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Abstract

We considerπ-Calculus as the foundation of our study, by analyzing the syntax and se-

mantics that this notation offers. We then describe a simpletyping convention that will

be used to type-checkπ-Calculus programs. This is followed by the description of an

intermediate representation of theπ-Calculus, and we suggest how serval machine im-

plementations can use this representation to simulateπ-Calculus programs. A parser and

compiler are constructed. These will translateπ-Calculus program into this intermediate

representation. Subsequently, we concentrate on David N. Turner’s Abstract Machine,

to develop a Stand-Alone Virtual Machine capable of interpretingπ-Calculus, and sim-

ulating a correct execution on the semantic meaning of the given program. We tackle a

number of optimizations that are incorporated with the architecture of the Stand-Alone

machine, to produce a more efficient simulation. We present the architecture for an Inter-

active Virtual Machine to allow a user to communicate with the program during execution,

and we give an illustration on the differences between a Stand-Alone virtual machine and

an Interactive virtual machine. We then verify the correctness of the virtual machines’

implementations, by presenting a number of examples. We conclude by examining the

capability of the Interactive virtual machine, in creatingan abstract layer between the

implementation details ofπ-Calculus programs and the user. We illustrate how a typi-

cal user is unable to distinguish between twoπ-Calculus programs, that offer the same

functionalities, but have a different internal implementation.
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Chapter 1

Introduction

Theπ-Calculus is part of the family ofProcess Calculi, which are all formal mathematical

paradigms, used to model concurrent systems. The notation of Process Calculi describe a

framework based on processes which execute concurrently, during which a pair of these

processes can synchronize by communicating. Theπ-Calculus was developed with ex-

clusive interest on the mobility of process communication,in concurrent systems. It was

originally developed by Robin Milner, but many others contributed to this growing re-

search. Throughout this dissertation we will be dealing with thePolyadicπ-Calculus,

which is a variant to the originalπ-Calculus.

The descriptive ability thatπ-Calculus offers, emerges from the concept ofnaming, where

communication links, known as channels, are referenced using a naming convention.

Hence, mobility arises by having processes communicating the channel names. This is a

remarkable primitive perception, however, it gives theπ-Calculus a practical expressive

power, which, as a result, can provide building blocks for other complex concurrent lan-

guages.“It would serve as a flexible intermediate language for compilers of concurrent

languages”- David N. Turner.
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CHAPTER 1. INTRODUCTION

Our aim throughout this dissertation will be that of developing a machine capable of un-

derstandingπ-Calculus notation, and which gives an interpretation to the meaning behind

the given description. This leads us to the development of a compiler for theπ-Calculus

notation, which will ‘understand’ the notation and translate it to a more manageable form.

Hence, an interpreting machine would apply rules to theπ-Calculus notation, to give an

interpretation.

1.1 Aims and Objectives

The following is a list of the main objectives we shall be trying to achieve through this

study. The order in which these are given, reflects the order in which they should be

carried out, since these goals build up on each other. Figure1.1 gives a depictive outline

of what we shall try to achieve, showing how the goals depend on each other.

• Learn whatπ-Calculus is about, comprehend its notation and variationsto it, and

be aware of the logical programming that can be constructed by π-Calculus.

• Reflect on other studies that have been completed, in order topicture where this

dissertation stands next to these studies, and to gather ideas on what has already

been achieved by others, and how this was achieved.

• Design a Parser and Compiler, which serves to translateπ-Calculus programs into

an intermediate code representation, where this representation is to be used by var-

ious Virtual Machines, each of which can be developed to accomplish different

tasks.

• Develop a Virtual Machine capable of interpreting the intermediate code ofπ-

Calculus programs, and perform an isolated execution of this code.

2



CHAPTER 1. INTRODUCTION

• Develop another Virtual Machine, which extends the functionality of the previous

machine, by allowing external sources to interact during the execution of the pro-

gram.

Figure 1.1: Overview of the objectives

1.2 Chapter Overview

Following this introductory chapter, the structure of thisdocument almost follows the

aims given in Section 1.1. Chapter 2 of this dissertation gives the background and the

literature review on the critical points about theπ-Calculus that are required to be un-

derstood for the rest of the study. We target the syntax and semantics ofπ-Calculus, we

discuss a simple typing system and we look at related work.

In Chapter 3 we go on to the design of the translation modules,which involves the pars-

ing of theπ-Calculus source code, type-checking the program, and compiling it into an

intermediate representation. We outline the components that make up the intermediate

representation.

Chapter 4 gives the development of aStand-Alone Virtual Machine, which is mostly based

on Turner’s Abstract Machine[Tur95]. We give a framework onwhich π-Calculus pro-

grams are correctly executed, followed by a number of optimizations to aid the perfor-

mance of the Virtual Machine.

3



CHAPTER 1. INTRODUCTION

We then move on the Chapter 5, where we suggest the development of an Interactive

Virtual Machine, and what benefits we acquire. We discuss a different design from that of

the Stand-Alone Virtual Machine. However, we will give an analysis of the optimizations

included in the Stand-Alone Virtual Machine and investigate if these optimizations will

still be valid, when adopted by the Interactive Virtual Machine.

