way as before. Hence,
(new c.P′P)σ = new c.(P′Pσ

′).

RHS = (new c.P′P)σ = new c.(P′Pσ
′) (Def n Pσ)

Hence, LHS = RHS.

– P = if u = v then P′ else P′′:
By defn. of PP, (if u = v then P′ else P′′)P = if u = v then P′P else P′′P . We are
hence required to prove ((if u = v then P′ else P′′)σ)P = (if u = v then P′P else P′′P)σ.

We take (if u = v then P′ else P′′)σ = (if u′ = v′ then (P′σ) else (P′′σ)), where u′, v′

are the result of substitution as defined by σ.

LHS = ((if u = v then P′ else P′′)σ)P =

(if u′ = v′ then (P′σ) else (P′′σ))P (Def n Pσ)
(if u′ = v′ then (P′σ) else (P′′σ))P =

if u′ = v′ then ((P′σ)P) else ((P′′σ)P) (Def n PP)
if u′ = v′ then ((P′σ)P) else ((P′′σ)P) =

if u′ = v′ then ((P′Pσ)) else ((P′′Pσ)) (IH)

Substitution of σ on if u = v then P′P else P′′P affects u, v in the same way as before.
Hence, (if u = v then P′P else P′′P)σ = (if u′ = v′ then (P′Pσ) else (P′′Pσ)).

RHS = (if u = v then P′P else P′′P)σ =

if u′ = v′ then (P′Pσ) else (P′′Pσ) (Def n Pσ)

Hence, LHS = RHS.

176

Appendix D

– P = P′ ‖ P′′:
By defn. of PP, (P′ ‖ P′′)P = (P′P) ‖ (P′′P). We are hence required to prove

((P′ ‖ P′′)σ)P = ((P′P) ‖ (P′′P))σ.

LHS = ((P′ ‖ P′′)σ)P = ((P′σ) ‖ (P′′σ))P (Def n Pσ)
((P′σ) ‖ (P′′σ))P = (P′σ)P ‖ (P′′σ)P (Def n PP)
(P′σ)P ‖ (P′′σ)P = (P′Pσ) ‖ (P′′Pσ) (IH)

RHS = ((P′P) ‖ (P′′P))σ = (P′Pσ) ‖ (P′′Pσ) (Def n Pσ)

Hence, LHS = RHS.

– P = ∗P′:
By defn. of PP, (∗P′)P = ∗(P′P). We are hence required to prove

(∗P′σ)P = (∗(P′P))σ.

LHS = (∗P′σ)P = (∗(P′σ))P (Def n Pσ)
(∗(P′σ))P = ∗((P′σ)P) (Def n PP)
∗((P′σ)P) = ∗(P′Pσ) (IH)

RHS = (∗(P′P))σ = ∗(P′Pσ) (Def n Pσ)

Hence, LHS = RHS.

Proof of lemma for all monitor operators take the same structure, by virtue of the fact
that ({M}n)P = stop and (t(c, d̄, n))P = stop. Intuitively, this implies that it does not
matter if projection is applied before or after substitution, we still end up with stop.
We present below a typical case exposing this intuition.

–{go k.M}n:
By defn. of PP, ({go k.M}n)P = stop. We are hence required to prove

({go k.M}nσ)P = stopσ.

We shall write {go k.M}nσ = {go k′.(Mσ)}n, where c′ is the result of substitution
as defined by σ.

LHS = ({go k.M}nσ)P = ({go k′.(Mσ)}n)P (Def n Pσ)
({go k′.(Mσ)}n)P = stop (Def n PP)

RHS = stopσ = stop (Def n Pσ)

177

Appendix D

Hence, LHS = RHS.

All other cases follow the same structure.

�

178

E. Proof ((C ≡ R) ∧ (C
α
−→ C′)) ⇒ ((R

α
−→

R′) ∧ (C′ ≡ R′))

Proof. Proof by rule induction on the derivation of (C ≡ R).

Base Cases:

• (S-Com) : δ B S 1 ‖ S 2 ≡ δ B S 2 ‖ S 1

Hence, this case considers the situation where C = δ B (S 1 ‖ S 2). We are hence required
to prove that ((δ B S 1 ‖ S 2 ≡ δ B S 2 ‖ S 1) ∧ ((δ B S 1 ‖ S 2)

α
−→ A)) ⇒ (((δ B S 2 ‖ S 1)

α
−→

B) ∧ (A ≡ B)). The structure of configuration δ B S 1 ‖ S 2 indicates the possible use of one of
six rules for the derivation of (δ B S 1 ‖ S 2)

α
−→ A. We shall be considering each case.

–(Cntx2): The rule dictates that in this case A = δ′ B S1
′ ‖ S 2, such that (δ B S 1 ‖ S 2)

α
−→

(δ′ B S1
′ ‖ S 2). By rule Cntx2 we can infer transition δ B S 1

α
−→ δ′ B S1

′.

Using rule Cntx3 we can hence infer (δ B S 2 ‖ S 1)
α
−→ (δ′ B S 2 ‖ S1

′) which gives us the
required matching move, since the transitions match and δ′ B S 2 ‖ S1

′ ≡ δ′ B S1
′ ‖ S 2.

– (Cntx3): Analogous to the above argument.

– (Com1): Hence A = δ B new b̄.(S1
′ ‖ S2

′), α = τ(µ:k,l) such that (δ B (S 1 ‖ S 2))
τ(µ:k,l)
−−−−→

(δ′ B new b̄.(S1
′ ‖ S2

′)). By Com1 we can infer transitions (i) δ B S 1
(b̄)c!d〈p:k〉
−−−−−−→ δ′ B S1

′, (ii)

δ B S 2
c?d〈p:k〉
−−−−−→ δ B S2

′.

By rule Com2 we can hence infer (δ B (S 2 ‖ S 1))
τ(µ:k,l)
−−−−→ (δ′ B new b̄.(S2

′ ‖ S1
′)) which gives

us the required matching move, since the transitions match and δ′ B new b̄.(S1
′ ‖ S2

′) ≡
δ′ B new b̄.(S2

′ ‖ S1
′).

179

Appendix E

– (Com2): Analogous argument to that given in case of Com1.

The last two cases deal with the case when a monitor within S 1 or S 2 imports trace infor-
mation. Proof of said case is analogous to that given for system communication, with one
difference; counter state remains unaffected during trace import. We have to ensure that the
property also holds in the said case.

– (Mon1): Hence A = δ B new b̄.(S1
′ ‖ S2

′), α = τ(t:k,l) such that (δ B (S 1 ‖ S 2))
τ(t:k,l)
−−−→ (δ B

new b̄.(S1
′ ‖ S2

′)). By Mon1 we can infer transitions (i) δ B S 1
(b̄)t(c,d,n)〈t:k〉
−−−−−−−−−→ δ B S1

′, (ii)

δ B S 2
m(c,d,k,n)〈m:l〉
−−−−−−−−−−→ δ B S2

′.

By rule Mon2 we can hence infer (δ B (S 2 ‖ S 1))
τ(t:k,l)
−−−→ (δ B new b̄.(S2

′ ‖ S1
′)) which gives

us the required matching move, since the transitions match and δ B new b̄.(S1
′ ‖ S2

′) ≡ δ B
new b̄.(S2

′ ‖ S1
′).

– (Mon2): Analogous argument to that given in case of Mon1.

• (S-Stop1) : δ B S ‖ k~stop� ≡ δ B S

Hence, C = δ B S ‖ k~stop�. We are subsequently required to prove

((δ B S ‖ k~stop� ≡ δ B S) ∧ ((δ B S ‖ k~stop�)
α
−→ A))⇒ (((δ B S)

α
−→ B) ∧ (A ≡ B))

Configuration δ B S ‖ k~stop� indicates that sub-system k~stop� is a terminal process, hence
being incapable of executing further. This implies the possibility of only one rule for the deriva-
tion of (δ B S ‖ k~stop�)

α
−→ A.

– (Cntx2): Hence A = δ B S ′ ‖ k~stop� such that (δ B S ‖ k~stop�)
α
−→ (δ B S ′ ‖ k~stop�).

By Cntx2 we can infer transition δ B S
α
−→ δ B S ′. This gives us the required transition,

since the actions match and δ B S ′ ‖ k~stop� ≡ δ B S ′.

Although rules Com1,Com2,Cntx3,Mon1 and Mon2 might at first seem applicable due to their
description of possible system behaviour when placed in parallel, they can be discounted based
on the structure of C. For instance, Cntx3 can be ignored since it describes the situation when
the latter of two systems in parallel computes, which is impossible in this case since the latter
system is a terminal located process. On the other hand, rules Mon1 and Mon2 can be discounted
since they require both systems to produce either an m or a t action, which is impossible since
k~stop� cannot compute further. Com1,Com2 can be discounted for analogous reasons.

• (S-Stop2) : δ B new c.k~stop� ≡ δ B k~stop�

180

Appendix E

Whereby C = δ B new c.k~stop�. Therefore, we are required to prove

((δ B new c.k~stop�)
α
−→ A)⇒ (((δ B k~stop�)

α
−→ B) ∧ (A ≡ B))

On first glance, the only applicable rules for the derivation of (δ B new c.k~stop�)
α
−→ A in this

case are Cntx1, Opens and Opent, due to their description of behaviour for systems of the form
new c.S . However, all three rules are based on the premise that S can perform a transition.
However, in our case S is a terminal located process, implying that C cannot satisfy any of the
three applicable rules. This implies that C cannot compute further, rendering the statement to
prove vacuously true.

• (S-Flip) : δ B new c1.new c2.S ≡ δ B new c2.new c1.S

Such that C = δ B new c1.new c2.S . In this case, we are required to prove

((δ B new c1.new c2.S ≡ δ B new c2.new c1.S) ∧ ((δ B new c1.new c2.S)
α
−→ A))⇒

(((δ B new c2.new c1.S)
α
−→ B) ∧ (A ≡ B))

The structure of C dictates the possible use of two rules for the derivation of (δ B new c1.new c2.S)
α
−→

A.

– (Cntx1): Hence δ B new c1.new c2.S
α
−→ δ′ B new c1.A′, thus implying transition δ B

new c2.S
α
−→ δ′ B A′. This latter transition could have been derived using one of three rules:

- (Cntx1): Hence δ B new c2.S
α
−→ δ′ B new c2.S ′, such that δ B S

α
−→ δ′ B S ′.

This implies that the original transition is of the form (δ B new c1.new c2.S)
α
−→ (δ′ B

new c1.new c2.S ′).

