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Abstract

We considerr-Calculus as the foundation of our study, by analyzing thdayand se-
mantics that this notation offers. We then describe a sinyang convention that will

be used to type-check-Calculus programs. This is followed by the description of a
intermediate representation of theCalculus, and we suggest how serval machine im-
plementations can use this representation to simul&alculus programs. A parser and
compiler are constructed. These will translat€alculus program into this intermediate
representation. Subsequently, we concentrate on Daviduhers Abstract Machine,
to develop a Stand-Alone Virtual Machine capable of intetipg 7-Calculus, and sim-
ulating a correct execution on the semantic meaning of thengorogram. We tackle a
number of optimizations that are incorporated with the iecture of the Stand-Alone
machine, to produce a more efficient simulation. We presenatchitecture for an Inter-
active Virtual Machine to allow a user to communicate wité gnogram during execution,
and we give an illustration on the differences between adsfdane virtual machine and
an Interactive virtual machine. We then verify the corressof the virtual machines’
implementations, by presenting a number of examples. Welegda by examining the
capability of the Interactive virtual machine, in creatiag abstract layer between the
implementation details of-Calculus programs and the user. We illustrate how a typi-
cal user is unable to distinguish between tw&alculus programs, that offer the same

functionalities, but have a different internal implemeiuta.
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Chapter 1

Introduction

Ther-Calculus is part of the family d?rocess Calculiwhich are all formal mathematical
paradigms, used to model concurrent systems. The notdtirooess Calculi describe a
framework based on processes which execute concurrentipgdwhich a pair of these

processes can synchronize by communicating. A4@alculus was developed with ex-
clusive interest on the mobility of process communicatiorgoncurrent systems. It was
originally developed by Robin Milner, but many others cdnited to this growing re-

search. Throughout this dissertation we will be dealindhwite Polyadic 7-Calculus

which is a variant to the original-Calculus.

The descriptive ability that-Calculus offers, emerges from the conceptaming where
communication links, known as channels, are referenceagusinaming convention.
Hence, mobility arises by having processes communicatieghannel names. This is a
remarkable primitive perception, however, it gives th€alculus a practical expressive
power, which, as a result, can provide building blocks fdreotcomplex concurrent lan-
guages.‘It would serve as a flexible intermediate language for colensi of concurrent

languages”- David N. Turner.
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Our aim throughout this dissertation will be that of devéhgpa machine capable of un-
derstandingr-Calculus notation, and which gives an interpretation &rtteaning behind
the given description. This leads us to the development ohapder for ther-Calculus
notation, which will ‘understand’ the notation and transléto a more manageable form.
Hence, an interpreting machine would apply rules tosth@alculus notation, to give an

interpretation.

1.1 Aims and Objectives

The following is a list of the main objectives we shall be tryito achieve through this
study. The order in which these are given, reflects the omevhich they should be
carried out, since these goals build up on each other. Figargives a depictive outline

of what we shall try to achieve, showing how the goals depeneazh other.

e Learn whatr-Calculus is about, comprehend its notation and variation and

be aware of the logical programming that can be constructed ®alculus.

¢ Reflect on other studies that have been completed, in ordaictore where this
dissertation stands next to these studies, and to gathas mie what has already

been achieved by others, and how this was achieved.

e Design a Parser and Compiler, which serves to transtalculus programs into
an intermediate code representation, where this repisamts to be used by var-
ious Virtual Machines, each of which can be developed to m@iish different

tasks.

e Develop a Virtual Machine capable of interpreting the intediate code ofr-

Calculus programs, and perform an isolated execution sfabde.
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e Develop another Virtual Machine, which extends the funwidy of the previous
machine, by allowing external sources to interact duriregekecution of the pro-

gram.

n-Calculus Intermediate Code V1r cual Machine 1}
Programs Represenation

Vlrtual Machine 2}

|

Figure 1.1: Overview of the objectives

1.2 Chapter Overview

Following this introductory chapter, the structure of tdiscument almost follows the

aims given in Section 1.1. Chapter 2 of this dissertatiorgithe background and the
literature review on the critical points about theCalculus that are required to be un-
derstood for the rest of the study. We target the syntax améstcs ofr-Calculus, we

discuss a simple typing system and we look at related work.

In Chapter 3 we go on to the design of the translation modulegh involves the pars-
ing of ther-Calculus source code, type-checking the program, and itiognit into an
intermediate representation. We outline the componeiatisniake up the intermediate

representation.

Chapter 4 gives the development &&&nd-Alone Virtual Machinavhich is mostly based
on Turner’s Abstract Machine[Tur95]. We give a frameworkwlnich 7-Calculus pro-
grams are correctly executed, followed by a number of ogttions to aid the perfor-

mance of the Virtual Machine.
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We then move on the Chapter 5, where we suggest the develomhan Interactive
Virtual Machine and what benefits we acquire. We discuss a different desigmthat of
the Stand-Alone Virtual Machine. However, we will give arafysis of the optimizations
included in the Stand-Alone Virtual Machine and investigétthese optimizations will

still be valid, when adopted by the Interactive Virtual Mah

In Chapter 6 we give an evaluation analysis of the modulestthge been developed
throughout this dissertation. We give special intereshlnteractive Virtual Machine
where we investigate this level of abstraction that this imae offers to the user. We
develop twor-Calculus programs, with the same functionalities butedéht implemen-

tation details, and we discuss how the user is unable tandisish one from the other.

We give our concluding remarks in Chapter 7, where we ingatti what benefits have
been acquired from this dissertation. We even give theditaih of the final application,

and some ideas about the vision for possible future works.



Chapter 2

Background

This chapter consists of the literature review regardimgtiCalculus. We introduc&he
Polyadicr-Calculusby defining the Syntax Rules, Structural Rules and Reduiges,
which we will use to build the compiler in Chapter 3 and theuat machines in Chapters
4 and 5. We then give an overview of a simple typing systenh shiat we ensure that
the communication between channels is done accuratelgllyive take a look at other
studies, which are tightly related to this dissertationegédnstudies have developed various
machines and architectures foiCalculus, all of which, give us a motivation for the rest

of this project.

2.1 The Polyadicr-Calculus

Ther-Calculus notation models parallel processes, which ceomeinputor outputac-
tions throughchannelsthus allowing the processes to communicate. The messagh wh

is sent from one process to the other iname which gives a reference to a channel.
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The communication of the channels’ names themselves altlewptocesses to dynam-
ically change the network of relations between them, thihowdich communication is

established.

Here we will be dealing with th€olyadic 7-Calculus which differs slightly from the
original 7-Calculus the Monadicr-Calculug. The difference between the two is that, in
Monadicr-Calculus, a single channel name is allowed to be exchangedgdcommu-
nication, while in the Polyadig-Calculus, a list of channel names, known dgpale, can

be exchanged during a single interaction, wherettipée can possibly be empty.

In the Polyadicr-Calculus, a typing system for the channels is required ¢vgmtarity
mismatchbetween the input action and the output action. Arity misinéiappens when
the number of sent channels does not match the number of argarof the receiving

action.

Interested readers should refer to the book “CommunicatimdyMobile Systems: The
m-Calculus”, by Robin Miler [Mil99]. In his book, Milner gatirs most of his work, and
introducesr-Calculus, asthe new way of modeling communicationThis book and
other technical reports [Mil89a, Mil89b], again by Milnevere very useful during the
study of this project.

2.1.1 Syntax

The syntax of ther-Calculus langauge that will be used throughout this diatien is
given in Table 2.1. In ther-Calculus the simplest form of entity isrsame A name
is regarded as the referencing convention for a channaugffir which processes can

communicate.
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P,Q,R,S:= P|Q
| if x =y then P else @)
| (#2)P
| Mg, ... v,].P
| ¢?(xy,...,2,).P
| *xc?(xg,...,2,).P
| T.P
| 0

Concurrency
Conditional Statement
Channel Scoping
Output Action

Input Action

Replicated Input Action
Internal Action

Null Process

Table 2.1: Syntax for the-Calculus

Example 2.1 (Using names):The actionc![a] in this system has the potential to output

(send) the channel named This channel must be known since the action is trying to

communicate it, hence it is using the channel name

[a].Q

The w-Calculus notation makes use of channel variables. A veriagdpresents a place-

holder for a channel which is currently unknown, but has theptial to become known.

Example 2.2 (Using variables):In this example, the actioa?’(z) has the potential to

input (receive) a channel, and since it is not yet known whltdinnel it will receive, then

the variabler is used.

c?(x).P

The following is a description of the meanings behind thetaymgiven in Table 2.1.

Further in-depth analysis can be found in [SW03a].

Concurrency means that procesB runs independent of procegsg Both processes

can communicate channel names between them by performind/autput actions on
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a common channel. When multiple processes are running c@mtly, we have non-

deterministic communication.

A Conditional Statement will check for the equality of the two channetsandy, (z = ).
If these channels are found to be equal, then the computatiaimues ag’. Otherwise,

if the channels are not equal, the computation continués as

Channel Scoping® restricts the scope of the given nameeducing its usage only to the
processP. For instance, in example 2.3, the namis private (orbound) to the system

z?(z).P. Channel names which are not bound to any process are saédreelnames

Example 2.3 (Channel scoping):The process?(z).P is unable to interact with the

process:![a].() through channet, since these are actually different channels.

2Aa].Q | (#2)27(x).P

An Output Action will communicate with another process, by sending the taptdannel
namesy, ...y,, through the channel. When this is completed, the execution of the

process continues a3

An I nput Action communicates with another process through chanmehere it receives
a tuple of channel names. As we have already described, wedhayle of variables,
11, ---Yn, @waiting to receive the channel names from another prategsg communica-
tion. Thus these variables are substituted to channel ndmasghout the process, once

these names are received.

This brings us to another channel scoping concept. Sinag@tces of the variablesin a
process will be substituted by the channel names, thesablasiare bound to the process

by the input action.

INote that this is not the only operator for channel scoping this is indirectly obtained through the

Input Action
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Example 2.4 (Channel scoping by input actions):Note how in this system, the processes
c?(x).x![b].Q andx?(y). R give the impression that these processes have potentiairto c
municate through. However, note how is bound to the process;(z).z![b].Q), because

of the preceding input.

cla].P | ¢?(x).2![b].Q | 27(y).R — P | al[b).Q | x7(y).R

A Replicated I nput Action has the same behavior as an input action. The differencatis th
upon communication, it produces a copy of itself before pealing with the execution,

thus leaving an intact copy within the system.

Example 2.5 (Replicated input action): The action«c?(x) releases a copy of the whole

process that executes this action, upon communicatingamitither process.

clla).Q | xc?(z).P — xc?(x).P | Q| P

An Internal Action is regarded as an unobservable action which will simplyicoetas

P, without affecting any surrounding processes.

A Null Processis an inactive process which cannot proceed to any furth@ipcations,

and hence, it would simply terminate.

2.1.2 Reduction Semantics

The semantics of a language, is the meaning behind the expnesor the arrangement
of terms, which are composed from the syntax of the languége-Calculus we deal
with Reduction Semantics, which is the meaning behind tteaton of processes when
these communicate. These semantics will be defined usinigtéore —, between two

processes, showing how a process reduces its state, atehithhas performed a single

9
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s-assoc Py | (P2 | P3) = (P | ) | Ps
s-comm P|Q=Q|P
s-null P|0=P
s-scope  (#2)P | Q = (#2)(P | Q) ifz ¢ fn(Q)
s-scope-comm (#z)(#w)P = (#w)(#z)P
s-scope-null  (#2)0=0

Table 2.2: Structural equivalence rules feCalculus

action. For instance the proceBss reduced to a different state @s

P—Q

We will use the closure of the relation;, to denote the reduction of a procg34o Q) in
an arbitrary number of steps.
P—"Q

We start familiarizing with the semantic meaning of our lange by defining a set of
axioms for the structure of the langauge. Th8s®eictural Equivalence Rulese given in
Table 2.2. Such equivalences between different procetessfermit us to manipulate the
arrangement of the terms ofaCalculus program, without affecting the semantics of the
program. Hence, these equivalences give us control ovesetipgence of the terms, such
that, Reduction Semantics can be applied to processes wdreaqgplicable, regardless of

the structure of the program.

s-assoeneans that the concurrency operatpis associative between processes, meaning
that the order in which parallel processes are executed wnloeaffect the end result.
Parentheses are used to denote operator precedence, hotisvumportant to note that

the system will still execute non-deterministically.

Example 2.6 (Associativity): Note how the processy(z).P, can still reduce nondeter-

10
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ministically with one of the other processes.

cllal.Q | (c?(z).P | c!(b).R) = (c!|a].Q | ¢?(z).P) | cl(b).R

s-commadenotes that, any two processes executing in parallel anencative, meaning
that the two can be interchanged between the concurreneptope, and still produce

the same resuilt.

Example 2.7 (Commutativity): Note how the position of the following two processes

within this system, does not affect the communication.

Aa].Q | ¢?(z).P = cla].Q | ¢?(z).P

s-null implies that a procesB executing in parallel with a null proceds,is not affected
with the presence of the null process, and neither is it s#ted this null process is

discarded.

s-scopemplies that channel scoping applied on a procéss;an be applied to process
@, for a channet, if the channel name is part of the set of free names@f This means
that the name is not used within the procegg. Hence if its scope had to be expanded

from P to (P | Q), it will not affect the execution.

Example 2.8 (Structural equivalence in channel scoping)in the following system the
scoping of the channel namas expanded/reduced without affecting the end resultgsinc

the process?[z].0 is unaware of the channel name

(#2)(z![a].0) | ¢?[x].0 = (#2)(z![a].0 | ¢?[x].0)

s-scope-comnuenotes that the sequence of two scoping operators is cativajimean-

ing that the two can be interchanged without changing therest.