In Chapter 6 we give an evaluation analysis of the modules that have been developed

throughout this dissertation. We give special interest to the Interactive Virtual Machine

where we investigate this level of abstraction that this machine offers to the user. We

develop twoπ-Calculus programs, with the same functionalities but different implemen-

tation details, and we discuss how the user is unable to distinguish one from the other.

We give our concluding remarks in Chapter 7, where we investigate what benefits have

been acquired from this dissertation. We even give the limitation of the final application,

and some ideas about the vision for possible future works.

4



Chapter 2

Background

This chapter consists of the literature review regarding theπ-Calculus. We introduceThe

Polyadicπ-Calculusby defining the Syntax Rules, Structural Rules and ReductionRules,

which we will use to build the compiler in Chapter 3 and the virtual machines in Chapters

4 and 5. We then give an overview of a simple typing system, such that we ensure that

the communication between channels is done accurately. Finally we take a look at other

studies, which are tightly related to this dissertation. These studies have developed various

machines and architectures forπ-Calculus, all of which, give us a motivation for the rest

of this project.

2.1 The Polyadicπ-Calculus

Theπ-Calculus notation models parallel processes, which can perform inputor outputac-

tions throughchannels, thus allowing the processes to communicate. The message which

is sent from one process to the other is aname, which gives a reference to a channel.

5



CHAPTER 2. BACKGROUND

The communication of the channels’ names themselves allow the processes to dynam-

ically change the network of relations between them, through which communication is

established.

Here we will be dealing with thePolyadicπ-Calculus, which differs slightly from the

originalπ-Calculus (the Monadicπ-Calculus). The difference between the two is that, in

Monadicπ-Calculus, a single channel name is allowed to be exchanged during commu-

nication, while in the Polyadicπ-Calculus, a list of channel names, known as atuple, can

be exchanged during a single interaction, where thistuplecan possibly be empty.

In the Polyadicπ-Calculus, a typing system for the channels is required to preventarity

mismatchbetween the input action and the output action. Arity mismatch happens when

the number of sent channels does not match the number of arguments of the receiving

action.

Interested readers should refer to the book “Communicatingand Mobile Systems: The

π-Calculus”, by Robin Miler [Mil99]. In his book, Milner gathers most of his work, and

introducesπ-Calculus, as“the new way of modeling communication”. This book and

other technical reports [Mil89a, Mil89b], again by Milner,were very useful during the

study of this project.

2.1.1 Syntax

The syntax of theπ-Calculus langauge that will be used throughout this dissertation is

given in Table 2.1. In theπ-Calculus the simplest form of entity is aname. A name

is regarded as the referencing convention for a channel, through which processes can

communicate.

6



CHAPTER 2. BACKGROUND

P, Q, R, S ::= P | Q Concurrency

| if x = y then P else Q Conditional Statement

| (#z)P Channel Scoping

| c![v1, . . . , vn].P Output Action

| c?(x1, . . . , xn).P Input Action

| ∗ c?(x1, . . . , xn).P Replicated Input Action

| τ.P Internal Action

| 0 Null Process

Table 2.1: Syntax for theπ-Calculus

Example 2.1 (Using names):The actionc![a] in this system has the potential to output

(send) the channel nameda. This channel must be known since the action is trying to

communicate it, hence it is using the channel namea.

c![a].Q

Theπ-Calculus notation makes use of channel variables. A variable represents a place-

holder for a channel which is currently unknown, but has the potential to become known.

Example 2.2 (Using variables):In this example, the actionc?(x) has the potential to

input (receive) a channel, and since it is not yet known whichchannel it will receive, then

the variablex is used.

c?(x).P

The following is a description of the meanings behind the syntax given in Table 2.1.

Further in-depth analysis can be found in [SW03a].

Concurrency means that processP runs independent of processQ. Both processes

can communicate channel names between them by performing input/output actions on

7



CHAPTER 2. BACKGROUND

a common channel. When multiple processes are running concurrently, we have non-

deterministic communication.

A Conditional Statement will check for the equality of the two channelsx andy, (x = y).

If these channels are found to be equal, then the computationcontinues asP . Otherwise,

if the channels are not equal, the computation continues asQ.

Channel Scoping1 restricts the scope of the given namez, reducing its usage only to the

processP . For instance, in example 2.3, the namez is private (orbound) to the system

z?(x).P . Channel names which are not bound to any process are said to be free names.

Example 2.3 (Channel scoping):The processz?(x).P is unable to interact with the

processz![a].Q through channelz, since these are actually different channels.

z![a].Q | (#z)z?(x).P

An Output Action will communicate with another process, by sending the tupleof channel

namesy1, ...yn, through the channelc. When this is completed, the execution of the

process continues asP .

An Input Action communicates with another process through channelc, where it receives

a tuple of channel names. As we have already described, we have a tuple of variables,

y1, ...yn, awaiting to receive the channel names from another processduring communica-

tion. Thus these variables are substituted to channel namesthroughout the process, once

these names are received.