Using rule Cntx1 twice and derived transition δ B S
α
−→ δ′ B S ′ we derive (δ B

new c2.new c1.S)
α
−→ (δ′ B new c2.new c1.S ′), which gives us the desired transition,

since the actions match and δ′ B new c1.new c2.S ′ ≡ δ′ B new c2.new c1.S ′. Note that
we needn’t worry about side conditions during the derivation of the latter transition,
since their satisfaction is guaranteed through assumptions during the derivation of
δ B S

α
−→ δ′ B S ′.

- (Opens): Hence δ B new c2.S
(c2,b̄)c!d〈p:k〉
−−−−−−−−→ δ′ B S ′, such that δ B S

(b̄)c!d〈p:k〉
−−−−−−→ δ′ B S ′.

This implies that the original transition is of the form (δ B new c1.new c2.S)
(c2,b̄)c!d〈p:k〉
−−−−−−−−→

(δ′ B new c1.S ′).

181

Appendix E

Using rule Cntx1 and derived transition δ B S
(b̄)c!d〈p:k〉
−−−−−−→ δ′ B S ′ we derive δ B

new c1.S
(b̄)c!d〈p:k〉
−−−−−−→ δ′ B new c1.S ′. Subsequently using rule Open, we next derive

transition δ B new c2.new c1.S
(c2,b̄)c!d〈p:k〉
−−−−−−−−→ δ′ B new c1.S ′, which gives us the desired

transition, since the actions match and δ′ B new c1.S ′ ≡ δ′ B new c1.S ′. Once more,
satisfaction of the side condition during extraction of the latter transition is guaranteed

through assumptions made during the derivation of δ B S
(b̄)c!d〈p:k〉
−−−−−−→ δ′ B S ′.

- (Opent): Analogous to the case of Opens.

– (Open): We hence infer transition (δ B new c1.new c2.S)
(c1,b̄)c!d〈p:k〉
−−−−−−−−→ (δ′ B new c2.S ′),

implying validity of transition (δ B new c2.S)
(b̄)c!d〈p:k〉
−−−−−−→ (δ′ B new c2.S ′).

Given the structure of the latter transition (especially the restriction on its action and resid-
ual configuration’s structure), this implies that it must have been derived using rule Cntx1.

Hence, through Cntx1 we can derive transition δ B S
(b̄)c!d〈p:k〉
−−−−−−→ δ′ B S ′.

Through rule Opens we derive δ B new c1.S
(c1,b̄)c!d〈p:k〉
−−−−−−−−→ δ′ B S ′. We subsequently use rule

Cntx1 to derive δ B new c2.new c1.S
(c1,b̄)c!d〈p:k〉
−−−−−−−−→ δ′ B new c2.S ′, which gives us the desired

transition, since the actions match and δ′ B new c2.S ′ ≡ δ′ B new c2.S ′.

• (S-Assoc) : δ B S 1 ‖ (S 2 ‖ S 3) ≡ δ B (S 1 ‖ S 2) ‖ S 3

Hence, C = δ B S 1 ‖ (S 2 ‖ S 3). We are therefore tasked with proving

((δ B S 1 ‖ (S 2 ‖ S 3) ≡ δ B (S 1 ‖ S 2) ‖ S 3) ∧ ((δ B S 1 ‖ (S 2 ‖ S 3))
α
−→ A))⇒

(((δ B (S 1 ‖ S 2) ‖ S 3)
α
−→ B) ∧ (A ≡ B))

Six possible rules could have been used for the derivation of (δ B S 1 ‖ (S 2 ‖ S 3))
α
−→ A.

– (Cntx2): We hence infer transition (δ B S 1 ‖ (S 2 ‖ S 3))
α
−→ (δ′ B S1

′ ‖ (S 2 ‖ S 3)), from
which we infer (δ B S 1

α
−→ (δ′ B S1

′).

Using rule Cntx twice and transition (δ B S 1
α
−→ (δ′ B S1

′), we infer (δ B (S 1 ‖ S 2) ‖
S 3)

α
−→ (δ′ B (S1

′ ‖ S 2) ‖ S 3), which gives us the required transition, since the actions
match and δ′ B S1

′ ‖ (S 2 ‖ S 3) ≡ δ′ B (S1
′ ‖ S 2) ‖ S 3.

182

Appendix E

– (Cntx3): Thus obtaining transition (δ B S 1 ‖ (S 2 ‖ S 3))
α
−→ (δ′ B S 1 ‖ A′), from which we

infer transition (δ B S 2 ‖ S 3)
α
−→ (δ′ B A′). This latter transition could have been inferred

using one of six rules.

- (Cntx2): Thus, the latter two transition takes the form (δ B S 2 ‖ S 3)
α
−→ (δ′ B S2

′ ‖

S 3), which through rule Cntx2 we infer (δ B S 2)
α
−→ (δ′ B S2

′). Moreover, the original
transition takes the form (δ B S 1 ‖ (S 2 ‖ S 3))

α
−→ (δ′ B S 1 ‖ (S2

′ ‖ S 3)).

Using rule Cntx twice and transition (δ B S 2)
α
−→ (δ′ B S2

′), we infer (δ B (S 1 ‖ S 2) ‖
S 3)

α
−→ (δ′ B (S 1 ‖ S2

′) ‖ S 3), which gives us the required transition, since the actions
match and δ′ B S 1 ‖ (S ′2 ‖ S 3) ≡ δ′ B (S 1 ‖ S ′2) ‖ S 3.

- (Cntx3): Analogous to the above case.

- (Com1): Through rule Com1 we infer that the transition takes the form (δ B S 2 ‖

S 3)
τ〈µ:k,l〉
−−−−→ (δ′ B new b̄.(S2

′ ‖ S3
′)), thus implying (i) (δ B S 2)

(b̄)c!d〈µ:k〉
−−−−−−→ (δ′ B S2

′),

and (ii) (δ B S 3)
c?d〈µ:l〉
−−−−→ (δ B S3

′). Moreover, the original transition takes the form
(δ B S 1 ‖ (S 2 ‖ S 3))

τ〈µ:k,l〉
−−−−→ (δ′ B S 1 ‖ (new b̄.(S2

′ ‖ S3
′))). Note that the structure of

derived transitions from S 2 and S 3 impose a restriction on the structure of α.

Through rule Cntx3 we derive transition (δ B S 1 ‖ S 2)
(b̄)c!d〈µ:k〉
−−−−−−→ (δ′ B S 1 ‖ S2

′).
Subsequently through rule Com1, we derive (δ B (S 1 ‖ S 2) ‖ S 3)

τ〈µ:k,l〉
−−−−→ (δ′ B

new b̄.((S 1 ‖ S2
′) ‖ S 3)), which gives us the required transition, since the actions

match and δ′ B S 1 ‖ (new b̄.(S2
′ ‖ S3

′)) ≡ δ′ B new b̄.((S 1 ‖ S2
′) ‖ S 3).

Note that truth of the last statement regarding structural equivalence is based on the
validity of the side condition that bn(b̄) < f n(S 1). We ascertain truth of this side
condition next. Given that rule Com1 was used during the derivation of the latter
matching transition, this implies that bn(b̄) ∩ f n(S 1) = ∅. Hence, given that f n(S 1) ⊆
f n(S 1 ‖ S 2) this implies truth of bn(b̄) < f n(S 1).

- (Com2): Analogous to the argument for Com1.

The last two rules yet to be analysed involve rules Mon1 and Mon2. However, proof of their
validity is once more analogous to the proof for Com1 (minus one discrepancy regarding
the behaviour of the counter state, which happens to be ineffectual).

- (Mon1): Analogous to the argument for Com1.

- (Mon2): Analogous to the argument for Com1.

183

Appendix E

– (Com1): Thus obtaining (δ B S 1 ‖ (S 2 ‖ S 3))
τ〈µ:k,l〉
−−−−→ (δ′ B new b̄.(S1

′ ‖ A′)), from which

we infer (i) (δ B S 1)
(b̄)c!d〈µ:k〉
−−−−−−→ (δ′ B S1

′), and (ii) (δ B S 2 ‖ S 3)
c?d〈µ:l〉
−−−−→ (δ B A′). Given

the latter transition’s structure, more specifically the structure of its action which dictates
that it must be an input action c?d〈µ:l〉, this implies that the transition could only have been
derived using one of two rules.

- (Cntx2): Hence A′ = S2
′ ‖ S 3, such that (δ B S 2 ‖ S 3)

c?d〈µ:l〉
−−−−→ (δ B S2

′ ‖ S 3)
and (δ B S 1 ‖ (S 2 ‖ S 3))

τ〈µ:k,l〉
−−−−→ (δ′ B new b̄.(S1

′ ‖ (S2
′ ‖ S 3))). By Cntx2 and

the latter transition, we infer (δ B S 2)
c?d〈µ:l〉
−−−−→ (δ B S2

′). Subsequently through rule
Com, we get (δ B S 1 ‖ S 2)

τ〈µ:k,l〉
−−−−→ (δ′ B new b̄.(S1

′ ‖ S2
′)). Finally by rule Cntx2

we get (δ B (S 1 ‖ S 2) ‖ S 3)
τ〈µ:k,l〉
−−−−→ (δ′ B (new b̄.(S1

′ ‖ S2
′)) ‖ S 3), which gives us

the required transition since the transitions match and δ′ B new b̄.(S1
′ ‖ (S2

′ ‖ S 3)) ≡
δ′ B (new b̄.(S1

′ ‖ S2
′)) ‖ S 3. This last statement about structural equivalence holds

by virtue of the fact that bn(b̄) < f n(S 3) (known to be true as a direct implication of
the application of the original Cntx2).

- (Cntx3): Analogous to the above case for Cntx2.

– (Com2): Analogous to the above argument for Com1.

– (Mon1): Analogous to the above argument for Com1.

– (Mon2): Analogous to the above argument for Com1.

All cases so far have been rather straightforward, resulting in a more relaxed approach so far
wrt. the handling of side conditions (mainly for brevity, since one could still discuss at length
their validity for each case). On the other hand we next present the only non-trivial case of the
entire proof, requiring a more subtle understanding of the way side conditions operate. To this
effect, we treat the reasoning of side conditions in a more explicit manner throughout the next
case.