11



CHAPTER 2. BACKGROUND

(r-communication)
N1,y 2n). P | Ayrs o, yn) Q — PV [ o b Q

(r-replicated-communication)
*C(T1, ooy Tn) P | A1y ooy Yn) . Q — *c?(x1, ooy ). P | P{V¥ /0 2 3@

(r-tau) (r-struct)

p_.p P=P P —0CQ Q=Q

P—Q
(r-concurrent) (r-scope)

P—Q P—Q
PIR—Q|R (#2)P — (#2)Q
(r-condition-true) (r-condition-false)

rT=y TFyY
if v =ythen Pelse ) — P if v =ythen Pelse Q — @

Table 2.3: Reduction rules for theCalculus

s-scope-nullmeans that a scoping operator does not have any effect ombhgrocess,

since this does not include any names.

To describe the reductions of the processes, we define aRetoiction Rulesvhich for-
malize how processes communicate between themselvegdiein execution. Table 2.3

gives these Reduction Rules for theCalculus.

r-communication is the communication rulestating how two processes communicate
through a common channel One of the processes hasaatput (send) a tuple of names
through this channel , while the other process haspat (receive) these names, which
are defined as a tuple of variables up to communication. Qratetie names are received,
the input variables are substituted by the received chararaks throughout the process.
We use the notatio®{"“*/,4} to denote that the named is substituted by the name

new throughout process.

12
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Example 2.9 (Process communication)Consider the system of processges When
these processes communicate, the t{plg is sent from the process on the right side, to
the process on the left side. This would result in having twgables|z, y] replaced by

the received valu€s, b] respectively throughout the proced$|. P.
S = (x,y).z!c].P | dla,blQ
— alld.P{""/ay} | Q

r-replicated-communication is similar tor-communication, only that the replication ac-
tion is performed. Upon communication, the process withrépéicated input action will

persist with a copy of itself.

Example 2.10 (Replicated communication):Consider the systeisi. When the processes
communicate, the process?(x,y).z![c].P is retained, and a new process is launched
c?(z,y).x![c].P. This process will receive the tuple of channel names antirogs re-
ducing, as illustrated in example 2.9.

S = xc?(z,y).2![c].P | ca,bl@Q

— xc(x,y).2ld.P | ald.P{*"/s,} | Q

r-tau gives the rule fotau (r) reductions, or internal reductions, where an unobservable

action is processed, reducing the process, independeutrotisiding processes.

r-concurrent rule states that a reduction is possible for processes in@ucent environ-

ment.

r-scope rule states that a reduction is possible for processesioamjdound names, and

the scoping of these channels remains unchanged.

r-struct infers that a reduction is possible fromto @; if there is a reduction fron®; to

@1, and if P and( are equivalent t@”; and(@); respectively.

13
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r-condition-true states that ifc is found to be equal tg, then the conditional statement

would reduce to the process

Example 2.11 (Conditional statement evaluating to True):Consider the system S,
where the conditional statement is evaluatedrte. Hence the procesB follows the

execution.

S = dla,a]l.R | c?(z,y).if x = y then P else Q

— R | P{a’a/x,y}

r-condition-false states that ifc is not equal tay, then the conditional statement would

reduce to the process.

Example 2.12 (Conditional statement evaluating to False)Consider the system S,
where the conditional statement is evaluatedalse Then the proces® follows the

execution.

S = da,bl.R | c?(x,y).if z = y then P else Q

— R|Q{""/sy}

So far, we have only witnessed examples which illustratentf@@alculus notation and
sematic rules. The following example offers a more usefualcept thatr-Calculus can

be used for.

Example 2.13 (Memory cells): Consider a process using the channel namaédo out-

put a value that have been received earlier in the execUti@ninstance,
cell?[value].cell![value]. P

Note how, this process is temporary storing the name redeisehe variablealue.

14
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Now, let us used the replicated input action to allow us tdwéd of a cell for an unlimited
number of times, and use the scoping operator to give eadfeafreated cells a unique

name. For example,
xcreatecell?(value, getcell).(#cell) (cell!lvaluel.0 | getcell![cell].0)

Observe how this process would communicate with anothergssy in the following

system.

xcreatecell?(value, getcell).(#cell) (cell!lvaluel.0 | getcell![cell].0)

| createcell![helloworld, listener].listener?(my firstcell).my firstcell?(message).Q

The replicated process communicates with our processdhrthe channetreatecell.
Our process passes the namgloworld that will be stored, and the name listener. The

channel listener will thus communicate back the cell hajdime channel helloworld.

xcreatecell?(value, getcell).(#cell)(cellllvaluel].0 | getcell![cell].0)

| (#cell)(cell'[value].0 | getcell![cell].0){eHowortd: tistener /o setcett }

| listener?(my firstcell).my firstcell?(message).Q

What follows is the scoping operator that executes on thara#lacell. Since the scoping
operator restrict the channelll, by creating a unique channelll, and substitutingell
by cell, throughout the concerned processes. Hence, we will end tlpawinique ‘cell’
waiting to output the nameelloworld and our channelistener waiting to output the

name just created channel/,.

xcreatecell?(value, getcell).(#cell)(cellllvaluel].0 | getcell![cell].0)
| celly![helloworld).0{" / ...}
| listener![celly).0{° / .}

| listener?(my firstcell).my firstcell?(message).Q
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Next our process will communicate through the chariigkner, to input the channel

representing the cell.

xcreatecell?(value, getcell).(#cell)(cellllvaluel].0 | getcell![cell].0)

| celly![helloworld).0

| cello?(message).P{Ceuo/myﬁrstceu}
Finally our process will retrieve back the namédloworld that was stored earlier.

xcreatecell?(value, getcell).(#cell)(cell!lvaluel].0 | getcell![cell].0)

| P{helloworld/message}

2.1.3 Simplifications and Assumptions

In the syntax that we defined, two key simplifications were en@adhe original Polyadic
m-Calculus. We omitted completely tf@immatioroperator, and we restrictdgieplica-
tion to Input actions only. This will simplify the virtual maches’ development and their

performance drastically.

The Summation operator gives a choice for communicationubipte processes, where

these processes cannot communicate among themselvesstemde, in the example be-

low processe#’, (Q and R cannot communicate among themselves, and only one of these

can perform communication with process - this is the choice. When communication

occurs, the chosen process follows the execution, whilettners are discarded.

(P+Q+R)| M

The main reason for removing the summation operator, isusedarequires huge amounts

of memory usage when compared to the oth€ralculus operators, and it is not very use-
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ful and is rarely used. Turner in his thesis [Tur95], statew the experiment with PICT
[PT0O0] has shown this.

The second simplification that we undertook (discussed faildgy Turner [Tur95]), is

the restriction of replication to processes with input@asi, which we called Replicated
Input. Full replication of a process is when a process coipsedf upon performing an
action, regardless of what that action is. The structuraivadence that was omitted,

which defined replication is given below.
xP =P | xP

If we had to allow this axiom to be observed, then there wilhbecontrol over how this
operator would replicate the processes. This would resuiaiving the process replicate
itself to infinity.

«P— P|P|P|...|P|*P

By restricting replication to input action, we avoid havithgs situation, since a process
will only be replicated when this communicates through dicafed input action. In

addition to this, full replication can be easily encoded st jusing replicated input.

*P = (#c)(xc?().(P| ) | [])

2.2 Channel Typing

In this section we define a simple typing system, so that webailable to controArity
Mismatchduring communication. We shall not go into great detail sitigs is beyond the
scope of this work, however one can find further explanatiofSWO03b, Kob]. We will

use typing in both of the virtual machines that we shall dgwehroughout this project.

2Please note that minor choices can be encoded using theiomatistatement instead of the summation

operator.
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Specific details on how typing is used within the variousuattmachines, are given in

the forthcoming chapters.

Arity mismatch is triggered when a proce8ommunicates with another procé&gsand
the number of channel names that procgss outputting differs from the number ex-
pected by procesg while inputting. This will result in a runtime failure, whids highly
undesirable. Examples 2.14 and 2.15 presents simpleisitsavhere arity mismatch

will result in a runtime error.

Example 2.14 (Arity Mismatch): Consider the following two processes running within
a system.
c! [bl, bQ]P | C?(Ilj’l, T, {lj'g)Q

The process![b;, bs]. P is unaware of the number of variables the other process las T
communication will commence. However, after that the sdamame is sent and received,
process![by, b]. P continues a$’, but process?(z, x2, z3).Q is still waiting for an input
on the variable:;. This input will never happen. Hence this process locks uhitazannot

proceed with its execution. It is this situation that trigge runtime error.

Example 2.15 (Arity Mismatch): Now consider the following system of processes.

cl[bl.bla].P | ¢?(x).x?(y1, y2).Q

At a first glance, these two processes look promising, andeitns that both will com-
municate through channel and continue running without triggering any runtime esror
However, after these perform the communication, the sgnathanges completely, since
the process?(z).z7(y1,y2).Q) has received the channel namend once the variable

is substituted by this channel name, we get the followinggsion,

b[a].P | b?(y1,52).Q{"/}

Note how now, the system will perform a runtime failure, aplained in example 2.14.
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(err-communication) (err-tau)

itV £ X P —grror
al[V].P | a?(X).QQ — error T.P —trror
(err-scope) (err-concurrent)

P — crror P —¢rror 07 QQ —ErroR
(#Z)P — ERROR P | () —erroR
(err-struct) (err-condition)

P =P, Pi —¢grror P —grror 07 QQ —eRrproR
P —trror if z =ythenP else) —tgrror

Table 2.4: Runtime errors far-Calculus

We define the formal notation for when a system will producergime error in Table
2.4. This table gives all the possible states of a how a syb@mdles a runtime error.
Most important is to note the rukrr-communication, which triggers the error. Note the

error’s trail through the different states of the system.

To avoid our machines running into such a runtime error, wachtatypeto the channels
used within ar-Calculus program. The syntax for the typing of channelsivergin
Table 2.5. A channet is attached to a typ&, such that, this typ& gives a mould for
the tuple of names, that can be communicated through thenehan By using types,
before execution starts, the number of names that can be ooroated (input/output) is
retrieved from the type. If this number differs from the nienbf names (for outputs), or

the number of variables (for inputs), execution is withheld

As one can note, the structure of a Channel Type definitipis a tree like structure,
where the nodes represent a channel, and its children esyiréee tuple that is allowed
through the channel. Therefore, the number of children s@da type, symbolizes the
number of names allowed through the channel. This meanthiave nodes symbolize

an empty tuple or list of names.

We are also definingype Variablesdenoted by, which can be declared just like chan-
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¢,bya, T == (T,7T,....,T)|V Channel Type
Vi o= (T,T,...,7T)| uxV Type Variable
uxVo o= (xV) Recursive Types

Table 2.5: Typing syntax for-Calculus

nel types, which can then be assigned to channels. Thisi§iesghe notation for com-

plex types, where the tree symbolizing these types is of aiderable depth.

Example 2.16 (Using channel types and type variables)The following is a declaration

for the type of the channe| which is using the variable typé.

c == ((), V)
Vioe= (0, ()

A quick analysis shows that the channeis being used correctly in the forthcoming
process. Note how the variablesandy are not declared, but these use the types which

are symbolized as the children of the declared channel

Nz, y).2! | ylz, 2].Q

Note thatc could have been declared as

ca=((), (), )

Recursive types are more complex then the ‘simple’ typesieler, these allow us to
produce more usefut-Calculus programs. This is why recursive typing is incldidie
this study, but it is important to note, that this is a vari@nproper recursive typing which
is beyond our target. A channel declared as a recursive tyfs Ine done through a type
variable, where this type must contain the same channemyipén the declaration. The

notationu x V' means that the variabl® must be declared within the declaration.

Example 2.17 (Recursive Typing):Here, the channelis assigned to the type variable

X. This type variableX is then defined as a recursive type with a single child, whese t
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child is again the type variabl¥.

c = X

uX = (X)

For instance the following processes are correctly typechm@ing to the declarations that
were made earlier. This example illustrates how the nameHannek is communicated
through channet itself.

clle].P | c?(z).x![c].Q

To control these type declarations, we assign a set of anvients to each process, which
will store all the type declarations that are required tigitaut the process. We denote the
set of type environments, which are mappings from channaksao types, of a process
P by

| Rl

To add a mapping from a channel nam® its declared typé", to the set of type envi-
ronments, we use the notation,

I'csr EP

To retrieve the typd’ of the channet, from the set of type environments we use the
notation,

F(C) Fcu= T, P

Finally, to check the equality of types we use the notation,

TFifT =V, P

Table 2.6 gives the formal notation of the Type-Checkingsithat should be followed
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(tc-output)

lF'gFaw=(T), P (tc-input) (tc-replicated-input)
rEifvV=1 P FgkFauw=(T), P FgykFauw=(T), P
I'yr P I'sx.r P I'x.t P
I'FallV].P I'Fa?(X).P 'k *a?(X).P

(tc-concurrent)

r-pr (tc-scope) (tc-tau) (tc-null)
'-Q I'veP =P
'-PlQ I'E(#V)P r-r.pP o

(tc-condition)
r=pP
'@
'+ if z = y thenP else@

Table 2.6: Type-checking rules farCalculus

before the start of a program execution. Note that theses are observed on the static

notation of ther-Calculus program, before any Reduction Semantics arertaiee.

The most vital rules ar&-output, tc-input andtc-replicated-input. These rules show
how output actions check for type equality, before the régi@process is type-checked.
Onthe other hand input actions do not check for type equaktyause these use variables,
but add the variable value to the set of type environmente tiyjpe-checked later, if this

is used by an output action.

2.3 Related Studies

In the following section we take a look at some of the most irtgd and influential

works, which contributed to the field af-Calculus. These technical reports were useful
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during the research of this study. Hence, this section wilptihe reader to understand
and grasp a more solid idea on theCalculus and its uses. This section should give the

reader a clear picture of where this dissertation standsynmparison to other studies.