This brings us to another channel scoping concept. Since occurrences of the variables in a

process will be substituted by the channel names, these variables are bound to the process

by the input action.
1Note that this is not the only operator for channel scoping, but this is indirectly obtained through the

Input Action

8



CHAPTER 2. BACKGROUND

Example 2.4 (Channel scoping by input actions):Note how in this system, the processes

c?(x).x![b].Q andx?(y).R give the impression that these processes have potential to com-

municate throughx. However, note howx is bound to the process,c?(x).x![b].Q, because

of the preceding input.

c![a].P | c?(x).x![b].Q | x?(y).R → P | a![b].Q | x?(y).R

A Replicated Input Action has the same behavior as an input action. The difference is that

upon communication, it produces a copy of itself before proceeding with the execution,

thus leaving an intact copy within the system.

Example 2.5 (Replicated input action): The action∗c?(x) releases a copy of the whole

process that executes this action, upon communicating withanother process.

c![a].Q | ∗c?(x).P → ∗c?(x).P | Q | P

An Internal Action is regarded as an unobservable action which will simply continue as

P , without affecting any surrounding processes.

A Null Process is an inactive process which cannot proceed to any further computations,

and hence, it would simply terminate.

2.1.2 Reduction Semantics

The semantics of a language, is the meaning behind the expressions or the arrangement

of terms, which are composed from the syntax of the language.In π-Calculus we deal

with Reduction Semantics, which is the meaning behind the reduction of processes when

these communicate. These semantics will be defined using a relation, →, between two

processes, showing how a process reduces its state, after that this has performed a single

9



CHAPTER 2. BACKGROUND

s-assoc P1 | (P2 | P3) ≡ (P1 | P2) | P3

s-comm P | Q ≡ Q | P

s-null P | 0 ≡ P

s-scope (#z)P | Q ≡ (#z)(P | Q) if z /∈ fn(Q)

s-scope-comm (#z)(#w)P ≡ (#w)(#z)P

s-scope-null (#z)0 ≡ 0

Table 2.2: Structural equivalence rules forπ-Calculus

action. For instance the processP is reduced to a different state asQ.

P −→ Q

We will use the closure of the relation,→, to denote the reduction of a processP to Q in

an arbitrary number of steps.

P −→∗ Q

We start familiarizing with the semantic meaning of our langauge by defining a set of

axioms for the structure of the langauge. TheseStructural Equivalence Rulesare given in

Table 2.2. Such equivalences between different process states, permit us to manipulate the

arrangement of the terms of aπ-Calculus program, without affecting the semantics of the

program. Hence, these equivalences give us control over thesequence of the terms, such

that, Reduction Semantics can be applied to processes whenever applicable, regardless of

the structure of the program.

s-assocmeans that the concurrency operator,|, is associative between processes, meaning

that the order in which parallel processes are executed doesnot affect the end result.

Parentheses are used to denote operator precedence, however, it is important to note that

the system will still execute non-deterministically.

Example 2.6 (Associativity): Note how the process,c?(x).P , can still reduce nondeter-

10



CHAPTER 2. BACKGROUND

ministically with one of the other processes.

c![a].Q | (c?(x).P | c!(b).R) ≡ (c![a].Q | c?(x).P ) | c!(b).R

s-commdenotes that, any two processes executing in parallel are commutative, meaning

that the two can be interchanged between the concurrency operator, |, and still produce

the same result.

Example 2.7 (Commutativity): Note how the position of the following two processes

within this system, does not affect the communication.

c![a].Q | c?(x).P ≡ c![a].Q | c?(x).P

s-null implies that a processP executing in parallel with a null process,0, is not affected

with the presence of the null process, and neither is it affected if this null process is

discarded.

s-scopeimplies that channel scoping applied on a process,P , can be applied to process

Q, for a channelz, if the channel namez is part of the set of free names ofQ. This means

that the namez is not used within the processQ. Hence if its scope had to be expanded

from P to (P | Q), it will not affect the execution.

Example 2.8 (Structural equivalence in channel scoping):In the following system the

scoping of the channel namez is expanded/reduced without affecting the end result, since

the processc?[x].0 is unaware of the channel namez.

(#z)(z![a].0) | c?[x].0 ≡ (#z)(z![a].0 | c?[x].0)

s-scope-commdenotes that the sequence of two scoping operators is commutative, mean-

ing that the two can be interchanged without changing the endresult.

11
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(r-communication)

c?(x1, ..., xn).P | c![y1, ..., yn].Q → P{y1,...,yn/x1,...,xn
} | Q

(r-replicated-communication)

∗c?(x1, ..., xn).P | c![y1, ..., yn].Q → ∗c?(x1, ..., xn).P | P{y1,...,yn/x1,...,xn
} | Q

(r-tau) (r-struct)

τ.P −→ P
P ≡ P1 P1 −→ Q1 Q1 ≡ Q

P −→ Q

(r-concurrent) (r-scope)
P −→ Q

P | R −→ Q | R

P −→ Q

(#z)P −→ (#z)Q

(r-condition-true) (r-condition-false)
x = y

if x = y then P else Q −→ P

x 6= y

if x = y then P else Q −→ Q

Table 2.3: Reduction rules for theπ-Calculus

s-scope-nullmeans that a scoping operator does not have any effect on the null process,

since this does not include any names.