• (S-Extr) : δ B new d.(S 1 ‖ S 2) ≡ δ B S 1 ‖ new d.S 2 s.t. bn(d) < fn(S 1)

Hence C = δ B new d.(S 1 ‖ S 2) and are required to prove

((δ B new d.(S 1 ‖ S 2) ≡ δ B S 1 ‖ new d.S 2) ∧ ((δ B new d.(S 1 ‖ S 2))
α
−→ A))⇒

(((δ B S 1 ‖ new d.S 2)
α
−→ B) ∧ (A ≡ B))

The structure of C denotes three possible rules for the derivation of (δ B new d.(S 1 ‖ S 2))
α
−→

A.

184

Appendix E

– (Opens): We know that bn(d) < fn(S 1). However, the application of Opens to C demands
that action α is of the form (b̄)c!d̄′〈µ:k〉 and also that d ∈ d̄′. Hence we infer that action
(b̄)c!d̄′〈µ:k〉 must have been effected by S 2, since d cannot appear free in S 1. This gives rise

to a transition of the form (δ B new d.(S 1 ‖ S 2))
(d,b̄)c!d̄′〈µ:k〉
−−−−−−−−→ (δ′ B (S 1 ‖ S2

′)). Moreover, by

Opens and Cntx3 we infer δ B S 2
(b̄)c!d̄′〈µ:k〉
−−−−−−−→ δ′ B S2

′.

By applying rule Opens to the derived transition above, we obtain δ B new d.S 2
(d,b̄)c!d̄′〈µ:k〉
−−−−−−−−→

δ′ B S2
′. Note that the above derivation is valid since we already ascertained that d ∈ d̄′.

Applying Cntx3 to the latter transition gives (δ B S 1 ‖ (new d.S 2))
(d,b̄)c!d̄′〈µ:k〉
−−−−−−−−→ (δ′ B S 1 ‖

S2
′), which is the required transition, since the actions match and δ′ B (S 1 ‖ S2

′) ≡ (δ′ B
S 1 ‖ S2

′).

– (Opent): Analogous to the above argument for Opens.

– (Cntx1): We hence obtain (δ B new d.(S 1 ‖ S 2))
α
−→ (δ B new d.A′) s.t. d < n(α). Truth

of this latter transition implies that it must have been derived from another transition of the
form (δ B (S 1 ‖ S 2))

α
−→ (δ B A′). We are next faced with a situation where either S 1 or S 2

execute independently, or they both participate in some internal action (either in the form
of traditional communication, or as trace import). Hence, we next consider six transition
rules for the derivation of (δ B (S 1 ‖ S 2))

α
−→ (δ B A′).

- (Cntx2): Obtaining a transition of the form (δ B (S 1 ‖ S 2))
α
−→ (δ′ B (S1

′ ‖

S 2)) s.t. bn(α) ∩ f n(S 2) = ∅, from which we also infer (δ B S 1)
α
−→ (δ′ B S1

′). The
original transition hence takes the form (δ B new d.(S 1 ‖ S 2))

α
−→ (δ′ B new d.(S1

′ ‖

S 2)).

By rule Cntx2 and (δ B S 1)
α
−→ (δ′ B S1

′) we infer (δ B S 1 ‖ new d.S 2)
α
−→ (δ′ B

S1
′ ‖ new d.S 2), which is valid since we know bn(α) ∩ f n(S 2) = ∅, and d is bound in

new d.S 2 (hence bn(α)∩ f n(new d.S 2) = ∅). This latter transition gives us a matching
transition, since the actions match and δ′ B new d.(S1

′ ‖ S 2) ≡ δ′ B S1
′ ‖ new d.S 2.

Since bn(d) < fn(S 1) and d < n(α), then this implies that bn(d) < fn(S1
′) by virtue

of transition (δ B S 1)
α
−→ (δ′ B S1

′), which satisfies the side condition necessary for
validity of the previous statement on structural equivalence.

- (Cntx3): Analogous case to that proven above for Cntx2.

- (Com1): Thus, the resulting transition is of the form (δ B (S 1 ‖ S 2))
α
−→ (δ′ B

(new b̄.(S1
′ ‖ S2

′))) s.t. b̄ ∩ f n(S 1) = ∅, from which we further derive transitions

185

Appendix E

(i) (δ B S 1)
c?d̄′〈µ:l〉
−−−−−→ (δ B S1

′), and (ii) (δ B S 2)
(b̄)c!d̄′〈µ:k〉
−−−−−−−→ (δ′ B S2

′). This im-
plies that the original transition takes the form (δ B new d.(S 1 ‖ S 2))

τ〈µ:k,l〉
−−−−→ (δ′ B

new d.(new b̄.(S1
′ ‖ S2

′))). Note that although we know that d < n(τ〈µ:k,l〉), we know
nothing about whether d is free in (b̄)c!d̄′〈µ:k〉. We therefore have to consider both
cases.

- Case d < f n((b̄)c!d̄′〈µ:k〉):

Given that d is not free in (b̄)c!d̄′〈µ:k〉, then we can ensure by α-conversion that d does
not appear in the aforementioned action, implying that d < n((b̄)c!d̄′〈µ:k〉). Hence,

given transition (δ B S 2)
(b̄)c!d̄′〈µ:k〉
−−−−−−−→ (δ′ B S2

′) and the guarantee that d < n((b̄)c!d̄′〈µ:k〉),

by Cntx1 we infer (δ B new d.S 2)
(b̄)c!d̄′〈µ:k〉
−−−−−−−→ (δ′ B new d.S2

′). Applying rule Com2 we
get

(δ B (S 1 ‖ new d.S 2))
τ〈µ:k,l〉
−−−−→ (δ′ B new b̄.(S1

′ ‖ new d.S2
′))

Note that the above transition can be derived since we know that b̄∩ f n(new d.S 1) = ∅,
since we know from the original application of Com1 that b̄ ∩ f n(S 1) = ∅. We hence
get a matching transition, since the actions match and δ′ B new d.(new b̄.(S1

′ ‖ S2
′)) ≡

δ′ B new b̄.(S1
′ ‖ new d.S2

′) by S-Flip and S-Extr.

Note that the last statement is only valid if bn(d) < fn(S1
′). Given that d < n((b̄)c!d̄′〈µ:k〉),

then this implies that d < n(c?d̄′〈µ:l〉) since n(c?d̄′〈µ:l〉) ⊆ n((b̄)c!d̄′〈µ:k〉). Hence, given

that bn(d) < fn(S 1), d < n(c?d̄′〈µ:l〉) and by transition (δ B S 1)
c?d̄′〈µ:l〉
−−−−−→ (δ B S1

′) we
know bn(d) < fn(S1

′) to be true.

- Case d ∈ f n((b̄)c!d̄′〈µ:k〉):

Given that d is free in action (b̄)c!d̄′〈µ:k〉 and d̄′ is by definition free (in the previous

action), this implies that d ∈ d̄′. Hence, given transition (δ B S 2)
(b̄)c!d̄′〈µ:k〉
−−−−−−−→ (δ′ B S2

′)

and guarantee that d ∈ d̄′, then by rule Opens we derive (δ B new d.S 2)
(d,b̄)c!d̄′〈µ:k〉
−−−−−−−−→

(δ′ B S2
′). Subsequently through Com2, we get

(δ B S 1 ‖ new d.S 2)
τ〈µ:k,l〉
−−−−→ (δ′ B new d.(new b̄.(S1

′ ‖ S2
′)))

which gives us the required matching move, since both the actions and the residual
systems match.

- (Com2): Analogous case to that proven above for Com1.

186

Appendix E

- (Mon1): Analogous case to that proven above for Com1.

- (Mon2): Analogous case to that proven above for Com1.

Before moving on to proving our result for the rules of inference, there is still one axiom left
requiring proof i.e., an implicit axiom defining ≡ as a reflexive relation (since ≡ is defined as an
equivalence relation) i.e., stating that C ≡ C.

• (S-Refl) : δ B C ≡ δ B C

We are hence required to prove that

((δ B C ≡ δ B C) ∧ (δ B C
α
−→ A))⇒ ((δ B C

α
−→ B) ∧ (A ≡ B))

Clearly, any transition of the form δ B C
α
−→ A can be matched by itself, such that residual

configuration A (for both transitions) is structurally equivalent to itself.

Inductive Hypothesis:

((C ≡ R) ∧ (C
α
−→ C′)) ⇒ (∃R′ : Sys. (R

α
−→ R′) ∧ (C′ ≡ R′))

Inductive Cases:

• (S-Contextual1) : (δ B S 1 ≡ δ B S 2)⇒ (δ B S 1 ‖ V ≡ δ B S 2 ‖ V)

We hence know (i) δ B S 1 ‖ V ≡ δ B S 2 ‖ V , (ii) (δ B S 1 ‖ V
α
−→ A) and are required to prove

(iii) (δ B δ B S 2 ‖ V
α
−→ B), (iv) (A ≡ B).

From (i) we obtain equality δ B S 1 ≡ δ B S 2 by rule S-Contextual1. Now, the structure of
(δ B S 1 ‖ V

α
−→ A) implies that it must have been derived through one of six rules.

- (Cntx2): We hence get a transition of the form (δ B S 1 ‖ V)
α
−→ (δ B S1

′ ‖ V), from
which we infer δ B S 1

α
−→ δ B S1

′. Given this derived transition and knowledge of equality
δ B S 1 ≡ δ B S 2, then by the inductive hypothesis we obtain δ B S 2

α
−→ δ B S2

′ such that
δ B S1

′ ≡ δ B S2
′.

Using Cntx2 we derive (δ B S 2 ‖ V)
α
−→ (δ B S2

′ ‖ V) which is the required matching
transition, since the actions match and δ B S1

′ ‖ V ≡ δ B S2
′ ‖ V . Validity of this latter

equality is by virtue of statement δ B S1
′ ≡ δ B S2

′, and the fact that ≡ is a contextual
relation.

187

Appendix E

- (Cntx3): Hence we get a transition of the form (δ B S 1 ‖ V)
α
−→ (δ B S 1 ‖ V ′), from which

we infer δ B V
α
−→ δ B V ′. Through rule Cntx3 and the latter transition we infer

(δ B S 2 ‖ V)
α
−→ (δ B S 2 ‖ V ′)

which we argue is the matching transition, since the actions match and δ B S 1 ‖ V ′ ≡ δ B
S 2 ‖ V ′. The previous statement is true by virtue of the fact that δ B S 1 ≡ δ B S 2 and ≡ is
a contextual relation.

- (Com1): Such that (δ B S 1 ‖ V)
τ〈µ:k,l〉
−−−−→ (δ B new b̄.S1

′ ‖ V ′), while also implying two

additional transitions (v) (δ B S 1)
(b̄)c!d̄′〈µ:k〉
−−−−−−−→ (δ B S1

′) and (vi) (δ B V)
c?d̄′〈µ:l〉
−−−−−→ (δ B V ′).