We want to point out that the work in this dissertation is nompletely original, but
rather ideas were adopted from the reports in the comingosedPlease note that most
of the work achieved by Turner, Sewell and Wischik is beydmel $cope of our work
here. Thus, the discussion targets only the objectives,gares briefings to the ideas

these people developed, and no complex explanations widldided.

2.3.1 APICT-to-C Compiler

In his Ph.D thesis [Tur95], David N. Turner aims at develgpmPICT-to-C Compiler.
PICT [PTOO] is a concurrent programming language built @wvtiCalculus constructs,
and was developed by Benjamin C. Pierce and David N. Turmesélf. Turner investi-
gates ther-Calculus by examining whether it is able to have a strongped concurrent
programming language based on the foundations oftB&alculus. This is much beyond
our target, but by reading through Turner’s work we captomgartant explanations on the
m-Calculus and oi€hannel TypingIn his chaptefAn Abstract Machine forr-Calculus;,
he describes useful applications which are suitable foirmptementation. What really
interests us, is how Turner considers implementing@alculus machine, and making it

as efficient as possible by introducing certain optimizagio

Turner builds his abstract machine on a uniprocessor phatfoThis means that, the
processes are actually being simulated to work in paraliete the underlying machine
is utilizing a single processor. Turner states that a disted implementation poses much
further challenges. (This kind of implementation was létandled by Sewell, and later

again by Wischik).

23



CHAPTER 2. BACKGROUND

It is important to mention that David Turner eliminates ®emmatioroperator in his
description of the abstract machine. He suggests that therfation operator affects the
implementation by imposing complex issues, and that tmgideasible, since itis rarely

used within a system.

Another essential point to note here, is how Turner tackfag axecution of 7-Calculus,
which is being handled on a uniprocessor. Take into acctata single processor im-

poses a deterministic environment whenth€alculus is a non-deterministic modal.

After facing and discussing these design issues, Turndéjisctive turns to refine the
abstract machine, by making critical changes, in ordertmed more efficient execution.
One of these optimizations, which we will be considering im onplementation, is the
usage oEnvironmentsnstead of substitution. Substitution is considered toigali cost

effective in terms of processing power, but this will be disged in detail later.

2.3.2 Nomadic-PICT

Peter Sewell, in contrast to Turner, tries to solve the mobbf having ar-Calculus
machine, which will handle distributed programming, whigbrks for a real distrib-
uted environment. In his works, Sewell tries to advance omdits work concerning
PICT, from a simulation, to the actual concurrent infrastmwe. Sewell handles this by
introducing what he calls an “Agent Programming Language&Nomadic-PICT The

Nomadic-PICT is actually an extension to Pierce’s and TitsiCT.

Solid ideas about the background of Sewell’s works is giveBé&well himself in a tutor-
ial [Sew00], where he starts by introducing hevCalculus can be applied to a distributed

system. He uses the PICT programming and typing fashiorsttuds certain issues.
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In [PSP98, PSP99], Sewell, together with Wojciechowski Bretce, proposes a simple
calculus for mobile agents, such that these will be able todmsported between different
locations within a distributed system, and regardless , tiey will still be able to

communicate by message passing.

The description of the Nomadic-PICT implementation is give [SW], where Sewell

states that to have a high level programming framework foh slistributed systems, the
current infrastructure will face three main problems. Thstfproblem is that program-
ming distributed algorithms are very complex and fragilee Becond problem is that the
underlying structure of the present distributed systemapi flexible enough to support
a clean execution of distributed programming usin@alculus. Finally, the underlying

infrastructure of distributed systems is not applicatipadfic as it is required.

These problems are addressed directly in [PSP98, PSP98jewatsmall calculus is used
and is closely related to real network communication proigcT his work then evolves to
the Two Level Architectur¢hat is adopted in implementing the Nomadic-PICT. In brief,
the idea is to have the top level working closely to the progreer, where development is
abstracted away from the lower levels of distributed systeHence, the second level is
used to translate the program into a lower programming freaniespecifically to the un-
derlying distributed system. This lower level will work skely to the present networking

infrastructure and communication protocols.

2.3.3 The Fusion Machine

Lucian Wischik introduceg&xplicit Fusion Calculusn his Ph.D. dissertation [Wis01].
Explicit Fusion Calculus is an extension to Robin Milnetr'<Calculus. This variant de-
fines the details of how two processes communicate and egehlremes. Lucian Wischik

explains this calculus by segmenting the communicationguare into three main steps.
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First, when two process are aware that the two can synclepttiese becomtused”,

meaning that both processes are bound to each other untictimeplete the communi-
cation. Next, these two processes assume that the varifthle mput action is equal to
the name being sent by the output action. Finally, the vigiabdiscarded, resulting in

having a “clean” substitution.

Wischik uses this Explicit Fusion Calculus to implement a@arent and distributed ma-
chine forr-Calculus. Wischik’s work differs from that of Sewell, senthe development
is actually that of an abstract machine basedre@alculus, which will work at a low
level of abstraction and on a real distributed system. Orother hand, Sewell achieves
a distributed environment, by extending Turner’s work, pplging an extra upper layer

to operate on top of the already constructed abstract machin

Wischik calls his abstract machifde Fusion MachineHe manages to accomplish his
goals by using a technique which he narremgmentationwherer-Calculus programs
are fragmented into multiple simpler programs, in order &keithem more transportable.
These programs are fragmented using theories found in thicEX¥usion Calculus. Af-
ter, fragmenting the programs accordingly, at specifioastithese new programs can be
distributed over multiple machines. Therefore, these ramg can execute concurrently
over a distributed system, and would communicate to eadr btghusing Explicit Fusion
Calculus. For communication, a common shared memory lotasi used. This acts as

the name repository during Explicit fusion.

This is a brief idea on what Lucian Wischik managed to achiélggurpose is to motivate

attracted readers, however at this stage this is beyondtpe of this project.
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Compiler Design

In this chapter we discuss the design and the implementafiarcompiler. The purpose
of the compiler is to translate the syntax ofraCalculus program into an intermediate
code representation, which can then be executed on sevarteNVachines. In Chapters
4 and 5 we develop these virtual machines, on which we canlaienthis intermediate

representation.

We shall be dealing with the highlighted section given indfeg3.1. The development of a
compiler requires other elements and modules to be dewtlogfere the actual compiler.
[App02] offers indepth detail regarding compiling theari&Ve will start by constructing
am-Calculus language based on the given syntax in Table 2.géierate a Parser using
a compiler generating tool, which will check a given programsyntactical errors, and
output an Abstract Syntax Tree of the program. We then dpwelype-Checker module,
which implements the rules given in Table 2.6, on the AbstBymtax Tree. Finally we
design a compiler that will convert an Abstract Syntax Tregé-checked or not), into

an intermediate code representation.
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rograms
l |
Syntax Tree Represenation

Figure 3.1: Compiler Architecture

3.1 Thell-Language

The language that is constructed is an extension to thexsgnan in Table 2.1. For
reference and explanation purposes, we shall call thisukgej[-Language. The exten-
sions that were introduced to theLanguage are mostly programming constructs making
the m-Calculus more programmable. Figure 3.2 shows a typie@hlculus program as

it would be constructed using théLanguage. The implementation details found within
the various sections oflé program, are written using the syntax given in Table 2.1¢cWwhi
has already been explained. Hence, in this section, we isdlds the constructs that have
been added. The grammar describing our language is giveBNFHormat (Extended

Backus-Naur Form), and can be found in Appendix B

3.1.1 The Include Section

As an option, the programmer can useitime | ude keyword to import other compileat
Calculus files. Compiled files areCalculus programs, written in thé-Language, which
have been processed by the compiler, and saved as intetsmedie. For example, in
Figure 3.2, botlsendandreceiveare compiled programs, which are being imported, and
incorporated with this particular program. These prograviisnot be compiled again

here, but the intermediate code is simply added to the rabiegbrogram. Such files can

28



CHAPTER 3. COMPILER DESIGN

i ncl ude send;
Include Section

i ncl ude receive;

cha:=<<>, <> >
chc:=<<>, V, <> >
VARV := < < > >;

VAR REC Y := <Y >;

Type Declarations

def list(x, y)
begin

Implementation » Definitions

end

begin

Implementation
Main Body

end

Figure 3.2: A typicalr-Calculus program written ifl-Language
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be used as libraries far-Calculus definitions as we shall see later.

3.1.2 Type Declarations

Channel types are declared in this section, and the syn&akisisery similar to the typing
syntax given in Table 2.5. The same principles explaineckictisn 2.2 apply for thél-
Language. Note that the convention for channel name is tsmsdl caps while, variable

names are given in capitals.

1. Channel typesThe syntax for channel types is as follows:
ch name := structure/variable ;

The keywordch declares the a channel and is given the naax®e The assign-
ment: = symbol, allocates thstructureor variableto the channel. The semicolon
signifies the termination of the declaration. The structar¢he declaration follows
the same principle of the typing syntax in Table 2.5. Foranse in Figure 3.2, we

are declaring two channelg andc.

2. Type Variables are very similar to Channel type declarations. The diffeecis
that the keywordrar is used to declare a variable, and the name of the variable has

to be given in capitals. The semicolon signifies the ternnomadf the declaration.
var NAME : = structure/variable ;

In our example given in Figure 3.2, a type variablés being declared. It is criti-
cal to understand that type variables are only used for djtper declarations and

cannot be used outside the declarations section.

3. Recursive Typesare declared means of a recursive variable. The procedtoe is

first declare the recursive type as a variable, then use #riable to declare a
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channel. This gives us more control over recursive typirtge 3yntax for recursive

types is as follows
var rec NAME := structurewawe ;

These types are similar to type variables, only that the keglwec is used after
thevar keyword to indicate the presence of recursion. The stradturthis type
has to include the name of the type itself. The semicolonifsggnthe termination

of the declaration. In Figure 3.2 the recursive variabis being declared.

3.1.3 m-Calculus Definitions

A definition is like a program function, where a piece ofCalculus program can be
modularized, in order to be reused whenever it is required afprogrammer to define a
definition, thedef keyword has to be used, followed by a number of variable patars

enclosed in parentheses, like the example given in Figire 3.

The implementation section within the definitions is comsted using ther-Calculus
syntax given in Table 2.1. This implementation must be esexldn betweebegi n and

end keywords. Any number of definitions can be constructed withsingle program.

A definition can be called by simply calling the given named @assing the required

channel names as the arguments. For instance, to call timétidefin Figure 3.2,

list(a,b).P
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3.1.4 The Main Body

The main body of a program is the starting point of the executiln this section the
programmer will construct-Calculus code using the syntax in Table 2.1. The main body
is an optional section, so that the programmer has the clobiomitting the main body
and implementing only a number of definitions, hence comypailibrary of definitions.
The implementation of the main body has to be enclosed indmvhebegi n and the

end keywords.

The main body should be the last piece of code that is definednmg that any type

declarations and-Calculus definitions should precede this section.

3.2 The Parser

The grammar specification given in Appendix B, for fhe_anguage, was used to gen-
erate parser modules by using the/aCCtools. JavaCC (Java Compiler Compiler) pro-
vides a set of tools (JavaCC, JJTree and JJDoc), which aed@bhderstand a scripting
language based on ENBF, and generates parser and comadisesifor the language that
was specified in the EBNF specifications. These tools cortstssential modules, for the
Parser section, and interface modules on which the Typekénend the Compiler can

be implemented.

At this stage, it is important to understand the task of thesétaeven though this will be
generated by the JavaCC tools. This is necessary, sincetetgment of the compiler

will utilize many of the Parser features.

The Parser’s job is to scan through a stream of characterxevihe sequence of these
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characters make up the currentCalculus program, written in thE-Language defined

in Appendix B. This raw text is fed to a component known aslieeror theTokenizey
whereLexical Analysisis performed. This filters out the code by removing unwanted
text, such as comments and trailing white characters (spaaeriage returns, tabs, etc.).
The Tokenizer outputs a stream of tokens, where each tokgasents an entity of the
langauge. For example, the keywdrégi n, the channet and the actior?, would all be

tokens.

These tokens are then passed to the main Parser module, wghgie is to check that
the sequence of the tokens matches the grammar, (as defidggbendix B), or more
specifically it checks for syntax errors. The Parser willpuita data structure known
as anAbstract Syntax Treavhich is built from the tokens depicting the structure a# th

program. The Syntax Tree gives the program its structureaandre sematic meaning.

Example 3.1 Parsing ar-Calculus implementation section: For the followingr-Calculus

implementation, the parser will generate the Abstract &yiitee in Figure 3.3.

ca].0 | ¢?(x).0

Figure 3.3: Abstract Syntax Tree example
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3.2.1 Visitor Nodes

The JavaCC tools give the possibility of using Visitor cissvhich, when implemented,
they will visit the nodes of a parse tree sequentially, anerpret the tree structure. The
Parser outputs a syntax tree built with visitor nodes, wldgeaCC will have already
generated a Visitor interface. Each visitor node will cathathod when this is visited
during the tree traversal, and the implementation of thégtimg method is done within
the visitor class that implements the Visitor interface.isTimeans that more than one
visitor class can be developed, and each of these can bdispicimplemented to the

requirements.

During our implementation a number of visitors were impleted to meet the specifica-
tions that were required. The following modules implemésttisitor interface generated

by JavaCC. This is given in Appendix C, Figure C.1.

Type-Checker traverses the syntax tree checking the channel types tyrrarsmatch.
It implements the typing rules given in Table 2.6. Developtndetails given in

section 3.3.

Compiler will construct a machine representation based on the al/ef the syntax

tree, but without enforcing checking on types. See sectiérid® more detail.