To describe the reductions of the processes, we define a set ofReduction Rules, which for-

malize how processes communicate between themselves during their execution. Table 2.3

gives these Reduction Rules for theπ-Calculus.

r-communication is the communication rulestating how two processes communicate

through a common channelc. One of the processes has tooutput (send) a tuple of names

through this channel , while the other process has toinput (receive) these names, which

are defined as a tuple of variables up to communication. Once that the names are received,

the input variables are substituted by the received channelnames throughout the process.

We use the notationP{new/old} to denote that the nameold is substituted by the name

new throughout processP .

12
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Example 2.9 (Process communication):Consider the system of processesS. When

these processes communicate, the tuple[a, b] is sent from the process on the right side, to

the process on the left side. This would result in having the variables[x, y] replaced by

the received values[a, b] respectively throughout the processx![c].P .

S =⇒ c?(x, y).x![c].P | c![a, b]Q

−→ a![c].P{a,b/x,y} | Q

r-replicated-communication is similar tor-communication, only that the replication ac-

tion is performed. Upon communication, the process with thereplicated input action will

persist with a copy of itself.

Example 2.10 (Replicated communication):Consider the systemS. When the processes

communicate, the process∗c?(x, y).x![c].P is retained, and a new process is launched

c?(x, y).x![c].P . This process will receive the tuple of channel names and continue re-

ducing, as illustrated in example 2.9.

S =⇒ ∗c?(x, y).x![c].P | c![a, b]Q

−→ ∗c?(x, y).x![c].P | a![c].P{a,b/x,y} | Q

r-tau gives the rule fortau (τ ) reductions, or internal reductions, where an unobservable

action is processed, reducing the process, independent of surrounding processes.

r-concurrent rule states that a reduction is possible for processes in a concurrent environ-

ment.

r-scope rule states that a reduction is possible for processes containing bound names, and

the scoping of these channels remains unchanged.

r-struct infers that a reduction is possible fromP to Q; if there is a reduction fromP1 to

Q1, and ifP andQ are equivalent toP1 andQ1 respectively.

13
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r-condition-true states that ifx is found to be equal toy, then the conditional statement

would reduce to the processP .

Example 2.11 (Conditional statement evaluating to True):Consider the system S,

where the conditional statement is evaluated totrue. Hence the processP follows the

execution.

S =⇒ c![a, a].R | c?(x, y).if x = y then P else Q

−→ R | P{a,a/x,y}

r-condition-false states that ifx is not equal toy, then the conditional statement would

reduce to the processQ.

Example 2.12 (Conditional statement evaluating to False):Consider the system S,

where the conditional statement is evaluated tofalse. Then the processQ follows the

execution.

S =⇒ c![a, b].R | c?(x, y).if x = y then P else Q

−→ R | Q{a,b/x,y}

So far, we have only witnessed examples which illustrate theπ-Calculus notation and

sematic rules. The following example offers a more useful concept thatπ-Calculus can

be used for.

Example 2.13 (Memory cells):Consider a process using the channel namedcell to out-

put a value that have been received earlier in the execution.For instance,

cell?[value].cell![value].P

Note how, this process is temporary storing the name received as the variablevalue.

14
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Now, let us used the replicated input action to allow us to gethold of a cell for an unlimited

number of times, and use the scoping operator to give each of the created cells a unique

name. For example,

∗createcell?(value, getcell).(#cell)(cell![value].0 | getcell![cell].0)

Observe how this process would communicate with another process, in the following

system.

∗createcell?(value, getcell).(#cell)(cell![value].0 | getcell![cell].0)

| createcell![helloworld, listener].listener?(myfirstcell).myfirstcell?(message).Q

The replicated process communicates with our process through the channelcreatecell.

Our process passes the namehelloworld that will be stored, and the name listener. The

channel listener will thus communicate back the cell holding the channel helloworld.

∗createcell?(value, getcell).(#cell)(cell![value].0 | getcell![cell].0)

| (#cell)(cell![value].0 | getcell![cell].0){helloworld, listener/value, getcell}

| listener?(myfirstcell).myfirstcell?(message).Q

What follows is the scoping operator that executes on the channel cell. Since the scoping

operator restrict the channelcell, by creating a unique channelcell0 and substitutingcell

by cell0 throughout the concerned processes. Hence, we will end up with a unique ‘cell’

waiting to output the namehelloworld and our channellistener waiting to output the

name just created channelcell0.

∗createcell?(value, getcell).(#cell)(cell![value].0 | getcell![cell].0)

| cell0![helloworld].0{cell0/cell}

| listener![cell0].0{
cell0/cell}

| listener?(myfirstcell).myfirstcell?(message).Q

15
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Next our process will communicate through the channellistener, to input the channel

representing the cell.

∗createcell?(value, getcell).(#cell)(cell![value].0 | getcell![cell].0)

| cell0![helloworld].0

| cell0?(message).P{cell0/myfirstcell}

Finally our process will retrieve back the namehelloworld that was stored earlier.