By transition (v), statement δ B S 1 ≡ δ B S 2 and the inductive hypothesis we obtain

(δ B S 2)
(b̄)c!d̄′〈µ:k〉
−−−−−−−→ (δ B S2

′) such that δ B S1
′ ≡ δ B S2

′. Given the latter derived transition
and (vi) we derive an additional transition (through Com1) of the form

(δ B S 2 ‖ V)
τ〈µ:k,l〉
−−−−→ (δ B new b̄.S2

′ ‖ V ′)

which is our required matching transition, since the actions match and δ B new b̄.S1
′ ‖

V ′ ≡ δ B new b̄.S2
′ ‖ V ′. Note that the previous transition is true by virtue of the fact that

δ B S 1 ≡ δ B S 2, and ≡ is a contextual relation.

- (Com2): Analogous argument to that given for Com1.

- (Mon1): Analogous argument to that given for Com1.

- (Mon2): Analogous argument to that given for Com1.

• (S-Contextual2) : (δ B S 1 ≡ δ B S 2)⇒ (δ B V ‖ S 1 ≡ δ B V ‖ S 2)

Analogous argument to that given for S-Contextual1.

• (S-Contextual3) : (δ B S 1 ≡ δ B S 2)⇒ (δ B new d.S 1 ≡ δ B new d.S 2)

We are thus tasked with proving statement

((δ B new d.S 1 ≡ δ B new d.S 2) ∧ (δ B new d.S 1
α
−→ A))⇒ ((δ B new d.S 2

α
−→ B) ∧ (A ≡ B))

Through equivalence δ B new d.S 1 ≡ δ B new d.S 2 and S-Contextual3 we derive δ B S 1 ≡

δ B S 2. Moreover, transition δ B new d.S 1
α
−→ A could have been derived using one of three

possible rules.

188

Appendix E

– (Opens): Thus obtaining a statement of the form δ B new d.S 1
(d,b̄)c!d̄′〈µ:k〉
−−−−−−−−→ δ′ B S1

′. We

also infer transition δ B S 1
(b̄)c!d̄′〈µ:k〉
−−−−−−−→ δ′ B S1

′ by Opens. Given knowledge of δ B S 1 ≡ δ B

S 2 and the latter transition, by the inductive hypothesis we obtain δ B S 2
(b̄)c!d̄′〈µ:k〉
−−−−−−−→ δ′ B S2

′

such that δ′ B S1
′ ≡ δ′ B S2

′.

By rule Opens we infer δ B new d.S 2
(d,b̄)c!d̄′〈µ:k〉
−−−−−−−−→ δ′ B S2

′. Note that we can infer the
previous transition since we know d ∈ d̄′ through the original application of Opens. We
argue this latter transition is the required matching move, since the actions match and
δ′ B S1

′ ≡ δ′ B S2
′ (derived above).

– (Opent): Analogous to the above argument for Opens.

– (Cntx1): We thus get δ B new d.S 1
α
−→ δ′ B new d.S1

′. We also infer transition
δ B S 1

α
−→ δ′ B S1

′ by Cntx1. Given knowledge of δ B S 1 ≡ δ B S 2 and the latter transition,
by the inductive hypothesis we get δ B S 2

α
−→ δ′ B S2

′ such that δ′ B S1
′ ≡ δ′ B S2

′.

By rule Cntx1 we infer δ B new d.S 2
α
−→ δ′ B new d.S2

′. Once more, the necessary side
condition for the latter application of Cntx1 is satisfied by the former use of the same rule.
We hence obtain the matching transition, since the actions match and δ′ B new d.S1

′ ≡

δ′ B new d.S2
′ by virtue of proven equivalence δ′ B S1

′ ≡ δ′ B S2
′ and the contextuality of

≡.

• (S-Symm) : (δ B S 1 ≡ δ B S 2)⇒ (δ B S 2 ≡ δ B S 1)

We are hence required to prove that

((δ B S 2 ≡ δ B S 1) ∧ (δ B S 2
α
−→ A))⇒ ((δ B S 1

α
−→ B) ∧ (A ≡ B))

Given that (δ B S 2 ≡ δ B S 1) and we know of transition δ B S 2
α
−→ A, then by the inductive

hypothesis we get matching transition (δ B S 1
α
−→ B) such that (A ≡ B).

• (S-Tran) : ((δ B S 1 ≡ δ B S 2) ∧ (δ B S 2 ≡ δ B S 3))⇒ (δ B S 1 ≡ δ B S 3)

We are required to prove that

((δ B S 1 ≡ δ B S 3) ∧ (δ B S 1
α
−→ A))⇒ ((δ B S 3

α
−→ B) ∧ (A ≡ B))

Given (δ B S 1 ≡ δ B S 3) by rule S-Tran we infer two further equivalence statements δ B S 1 ≡

δ B S 2 and δ B S 2 ≡ δ B S 3.

189

Appendix E

Given knowledge of δ B S 1 ≡ δ B S 2 and transition δ B S 1
α
−→ A by the inductive hypothesis

we infer δ B S 2
α
−→ A′ such that A ≡ A′. Once more, given knowledge of δ B S 2 ≡ δ B S 3 and

transition δ B S 2
α
−→ A′ by the inductive hypothesis we derive transition δ B S 3

α
−→ B such that

A′ ≡ B. This latter transition satisfies the required statement to prove, since the actions match
and A ≡ B. Note that truth of this equivalence is by virtue of statements A ≡ A′, A′ ≡ B and the
transitivity of ≡.

�

190

F. ≈ΩP Is A Bisimilarity Up To Structural
Equivalence

Proof. We first define bisimulation relation (C,R) ∈ R matching residual systems up to struc-
turally equivalent terms. Outgoing transitions from configurations in R are filtered through ΩP

due to our interest in ≈ΩP . More formally, we define R :: Conf↔ Conf adhering to the follow-
ing two properties:

• ((C R R) ∧ (C
α
−→ΩP C′))⇒ ((R

α̂
⇒ΩP R′) ∧ (C′ ≡ ◦R ◦ ≡ R′))

• ((C R R) ∧ (R
α
−→ΩP R′))⇒ ((C

α̂
⇒ΩP C′) ∧ (C′ ≡ ◦R ◦ ≡ R′))

where ◦ denotes relational composition, such that ≡ ◦R ◦ ≡ is the resulting composition of
≡ (twice) and R. Hence, R specifies that pairing of residual configurations C′,R′ occurs up to
structural equivalence. The desired result hence follows if we can prove that R ⊆≈ΩP .

To achieve this result, we define relation S ,≡ ◦R ◦ ≡, and prove that S ⊆≈ΩP . Given that
≡ is an equivalence relation, by implication ≡ contains the identity relation. Hence by Def n of
S, R must be contained in S i.e., R ⊆ S. If we prove that S ⊆≈ΩP , this would prove that
R ⊆ S ⊆≈ΩP , implying that R ⊆≈L, which is our desired result.

To prove thatS ⊆≈ΩP we would like to prove that for any two configurations (ΩP(C),ΩP(R)) ∈
S, S adheres to the following two properties

(1) – ((C S R) ∧ (C
α
−→ΩP C′))⇒ ((R

α̂
⇒ΩP R′) ∧ (C′ S R′))

(2) – ((C S R) ∧ (R
α
−→ΩP R′))⇒ ((C

α̂
⇒ΩP C′) ∧ (C′ S R′))

Proof of (1):

Given the structure of (1), we know (i) (C S R), (ii) (C
α
−→ΩP C′) to be true, and are required

to prove (iii) (R
α̂
⇒ΩP R′) ∧ (C′ S R′).

191

Appendix F

By (i) and Def n of S, (C,R) ∈≡ ◦R ◦ ≡. Hence

∃C1,R1 : Conf. C ≡ C1 R R1 ≡ R ...(iv)

Given that C ≡ C1 (by (iv)) and C
α
−→ΩP C′, by corollary 5.3.1 we conclude that (v) C1

α
−→ΩP C1

′

and (vi) C′ ≡ C1
′.

We also know C1 R R1 to be true (from (iv)). Hence, given that (C1 R R1) and C1
α
−→ΩP C1

′,
by Def n of R we infer

(vii) R1
α̂
⇒ΩP R1

′

(viii) C1
′ ≡ ◦R ◦ ≡ R1

′

Hence by Def n of S, (C1
′,R1

′) ∈ S. Let us analyse the structure of statement (vii) i.e., R1
α̂
⇒ΩP

R1
′. By definition 5.3.2, this implies that the weak transition in (vii) was derived from a transi-

tion sequence adhering to one of two forms, depending on α:

• R1(
τ
−→ΩP)∗R1

′ ifα = τ

• R1(
τ
−→ΩP)∗X

α
−→ΩP Y(

τ
−→ΩP)∗R1

′ if α is an external action.

The first transition can be restated as

R1
τ
−→ΩP X1

τ
−→ΩP X2

τ
−→ΩP ...

τ
−→ΩP Xn

τ
−→ΩP R1

′ ...(ix)

where X1...Xn are intermediate configurations. Given that R1
τ
−→ΩP X1 (from (ix)) and R1 ≡ R

(from (iv)), by corollary 5.3.1 ((R
τ
−→ΩP Y1) ∧ (X1 ≡ Y1)) ...(x).

Once more by corollary 5.3.1, given that X1
α
−→ΩP X2 (from (ix)) and X1 ≡ Y1 (from (x)) this

implies ((Y1
τ
−→ΩP Y2) ∧ (X2 ≈ Y2)).

This reasoning can be extended throughout (ix), obtaining a new transition sequence of the
form

R
τ
−→ΩP Y1

τ
−→ΩP Y2

τ
−→ΩP ..

τ
−→ΩP Yn

τ
−→ΩP R′...(xi)

such that R1
′ ≡ ΩP(R′). Transition sequence (xi) represents weak filtered action R

τ̂
⇒ΩP R′. Note

that we conveniently name the last system in sequence (xi) to R′, to represent the last system in
a sequence of transition derivations. Moreover, it is proven that R′ is structurally equivalent to
R1
′ by virtue of corollary 5.3.1, derived information Xn ≡ Yn and transition Xn

τ
−→ΩP R1

′ (from
(ix)).

192

Appendix F

Analogously, if α is an external action, then we would be able to conclude that R
α̂
⇒ΩP R′

...(xii) and R1
′ ≡ R′ ...(xiii). This proves that both (xii) and (xiii) hold irrespective of the value

of α.