GraphicTree Translator interprets and translates tree nodes into graphic nodeshwhi
can be drawn on a graphic context, thus, depicting the vigieal of a syntax tree.
This graphic context can then be drawn onto a windows formetaibwed on

screen.
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3.3 The Type-Checker

The Type-Checker is a module which implements the Visitéeriace, and its job is
to type-check the channels. The Type-Checker implememtébilows the typing rules
given in Table 2.6. The Abstract Syntax Tree is given to theeFZhecker module, which
will apply the syntax rules to the syntax tree. The Type-®kremodule will then output a
message indicating that the tree is correctly typed, oram aressage, which will indicate
where a typing mismatch occurred. The module does not &leeAbstract Syntax tree
in any way. In fact, the Type-Checker can be skipped throbhghptocess, and allow the
compiler to translate the syntax tree, regardless of italnhes state. This will allow the

user to experience a runtime failure, if this is desired.

This module starts by interpreting the type declarationd,adding each declared type to
an environment table. For every process that will be typekda, a copy of the current
environment table is attached with the process. The enwiemn table is implemented
as a Hash Table where, the channel name, or the variablehenvitie key element, while
the referenced object will be the tree representation ofythe (see page 19). The whole
process will make use of a Stack, where the Hash Tables aredsbefore these are

attached to type check a process.

Example 3.2 Controlling environments: Consider the following system, with a Hash
Table for the type declaratiorls. These declarations are left unchanged before type

checking each of the other processes by means of a stack.
I'(PlQIR)

The Type-Checker will first place the Hash Table on the stdwdn it will take a copy
and use it to type-check process During the checking ofP, the Type-Checker will
manipulate the entries as required. When the checking arteps® ends, the table is

discarded and a fresh copy of the original Hash Table is ugethé type-checking of
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process). The same procedure is used for all concurrent processes.

The stack will be really required when a process containerghesis, which will divide

a single process into a number of other processes.
I'(P(M|N)|QIR)

In this case the Hash Table that is used by proé¢essnot discarded, but it is pushed on
top of the stack, with all the changes that it had undertalés table will then be used

by all the processes that have emerged fidifie. M/ and V), using the same procedure.
Upon the completion of, the Hash Table will be popped from the stack and discarded,
therefore the processésand R will have access to the original Hash Table tikahad

started off with.

3.4 The Compiler

The Compiler module translates an Abstract Syntax Treeimtymediate code. The
compiler implements the Visitor interface constructedi®/javaCcC tools, and it traverses
the syntax tree using visiting nodes. During the traver$dhe tree, the compiler will

build data structures according to what the nodes of theagytn¢e represent.

Intermediate
Code

Figure 3.4: The compiler translates an AST into Intermed@ade
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3.4.1 Intermediate Code Representation

At this stage, we shall define how the intermediate code septation is designed. This
representation is developed such that, it can be savedr(alized) to a file, making it the

compiled version of the program.

A m-Calculus program is represented as an unordered list aepses, meaning that
P | @ | Rwill be represented ag P :: @ : R |]. An unordered list signifies
that the processes of this list are randomly ordered, makumg that there will be as

much fairness as possible during execution.

Process
Input Task Tau Task Output Task
Channel = ¢ Channel = a
Variable = x Value = b
Next Task — Next Task — Next Task —

Figure 3.5: Intermediate representation of a process

On the other hand, the processes will be represented as aredrtist of r-Calculus
tasks In r-Calculus, a process is a sequence of actions. Hence in athingawe shall
not define an entity to represent a process, but rather, webwiltl up the process by
using a linked list of actions which we shall call tasks. Walktiefine a number of tasks,
where each of these will correspond to th€alculus actions. Figure 3.6 gives the class
diagram for the classes representing these tasks, eachidf wherit from an abstract

class Task.
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TaskQueue
{ From VirtualMachine }

Aftributes
private Vector queue

queue
TauTask NullTask
BracketsTask { From VirtualMachine } { From VirtualMachine }
{ From VirtualMachine }
Attributes Attributes
Attributes
iy nextTask
BindingTask LL [fTask
F VirtualMachi nextTask ) .
{From VirtualMachine } Task 1 {From VirtualMachine }
Attribut \\D . . / .
private Strir:’gune:me . %;e’—"o Altributes
Attributes q\ private String _name1 =™
private String _name2 ="

nextTask extTask
OutputTask InputTask
{From VirtualMachine } {From VirtualMachine }
Attributes Attributes
private String channel = new String() private String channel = new String()
private ArrayList variables = new java.util. ArrayList() private ArrayList names = new java. util. ArrayList()
nextTask

ReplicatedinputTask
{ From VirtualMachine }

Attributes
private String channel = new String()

private ArrayList names = new java.util. ArrayList()

Figure 3.6: Class diagram - Task class and subclasses
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Output Task

An Output task represents an output action, for examijle, ..., z,]. P. This task will
contain a string value for the channgland a list of strings for the channels, ..., z,
being outputted. This task must be part of a continuatiorequence of other actions,
and therefore it must be followed by another task. The neskt Fawill be represented as

a task.

Input Task

An Input task represents an input action sucltds;, ..., z,).P. Hence, this task will
contain a string value for the channegland a list of strings for the names, ..., z,,. The

following processP will be represented as a next task.

Replicated Input Task

A Replicated Input task is very similar to an input task, huépresents a replicated input
action such asc?(zy, ..., x,).P. This task will contain a string value for the channel
and a list of strings for the names, ..., x,,. The following proces# will be represented

as a next task.

Tau Task

The Tau Task corresponds to an internal action, or an uneédection&.P. Hence this

task will hold no information, other then the next task to bkofved.
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If Task

An If Task will stand for an If-Then-Else action. Let us cahsi the exampléf » =

y then P else (). This task will define two strings to hold the two channelandy,
used for the equality. This task will store two pointers to tfferent tasks. One task is
pointing to P, which is the task to be followed if the equality is true, ahd bther task is

pointing toQ, the task to be followed if the equality is false.

Binding Task

A Binding Task is defined to correspond to the binding actiba ohannel. In order to
accurately handle the binding and scoping of channels,dirmraction or task had to be
materialized to a specific point in time within the executidimis means that the syntax
(#n)P will be represented by a single binding task. This task wilht&in a string to
store the channel that is being bound, followed be the psoagth the bound channel,

which is represented as a task.

Brackets Task

The Brackets Task is defined to be used for structural pugposly. During the first
phases of the research it was noted that parentheses aré&erpaehtly to structure the
m-Calculus syntax. For example, the systén | R) is allowed, where the proce$3

is followed by two unordered process@sand R. Therefore, this will be represented as a

Brackets Taskvhich will contain an unordered list of unordered tasks.
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Null Task

The Null Task is defined to represent the end of the link ligaeks. It is used for internal

processing, but it can be compared to the null probess

3.4.2 Intermediate Code to String Translator

A translator module was developed to allow us to convert apil@uh version of ar-

Calculus program into a string representation. This modate be closely related to a
de-compiler. This module, is a necessity for the Virtual kaes that will be developed
since, the machines will have to output the resulting stafter performing a number
of reduction steps. Therefore, this module will be calleahfrthe virtual machine, to

translate the current machine representation into a réaétaimnat.

This translator will traverse a list of processes, and faheaf the processes, the trans-
lator will traverse the tasks sequentially, and the cowagdmg string representation is

composed.
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3.5 A Minor Optimization

An optimization was adopted at this stage for the If-TheseEperation. The idea is to
type-check the channels involved in the condition expoesdf these are not of the same
type, then it can be deduced that the channels will never baledherefore, th&@hen
process will never be followed and thus, it can be removea fohowing pseudo-code

is adopted.

1. Retrieve type declaration for both channels, and checthiotype equality.
2. If both channels are of the same type then construct thask mormally.

3. If the two channels are not of the same type, then discad bien section, and

construct the Else process as a continuation to the pregeditess.
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Chapter 4

A Stand-Alone Virtual Machine

In Chapter 3 we have dealt with the design of the compilerciviié able to translate
m-Calculus notation into machine data structures, suchthisformat is easier to ma-
nipulate and work with. The aim of this chapter is to develogrtual machine based
on the abstract machine given by Turner in his dissertaiond5]. The virtual machine
performs reduction operations on the intermediate codeaisame way that-Calculus

notation is reduced using the reduction rules in Table 2.2rdVkpecifically, we shall
develop a set of reduction procedures, which will be appigethis intermediate code

representation, allowing the processes to communicate.

This machine implementation is a Stand-Alone Virtual Maehimeaning that the whole
execution will be done internally. This implies that thetwal machine will accept the
input system as intermediate code, and will only output #seiits once that the compu-
tation has been terminated. The computation will be coethinithin the Stand-Alone
Virtual Machine until the processes can no longer reducengntioem, and it is then that
the results are outputted. This brings us to an importargadive, which involves the ac-

curacy of the virtual machine. We want our stand-alone &lntmachine to output correct
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results when it terminates the execution. This means tleattéichine has to process the
reduction rules consistently, and always produce the égdeesults. We shall tackle the

correctness of our virtual machine in more detail in secfidn

A Stand-Alone Virtual machine gives us the advantage of $owion the performance
of the machine. Since all of the commutation will be under ¢batrol of the virtual
machine, this allows us to develop an efficient architecame expand on optimizations,

which will perform rapid process reductions.

It is important to mention that the machine will semulating the concurrent environ-
ment of ther-Calculus parallel processes, since it will be working omgortocessor (one
processor). When mentioning a simulation, an essentiailt pibrought forward; the
fairnessof the simulated execution. As we knowsCalculus offers a non-deterministic
execution, but, since our machine will run on a single precesur machine will perform
a deterministic execution. Hence, throughout the desggsiages, it is extremely impor-
tant to keep the handling and the execution of the processtsraas possible. This in-
volves having every process being given an equal chancefomunication. This might
turn out to be more difficult to accomplish than the actuateciness and accuracy of the
machine, since it is easy to produce a correct result witaohieving the correct amount
of fairness between the processes. To summarize, our mgantivie will be develop a
stand-alone virtual machine capable of executing the conication between processes
and reducing these processes with a hundred percent ecwsscivhile achieving this as

fairly as possible.

4.1 Correctness Of The Virtual Machine

When talking about the correctness of a machine, we mearytwisether or not the ma-

chine matches reality or its realistic counterpart. To pritne correctness of our machine,
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we shall compare the virtual machine results with the aateall results ofr-Calculus,
and make sure that the machine results are accurate. Sind&rtual Machine will be
developed on algorithms, we can positively state that owtnime is correct, if the algo-
rithms that make up the machine are correct with respect wongber of specifications,

where our specifications are theCalculus reduction rules given in Table 2.3.

In Chapter 3 we have seen how to translat€alculus terms into intermediate code rep-
resentations, by means of the Compiler modules. We have rt@wailability, anin-
termediate Code to String Translat@see section 3.4.2), which translates the machine
representation into a string which is readable. Therefoeecaffirm that, if we are able to
translater-Calculus terms into intermediate code and vice-versa tiwe two forms can

be regarded as equivalent.

**********************************************

Compiler ‘Trsrt\rsilnagtor
3 n-Calculus P | Q |

Figure 4.1: Converting-Calculus terms to machine terms, and vice-versa

Consider the examplB |  given in Figure 4.1. By using the Compiler, we translate our
system into Intermediate Code Representation format, gnsing the String Translator

we convert the Intermediate Code into its original state.

Now,we can move a step further and define a funcfidn\/(S) within our Virtual Ma-
chine implementation, which will accept/aCalculus systent' in intermediate code
format, and outputs the resulting system in intermediatiecdnternally this function

will consist of all the rules discussed in Table 2.3.
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[IR
!

IP:Qll +—*

String
Translator

P|Q

Figure 4.2: Correctness of machine

Next, we utilize our function (Virtual Machine) as shown iig&re 4.2, which will reduce

the intermediate code representation in a number of stefodi@ass:

JVM([[ P Q) —" [ R]

Now we need to translate the results back imtGalculus terms, and for this, we use our

Intermediate Code to String translator, as depicted inreigLe.

So far we have achieved a result using the Virtual Machineas€quently, we now have
to determine the correctness of the Virtual Machine. In ptdeletermine this, we have
to show that the acquired result is equivalent to its raalisbunterpart result. By the
realistic result we refer to the result achieved if the stgrsystem had to be reduced by

using the reduction rules in Table 2.3.

This is clearly pictured in Figure 4.3. Please note that #seilts of the reduction transi-
tions of ther-Calculus terms and the results of reduction transitiorthefintermediate

Code, can be achieved differently.
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[P:Qll —* [IRI]

PIQ —* R
Figure 4.3: Correctness of machine

4.2 Stand-Alone Architecture

The design for the Stand-Alone Virtual Machine is based @rttachine described by

David Turner in his thesis [Tur95].

The machine consists ofRrocess Managemwhich will contain instructions for process
reduction orReduction Procedured his module will work in between two First In First
Out (FIFO) queues, thRun Queueand theService Heap As seen in Figure 4.4, the

processéswill circulate around the two queues and are handled bytbeess Manager

When the virtual machine commences its execution, it wlehavailable an unorder list
of processes, as described in Section 3.4.1. These preogskke randomly enqueued
onto the Run Queue, thus giving the simulation a higher lef/éhirness. Once that all

the processes are enqueued, the simulation can commence.

At this stage, itis important to make a distinction betwedenrature of the tasks involved
in the processes. We classify Output Tasks, Input Tasks apiidated Input Tasks as
communication tasks since these tasks represent the actions that are alwagiketdan

pairs, because communication must be between two procelsesest of the tasks; the
Tau Tasks, the Binding Tasks, the Brackets Tasks, the IfsTaskl the Null Tasks are

non-communication tasks meaning that these represent procedures that do noteequir

1A single process is actually a linked list of tasks. See 8a@i4.1.
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Service Heap

—»  Process
» Manager

Run Queue

Processes

Figure 4.4: Simple design for the Stand-Alone Virtual Mahi

another process to be executed.