∗createcell?(value, getcell).(#cell)(cell![value].0 | getcell![cell].0)

| P{helloworld/message}

2.1.3 Simplifications and Assumptions

In the syntax that we defined, two key simplifications were made to the original Polyadic

π-Calculus. We omitted completely theSummationoperator, and we restrictedReplica-

tion to Input actions only. This will simplify the virtual machines’ development and their

performance drastically.

The Summation operator gives a choice for communication to multiple processes, where

these processes cannot communicate among themselves. For instance, in the example be-

low processesP , Q andR cannot communicate among themselves, and only one of these

can perform communication with processM - this is the choice. When communication

occurs, the chosen process follows the execution, while theothers are discarded.

(P + Q + R) | M

The main reason for removing the summation operator, is because it requires huge amounts

of memory usage when compared to the otherπ-Calculus operators, and it is not very use-
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ful and is rarely used. Turner in his thesis [Tur95], states how the experiment with PICT

[PT00] has shown this.2

The second simplification that we undertook (discussed in detail by Turner [Tur95]), is

the restriction of replication to processes with input actions, which we called Replicated

Input. Full replication of a process is when a process copiesitself upon performing an

action, regardless of what that action is. The structural equivalence that was omitted,

which defined replication is given below.

∗P ≡ P | ∗P

If we had to allow this axiom to be observed, then there will beno control over how this

operator would replicate the processes. This would result in having the process replicate

itself to infinity.

∗P −→ P | P | P | . . . | P | ∗P

By restricting replication to input action, we avoid havingthis situation, since a process

will only be replicated when this communicates through a replicated input action. In

addition to this, full replication can be easily encoded by just using replicated input.

∗P = (#c)(∗c?( ).(P | c![ ]) | c![ ])

2.2 Channel Typing

In this section we define a simple typing system, so that we will be able to controlArity

Mismatchduring communication. We shall not go into great detail since this is beyond the

scope of this work, however one can find further explanationsin [SW03b, Kob]. We will

use typing in both of the virtual machines that we shall develop throughout this project.

2Please note that minor choices can be encoded using the conditional statement instead of the summation

operator.
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Specific details on how typing is used within the various virtual machines, are given in

the forthcoming chapters.

Arity mismatch is triggered when a processP communicates with another processQ, and

the number of channel names that processP is outputting differs from the number ex-

pected by processQ while inputting. This will result in a runtime failure, which is highly

undesirable. Examples 2.14 and 2.15 presents simple situations where arity mismatch

will result in a runtime error.

Example 2.14 (Arity Mismatch): Consider the following two processes running within

a system.

c![b1, b2].P | c?(x1, x2, x3).Q

The processc![b1, b2].P is unaware of the number of variables the other process has. Thus

communication will commence. However, after that the second name is sent and received,

processc![b1, b2].P continues asP , but processc?(x1, x2, x3).Q is still waiting for an input

on the variablex3. This input will never happen. Hence this process locks up and it cannot

proceed with its execution. It is this situation that triggers a runtime error.

Example 2.15 (Arity Mismatch): Now consider the following system of processes.

c![b].b![a].P | c?(x).x?(y1, y2).Q

At a first glance, these two processes look promising, and it seems that both will com-

municate through channelc, and continue running without triggering any runtime errors.

However, after these perform the communication, the situation changes completely, since

the processc?(x).x?(y1, y2).Q has received the channel nameb, and once the variablex

is substituted by this channel name, we get the following situation,

b![a].P | b?(y1, y2).Q{b/x}

Note how now, the system will perform a runtime failure, as explained in example 2.14.
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(err-communication) (err-tau)

a![V ].P | a?(X).Q −→ ERROR

if V 6= X
P −→ERROR

τ.P −→ERROR

(err-scope) (err-concurrent)
P −→ ERROR

(#z)P −→ ERROR

P −→ERROR or Q −→ERROR

P | Q −→ERROR

(err-struct) (err-condition)
P ≡ P1 P1 −→ERROR

P −→ERROR

P −→ERROR or Q −→ERROR

if x = y thenP elseQ −→ERROR

Table 2.4: Runtime errors forπ-Calculus

We define the formal notation for when a system will produce a runtime error in Table

2.4. This table gives all the possible states of a how a systemhandles a runtime error.

Most important is to note the ruleerr-communication, which triggers the error. Note the

error’s trail through the different states of the system.

To avoid our machines running into such a runtime error, we attach atypeto the channels

used within aπ-Calculus program. The syntax for the typing of channels is given in

Table 2.5. A channelc is attached to a typeT , such that, this typeT gives a mould for

the tuple of names, that can be communicated through the channel c. By using types,

before execution starts, the number of names that can be communicated (input/output) is

retrieved from the type. If this number differs from the number of names (for outputs), or

the number of variables (for inputs), execution is withheld.

As one can note, the structure of a Channel Type definitionT , is a tree like structure,

where the nodes represent a channel, and its children represent the tuple that is allowed

through the channel. Therefore, the number of children nodes of a type, symbolizes the

number of names allowed through the channel. This means thatthe leave nodes symbolize

an empty tuple or list of names.