By (vi), (viii) and (xiii) we have so far proven C′ ≡ C1
′ S R1

′ ≡ R′. Let us analyse this
statement further.

C′ ≡ C1
′ S R1

′ ≡ R′

⇔ {Def n of S}
∃A, B : Conf. C′ ≡ C1

′ ≡ A R B ≡ R1
′ ≡ R′

⇔ {Transitivity,symmetry of ≡ twice}
∃A, B : Conf. C′ ≡ C1

′ R R1
′ ≡ R′

⇔ {Def n of S}
(C′,R′) ∈ S

Through the above reasoning and (xii) we have thus proven that ∃R′ : Conf.(R
α̂
⇒ΩP R′) ∧

(C′ S R′), proving the statement we set out to prove.

Proof of (2):

In order to prove that ≈ΩP is a bisimilarity up to structural equivalence, we would also have
to prove statement (2). However, its proof is analogous to the one given above.

�

193

G. Monitoring Does Not Affect
Computation

To Prove:

(δ B S) ≈ΩP (δ B S P)

Proof. Proof by coinduction, while inductively exploiting the structure of S .

We are interested in matching the process computation of a system and its projection. How-
ever, given the problems faced when proving the above statement due to the syntactic generation
of persistent traces during process execution, we choose to ignore generated traces (at a syntac-
tic level), as long as they match on both sides (see section 5.4). The required statement to prove
therefore becomes

(δ B (S ‖ T)) ≈ΩP (δ B (S P ‖ T))

To this effect, we define relation R s.t.

• (δ B S) R (δ B S P)

• (δ B S) R (δ B S ′) implies (δ B (S ‖ T)) R (δ B (S ′ ‖ T))

and go on to prove R ⊆≈ΩP . The desired original result follows from the first clause. Relation
R is inductively defined; its base elements are obtained by projecting the terminal processes
(i.e., obtained from the first clause). Moreover, both the first and the second clause contribute
to the generation of the remaining pairs in R. The proof proceeds by induction on the pair
(δ B S , δ B S ′′) ∈ R, thus proving that configurations δ B S , δ B S ′′ adhere to the transfer
property. We are hence required to prove that if δ B S R δ B S ′′, then the following two
statements hold.

(1) (δ B S
α
−→ΩP C′)⇒ ((δ B S ′′

α̂
⇒ΩP C′′) ∧ (C′ RC′′))

(2) (δ B S ′′
α
−→ΩP C′)⇒ ((δ B S

α̂
⇒ΩP C′′) ∧ (C′ RC′′))

194

Appendix G

Base Cases:

• S = k~stop�, S ′′ = S P = k~stop�

Proof of (1):

We know (i) (δ B k~stop�) R (δ B k~stop�), (ii) δ B k~stop�
α
−→ΩP C′, and are required to

prove (iii) ((δ B k~stop�
α̂
⇒ΩP C′′) ∧ (C′ RC′′)).

Given the structure of configuration δ B k~stop�, we know that no transition exists such
that δ B k~stop�

α
−→ C′, since stop is a terminal process. By extension, this implies that

δ B k~stop�
α
−→ΩP C′ is a false statement. This renders the antecedent of (1) in this case,

false, rendering the whole statement vacuously true as a result.

Proof of (2):

Analogous to above argument.

All other base cases happen to be terminal processes, implying that proof of statements (1)
and (2) in these cases happen to follow the above argument. More specifically, given that ter-
minal processes cannot perform another computational step, truth of the required statements
becomes vacuously true.

• S = k{[ok]}n, S ′′ = S P = k~stop�

Analogous to previous argument.

• S = k{[fail]}n, S ′′ = S P = k~stop�

Analogous to previous argument.

• S = k{[stop]}n, S ′′ = S P = k~stop�

Analogous to previous argument.

Inductive Hypothesis:

• ((δ B S R δ B S ′′) ∧ (δ B S
α
−→ΩP C′))⇒ ((δ B S ′′

α̂
⇒ΩP C′′) ∧ (C′ RC′′))

• ((δ B S R δ B S ′′) ∧ (δ B S ′′
α
−→ΩP C′))⇒ ((δ B S

α̂
⇒ΩP C′′) ∧ (C′ RC′′))

195

Appendix G

Inductive Cases:

• S = k~c!x̄.P�, S ′′ = S P = k~c!x̄.PP�

Proof of (1):

We know (i) (δ B k~c!x̄.P�) R (δ B k~c!x̄.PP�), (ii) δ B k~c!x̄.P�
α
−→ΩP C′, and are required

to prove (iii) ((δ B k~c!x̄.PP�
α̂
⇒ΩP C′′) ∧ (C′ RC′′)).

Given the structure of configuration δ B k~c!x̄.P�, the only valid transition at this stage is

δ B k~c!x̄.P�
c!v〈p:k〉
−−−−→ inc(δ, k) B (k~P� ‖ k~t(c, v̄, δ(k))�) by rule (OutP)

δ B k~c!x̄.P�
c!v̄〈k〉
−−−→ΩP inc(δ, k) B (k~P� ‖ k~t(c, v̄, δ(k))�) by Def n of→ΩP

We can derive a matching transition for k~c!x̄.PP� i.e.,

δ B k~c!x̄.PP�
c!v〈p:k〉
−−−−→ inc(δ, k) B (k~PP� ‖ k~t(c, v̄, δ(k))�) by rule (OutP)

δ B k~c!x̄.PP�
c!v̄〈k〉
−−−→ΩP inc(δ, k) B (k~PP� ‖ k~t(c, v̄, δ(k))�) by Def n of→ΩP

which satisfies (iii), since the transitions match, and (inc(δ, k) B (k~P� ‖ k~t(c, v̄, δ(k))�), inc(δ, k) B
(k~PP� ‖ k~t(c, v̄, δ(k))�)) ∈ R since (k~P�)P = k~PP�, with the counter states and generated
traces matching.

Proof of (2):

Analogous to the first case.

• S = k~c?x̄.P�, S ′′ = S P = k~c?x̄.PP�

Proof of (1):

We know (i) (δ B k~c?x̄.P�) R (δ B k~c?x̄.PP�), (ii) δ B k~c?x̄.P�
α
−→ΩP C′, and are required

to prove (iii) ((δ B k~c?x̄.PP�
α̂
⇒ΩP C′′) ∧ (C′ RC′′)).

Given the structure of configuration δ B k~c?x̄.P�, the only valid transition at this stage is

δ B k~c?x̄.P�
c?v〈p:k〉
−−−−→ δ B k~P{v̄/̄x}� by rule (InP)

δ B k~c?x̄.P�
c?v̄〈k〉
−−−→ΩP δ B k~P{d̄/̄x}� by Def n of→ΩP

196

Appendix G

We can derive a matching transition for k~c?x̄.PP� i.e.,

δ B k~c?x̄.PP�
c?v〈p:k〉
−−−−→ δ B k~PP{v̄/̄x}� by rule (InP)

δ B k~c?x̄.PP�
c?v̄〈k〉
−−−→ΩP δ B k~PP{v̄/̄x}� by Def n of→ΩP

which satisfies (iii), since the transitions match, and (δ B k~P{d̄/̄x}�, δ B k~PP{v̄/̄x}�) ∈ R since
(k~P�)P = k~PP�, as well as by virtue of lemma (Pσ)P = Ppσ (see appendix D).

Proof of (2):

Analogous to the first case.

• S = k~new c.P�, S ′′ = S P = k~new c.PP�

Proof of (1):

We know (i) (δ B k~new c.P�) R (δ B k~new c.PP�), (ii) δ B k~new c.P�
α
−→ΩP C′, and are

required to prove (iii) ((δ B k~new c.PP�
α̂
⇒ΩP C′′) ∧ (C′ RC′′)).

Given the structure of configuration δ B k~new c.P�, the only valid transition at this stage is

δ B k~new c.P�
τ〈p:k,k〉
−−−−→ δ B new c.k~P� by rule (ExpP)

δ B k~new c.P�
τ
−→ΩP δ B new c.k~P� by Def n of→ΩP

We can derive a matching transition for k~new c.PP� i.e.,

δ B k~new c.PP�
τ〈p:k,k〉
−−−−→ δ B new c.k~PP� by rule (ExpP)

δ B k~new c.PP�
τ
−→ΩP δ B new c.k~PP� by Def n of→ΩP

which satisfies (iii), since the transitions match, and (δ B new c.k~P�, δ B new c.k~PP�) ∈ R
since (new c.k~P�)P = new c.k~PP�.

Proof of (2):

Analogous to the first case.

• S = k~if ū = v̄ then P else Q�, S ′′ = S P = k~if ū = v̄ then PP else QP�

Proof of (1):

197

Appendix G

Given the structure of configuration k~if ū = v̄ then P else Q�, there exist two possible tran-
sitions which this configuration can take.

– By EqP:

δ B k~if ū = v̄ then P else Q�
τ〈p:k,k〉
−−−−→ δ B k~P� by EqP

δ B k~if ū = v̄ then P else Q�
τ
−→ΩP δ B k~P� by Def n of→ΩP

A matching transition can be derived for k~if ū = v̄ then PP else QP� i.e.,

δ B k~if ū = v̄ then PP else QP�
τ
−→ΩP δ B k~PP� by rule (EqP) and Def n of→ΩP

proving the required statement in this case, since the transitions match, and (δ B k~P�, δ B
k~PP�) ∈ R by Def n of system projection.

– By NeqP:

δ B k~if ū = v̄ then P else Q�
τ〈p:k,k〉
−−−−→ δ B k~Q� by NeqP

δ B k~if ū = v̄ then P else Q�
τ
−→ΩP δ B k~Q� by Def n of→ΩP

A matching transition can be derived for k~if ū = v̄ then PP else QP� i.e.,

δ B k~if ū = v̄ then PP else QP�
τ
−→ΩP δ B k~QP� by rule (NeqP) and Def n of→ΩP

proving the required statement in this case, since the transitions match, and (δ B k~Q�, δ B
k~QP�) ∈ R by Def n of system projection.

We have hence proven validity of the required statement in both possible cases.

Proof of (2):

Analogous to the first case.