The process manager will, retrieve the process at the hetaé gueue, and it will handle
the first task of the process, according to the classificatfaihis task. The difference
in handling, is that, communication tasks make use of theiSeMHeap, while non-
communication tasks do not. The account for communica@iskg is given in Section

4.3, and the account for non-communication tasks is givéeittion 4.4.

4.3 Handling Process Communication

If the Process Managetlequeues a communication task, such as Input, Output orla Rep
cated Input from the Run Queue, the Process Manager withialhe flowchart depicted

in Figure 4.5.

The Process Manager will have a single process at a time tidnanhus, only one task
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Dequeue first
process from the
Run Queue

Is channel being No
requested blocked on

the Heap?

\Y4

Y

Action requested can
synchronise with action
blocking channe®

Block requested
channel on Heap

Get process from
the Heap

Y

Synchronise the two
processes by
communicating the
channel names

Y

Enqueue the next
processes on the
Run Queue

Figure 4.5: Stand-Alone Machine algorithm
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needs to be handled. Communication tasks will always réguesannel to communicate

through,

Example 4.1: For instance, all of the following processes are requestiaghannet.

clla,b,d].P| * cl[b, d, e].Q|c?(z,y,2).R

The Process Manager will search for a task along the Seneeg@Hvhich had requested
the same channel. This is known as channel blocking, sirecedharch to match the pair
is only done on the heap, and thus having the effect of thereiameing blocked by the

requiting task.

If a task is not found in the heap, the requested channel i®locked, and no other
process has requested this channel. Hence, the Procesgdiankhenqueue the process

on the Service Heap, and thus blocking the channel whichimglyequested.

On the other hand, if a process is found blocking a channeherService Heap, the
Process Manager will check tipolarity of the two tasks. This means that the Process
Manager will compare the task being serviced with the on@doan the heap, and will
match up a pair only if the two tasks can communicate as spddifi Section 2.1.2. For
instance, an output is matched with either an input or acefgdd input. If the other half
of the communication pair is not available, then the taskdaierviced is enqueued on

the Service Heap.

Nonetheless, if a match is found, then the two processesaamanicate and reduce.
Hence the Process Manager will retrieve the names from ttpaibaction and substitute
the variables of the input action, with the retrieved chamaenes. If type-checking has
been performed during compilation, then the number of nameesy passed will match
up with the number of variables. However, if the Type-Checkedule has been over-

passed, then the Process Manager will halt and trigger awari&ilure.
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Following the communication, the two processes are redumediscarding the first task
of each process, since these tasks have been performedwaitis, these processes are
enqueued to the end of the Run Queue, and subsequently, dbesBrManager com-

mences this procedure once again.

In this whole procedure, the processes are being circuataehd as much as possible so
that we try to account for fairness as mush as possible. TivicBdH1eap acts as a meeting
point for the processes, avoiding the situation of having processes which never pair

up to communicate.

Example 4.2: The following example shows how two processes are enqueuttedrun
Queue, and how the Process Manager handles these prodssssisg the Service Heap

to establish communication.

Process Manager Run Queue Service Heap
p(o) r(©) u(o)
p(o) r{ cla,b].Q) u(o)
p(o) r{ca,b.Q|c?(z,y).R) u(o)
p(cla,0].Q) r{c?(z,y).R) u(o)
p(o) r{c?(z,y).R) a(cla,b].Q)
pc?(z,y).R) r(©) a(cla,b].Q)
p{c?(z,y).R o clla,0].Q) r(©) u{o)
p(R{™/2y} © Q) r(©) u(o)
Q) rR{B{" /u}) u(o)
o) r(R{*/:,}1Q)  u(o)
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Input Service Heap
—m T[] |-
Output Service Heap
W [ LT[ ] |

— > Pr
> ocess
Manager

Run Queue

Processes

Figure 4.6: Stand-Alone machine with optimized serviceghea

4.3.1 Optimizing The Service Heap

An important optimization that is implemented to this medkam, is the division of the
Service Heap into two sections, one for output tasks anchandor input tasks. This
optimization is a variation to the optimization implemeshbg Turner. The idea is to have
two Service Heaps, rather then a single one, where inpus &st replicated input tasks
are separated from output tasks, reducing the search spaedfh So now, the algorithm
will work similar to the one described in Section 4.3, witle thnly difference that, if an
output is being serviced, then, the search is done only onningt Service Heap, and
vice-versa for inputs. If the process needs to be enqueutte tService Heap, then this
is enqueued to the Input Service Heap, whether its task isfut br a Replicated Input.

If the task is an Output then this is enqueued to the Outpwi&eHeap.

2This is the worst case scenario Whéref the tasks are outputs and the ot%eﬂre a mixture of inputs

and replicated inputs
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Replicated Input tasks are treated in the same manner astagis, throughout the han-
dling of processes. Some researchers suggest that Reglicgtuts should be allocated
on a separate heap, which will be a permanent storage foe ffresesses. This would
be a good optimization, but it was not implemented here. EBasaon for this is that if a
Replicated Input had to be stored on a permanent Service, ittesapthis will permanently
block a channel. Thus, it will have priority over other preses (Input Tasks), having a
fairness breach during the execution of the simulation. ddeit was decided, that, in
our implementation, the machine will have to absorb the cbstinqueues/dequeues of

Replicated Input tasks, but gaining the fairness of the @txaa.

4.4 Handling Non-Communication Tasks

The rest of the tasks, such as Tau Task, If Task, Binding TAskckets Task and Null
Task, are processed differently, since these can reduaecagy independently and with-

out using the Service Heap.

The Tau Task serves only as an internal operation that is performed witié process.
Hence, the Processor does not need to perform any addihandling of this task. The

procedure is that the next task is simply enqueued at the fethé ®&un Queue.

Example 4.3 (Handling Tau Tasks):

Process Manager Run Queue Service Heap

p(o)  r{e)  u(o)
plo)  r(T.P) u(o)
p(TP)  r(o)  u(o)
p(P) k(o) m(o)
plo)  r(P)  u(o)
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An If Task is handled by the Processor by evaluating the conditionahlgg that it
contains. If the equality is evaluated to a true value, tienprocess for théhenpart is
enqueued, while if the equality is calculated to a false @allien the process for tiedse

part is enqueued.

Example 4.4 (Handling If Tasks):

Process Manager  Run Queue  Service Heap
Wo)  mle)  mlo)
plo) allr=gl(P)Q)) o)
Wp=dPX@)  we) o)
TP W) ale)
Wo)  wlPY wlo)

The Binding Task purpose is to bind the given name to the process. In ordercianac
plish this, the Processor will issue a fresh name, which iguenthroughout the whole
system, and it will substitute the channel name that was too@d, with this new fresh
name. This ensures that the name is unique to the process) Wwas the same effect as

being bound. The Processor will then enqueue the procels ahtl of the Run Queue.

Example 4.5 (Handling Binding Tasks):

Process Manager Run Queue Service Heap

p(o)  rle)  u(°)
p(o) rR((#n)P) u(o)
p((#n)P)  r{e)  u(o)
P{P{"/a})  r(e)  m(o)
p{o) rR{P{™/a}) u(o)
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Brackets Taskscontain a list of processes, hence the Processor’s job isqioezie each
of these processes to the Run Queue. The idea is to open upatiets and release the

processes that were enclosed as new processes.

Example 4.6 (Handling Brackets Tasks):

Process Manager Run Queue Service Heap

P(<) r(®) H(®)
p(o) r((M[|N)) nu(o)
p((M|N)) R(©) H(®)
p(M o N) r{©) H{®)
p(N)  r(M)  nu(o)
p(¢) rR(MI[N) n(o)

TheNull Task indicates to the Processor the end of a process, or a Nukgsotience,

the Processor will simply discard the instance, and rettarservicing other processes.

Example 4.7 (Handling Null Tasks):

Process Manager Run Queue Service Heap

p(o)  r{e)  m(o)
p(©) r(0) H{®)
p(0)  r{e)  m(o)
plo)  r{e)  mu(o)
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4.4.1 Optimizing The Management Of Tasks

We employ a small change while handling the processes. Ttimiaption concerns the
non-communication tasks which are discussed in SectionAsdone can notice, these

tasks can avoid being queued up on the Run Queue.

Example 4.8: Consider the following process as the simplest of examptaesould be
good practice if our processor will execute all of the intdractions and enqueue the

processP at once, instead of queuing the process after each contnuat

&.&&.P

In our implementation of the machine we shall allow only theeging of Input tasks,
Output tasks and Replicated Input tasks, (Communicatiaks)awhile all of the other
tasks have to be processed by a filtering module, before lpiaged. Thd-ilter will

perform this processing until a communication task is amdd, after which this will be

enqueued to the Run Queue.

By introducing this policy, we are making the execution miaie between processes.

Example 4.9: For instance, note the following state on the Run Queue.

(ca].P | (#2)c?(x).2![z].Q | ¢?(y).R)

If we do not apply the optimization that is being suggestiedntthe third process has an
advantage over the second process, because the seconsspsostd| waiting to process
the binding action, which does not affect, in any way, théfeing action. Therefore, by
processing a non-communication task, we make sure that@epses have a more just

chance of execution.
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Input Service Heap

m [TTTTT1 |«
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Figure 4.7: Stand-Alone machine applying all the discusgiinizations

4.5 Environments

Performing substitutions within processes during comation, is a very expensive pro-
cedure. Apart from being costly, we are never sure if a pooelt survive through its
whole lifetime. Therefore, if a process had to be stoppeddone reason, then all of the
substitutions that were performed, will be useless andte@idVe improve this situation
by introducingEnvironments Environments permit us to avoid substitutions completely

meaning that the variable terms are never modified withirptbeesses.

An environmentF is the mapping from a variableto a channel name

EF:=zx—c¢

These mappings are stored using a Hash Table. Note thabemants are bound to the

usage of a single process Hence we modify our virtual macisineh that we can store

57



CHAPTER 4. A STAND-ALONE VIRTUAL MACHINE

an environment table (Hash Table) for each of the proce$sdshie machine will be

handling.

Therefore, when a substitution is required, instead ofquering a direct substitution
{""/44}, @ new entry is added to the process’ environment tahle— new. Thus,
whenever it is required to use toéd variable as a channel, this is looked up in the hash

table and the correct channel name is retrieved.
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Chapter 5

An Interactive Virtual Machine

In this chapter we discuss the development of a virtual nmechihich will allow a user
to interact with the machine itself, while this performs #a@me functionalities as those
within the Stand-Alone Virtual Machine. By this we undersiahat the Interactive Vir-
tual Machine will first have to reduce a givenCalculus program, after which the results
are shown to the user. Based on these results the user will ia@alculus commands,
which these will trigger the virtual machine to reduce thegvam even further, thus con-
tinuing with the execution. After that the program is agaduced, the machine will

display to the user the next results, with which the user gamanteract.

The idea is to have a user inputting-e&Calculus program, and while the virtual machine
is executing this program, the user can communicate witptbgram usingr-Calculus
notation. The user will be allowed to compose Input Tasks @otput Tasks, and use
these to communicate with the internal program. This mdaatsinr-Calculus terms the
user, together with these actions that are being used, cagarmled as a process. The user
is an external process, working concurrently with the drmachine, and communicating

with it. We see this in Figure 5.1 where procésss the user and procedg is the virtual
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U<::D M/ lPzQuR ..

User Interactive Machine

Figure 5.1: User interacting with machine

machine. Note how the machine is not a single process, thamrdtis composed of the

internal process which make up theCalculus program.

This machine focuses mostly with the communication betwkemser and the machine,
however we will allow communication between the internadqasses of the program
which is being executed. In other words we have to providerwaoes of operation for

this virtual machine.

Stepped Into - when the machine stops for user interaction at every sireglection.
The machine outputs its current state to the user, at evepyddtthe execution,

even if this is performed internally between the prograntpsses.

Stepped Over - the machine will only halt when no more internal reductians avail-
able. This allows the internal program to process logicalkwbat is to be per-

formed, before interacting with the user.

5.1 Stand-Alone vs Interactive

Let us investigate on what an Interactive Machine will séoreand why it is an important
tool to be developed and analyzed. Note how an Interactive@mment, offers many
more interesting uses than the Stand-Alone environmeritwBat are the advantages of

developing an Interactive Virtual Machine over a Stands&d/irtual Machine?
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Note that the Stand-Alone Virtual Machine developed in Gaag offers limited func-

tionalities. Programs running within the Stand-Alone maehare restricted only to the
environment offered by the machine. This makes it hard feruber to assess the pro-
gram’s behavior. In fact, the Stand-Alone Virtual Machinmed not give the user the

desired perspective and thus the user cannot analyze tgepranternal reductions.

The most straightforward use of having an Interactive \drtdachine is to give the user
the possibility to understand and learn th&€alculus notation. The machine can serve
as a learning tool for those who wish to learn th&alculus, since the reductions can
be visualized more then when giving examples on paper. Téeiglto aid the learning

process since the user can feel part ofth@alculus system.

Another useful job that an Interactive Virtual Machine caxc@mplish, is to debug-
Calculus programs. The interaction feature can also acttegiag functionality to the
program that is being executed. During interaction, thestiger can learn of mistakes,
or bugs, within the program. This will be possible since teerwill have a clear picture

of the current state of the machine.

A more interesting observation is that by developing sucintaal machine, we are creat-
ing a level of abstraction on top of theCalculus program. Similar to what Sewell accom-
plished in the development of the Nomadic-PICT [PSP99, Swdjirectly, the framework
now has a layer of abstraction where the execution of thenate-Calculus program is
abstracted away from the user, by means of the interactitieavimachine. The user will
still be communicating with the program usingCalculus notation, however the commu-
nication is done through the virtual machine, thus the tetdithe internal program is
unobservable from the user. The interesting point is thath layers are using the same
m-Calculus notation. As we shall see in Chapter 6, when wetlesimplementation of
this machine, is that, if we position a user in front of tweCalculus programs which

implement the same interface (input/output relations)fandtionality, then the user will
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Interactive Virtual Machine

P S S W
oy v

Pi-Calculus Program

Figure 5.2: Abstraction layer provided by the Interactiveal Machine

not be able to distinguish one from the other despite thaketlaee internally implemented

differently.