We are also definingType Variables, denoted byV , which can be declared just like chan-
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c, b, a, T ::= 〈 T, T, . . . , T 〉 | V Channel Type

V ::= 〈 T, T, . . . , T 〉 | µXV Type Variable

µXV ::= 〈 XV 〉 Recursive Types

Table 2.5: Typing syntax forπ-Calculus

nel types, which can then be assigned to channels. This simplifies the notation for com-

plex types, where the tree symbolizing these types is of a considerable depth.

Example 2.16 (Using channel types and type variables):The following is a declaration

for the type of the channelc, which is using the variable typeV .

c ::= 〈 〈 〉 , V 〉

V ::= 〈 〈 〉 , 〈 〉 〉

A quick analysis shows that the channelc is being used correctly in the forthcoming

process. Note how the variablesx andy are not declared, but these use the types which

are symbolized as the children of the declared channelc.

c?(x, y).x![ ].y![x, x].Q

Note thatc could have been declared as

c ::= 〈 〈 〉 , 〈 〈 〉 , 〈 〉 〉 〉

Recursive types are more complex then the ‘simple’ types, however, these allow us to

produce more usefulπ-Calculus programs. This is why recursive typing is included in

this study, but it is important to note, that this is a variantto proper recursive typing which

is beyond our target. A channel declared as a recursive type must be done through a type

variable, where this type must contain the same channel typewithin the declaration. The

notationµXV means that the variableX must be declared within the declaration.

Example 2.17 (Recursive Typing):Here, the channelc is assigned to the type variable

X. This type variableX is then defined as a recursive type with a single child, where this
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child is again the type variableX.

c ::= X

µX ::= 〈 X 〉

For instance the following processes are correctly typed, according to the declarations that

were made earlier. This example illustrates how the name forchannelc is communicated

through channelc itself.

c![c].P | c?(x).x![c].Q

To control these type declarations, we assign a set of environments to each process, which

will store all the type declarations that are required throughout the process. We denote the

set of type environments, which are mappings from channel names to types, of a process

P by

Γ ` P

To add a mapping from a channel namec to its declared typeT , to the set of type envi-

ronments, we use the notation,

Γc 7→T ` P

To retrieve the typeT of the channelc, from the set of type environments we use the

notation,

Γ(c) ` c ::= T, P

Finally, to check the equality of types we use the notation,

Γ ` if T = V, P

Table 2.6 gives the formal notation of the Type-Checking rules that should be followed
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(tc-output)

Γ(a) ` a ::= 〈 T 〉, P (tc-input) (tc-replicated-input)

Γ ` if V = T, P Γ(a) ` a ::= 〈 T 〉, P Γ(a) ` a ::= 〈 T 〉, P

ΓV 7→T ` P ΓX 7→T ` P ΓX 7→T ` P

Γ ` a![V ].P Γ ` a?(X).P Γ ` ∗a?(X).P

(tc-concurrent)

Γ ` P (tc-scope) (tc-tau) (tc-null)

Γ ` Q ΓV ` P Γ ` P

Γ ` P | Q Γ ` (#V )P Γ ` τ.P Γ ` 0

(tc-condition)

Γ ` P

Γ ` Q

Γ ` if x = y thenP elseQ

Table 2.6: Type-checking rules forπ-Calculus

before the start of a program execution. Note that these rules are observed on the static

notation of theπ-Calculus program, before any Reduction Semantics are undertaken.

The most vital rules aretc-output, tc-input andtc-replicated-input. These rules show

how output actions check for type equality, before the rest of the process is type-checked.

On the other hand input actions do not check for type equality, because these use variables,

but add the variable value to the set of type environments to be type-checked later, if this

is used by an output action.

2.3 Related Studies

In the following section we take a look at some of the most important and influential

works, which contributed to the field ofπ-Calculus. These technical reports were useful
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during the research of this study. Hence, this section will help the reader to understand

and grasp a more solid idea on theπ-Calculus and its uses. This section should give the

reader a clear picture of where this dissertation stands, incomparison to other studies.

We want to point out that the work in this dissertation is not completely original, but

rather ideas were adopted from the reports in the coming section. Please note that most

of the work achieved by Turner, Sewell and Wischik is beyond the scope of our work

here. Thus, the discussion targets only the objectives, andgives briefings to the ideas

these people developed, and no complex explanations will betackled.

2.3.1 A PICT-to-C Compiler

In his Ph.D thesis [Tur95], David N. Turner aims at developing a PICT-to-C Compiler.

PICT [PT00] is a concurrent programming language built on the π-Calculus constructs,

and was developed by Benjamin C. Pierce and David N. Turner himself. Turner investi-

gates theπ-Calculus by examining whether it is able to have a strongly-typed concurrent

programming language based on the foundations of theπ-Calculus. This is much beyond

our target, but by reading through Turner’s work we capture important explanations on the

π-Calculus and onChannel Typing. In his chapter‘An Abstract Machine forπ-Calculus’,

he describes useful applications which are suitable for ourimplementation. What really

interests us, is how Turner considers implementing aπ-Calculus machine, and making it

as efficient as possible by introducing certain optimizations.