• S = k~P ‖ Q�, S ′′ = S P = k~PP ‖ QP�

Proof of (1):

Given the structure of configuration δ B k~P ‖ Q�, the only valid transition at this stage is

198

Appendix G

δ B k~P ‖ Q�
τ〈p:k,k〉
−−−−→ δ B k~P� ‖ δ B k~Q� by rule (SplitP)

δ B k~P ‖ Q�
τ
−→ΩP δ B k~P� ‖ δ B k~Q� by Def n of→ΩP

We can derive a matching transition for k~PP ‖ QP� i.e.,

δ B k~PP ‖ QP�
τ〈p:k,k〉
−−−−→ δ B k~PP� ‖ δ B k~QP� by rule (SplitP)

δ B k~PP ‖ QP�
τ
−→ΩP δ B k~PP� ‖ δ B k~QP� by Def n of→ΩP

which satisfies our required statement, since the transitions match, and (δ B k~P� ‖ δ B
k~Q�, δ B k~PP� ‖ δ B k~QP�) ∈ R by Def n of system projection.

Proof of (2):

Analogous to the first case.

• S = k~∗P�, S ′′ = S P = k~∗(PP)�

Proof of (1):

Given the structure of configuration δ B k~∗P�, the only valid transition at this stage is

δ B k~∗P�
τ〈p:k,k〉
−−−−→ δ B k~P ‖ ∗P� by rule (RecP)

δ B k~∗P�
τ
−→ΩP δ B k~P ‖ ∗P� by Def n of→ΩP

We can derive a matching transition for k~∗(PP)� i.e.,

δ B k~∗(PP)�
τ〈p:k,k〉
−−−−→ δ B k~PP ‖ ∗(PP)� by rule (RecP)

δ B k~∗(PP)�
τ
−→ΩP δ B k~PP ‖ ∗(PP)� by Def n of→ΩP

which satisfies our required statement, since the transitions match, and (δ B k~P ‖ ∗P�, δ B
k~PP ‖ ∗(PP)�) ∈ R by Def n of system projection.

Proof of (2):

Analogous to the first case.

• S = k{[go u.M]}n, S ′′ = S P = k~stop�

Proof of (1):

199

Appendix G

We know (i) (δ B k{[go l.M]}n) R (δ B k~stop�), (ii) δ B k{[go l.M]}n
α
−→ΩP C′, and are re-

quired to prove (iii) ((δ B k~stop�
α̂
⇒ΩP C′′) ∧ (C′ RC′′)).

On inspection of the definition of filter function ΩP, it is apparent that any monitor action
is pruned by the function. Hence, any transition emanating from δ B k{[go l.M]}n is later
ignored by ΩP, implying falsity of statement (ii). Hence, the antecedent of (1) is rendered
false, proving statement (1) to be vacuously true.

Proof of (2):

We know (i) (δ B k{[go l.M]}n) R (δ B k~stop�), (ii) δ B k~stop�
α
−→ΩP C′, and are required

to prove (iii) ((δ B k~go k.M�
α̂
⇒ΩP C′′) ∧ (C′ RC′′)).

Given the structure of configuration δ B k~stop�, we know that no transition exists such
that δ B k~stop�

α
−→ C′, since stop is a terminal process. By extension, this implies that

δ B k~stop�
α
−→ΩP C′ is a false statement. This renders the antecedent of (2) in this case,

false, rendering the whole statement vacuously true as a result.

Proof for the remaining instances when S = k{[M]}n, as well as when S = k~t(c, v̄, n)� are
analogous to the above case, since in all instances (i) the result of projection is k~stop�, and (ii)
any transition emanating from (these instances of) S are later pruned by ΩP.

• S = k{[u?x̄.M]}n, S ′′ = S P = k~stop�

Analogous to previous argument.

• S = k{[u!v̄.M]}n, S ′′ = S P = k~stop�

Analogous to previous argument.

• S = k{[new c.M]}n, S ′′ = S P = k~stop�

Analogous to previous argument.

• S = k{[if ū = v̄ then M else N]}n, S ′′ = S P = k~stop�

Analogous to previous argument.

200

Appendix G

• S = k{[M ‖ N]}n, S ′′ = S P = k~stop�

Analogous to previous argument.

• S = k{[∗M]}n, S ′′ = S P = k~stop�

Analogous to previous argument.

• S = k{[setC(l).M]}n, S ′′ = S P = k~stop�

Analogous to previous argument.

• S = k{[m(c, x, k).M]}n, S ′′ = S P = k~stop�

Analogous to previous argument.

• S = k~t(c, v̄, n)�, S ′′ = S P = k~stop�

Analogous to previous argument.

• S = S 1 ‖ S 2, S ′′ = (S 1)P ‖ (S 2)P.

Proof of (1):

We know (i) (δ B S 1 ‖ S 2)R (δ B (S 1)P ‖ (S 2)P), (ii) δ B S 1 ‖ S 2
α
−→ΩP C′, and are required

to prove (iii) (δ B (S 1)P ‖ (S 2)P
α̂
⇒ΩP C′′) ∧ (C′ RC′′).

Statement δ B S 1 ‖ S 2
α
−→ΩP C′ was derived from an unfiltered transition of the form δ B

S 1 ‖ S 2
α′

−→ C′ s.t. ΩP(α′) = α. Moreover, we can also infer that α′ (and by extension, α)
is a process action, since ΩP successfully mapped the original action (i.e., without pruning it).
Conversely, had α′ been a monitor or trace action, transition (ii) would have been pruned by ΩP

after filtration. Hence, given the structure of transition δ B S 1 ‖ S 2
α′

−→ C′ and knowledge that
α′ is a process action, we infer that this latter transition could have been derived using one of
six rules:

– By Cntx2:

The above transition hence takes the form δ B S 1 ‖ S 2
α′

−→ δ B S1
′ ‖ S 2. By rule Cntx2 we

also deduce that this transition was inferred further from another transition δ B S 1
α′

−→ δ B S1
′.

Given that ΩP is a function, applying ΩP(α′) must return the same α. Hence, by Def n of→ΩP

201

Appendix G

we obtain δ B S 1
α
−→ΩP δ B S1

′.

By the definition of R, we know that S 1 and its projection (S 1)P are in R i.e., S 1 R (S 1)P.
Hence, given this statement and transition δ B S 1

α
−→ΩP δ B S1

′ by the IH we obtain (iv)

δ B (S 1)P
α̂
⇒ΩP C′′′, (v) δ B S1

′ R C′′′. Let us assume that C′′′ = δ B ((S 1)P)′ ...(vi).
Irrespective of whether α is an external or internal action, weak transition (iv) is represented
by a transition sequence of the form

δ B (S 1)P
τ
−→ΩP Ci

τ
−→ΩP Cii

τ
−→ΩP ...C j

α
−→ C j+1

τ
−→ΩP ...

τ
−→ΩP δ B ((S 1)P)′

By the Def n of→ΩP numerous times on the above transition sequence we obtain

δ B (S 1)P
α1
−→ Ci

α2
−→ Cii

α3
−→ ...C j

α′

−→ C j+1
α j+1
−−−→ ...

αn
−→ δ B ((S 1)P)′

where α1...αn represent tagged process τ actions. We next apply rule Cntx2 on each transition
in the above sequence, adding system (S 2)P in each case. Moreover, we apply filter ΩP once
more, giving rise to weak transition

δ B ((S 1)P ‖ (S 2)P)
α̂
⇒ΩP δ B (((S 1)P)′ ‖ (S 2)P)

which gives us the required matching transition.

We are left to prove that the residual configurations are in R in order to prove the required
statement in this case. By (v) we know that δ B S1

′ R δ B ((S 1)P)′. Hence, from this we infer
that (δ B S1

′ ‖ S 2, δ B (((S 1)P)′ ‖ (S 2)P)) ∈ R, proving statement (iii).

– By Cntx3: Analogous to the above case.

– By Com1:

We hence infer that δ B S 1 ‖ S 2
τ〈p:k,l〉
−−−−→ δ′ B new b̄.(S1

′ ‖ S2
′). Note that the action modality is

set to p, due to previous inference that α′ must be a process action. By rule Com1 we also de-

duce that this transition was inferred from two further transitions (iv) δ B S 1
(b̄)c!d̄〈p:k〉
−−−−−−→ δ′ B S1

′

(v) δ B S 2
c?d̄〈p:l〉
−−−−→ δ B S2

′. By Def n of→ΩP twice we obtain transitions δ B S 1
(b̄)c!d̄〈k〉
−−−−−→ΩP δ

′ B

S1
′ and δ B S 2

c?d̄〈l〉
−−−→ δ B S2

′.

By Def n of R, we know that (S 1, (S 1)P) ∈ R and (S 2, (S 2)P) ∈ R. By the IH twice we

hence infer (vi) δ B (S 1)P

̂(b̄)c!d̄〈k〉
⇒ ΩP δ′ B ((S1)P)′, (vii) δ′ B S1

′ R δ′ B ((S1)P)′, and (viii)

202

Appendix G

δ B (S 2)P
ĉ?d̄〈l〉
⇒ δ B ((S2)P)′, (ix) δ B S2

′ R δ B ((S2)P)′. Using analogous reasoning to that
shown for rule Cntx2, the external actions within weak transitions (vi) and (viii) interact to

give us another weak transition δ B (S 1)P ‖ (S 2)P
τ̂〈p:k,l〉
⇒ δ′ B (new b̄.(((S1)P)′ ‖ ((S2)P)′))

which gives us the required matching transition. Moreover, by (vii) and (ix) we also infer that
((new b̄.(S1

′ ‖ S2
′)), (new b̄.(((S1)P)′ ‖ ((S2)P)′))) ∈ R, thus proving statement (iii) in this case.

– By Com2: Analogous to the above case.

– By Mon1:

Rule Mon1 dictates that some trace within S 1 and a monitor within S 2 interact, resulting in
a trace action. However, we know that α′ must be a process action, implying that transition

δ B S 1 ‖ S 2
α′

−→ C′ could not have been inferred using rule Mon1.

– By Mon2: Analogous to the above case.

Proof of (2):

Analogous to previous argument.

• S = new c.S 1, S ′′ = new c.(S 1)P.

Proof of (1):

We know (i) (δ B new c.S 1)R (δ B new c.(S 1)P), (ii) δ B new c.S 1
α
−→ΩP C′, and are required

to prove (iii) (δ B new c.(S 1)P
α̂
⇒ΩP C′′) ∧ (C′ RC′′).