At this point we have started to deviate beyond the scopeisfstindy. However, it is
extremely motivating, how such an interactive machine wbemectly developed, will
transform the environment to a more realistic distributgsteam. This is so, since an
interactive machine will not only work on a single procedsarrit is now communicating
with an external source, in this case the user. An intergsjuestion will be, what if the

interaction had to be performed between two or more intmeatachines?

In this kind of machine we see that our priorities change;esiet this point, the machine
does not only have to perform efficiently with its inner presi@g, but also in retrieving
information about the current state of the machine. The madtate has to be retrieved
and showed to the user as efficient as possible. In this matigmain processing power
has to tackle the crossing point between the User and the iMackive need to assume
that the user will be a slow process, so we have to bargaintiwhnternal structure of
the machine, to make the User-Machine interface more eificiy applying this change

in performance priority we need to apply changes to the matletesign of the machine.

Fairness is another vital point in this machine implemeaotatsince now, we have the

user acting as an external process, which will have pri@ityertain times. For this we
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have to examine the two modes of interaction. If we take tle@Std Intd mode then
the fairness of the overall machine will be reduced, sineeuter will have priority over
all the other processes. However, note that when the useseba@n internal action to be
processed, then this choice has to be randomly selectedtfremset of internal actions.
Therefore, it is interesting to note that in this respect \&@eehto take into account the

fairness of the execution.

On the other hand, when the machine will be operating in Steipvef mode, the fair-
ness of the machine will have to be accounted for in a simiky as within the stand-
alone machine. This means that the user will actually notibengany preference when
operating in this mode. This is an important point to emphasi since the machine will
allow interaction when no additional reductions are pdsdib be processed. Hence, as
we have already discussed in Chapter 4, all the internalegsieg of the machine will

execute on a rational framework.

5.2 Correctness Of The Virtual Machine

For this machine we still need to take into account the ctmess of the virtual machine.
The objective is very similar to the correctness of the stalotie machine (see Section
4.1). In fact the underlying intentions do not change, megthat, when a system is given
to the machine, the result that is produced has to be equivaléts realistic counterpart.
The only difference here, is that, the correctness has todmétared iteratively, each time
the user interacts with the machine. It is very importantawehthe correctness of the
interactive machine stable throughout the whole execudioce, the results produced by
the machine will reflect the input that is to follow. Therefothe interactive machine we

will keep up with our previous objective regarding corress.

1The machine stops and waits for user interaction at evepy sten at internal tasks.
2The machine will stop and wait for user interaction when mttfer internal reductions will be possible.
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Figure 5.3: Correctness of the Interactive Machine

Figure 5.3 shows us the correctness of the virtual machionge how the execution of this
virtual machine, is engaged into an iterative process amthtiernal processing is trigged
upon user interaction. Therefore, the virtual machine malle to produce accurate results
at each iteration. It is important to understand that theltesdepend on the previous user
input, hence the machine has to produce correct results@sfect to the inputs that the

user has done.

As we shall see, in order to have control over what the usert&into the machine, we
will use channel typing. Channel types will allow the maehtn type-check the actions
that are given to the machine by the user. If the action is nokectly typed, then the

machine will complain to the user, thus avoiding arity mischaat runtime.

5.3 Interactive Architecture

The development of an Interactive Virtual Machine, will rtipsnvolve, an efficient
mechanism which allows us to read the current machine statbs machine will be

displaying the current state of the internal program, atyeséep during the simulated
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execution. Hence, it is crucial to have optimal performamcehe linkage between the

user and the machine.

We start by re-organizing the architecture of how proceasediandled. Note that, the
structure of the processes is the same as in the Stand-Aldn@aNMachine. This means
that we will be operating on the same intermediate code septation, as discussed in
Section 3.4.1.

The architecture design for the Interactive Virtual Maehmgiven in Figure 5.4. We have
aProcess Managewhich will be handling all process communication. By olvaag this
design, one can note that, some of the strategies are stmithe Stand-Alone Virtual

Machine.

We make a distinction betwe€@ommunication TasksandNon-Communication Tasks
after which we employ a further step to make another disindbetween the channel
requests of the communication tasks. This means that nowayeveategorizing the com-

munication tasks, by the channel name that is being reqiieste

Channel

Hash Table Input Queue

)

Process Manager} a
Output Queue

Communication | — 3 Input Queue
Tasks <—b |
I O I I I

i

[
Non-Communication Output Queue
Tasks < Inplilt Queue

C O

Output Queue

Input Queue

Non-Communication Queue

d [ 1
m ‘ ‘ ‘ ‘ ‘ ‘ Output Queue
[]
[

i

Figure 5.4: Interactive Virtual Machine Architecture
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To accomplish this, we define an obje€ih@anne), which represents the actual channel of
communication, consisting mainly of an input queue and apuilwqueue. The Process
Manager which will enqueue processes on the respectiveeq@averal of these channels
will be stored using a Hash Table, which allows easy and efficaccess. Thus, we
now have a design which will allow us to retrieve the currdatesof the machine very
effectively and with the least amount of processing costs.example, if we had to list
the key elements of the Hash Table we immediately have althla@nel names that are

being used by the machine.

5.3.1 Channels

A Channel is composed of a name, identifying the channel,aandannel type object
classifying the channel to a particular type definition. Achel will contain two process
gueues; one will queue input task and replicated input taskée the other will queue
output tasks. These queues are dedicated queues, meaairigey will only enqueue

processes that are requesting the same channel.

Note that the queues with this channel object, are similtré®ervice Heap of the Stand-
Alone Virtual Machine. In fact, we employed the first opti@ion, by distinguishing the

input queue from the output queue, from the very start.

Criteria are defined for processes requesting to queue updarse of a channel object.
The first is that only processes with a communicationasin be enqueued. Another
criteria is that, the channel being requested and the chased by the task, have to be
the same one, meaning that both the name and the channelaypdadbe equivalent.

This ensures that runtime errors are not introduced by teediwging interaction.

3A communication task can be either an Input Task, a Reptidaigut Task or an Output Task.
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Figure 5.5: Channel Architecture

The most important function that a channel object can perfés that a channel object
can output its current state. The state of the channel is wllgdplayed to the user, and it
should give an overview of how the user can interact with plaigicular channel. There-
fore, the state of a channel is simply two boolean valuesessmting the two queues for
inputs and outputs. These values will indicate if a chanasldvailable processes await-
ing in the input and output queues, hence, a true value mbanattleast one process is
waiting in that queue, while a false value means that the gjiampty. This allows the

machine to communicate to the user, the different comlmnatof a channel state.

5.4 Handling Process Communication

The communication between the processes is handled by toe$d Manager. At this
stage it is important to mention that in this virtual machine will be dealing with two

situation of process communication. Either a machine m®o®@mmunicates with the
user during interaction, or two machine processes comrateiaternally. For the user

to communicate with the machine, the user will have to cradgtesk, which this will be
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handled as the process which is to be serviced, meaningdhahanication will have to
be done with this process if possible. On the other hand,afdithe machine processes
will communicate internally between them, then from therigsgmoint of view this will be

regarded as an internal reduction.

When a user launches a task into the machine, the Procesgybtaselects the channel
that is being requested. The channel retrieved is first etk type equivalence. Once
that the channel is identified as correct, the Process Mamaljeetrieve the first process
awaiting to communicate from the channel. Now, if the user&k is an input task or a
replicated input task, then the first process on the outpetigus retrieved. On the other
hand, if the user’s task is an output task, then the first m®&®m the input queue is
retrieved. The Process Manager will then reduce the twogsses in the same manner

as in the Stand-Alone Virtual Machine, thus following théesuiin Table 2.3.

For internal communication, the Process Manager will ranigicselect a channel which
has non-empty queues (input and output). By having a chamitielat least one task
enqueued on each of the queues, then this signifies that #msehcan communicate
internally. Hence, the process manager will retrieve tipgseesses and communication

is accomplished.

5.4.1 Internal Reduction

When discussing internal reductions within the Interactimachine, we mean that the
machine will either reduce a non-communication task, ortamachine will allow two
processes having a matching pair of communication tasksptamunicate internally.
Therefore, itis important to note that, from the user’s pofrview both of these situations

are regarded as internal reductions.
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Recall that we are dealing with two modes of interactivitghin this virtual machine.

When executing a Stepped Into simulation, then we needdwdhe user to experience
even internal reduction happening within the machine’gmm. Hence, the optimiza-
tion employed for the Stand-Alone machine, is not applieablthis case. However, if
a Stepped Over simulation is being run, then it is importangérisure that all internal

reductions are performed.

To handle the Stepped Into simulation, we enforce that ong/r@duction is performed
at every user interaction. This means that the Non-Commatinit Queue seen in Figure
5.4 will enqueue processes awaiting for a non-communicdtek to be performed. A
channel which can perform an internal communication wilsbppressed from reducing.
Therefore, we then give the user the option to either intesétt the machine by intro-
ducing a task, or by instructing the machine to perform maktasks. When performing
internal reductions within the machine, the user will ¢#l able to notice the changes

occurring in the program.

During Stepped Over execution, the interactive machinkcivéck for both types of inter-
nal reductions and keep reducing until no further are alkalarhis means that for every
single user interaction, the virtual machine can possiblyggm a number of reductions.
Please note, that during this mode of operation, the virnethine will not be utilizing
the Non-Communication Queue since, these will not be allmwtand idle within the

system.

5.5 Environments

In the implementation of the Interactive Virtual Machineg wake use of channel name
environments just as these are used in the Stand-Alone neachiherefore, we extend

our channel object representation, and allow it to hold @seame mappings for each of
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the processes that are enqueued.

Environment
Mappings

Interactive
User <= C<—>C100<—\ /14 o1 Machine

Figure 5.6: Environment Mappings between the user and tigavimachine

The difference that is required for the Interactive machinthat we have to keep a set
of name environments for the user. Remember that the useg#&ded as an external
process, hence the machine will have an environment tatblighvwvill map the channel
names which the user is using to the real channel names wit@imachine. As Figure
5.6 shows, the environments’ mappings, are used to link $k€sichannel names to the

appropriate channel name within the virtual machine.

5.6 Graphical User Interface Design

Throughout this project the GUI (Graphical User Interfacé}he application was not
part of the main objectives. However, since we have discu#se development of an
Interactive Virtual Machine, we now realize that for an naigtive machine to be easily

understandable by the user, we require a user-friendlyeptason.

Most important of all is how the GUI will present the virtuakwhine status. The most
suitable solution was to design a table as depicted in Figute This will list all of the
free channels that the machine currently has available. lishwill also give the type
of the channel, thus the user will know how to handle commatioa with every listed
channel. The channel rows have two columns representing/thgueues for the channel.
Checkboxes can be used to indicate whether processes aitexgwa not, within the

channel queues.
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Figure 5.7: Proposed table showing the current state of tehime

A panel will allow the user to create a task, and process #sik within the virtual ma-
chine. Thus, on doing so, the status table will change theegashowing how the system

state has changed with the effect of the given task.

All of the other modules that we discussed will be incorpedatvithin a simple appli-
cation, which will serve as an Integrated Development Emmment forr-Calculus. The
IDE will offer an editor wherer-Calculus programs can be written using Ihkanguage,
and options will be available to simulate the program onwWee\tirtual machines that we

discussed.
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Evaluation

This chapter mostly consist of testing analysis on the &lrtnachines that have been
developed. As one can note, we emphasized on the correchess virtual machines.
Now we get to evaluate the correctness of both machines. dpt€hs 4 and 5, we mention
correctness before the development, so that throughoutiiiementation our mind was
focused on the construction of correct virtual machinesclwproduces accurate results.
In this chapter we tackle the final part of machine correcnekherefore, we have to
verify, that both of our machines are indeed simulating hoacesses communicate, as
defined in Table 2.3.

Figure 6.1 shows clearly our task in this chapter. Note thatwll be focusing on the

equivalence of the results. This means that we will compoe&alculus examples, and
simulate the execution of these examples on our virtual mashthus obtain the first
result. Hence, we will follow through the same examples ogpepato obtain a second
result, we check for the equality of these results and iféh@® equivalent then this
shows that the virtual machine is correct. To prove the ctmess of the virtual machines

we would have to test each of the different situations thatntlachines can end up in.
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[P:Qll —* [IR]]

PIQ —»* R
Figure 6.1: Evaluating the correctness of the virtual naesi

The plan for the testing stages, is to, first test our Starah@Virtual Machine imple-
mentation, followed by, testing the Interactive Virtual éféne using the same examples.
This will allow us to verify that both machines are correctnasl as consistent with each
other. We then move on to, test the abstract layer of thedatise Virtual Machine by
composing examples, with different implementations, anwvéstigate whether the user is

able to distinguish between the examples.

6.1 Testing the Stand-Alone Virtual Machine

The Stand-Alone virtual machine was first tested for thedsasi ther-Calculus actions,
after which more complex examples where used for the testhigte that the simple
tests where omitted from this chapter, but we will be dealiith a number of elaborated
examples. These examples offer all of the required tessdas®ur Stand-Alone virtual

machine.

6.1.1 Test case - Memory cell

The first example is the same one given in Example 2.13 of @nh&pt This example

consists of a process capable of generating memory cellsaarother process that is
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utilizing one of these memory cells. This test will verifyeticorrectness of the virtual

machine for several of reduction rules given in Table 2.3.