Turner builds his abstract machine on a uniprocessor platform. This means that, the

processes are actually being simulated to work in parallel,since the underlying machine

is utilizing a single processor. Turner states that a distributed implementation poses much

further challenges. (This kind of implementation was laterhandled by Sewell, and later

again by Wischik).
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It is important to mention that David Turner eliminates theSummationoperator in his

description of the abstract machine. He suggests that the Summation operator affects the

implementation by imposing complex issues, and that this isnot feasible, since it is rarely

used within a system.

Another essential point to note here, is how Turner tackles afair execution of π-Calculus,

which is being handled on a uniprocessor. Take into account that a single processor im-

poses a deterministic environment when theπ-Calculus is a non-deterministic modal.

After facing and discussing these design issues, Turner’s objective turns to refine the

abstract machine, by making critical changes, in order to allow a more efficient execution.

One of these optimizations, which we will be considering in our implementation, is the

usage ofEnvironmentsinstead of substitution. Substitution is considered to be highly cost

effective in terms of processing power, but this will be discussed in detail later.

2.3.2 Nomadic-PICT

Peter Sewell, in contrast to Turner, tries to solve the problem of having aπ-Calculus

machine, which will handle distributed programming, whichworks for a real distrib-

uted environment. In his works, Sewell tries to advance on Turner’s work concerning

PICT, from a simulation, to the actual concurrent infrastructure. Sewell handles this by

introducing what he calls an “Agent Programming Language”;the Nomadic-PICT. The

Nomadic-PICT is actually an extension to Pierce’s and Turner’s PICT.

Solid ideas about the background of Sewell’s works is given by Sewell himself in a tutor-

ial [Sew00], where he starts by introducing howπ-Calculus can be applied to a distributed

system. He uses the PICT programming and typing fashion to discuss certain issues.
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In [PSP98, PSP99], Sewell, together with Wojciechowski andPierce, proposes a simple

calculus for mobile agents, such that these will be able to betransported between different

locations within a distributed system, and regardless of this, they will still be able to

communicate by message passing.

The description of the Nomadic-PICT implementation is given in [SW], where Sewell

states that to have a high level programming framework for such distributed systems, the

current infrastructure will face three main problems. The first problem is that program-

ming distributed algorithms are very complex and fragile. The second problem is that the

underlying structure of the present distributed systems, is not flexible enough to support

a clean execution of distributed programming usingπ-Calculus. Finally, the underlying

infrastructure of distributed systems is not application specific as it is required.

These problems are addressed directly in [PSP98, PSP99], where a small calculus is used

and is closely related to real network communication protocols. This work then evolves to

theTwo Level Architecturethat is adopted in implementing the Nomadic-PICT. In brief,

the idea is to have the top level working closely to the programmer, where development is

abstracted away from the lower levels of distributed systems. Hence, the second level is

used to translate the program into a lower programming framework specifically to the un-

derlying distributed system. This lower level will work closely to the present networking

infrastructure and communication protocols.

2.3.3 The Fusion Machine

Lucian Wischik introducesExplicit Fusion Calculusin his Ph.D. dissertation [Wis01].

Explicit Fusion Calculus is an extension to Robin Milner’sπ-Calculus. This variant de-

fines the details of how two processes communicate and exchange names. Lucian Wischik

explains this calculus by segmenting the communication procedure into three main steps.

25



CHAPTER 2. BACKGROUND

First, when two process are aware that the two can synchronize, these become“fused” ,

meaning that both processes are bound to each other until they complete the communi-

cation. Next, these two processes assume that the variable of the input action is equal to

the name being sent by the output action. Finally, the variable is discarded, resulting in

having a “clean” substitution.

Wischik uses this Explicit Fusion Calculus to implement a concurrent and distributed ma-

chine forπ-Calculus. Wischik’s work differs from that of Sewell, since the development

is actually that of an abstract machine based onπ-Calculus, which will work at a low

level of abstraction and on a real distributed system. On theother hand, Sewell achieves

a distributed environment, by extending Turner’s work, by applying an extra upper layer

to operate on top of the already constructed abstract machine.

Wischik calls his abstract machineThe Fusion Machine. He manages to accomplish his

goals by using a technique which he namesFragmentation, whereπ-Calculus programs

are fragmented into multiple simpler programs, in order to make them more transportable.

These programs are fragmented using theories found in the Explicit Fusion Calculus. Af-

ter, fragmenting the programs accordingly, at specific actions, these new programs can be

distributed over multiple machines. Therefore, these programs can execute concurrently

over a distributed system, and would communicate to each other by using Explicit Fusion

Calculus. For communication, a common shared memory location is used. This acts as

the name repository during Explicit fusion.

This is a brief idea on what Lucian Wischik managed to achieve. Its purpose is to motivate

attracted readers, however at this stage this is beyond the scope of this project.
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Compiler Design

In this chapter we discuss the design and the implementationof a compiler. The purpose

of the compiler is to translate the syntax of aπ-Calculus program into an intermediate

code representation, which can then be executed on several Virtual Machines. In Chapters

4 and 5 we develop these virtual machines, on which we can simulate this intermediate

representation.