Transition δ B new c.S 1
α
−→ΩP C′ was derived from an unfiltered transition of the form δ B

new c.S 1
α′

−→ C′ s.t. ΩP(α′) = α. Moreover, we can also infer that α′ (and by extension, α)
is a process action, since ΩP successfully mapped the original action (i.e., without pruning it).
Conversely, had α′ been a monitor or trace action, transition (ii) would have been pruned by ΩP

after filtration. Hence, given the structure of transition δ B new c.S 1
α′

−→ C′ and knowledge that
α′ is a process action, we infer that this latter transition could have been derived using one of
two rules:

– By Opens:

203

Appendix G

The above transition hence takes the form δ B new c.S 1
(c,b̄)c!d̄〈p:k〉
−−−−−−−→ δ′ B S1

′. Note that
the action modality is set to p, due to previous inference that α′ must be a process ac-
tion. By rule Opens we also deduce that this transition was inferred from another transi-

tion of the form δ B new c.S 1
(b̄)c!d̄〈p:k〉
−−−−−−→ δ′ B S1

′. By Def n of →ΩP we obtain transition

δ B new c.S 1
(b̄)c!d̄〈k〉
−−−−−→ΩP δ

′ B S1
′.

By Def n ofR, we know that (S 1, (S 1)P) ∈ R. By the IH we hence infer (iv) δ B ((S 1)P)
̂(b̄)c!d̄〈k〉
⇒ ΩP

δ′ B ((S1)P)′ (v) (δ′ B S1
′, δ′ B ((S1)P)′) ∈ R. Using analogous reasoning to before, we can

unravel weak transition (iv) to its sequence of unfiltered transitions, export additional chan-
nel b to the output label as necessary, and finally re-filter each transition, resulting in a weak

filtered transition of the form δ B new c.((S 1)P)
̂(c,b̄)c!d̄〈k〉
⇒ ΩP δ

′ B ((S1)P)′, which gives us the
required transition. Moreover, by (v) we already know that the residual configurations are in
R, thus proving the required statement (iii).

– By Cntx1:

The above transition hence takes the form δ B new c.S 1
α′

−→ δ′ B new c.S1
′. By rule

Cntx1 we also deduce that this transition was inferred from another transition of the form
δ B S 1

α′

−→ δ′ B S1
′. By Def n of→ΩP we obtain transition δ B S 1

α
−→ΩP δ

′ B S1
′.

By Def n of R, we know that (S 1, (S 1)P) ∈ R. By the IH we hence infer (iv) δ B ((S 1)P)
α̂
⇒ΩP

δ′ B ((S1)P)′ (v) (δ′ B S1
′, δ′ B ((S1)P)′) ∈ R. Using analogous reasoning to before, we can

unravel weak transition (iv) to its sequence of unfiltered transitions, add channel c on each
intermediate transition through numerous applications of rule Cntx1, and finally re-filter each

transition, thus resulting in a weak filtered transition of the form δ B new c.((S 1)P)
̂(c,b̄)c!d̄〈k〉
⇒ ΩP

δ′ B ((S1)P)′, which gives us the required transition. Moreover, given truth of (v), we hence
infer that (δ′ B new c.S1

′, δ′ B new c.((S1)P)′) ∈ R, thus proving the required statement (iii).

Note the impossibility of inferring transition δ B k~new c.S 1�
α′

−→ C′ using rule Opent, since
this would require α′ to be a trace action, which we have shown to be impossible.

Proof of (2):

Analogous to previous argument.

We next move on the proving veracity of the transfer property for systems placed in parallel
with a trace T i.e., proving truth for the second R clause which allows us to syntactically ignore
traces generated by a system and its projection at runtime, as long as they match on both sides.

204

Appendix G

• S = S 1 ‖ T, S ′′ = S1
′ ‖ T, given that (δ B S 1) R (δ B S1

′).

Proof of (1):

We know (i) (δ B S 1 ‖ T)R (δ B S1
′ ‖ T), (ii) δ B S 1 ‖ T

α
−→ΩP C′, and are required to prove

(iii) (δ B S1
′ ‖ T

α̂
⇒ΩP C′′) ∧ (C′ RC′′).

Clearly, statement δ B S 1 ‖ T
α
−→ΩP C′ was derived from an unfiltered transition of the form

δ B S 1 ‖ T
α′

−→ C′ s.t. ΩP(α′) = α. Moreover, we can also infer that α′ (and by extension, α)
is a process action, since ΩP successfully mapped the original action (i.e., without pruning it).
Conversely, had α′ been a monitor or trace action, transition (ii) would have been pruned by ΩP

after filtration. Hence, given the structure of transition δ B S 1 ‖ T
α′

−→ C′ and knowledge that α′

is a process action, we infer that this latter transition could have been derived using one of two
rules:

– By Cntx2:

With the transition under consideration taking the following form δ B S 1 ‖ T
α′

−→ δ B S1
′′ ‖ T .

By rule Cntx2 we also deduce that this transition was inferred further from another transition

δ B S 1
α′

−→ δ B S1
′′. Given that ΩP is a function, applying ΩP(α′) must return the same α.

Hence, by Def n of→ΩP we obtain δ B S 1
α
−→ΩP δ B S1

′′.

Given that (δ B S 1) R (δ B S1
′) and δ B S 1

α
−→ΩP δ B S1

′′, by the IH we obtain (iv)

δ B S1
′

α̂
⇒ΩP C′′′, (v) δ B S1

′′ RC′′′. Let us assume that C′′′ = δ B S1
′′′ ...(vi). By

applying the Def n of →ΩP numerous times on weak transition (iv) to obtain its unfiltered
counterpart, subsequently applying rule (Cntx2) to attach trace T to each configuration within
this sequence, and re-applying ΩP on all (unfiltered) transitions, we obtain weak transition

δ B S1
′ ‖ T

α̂
⇒ΩP δ B S1

′′′ ‖ T , which gives us the matching transition.

In order to complete the proof, we are required to prove that the residual configurations are in
R. By statement (vi) we can rewrite (v) as δ B S1

′′ R δ B S1
′′′. Hence, by the second clause of

R we can deduce that δ B (S1
′′ ‖ T)R (δ B S1

′′′ ‖ T), thus completing the proof for (iii).

– By Cntx3:

Rule (Cntx3) dictates that the rightmost system in configuration δ B S 1 ‖ T must have per-
formed the action. However, given that a trace T can only produce actions tagged with modal-

205

ity t, and from the definition of ΩP we know that all non-process actions are pruned, then we

can safely conclude that δ B S 1 ‖ T
α′

−→ C′ could not have been derived by (Cntx3).

Note that rules Com1 and Com2 are eliminated from the offset, since it is impossible for a
trace T to communicate using either process or monitor actions. Rules Mon1 and Mon2 are
also disallowed, since we inferred that α′ must be a process action. Hence, it is impossible for

δ B S 1 ‖ T
α′

−→ C′ to have been inferred using these latter two rules either.

Proof of (2):

Analogous to previous argument.
�

206

Bibliography

[1] Charlie Abela, Aaron Calafato, and Gordon J. Pace. Extending wise with contract man-
agement. In WICT 2010.

[2] Gul Agha. Actors: A Model of Concurrent Computation. PhD thesis, MIT, 1986.

[3] E. A. Akkoyunlu, K. Ekanadham, and R. V. Huber. Some constraints and tradeoffs in
the design of network communications. In Proceedings of the fifth ACM symposium on
Operating systems principles, SOSP ’75, pages 67–74, New York, NY, USA, 1975. ACM.

[4] Dr. Thomas Allweyer. BPMN 2.0: Introduction to the Standard for Business Process
Modeling. 2010.

[5] Bowen Alpern and Fred B. Schneider. Defining liveness. Technical report, Ithaca, NY,
USA, 1984.

[6] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Sci-
ence, 126:183–235, 1994.

[7] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Book-
shelf, July 2007.

[8] Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus Havelund, Sarfraz Khurshid,
Mike Lowry, Corina Pasareanu, Grigore Roşu, Koushik Sen, Willem Visser, and Rich
Washington. Combining test case generation and runtime verification. Theoretical Com-
puter Science, 336(2-3):209–234, May 2005.

[9] Özalp Babaoğlu and Keith Marzullo. Consistent global states of distributed systems: fun-
damental concepts and mechanisms. pages 55–96, 1993.

[10] Fabio Barbon, Paolo Traverso, Marco Pistore, and Michele Trainotti. Run-time monitoring
of instances and classes of web service compositions. In ICWS ’06: Proceedings of the
IEEE International Conference on Web Services, pages 63–71, Washington, DC, USA,
2006. IEEE Computer Society.

[11] Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume 103
of Studies in Logic and the Foundations of Mathematics. North-Holland, 1984.

207

[12] Robert F. Barnes. Interval temporal logic: A note. Springer, November 1981.

[13] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-based run-
time verification. pages 44–57. Springer, 2004.

[14] P. Bellini, R. Mattolini, and P. Nesi. Temporal logics for real-time system specification.
ACM Comput. Surv., 32(1):12–42, 2000.

[15] Eric Bodden, Laurie Hendren, Patrick Lam, Ondrej Lhoták, and Nomair Naeem. Col-
laborative runtime verification with tracematches. In Oleg Sokolsky and Serdar Tasiran,
editors, Runtime Verification, volume 4839 of Lecture Notes in Computer Science, pages
22–37. Springer Berlin / Heidelberg, 2007.

[16] Marco Brambilla, Stefano Ceri, Piero Fraternali, and Ioana Manolescu. Process model-
ing in web applications. ACM Transactions on Software Engineering and Methodology
(TOSEM), 15:360–409, 2006.

[17] Zhou Chaochen, C.A.R Hoare, and Anders P.Ravn. A calculus of durations. Oxford
University Computing Laboratory, Programming Research Group, 1991.

[18] David Chappell. Enterprise Service Bus. O’Reilly Media, June 2004.

[19] Feng Chen and Grigore Roşu. Towards monitoring-oriented programming: A paradigm
combining specification and implementation. In Workshop on Runtime Verification
(RV’03), volume 89(2) of ENTCS, pages 108 – 127, 2003.

[20] Feng Chen and Grigore Roşu. Java-mop: A monitoring oriented programming environ-
ment for java. In Nicolas Halbwachs and Lenore D. Zuck, editors, Tools and Algorithms
for the Construction and Analysis of Systems, volume 3440 of Lecture Notes in Computer
Science, pages 546–550. Springer Berlin / Heidelberg, 2005.

[21] Gordon J. Pace Christian Colombo and Gerardo Schneider. Resource-bounded runtime
verification of java programs with real-time properties. Technical report, Department of
Computer Science, University of Malta, 2009.

[22] Koen Claessen and Gordon J. Pace. An embedded language framework for hardware
compilation. In Designing Correct Circuits ’02, Grenoble, France, April 2002.

[23] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. The MIT Press,
The MIT Press Massachusetts Insititute Of Technology Cambridge, Massachusetts 02142,
1999.