Setup

The memory cell example was coded as-@alculus program and used for this test. This
program is illustrated in Section A.1 of the appendices. pitogram when given to the
Stand-Alone machine should reduce to the following two psses, wherkelloworld is

the value that was temporary stored at the cell.

xcreatecell?(value, getcell).(#cell)(cell![value] | getcelll[cell])
| helloworld![ ]

Results

At the end of the development, the results obtained wheigfwayg. The expected results
where obtained. This test served for the verification of tHesr-communication and
r-replicated-communication of Table 2.3. We also tested the scoping principle, and

verified that bound names and free names are handled cgrrectl

6.1.2 Test case - Changing the network of communication

We next test the machine using theCalculus program given in Section A.2. This pro-
gram illustrates how the-Calculus capabilities of how the communication network be
tween processes change dynamically. Let us first examiredil meaning behind this

program. Take the following system of processes.
PlQ|R
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where p— one?(channel).if channel = change then ((#n)one![n].n?(message))
Q) = onel[change].one?(new).twol[new]

R = two?(new).new![helloworld]

As one can note proce$sis unaware of proceds and these cannot communicate. How-
ever, proces® will communicate with procesB the channethange. Hence, the process
P will check for the conditionchannel = change. If this is so, then the proceg$3 com-
municates a fresh channel name to the proégsehich will in turn communicate with
processk. Therefore, at this stage, procdsss aware of procesB by means of the new

channel.

Setup

The Stand-Alone virtual machine is given the program astitated in Section A.2. The
machine will perform a correct simulation if the end resatissists of inactive processes,

meaning that communication has been achieved correctiygout.

Results

At this stage some problems where identified, since thealimachine was not producing
correct results as expected. However, these problems wéekied and the tests where
performed once again. Variations to this test where useelih the debugging of the

problem. Finally we have satisfying results on the outcome.
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6.1.3 Remarks

Throughout the evaluation stages of the Stand-Alone Jirh&chine, we note a number
of faults. The most involving problems that we needed toesaltiere the ones related to
the ruler-replicated-communication and the handling of bound names. The utmost of
efforts have been done to find a solution to these problenaswaich was finally found.

It is important to mention that, the testing during this stagrved as an important phase

to fully understand the concepts of theCalculus notation.

6.2 Testing the Interactive Virtual Machine

The Interactive Virtual Machine will be mainly tested fos ihteractive features. Note
that the reduction procedures that are implemented will@nriteractive virtual machine,
are identical to the reduction procedures within the Stalwhe virtual machine. Thus,
the Interactive machine was tested using, similar testseagries performed on the Stand-
Alone machine. This ensured us that the internal operatoasonsistent between the
two virtual machines. Therefore, the testing that is pened here, is to verify that the
user-to-machine interaction is achieving accurate resWe then test the machine for
the feature of abstraction that it offers, by constructimg@alculus program with similar
functions as the one used during the first test, and investiga whether the user can

notice the difference between the two programs.

6.2.1 Testcase - Stack A

A stack implementation was constructed usingalculus notation, and this was then

imported to all-Language program as illustrated in Section A.3. The Staoknam
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provides ar-Calculus declaration, which when invoked, this will retarunique channel

to a stack, §). This channel#) representing a stack, will then return two channels, on
for pushing channel names on top of the staeks:), and another to pop channel names
from the top of the stackppp). When channel names are outputted using the push, then
this represents the push feature. On the other hand, to @omehname, we first have to
output a listener channel, and then we pop the channel nathe top of the stack, by

inputting from this listener channel.

Setup

Figure 6.2 gives a trace through the steps involved duriegtést. We load the stack
program to the Interactive machine&tep 1 This gives us the channslack indicating
that an input is available, hence$tep 2we output on the channstacka channel name
mystack The channemystackwill then indicate the availability of output. Note as well
that the types of the channels are changing accordingly.sdlhges are the same as
declared in the program and these can be viewed by the usagduoteraction. AtStep

3, we input from the channehystackiwo values, and we use the variablegpushand
mypop Notice how these variables are given the correspondingreianames, and how
these channel names are added to our table. At this stagenvsatarapushing data on to

the stack. AtStep 4we push the channel namese two andthree

We now test that the stack is performing the expected job,drfopming a pop. Thus,
at Step 5we output the channdisteneron the channebopQ The channelisteneris
correctly added to the table, indicating that it is readyutpat a channel name. Therefore,
at Step 6we perform an input from the channetener The variablevalueis assigned
the channel namthreg which is the expected result since the channel ntree was

the last name that was pushed on the stack.
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Step 1

Step 2

Step 3

mystack? (mypush, mypop) —p

Step 4

Step 5

Step 6

Step 7

Step 8

stack! [mystack] —p

pushO! [one]
pushO! [two]
pushO! [three]

popO! [listener] —P

listener? (value) —

pushO! [test]

pop0! [listener]
listener? (value)
pop0! [listener]
listener? (value) =
popO! [listener]
listener? (value)
popO! [listener]
listener? (value)

Figure 6.2: Trace of stack program

myvpush = pusho

mypop = popl
value = three

myvpush = pusho
mypop = popil
value = three
value = kest
value = bwo
value = one
value = ---
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To confirm that the stack is working accuratelySa¢p 7we push the channel nanest

on to the stack. Hence, &tep 8we empty the stack by repeating the steps 5 and 6 for
each value to be popped from the stack. As one can noticeetiing results are as
expected, meaning that the first channel name retrievedesasfter which the names
two andone where retrieved sequentially. Notice, how the last poprditiretrieve any

channel name, since the stack is empty.

Results

The expected results have were achieved from the test traapplied. Variations to
the sequence given in Figure 6.2, where performed as a testifg that the Interactive
virtual machine is simulating the executionofCalculus correctly. These tests and the
one discussed previously, gave very promising results.e Motv program Stack A in
Section A.3 is testing all of the features tackled throudhhis dissertation. We even
verified that the typing column is showing accurate valuesammng that the type given to

the channel is the correct one.

6.2.2 Test case - Program Details Abstraction

After that the Interactive virtual machine has been verifiegdorrect and that it is produc-
ing accurate results as expected, we investigated on #r@ative feature of the machine.
We developed a-Calculus program with the same functionalities as thattatlSA that
was used for the previous test. This program is given in 8edii.4 of the appendices.
The difference in this stack implantation (Stack B) is the thannel names are being
stored using two lists rather the a single list as in Stack WsTeans that the head of
the stack will iterate the push feature between the two staakd for the pop feature the

same principle applies but it has to be done in an opposiketin.
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Setup

The plan for this test was to perform the same sequence oéguoes, as performed in
the previous test on both stack implementations. We simpiich the Stack A program
with that of Stack B, and perform the same test. This wouldfywénat the two programs
have consistent functionalities, thus the user is unabdistinguish the Stack A program

from the Stack B program.

@ Stack A
— >
4_

User

Figure 6.3: Program details are abstracted away from the use

Results

This test turned out to be most satisfying, since no diffeeerould be noted between the
two implementations. Both stacks are instantiated in tineesaanner, and both provide
the pushchannel and thpopchannel. Other tests have been performed, and it was noted
that the two programs have to be constructed using the sartefdace”, meaning that the

interaction with the user has to provide the same type ofreélsrand amount.

6.2.3 Remarks

Promising results have been achieved through these testsabe been carried out. To a

certain point we proved the correctness of the machinesyenified most of our specula-
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tions especially the interactive abstraction that therfdive virtual machine is capable

of offering.

6.3 Limitations

Following the evaluation stage, we can discuss a number ofvkrproblems and the

limitations of the application that has been developed.

Both of our virtual machines do not conduct aagrbage CollectionBy Garbage Collec-
tion we understand, that those channels that are no lonfggeneed, or no longer used,
then these can be disposed. By disposing of these chanmelsyachine will be able to

perform more efficiently since, the machine will be accoumgfior resource handling.

Another limitation that our machine has is the lack of the $ation operator. This was
already discussed earlier, and we explained how this wgsopaly omitted, because it
offers more complexity to the overall structure of the maelsi However, it still remains
listed as a limitation since certainCalculus program which makes use of this operator

cannot be simulated on our machines.

A crucial limitation that was noted concerns channel typigce, the typing mechanism
that was adopted for the development of the virtual machimesliimited one, then this
also limits the capabilities of the virtual machines. Wenitlig the Interactive Virtual Ma-
chine more restricted in this significance, since the Stalodie machine can be executed

without the Type-Checker module, thus allowing it to simeleven complex programs.
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Conclusions and Future Work

Throughout this dissertation we have seen he@®@alculus notation was easily encapsu-
lated into a simple programming language, such aslth@nguage. For this dissertation,
theIl-Language described in this study, has proven to be a demegadge, to program
ar-Calculus program. We even described a simple typing systdme used when com-
posingr-Calculus programs, and this was followed by a Type-Chettkensure correct
channel typing. We then described the construction of tternmediate code representa-
tion for 7-Calculus. We suggested that this representation wouldsthe transitional
point betweenr-Calculus notation and various virtual machines. This gdids to de-
velop a compiler to translate Calculus notation into this intermediate representatita
then focused on Turner’s, Abstract Machine fe€alculus, and we illustrate how a sim-
ilar machine can be implemented. This virtual machine wée tbinterpretr-Calculus
programs, and simulate the communication of the procesgbswan encloses environ-
ment. We next suggested to develop an Interactive virtuahma, which will extend the
functionality of the Stand-Alone virtual machine, by alliogy an external source to com-
municate with the machine. We even proposed, how such a maeluuld be capable of

abstracting the implementation detailsmeCalculus programs from the user.
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The virtual machine implementations where then evaluateddested for correctness and
accuracy. A number of examples where introduced, and thesewsed to verify that the
Stand-Alone virtual machine is able to produce correctlteswhen compared with the
realistic counterparts. Subsequently, the Interactitea machine was tested using these
examples. However, special interest was given to the twerdifit Stack implementations.
Theser-Calculus programs offered a stack data structure, usagame user-to-machine
interface, but have a different inner implementation. Wevpd that the Interactive virtual
machine, does indeed provide a layer of abstraction to the Tike results demonstrated
how, a typical user is unable to distinguish between twBalculus programs, that offer

the same functionalities but with different internal metbtmgies.

At this point we can suggest a few ideas for possible furtherkw Maybe the most
obvious task to follow would be to improve on the limitatioofsthe developed virtual
machines. As we have stated, the current implementationsttoffer Garbage Collec-
tion for unreferenced channels and it does not offer theibitigsto use the Summation
operator. Hence, a potential task would be to develop aalimachine which extends

these functionalities.

Throughout this study we did not focus much on typing medrasij since this was be-
yond the initial objectives. However, we did tackle simpkacnel typing in brief, and
this has an interesting topic in the fieldofCalculus. For that reason, a prospective task
would be to elaborate on typing techniques feCalculus. We believe that typing is
essential to carry out accurate interactivity, betweenusser and the Interactive virtual
machine. A potential project would be to develop a systemitairactive machine, which

will act as interactive agents over a distributed system.

In conclusion we believe that, the study abeu€alculus has served as a stepping stone
for observing a different perspective of programming, apgraciating detailed issues

regarding concurrency and communication, from a distinatfof view.
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Appendix A

Examples ofr-Calculus Programs

The following 7-Calculus programs were constructed during this study,aas qf the
objectives for the dissertation. These examples are us€tiapter 6, during the testing

phase of the development.
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APPENDIX A. EXAMPLES OFr-CALCULUS PROGRAMS

A.1 Memory cell

ch createcell (=< <> << <>>> >
ch cell := < <> >;

ch helloworld := < >

ch listener := < < < > > >

begi n
xcreatecel |l ?(val ue, getcell). (#cell)(cell![value] | getcell![cell])
| createcell![helloworld,|istener]
.listener?(nyfirstcell)
.nmyfirstcel |l ?(message)
. message! []
end

A.2 Changing the network of communication

var COM:= < < < > > >;
ch one : = COM

ch two : = COM

ch change := < < > >;
chn:=<<>>;

ch helloworld := < >;
begi n

one?(channel ).if channel =change then ((#n)one![n].n?(nessage))
| one![change].one?(new).two![ new
| two?(new).new [ hell oworl d]

end
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APPENDIX A. EXAMPLES OFr-CALCULUS PROGRAMS

A.3 Stack A

var PUSH := < < > >;
var PQD;:<<<>>>;
var B := <PUSH, POP>
ch stack := <B>;

ch b := B;

ch pop := POP

ch push : = PUSH

var rec CELL := < < >, CELL>;

ch a := CELL;

ch endd := CELL

ch head : = <CELL>;

ch createcell := < < >, CELL, <CELL> >;

def stack(b)

begi n
(#endd, head, creat ecel |, push, pop)
(
b! [ push, pop] .
(
head! [ endd] . 0
| *createcell ?(x,next,ret).(#a)(a!'[x,next].0
| *push?(x).head?(y).createcell![x,y, head].O
| *pop?(z).head?(x).if x = endd
then (head![endd]. 0)
el se (x?(v,wW).(z!'[v].0 |
)
)
end
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APPENDIX A. EXAMPLES OFr-CALCULUS PROGRAMS

A.4 Stack B

var PUSH := < < > >;
var PQD;:<<<>>>;
var B := <PUSH, POP>;
ch stack := <B>;

ch b := B;

ch pop := POP

ch push : = PUSH

var rec CELL := < < >, CELL>;
ch a := CELL;

ch endl := CELL

ch headl : = <CELL>;

ch end2 := CELL

ch head2 : = <CELL>;

ch current := < <CELL> >;
ch createcell := < < > CELL, <CELL> >;
ch reset := < >;

def stack(b)
begi n
(#endl, end2, headl, head?2, creat ecel |, push, pop, current, reset)
( b!'[push,pop]. (
xreset?().(headl![endl].0 | head2![end2].0 | current![headl].O0)
| reset![]
| *createcell ?(x,next,ret).(#a)(al[x,next].0 | ret![a].0)
| *push?(x).current?(head).head?(y).createcell![X,y, head].
i f head=headl then (current![head2]) else (current![headl])
| *pop?(z).current?(head).
i f head=headl
then (current![head2]. head2?(x).
i f x=end2
then (reset![]) else (x?(v,wW.( z!'[v] | head2![w])))
el se (current![headl]. headl?(x).
i f x=endl
then (reset![])
else (x?(v,wW).(z!'[v] | headl![w] ) ) )
) )

end
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Appendix B

EBNF for the II-Language

The following EBNF describes the language that we desigmetlding all the required
changes. The standafktended Backus-Naur form (EBNF$O96] is used, which is an

extension of the basic Backus-Naur form (BNF) meta-syntagation.

Start := (Include) * (Declaration) * (Definition) * (Declaration) x
(< BEGIN > Pipe < END >)? < EOF >
Include = < INCLUDE > File < SEMICOLON >
File = < STRING >

Definition = < DEF > DefName < BEGIN > (Declaration) *
Pipe < END >

DefName := Name < LPAREN > (Tuples)? < RPAREN >

RecArguments := (TypeVariable| RecArg | Name)

(< COMMA > (TypeVariable | RecArg | Name))x

88



APPENDIX B. EBNF FOR THEI-LANGUAGE

Arguments
Arg

RecArg
TypeVariable
DecChannel

DecVariable

DecRecVariable

Declaration
Int

Pipe
Brackets
Process

Continuation

ReplicatedInput
Stop

Input
Output
Channel
Tuples
NameTuples
Name

Tau
Restriction
BNames

IfThen
Expression

De finitionCall
Print

(TypeVariable | Arg) < COMMA > (TypeVariable | Arg)) x
7 <" (Arguments)?” > 7

7 <7 (RecArguments)?” >7

<TYPEVAR >

< CH > Name < ASS > (TypeVariable | Arg)

< SEMICOLON >

< VAR > TypeVariable < ASS > (TypeVariable | Arg)

< SEMICOLON >

< VAR >< REC > TypeVariable < ASS >
(TypeVariable | RecArg) < SEMICOLON >
(DecChannel | DecVariable | DecRecV ariable)

(< INTEGER > | < STOP >)

(Process(< PIPE > Pipe)?) | (Brackets(< PIPE > Pipe)?)
< LPAREN > Pipe < RPAREN >

Continuation | Restriction

(((Input | Output | Tau | ReplicatedInput | De finitionCall |
Print)(< CONTINUATION > Process)?)

| (IfThen | Stop | Brackets))

< REPLICATION > Input

< STOP >

Channel < INPUT > " (" (NameTuples)?”)”

Channel < OUTPUT > "["(Tuples)?’]”

< STRING >

Channel(< COMMA > Channel) *

Name(< COMMA > Name)

< STRING >

<TAU >

< LPAREN >< HASH > Channel BNames

((<« COMMA > Channel BNames)

| (< RPAREN > (Brackets | Process)))

< IF > Ezpression < THEN > Brackets(< ELSE > Brackets)?
Name < EQUALS > Name

Channel < LPAREN > (Tuples)? < RPAREN >

< PRINT >< LPAREN > Tuples < RPAREN >
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Appendix C

Class Diagrams

This appendix contains classes diagrams, which descréomtst important modules of

the application.

The PiParserVisitorclass represents the visitor interface generated by theCIavools.

Several modules implement this interface, such a3yipeCheckeand theCompiler.

The TaskManageclass is the core module of the Stand-Alone virtual macHirencap-

sulates all of the reduction procedures and it handles theegs communication.

The Channelclass represents the channel of communication within tterdntive vir-
tual machine. The main changes that where applied to thihimacevolve around the

Channel class.

TheMachineclass is the focal point of the Interactive virtual machimg scheduling the
processes on Channel objects. It also acts as the bridgedetive user and the internal

program, since it provides an interactive interface.

90



APPENDIX C. CLASS DIAGRAMS

PiParserVisitor

Attributes

public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object
public Object

Operations
visit( SimpleNode node, Object data )

visit( PiStart node, Object data )

visit( Pilnclude node, Object data )
visit( PiFile node, Object data )

visit( PiDef node, Object data )

visit( PiBrackets node, Object dafa )
visit( PiDefName node, Object data )
visit( PiArgument node, Object data )
visit( PiRecArgument node, Object data )
visit( PiArg node, Object data )

visit( PiRecArg node, Object data )
visit( PiTypeVariable node, Object data )
visit( PiDecChannel node, Object data )
visit( PiDecVariable node, Object data )
visit( PiDecRecVariable node, Object data )
visit( PiDeclaration node, Object data )
visit( Pilnt node, Object data )

visit( PiPipe node, Object dafa )

visit( PiContinuation node, Object data )
visit( PiReplication node, Object data )
visit( PiStop node, Object data )

visit( Pilnput node, Object data )

visit( PiOutput node, Object data )

visit( PiChannel node, Object data )
visit( PiTuples node, Object data )

visit( PiName node, Object data )

visit( PiTau node, Object data )

visit( PiHash node, Object data )

visit( Pilf node, Object data )

visit( PiEquals node, Object data )

visit( PiDefCall node, Object data )
visit( PiPrint node, Object data )

Figure C.1: PiParserVisitor Class Diagrgwisitor interface generated by JavaCC)
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APPENDIX C. CLASS DIAGRAMS

TaskManager
{ From StandAlone }

Attributes
private ArrayList boundNames = new ArrayList()

private ArrayList allNames = new ArrayList()
private ArrayList channelNames = new ArrayList()
private ArrayList warnings = new ArrayList()

Operations
public TaskManager( Program p )

private void initialise( )

public ArrayList getAllNames( )

public ArrayList getBoundNames( )

public ArrayList getFreeNames( )

public ArrayList getChannelNames( )

private String getUniqueName( String _old )

public boolean nextStep( )

public DefaultMutableTreeNode getProcessQueueTreeNode( )
public DefaultMutableTreeNode getlnputServiceQueueTreeNode( )
public DefaultMutableTreeNode getOutputServiceQueueTreeNode( )
private void run( Task current)

private void processBracketsTask( BracketsTask task )

private void processBindingTask( BindingTask task )

private void processlfTask( IfTask task )

private void processTauTask( TauTask task )

private void processinputTask( InputTask task )

private void processOutputTask( OutputTask task )

private void processReplicationTask( ReplicatedinputTask task )
private void pre_process_NextTask( Task task )

public String printQueue( )

Figure C.2: TaskManager Class Diagram
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APPENDIX C. CLASS DIAGRAMS

Channel
{ From Interactive }

Attributes
private String name

private Type channelType
private TaskQueue inputTasks
private TaskQueue outputTasks
private Vector input_E

private Vector output_E

Operations

public Channel( String name, Type type )
public String getName( )

public Type getType( )

public Object[0..*] getStatus( )

public void
public void
public void
public void

addInputTask( InputTask task, SymbolTable table )
addReplicatedinputTask( ReplicatedInputTask task, SymbolTable table )
addOutputTask( OutputTask task, SymbolTable s_table )

addToQueue( Task task, SymbolTable s_table )

public Task getFirstinput( )

public SymbolTable getFirstinputTable( )
public Task getFirstOutput( )

public SymbolTable gerFirstOutputTable( )
public boolean isEmpty( )

public boolean isReducable( )

public DefaultMutableTreeNode getTreeNode( )
public Type getChannelType( )

public void setChannelType( Type val )
public TaskQueue getinputTasks( )

public void setlnputTasks( TaskQueue val )
public TaskQueue getOutputTasks( )

public void setOutputTasks( TaskQueue val )

Figure C.3: Channel Class Diagram
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APPENDIX C. CLASS DIAGRAMS

Machine
{ From Interactive }

Attributes
package Hashtable channels = new java.util. Hashtable()

package ArrayList tautasks = new java.util. ArrayList()
package ArrayList tau_E = new java.util. ArrayList()
package ArrayList boundNames = new java.util. ArrayList()
package ArrayList names = new java.util. ArrayList()
package JTextArea txt = null

Operations

public Machine( )

public Machine( Program program )

public Machine( Program program, JTextArea text )

public void setOutput( JTextArea text)

public DefaultMutableTreeNode getTreeNode( )

public Enumeration getChannelNames( )

public ArrayList getFreeNames( )

private ArrayList getinternalFreeNames( )

public ArrayList getTypesAsStrings( )

public Object[0..*,0..*] getStatus( )

private void reduceChannel( String channel )

public boolean canReduce( )

public void reducelnternal( )

private void defineNewChannel( String name, Type type )

public void reduceOutput( OutputTask task )

public ArrayList reducelnput( InputTask task )

private String getUniqueName( String _old )

private void addProcess( Task task, SymbolTable table )

private void processBracketsTask( BracketsTask task, SymbolTable table )
private void processlfTask( IfTask task, SymbolTable table )

private void processinputTask( InputTask task, SymbolTable table )
private void processReplicatedinputTask( ReplicatedinputTask task, SymbolTable table )
private void processOutputTask( OutputTask task, SymbolTable table )
private void processPrintTask( PrintTask task, SymbolTable table )
private void processTauTask( TauTask task, SymbolTable table )
private void processBindingTask( BindingTask task, SymbolTable table )

Figure C.4: Machine Class Diagram
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Appendix D

User Manual

Figure D.2, gives a screen shot of the application while ingnm editing mode. One can
edit a number ofr-Calculus programs. By using the toolbar functions or thenmzenu,
one can create new files, save files, open existing files, amharpethe standard functions

offered by editors.

DaEEX B 6

Figure D.1: The editor’s toolbar
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APPENDIX D. USER MANUAL

< Pi-Calculus IDE

File Edit Program Tools Window Help

LaBbOdXh
D Untitled1 D stack.nl| D MemoryCell,pi

war PUSH 1= <<>>;

war POP = <<<>5>,

var B .= <PUSH, POP>;

ch stack ;= <B>;

chb:=B;

ch pop 1= POP;

ch push (= PUSH;

war rec CELL 1= <<>,CELL>;
chai s BELL

ch endd 1= CELL;

ch head (= <CELL>,

ch createcell ;= <<=, CELL, <CELL>>;

hdEEYE

def staddh}
begin
(#endd, head, createcell, push, pop)
(
bl push, pop].

head! [endd].0
| *createcell?0x, next,ret) | (#aXalx next]. 0 | ret![al.0)
| *push?(x) . head?(y) . aeatecell![x,y,head].0
| #pop?z) . head?(x) . if x = endd
then ¢ head![endd].0 )
else ( x7(v,w).(2![v].0 | head![w].0 )}

end

Figure D.2: Application running in editing mode

The application offers MDI support as shown in Figure D.3.lfyile documents can be

opened concurrently, either displayed as separate windoas a serious of tabs.

[ Untitled1 | [ stack.pi | [ MemoryCell,pi

Figure D.3: MDI support
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APPENDIX D. USER MANUAL

— Editor

5L

— View Syntax Tree

3

— Run Stand-Alone Virtual Machine

v

—> Run Interactive Virtual Machine

Figure D.4: The editor’s side-bar

The editor’s side-bar is used to run the three main modulasdan the application. One
can either parse the program, and display a graphical vigheodyntax tree, or simulate

the program on the Stand-Alone machine or simulate the progm the Interactive ma-

chine.

< Pi-Galculus IDE
Fle Edit Program Tools Window Help

DaE@nh @

[ ntitedtt | [ stack.pi | [ Memorycel.pi

Brackets
Continuation

hdli]

Brackets
ples Pipe
Channel Continuation

Channel Tuples Replication

Channel

Channel

Figure D.5: Showing the Syntax Tree for the program
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APPENDIX D. USER MANUAL

The user interface for the Stand-Alone machine, illusgdtew the machine has com-

puted the program internally.

< JPiCalculus IDE
File Edt Program Tools “Window Help £,

CaBOxbn
D Untitled1 D stack.pi D MemaryCell,pi |

Stand Alone Virtual Machine

Al

createcell? (value, getcell). (#cell){ cell! [value].0 | getcell! [cell].0 ) ] | cres

| | listener? (myfirstcell) myfirstcell? (message) .0 | cellQ! [helloworld] .0 | liste
listener? (myfirstcell) myfirstcell? (message) .0 | | c¢elld! [helloworld].0 | listener
listener? (myfirstcell) myfirstecell? (message) .0 | celll! [helloworld].0 | listener!|[d
| cell0! [helloworld] .0 | celld? (message) .0

Figure D.6: Running the Stand-Alone virtual machine
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APPENDIX D. USER MANUAL

The interactive interface offers a panel for the processingsks. The user is able to
select a task and a channel, and input either a number of namvesiables accordingly.

For multiple names, or variables these have to be separgtedrbmas. The table show
the current state of the Virtual Machine, given a list of amals, their type and the avail-

ability for input and output. The bottom panel gives the défautput stream that is used

to receive channel names.

< JPiCalculus IDE

File Edt Program Tools “Window Help

FPEEEFLY

D Untitled1 | D stack.pi ‘ D MemaryCellpi

,:}__ Interactive Virtual Machine

= Channel Type Input Cutput

3 papQ <<< P> (]
stack <B = O

. miystack, < PUSH, POP > N I
Action: I Output [] Stepped pushn [SEvae 0
- Input
I Internal
Al Internal
Chorec
Mames: \

createcell := € < >, CELL, < CELL > >

mypush = push
mypop = popl

|

1

Figure D.7: Running the Interactive virtual machine
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Appendix E

Contents of the CD-Rom

CD-Rom

Distribution Files

Contains distributable version of the
application, and required JRE.

Documentation

Contains a PDF version and TeX files
of this document

Examples

Some n-Caclulus program examples

Java Source

The source files in Java of the application

Java Build

The build files of the application
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