[24] Séverine Colin and Leonardo Mariani. Run-time verification. In Model-Based Testing of
Reactive Systems, pages 525–555. Springer, 2004.

208

[25] Christian Colombo. Practical runtime monitoring with impact guarantees of java programs
with real-time constraints. Master’s thesis, University of Malta, 2008.

[26] Marcelo d’Amorim and Klaus Havelund. Event-based runtime verification of java pro-
grams. SIGSOFT Softw. Eng. Notes, 30(4):1–7, 2005.

[27] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd
Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. Lola: Runtime mon-
itoring of synchronous systems. In 12th International Symposium on Temporal Repre-
sentation and Reasoning (TIME’05), pages 166–174. IEEE Computer Society Press, June
2005.

[28] Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui. Shared memory vs
message passing. Technical report, 2003.

[29] Dorothy E. Denning. An intrusion-detection model. IEEE Transactions on Software En-
gineering, 13:222–232, 1987.

[30] Edsger W. Dijkstra. Structured programming. chapter Chapter I: Notes on structured
programming, pages 1–82. Academic Press Ltd., London, UK, UK, 1972.

[31] D. Drusinsky. On-line monitoring of metric temporal logic with time-series constraints
using alternating finite automata. 12(5):482–498, 2006.

[32] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2005.

[33] Michael D. Ernst. Static and dynamic analysis: Synergy and duality. In WODA 2003:
ICSE Workshop on Dynamic Analysis, pages 24–27, Portland, OR, May 9, 2003.

[34] Yliès Falcone. You should better enforce than verify. In Proceedings of the First inter-
national conference on Runtime verification, RV’10, pages 89–105, Berlin, Heidelberg,
2010. Springer-Verlag.

[35] C.J. Fidge. Timestamps in message-passing systems that preserve the partial ordering.
In Proceedings of the 11th Australian Computer Science Conference, volume 10, pages
56–66, 1988.

[36] Bernd Finkbeiner, Sriram Sankaranarayanan, and Henny B. Sipma. Collecting statistics
over runtime executions. In In Proceedings of Runtime Verification (RV‘02) [1], pages
36–55. Elsevier, 2002.

[37] Bernd Finkbeiner and Henny Sipma. Checking finite traces using alternating automata. In
In Proceedings of Runtime Verification (RV‘01) [1, pages 44–60, 2001.

209

[38] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding code mobility.
IEEE Transactions on Software Engineering, 24:342–361, 1998.

[39] Vijay K. Garg. Concurrent and Distributed Computing in Java. John Wiley & Sons, 2004.

[40] Dimitra Giannakopoulou and Klaus Havelund. Runtime analysis of linear temporal logic
specifications. Technical report, 2001.

[41] Eugen-Ioan Goriac, Dorel Lucanu, and Grigore Roşu. Automating coinduction with
case analysis. In Twelfth International Conference on Formal Engineering Methods
(ICFEM’10), volume 6447 of Lecture Notes in Computer Science, pages 220–236.
Springer, 2010.

[42] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow program-
ming language lustre. Proceedings of the IEEE, 79(9):1305–1320, September 1991.

[43] Klaus Havelund. Using runtime analysis to guide model checking of java programs. In
Proceedings of the 7th International SPIN Workshop on SPIN Model Checking and Soft-
ware Verification, pages 245–264, London, UK, 2000. Springer-Verlag.

[44] Klaus Havelund and Grigore Roşu. Efficient monitoring of safety properties. Int. J. Softw.
Tools Technol. Transf., 6:158–173, August 2004.

[45] Klaus Havelund and Grigore Rosu. Java pathexplorer - a runtime verification tool. In In
The 6th International Symposium on Artificial Intelligence, Robotics and Automation in
Space: A New Space Odyssey, page 2001, 2001.

[46] Matthew Hennessy. A Distributed Pi-Calculus, chapter 2, pages 10–54. Cambridge Uni-
versity Press, 2007.

[47] Matthew Hennessy. A Distributed Pi-Calculus. Cambridge University Press, New York,
NY, USA, 2007.

[48] Matthew Hennessy. A Distributed Pi-Calculus, chapter 5, pages 124–191. Cambridge
University Press, 2007.

[49] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, June 1985.

[50] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction. EATCS Bulletin,
62:62–222, 1997.

[51] Wolfram Kahl, Christopher K. Anand, and Jacques Carette. Control-flow semantics for
assembly-level data-flow graphs. In 8th International Conference on Relational Methods
in Computer Science, RelMiCS 8, volume 3929, pages 147–160, 2005.

[52] Stephen H. Kan. Metrics and Models in Software Quality Engineering. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1994.

210

[53] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An overview of aspectj. pages 327–353. Springer-Verlag, 2001.

[54] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean
marc Loingtier, and John Irwin. Aspect-oriented programming. pages 220–242. Springer-
Verlag, 1997.

[55] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-mac: a run-time
assurance tool for java programs. In In Runtime Verification 2001, volume 55 of ENTCS.
Elsevier Science Publishers.

[56] Moonjoo Kim, Mahesh Viswanathan, Hanêne Ben-Abdallah, Sampath Kannan, Insup Lee,
and Oleg Sokolsky. Formally specified monitoring of temporal properties. In ECRTS,
pages 114–122. IEEE Computer Society, 1999.

[57] Ingolf H. Krüger, Michael Meisinger, and Massimiliano Menarini. Interaction-based run-
time verification for systems of systems integration. Computer Science and Engineering
Department, University of California, San Diego USA, July 2008.

[58] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng.,
3:125–143, March 1977.

[59] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978.

[60] Martin Leucker and Christian Schallhart. A brief account of runtime verification, 2008.

[61] C. Liebig, M. Cilia, and A. Buchmann. Event composition in time-dependent distributed
systems. In COOPIS ’99: Proceedings of the Fourth IECIS International Conference on
Cooperative Information Systems, page 70, Washington, DC, USA, 1999. IEEE Computer
Society.

[62] Boon Thau Loo. The Design and Implementation of Declarative Networks. PhD thesis,
EECS Department, University of California, Berkeley, Dec 2006.

[63] J. Lundelius and Jennifer L Welch. Synchronising clocks in a distributed system. Technical
report, Cambridge, MA, USA, 1984.

[64] Masoud Mansouri-Samani and Morris Sloman. Gem: a generalized event monitoring
language for distributed systems. Distributed Systems Engineering, 4(2):96–108, 1997.

[65] Patrick Meredith and Grigore Roşu. Runtime verification with the RV system. In First
International Conference on Runtime Verification (RV’10), volume 6418 of Lecture Notes
in Computer Science, pages 136–152. Springer, 2010.

211

[66] Robin Milner. Communication and concurrency. Prentice Hall International (UK) Ltd.,
Hertfordshire, UK, UK, 1995.

[67] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge Univer-
sity Press, June 1999.

[68] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John Wiley & Sons,
2004.

[69] OASIS. Web Services Business Process Execution Language Version 2.0, April 2007.

[70] Christof Paar and Jan Pelzl. Understanding Cryptography - A Textbook for Students and
Practitioners. Springer, 2010.

[71] Gordon Pace, Christian Colombo, and Gerardo Schneider. Dynamic event-based runtime
monitoring of real-time and contextual properties. In 13th International Workshop on For-
mal Methods for Industrial Critical Systems (FMICS’08), LNCS 4916. Springer-Verlag,
2008.

[72] Amir Pnueli. The temporal logic of programs. Foundations of Computer Science, Annual
IEEE Symposium on, 0:46–57, 1977.

[73] Paola Quaglia and David Walker. On encoding p-pi in m-pi. In Proceedings of the 18th
Conference on Foundations of Software Technology and Theoretical Computer Science,
pages 42–53, London, UK, 1998. Springer-Verlag.

[74] Usa Sammapun and Oleg Sokolsky. Regular expressions for runtime verification. in
Proceedings of the 1st International Workshop on Automated Technology for Verification
and Analysis (ATVA’03), 2003.

[75] Davide Sangiorgi. On the origins of bisimulation and coinduction. ACM Trans. Program.
Lang. Syst., 31:15:1–15:41, May 2009.

[76] Davide Sangiorgi and David Walker. π-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press, New York, NY, USA, 2001.

[77] Thomas S.Cook, Doron Drusinksy, and Man-Tak Shing. Specification, validation and
run-time moniroting of soa based system-of systems temporal behaviors. In In System of
Systems Engineering (SoSE). IEEE Computer Society, 2007.

[78] R. Sekar and P. Uppuluri. Synthesizing fast intrusion prevention/detection systems from
high-level specifications. In In USENIX Security Symposium, pages 63–78, 1999.

[79] Koushik Sen, Grigore Roşu, and Gul Agha. Runtime safety analysis of multithreaded
programs. In ESEC/FSE-11: Proceedings of the 9th European software engineering con-
ference held jointly with 11th ACM SIGSOFT international symposium on Foundations of
software engineering, pages 337–346, New York, NY, USA, 2003. ACM.

212

[80] Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Roşu. Efficient decentralized mon-
itoring of safety in distributed systems. Software Engineering, International Conference
on, 0:418–427, 2004.

[81] Peter Sewell. Applied pi - a brief tutorial. Technical report, University of Cambridge,
Computer Laboratory, July 2000.

[82] A. C. Simpson. Discrete Mathematics by Example. McGraw-Hill, 2002.

[83] Michael Sipser. Introduction to the Theory of Computation. International Thomson Pub-
lishing, 1st edition, 1996.

[84] Richard W. Stevens. UNIX Network Programming. Prentice Hall, October 1997.

[85] Henrik Thane. Monitoring, Testing and Debugging of distributed real-time systems. PhD
thesis, Mechatronics Laboratory, Department of Machine Design, Royal Institute of Tech-
nology, KTH, S-100 44 Stockholm, Sweden, 2000.

[86] Linda Westfall. The Certified Software Quality Engineer Handbook. American Society
for Quality Press, 2009.

[87] Karen Zee, Viktor Kuncak, Michael Taylor, and Martin Rinard. Runtime checking for
program verification. In Proceedings of the 7th international conference on Runtime veri-
fication, RV’07, pages 202–213, Berlin, Heidelberg, 2007. Springer-Verlag.

[88] Wenchao Zhou, Oleg Sokolsky, Boon Thau Loo, and Insup Lee. Dmac: Distributed mon-
itoring and checking. In Saddek Bensalem and Doron Peled, editors, RV, volume 5779 of
Lecture Notes in Computer Science, pages 184–201. Springer, 2009.

213