We shall be dealing with the highlighted section given in Figure 3.1. The development of a

compiler requires other elements and modules to be developed before the actual compiler.

[App02] offers indepth detail regarding compiling theories. We will start by constructing

aπ-Calculus language based on the given syntax in Table 2.1. Wegenerate a Parser using

a compiler generating tool, which will check a given programfor syntactical errors, and

output an Abstract Syntax Tree of the program. We then develop a Type-Checker module,

which implements the rules given in Table 2.6, on the Abstract Syntax Tree. Finally we

design a compiler that will convert an Abstract Syntax Tree (Type-checked or not), into

an intermediate code representation.
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Figure 3.1: Compiler Architecture

3.1 TheΠ-Language

The language that is constructed is an extension to the syntax given in Table 2.1. For

reference and explanation purposes, we shall call this languageΠ-Language. The exten-

sions that were introduced to theΠ-Language are mostly programming constructs making

theπ-Calculus more programmable. Figure 3.2 shows a typicalπ-Calculus program as

it would be constructed using theΠ-Language. The implementation details found within

the various sections of aΠ program, are written using the syntax given in Table 2.1, which

has already been explained. Hence, in this section, we will discuss the constructs that have

been added. The grammar describing our language is given in EBNF format (Extended

Backus-Naur Form), and can be found in Appendix B

3.1.1 The Include Section

As an option, the programmer can use theinclude keyword to import other compiledπ-

Calculus files. Compiled files areπ-Calculus programs, written in theΠ-Language, which

have been processed by the compiler, and saved as intermediate code. For example, in

Figure 3.2, bothsendandreceiveare compiled programs, which are being imported, and

incorporated with this particular program. These programswill not be compiled again

here, but the intermediate code is simply added to the rest ofthe program. Such files can
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include send;

include receive;






Include Section

...

ch a := < < > , < > >;

ch c := < < > , V , < > >;

VAR V := < < > >;

VAR REC Y := < Y >;







Type Declarations

...

def list(x, y)

begin

Implementation
...

end







Definitions

...

begin

Implementation
...

end







Main Body

Figure 3.2: A typicalπ-Calculus program written inΠ-Language
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be used as libraries forπ-Calculus definitions as we shall see later.

3.1.2 Type Declarations

Channel types are declared in this section, and the syntax used is very similar to the typing

syntax given in Table 2.5. The same principles explained in Section 2.2 apply for theΠ-

Language. Note that the convention for channel name is to usesmall caps while, variable

names are given in capitals.

1. Channel typesThe syntax for channel types is as follows:

ch name := structure/variable ;

The keywordch declares the a channel and is given the namename. The assign-

ment:= symbol, allocates thestructureor variableto the channel. The semicolon

signifies the termination of the declaration. The structurefor the declaration follows

the same principle of the typing syntax in Table 2.5. For instance in Figure 3.2, we

are declaring two channels,a andc.

2. Type Variables are very similar to Channel type declarations. The difference is

that the keywordvar is used to declare a variable, and the name of the variable has

to be given in capitals. The semicolon signifies the termination of the declaration.

var NAME := structure/variable ;

In our example given in Figure 3.2, a type variableV is being declared. It is criti-

cal to understand that type variables are only used for othertype declarations and

cannot be used outside the declarations section.

3. Recursive Typesare declared means of a recursive variable. The procedure isto

first declare the recursive type as a variable, then use this variable to declare a
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channel. This gives us more control over recursive typing. The syntax for recursive

types is as follows

var rec NAME := structure(NAME) ;

These types are similar to type variables, only that the keywordrec is used after

thevar keyword to indicate the presence of recursion. The structure for this type

has to include the name of the type itself. The semicolon signifies the termination

of the declaration. In Figure 3.2 the recursive variableY is being declared.

3.1.3 π-Calculus Definitions

A definition is like a program function, where a piece ofπ-Calculus program can be

modularized, in order to be reused whenever it is required. For a programmer to define a

definition, thedef keyword has to be used, followed by a number of variable parameters

enclosed in parentheses, like the example given in Figure 3.2.

The implementation section within the definitions is constructed using theπ-Calculus

syntax given in Table 2.1. This implementation must be enclosed in betweenbegin and

end keywords. Any number of definitions can be constructed within a single program.

A definition can be called by simply calling the given name, and passing the required

channel names as the arguments. For instance, to call the definition in Figure 3.2,

list(a,b).P
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3.1.4 The Main Body

The main body of a program is the starting point of the execution. In this section the

programmer will constructπ-Calculus code using the syntax in Table 2.1. The main body

is an optional section, so that the programmer has the choiceof omitting the main body

and implementing only a number of definitions, hence composing a library of definitions.

The implementation of the main body has to be enclosed in between thebegin and the

end keywords.

The main body should be the last piece of code that is defined, meaning that any type

declarations andπ-Calculus definitions should precede this section.

3.2 The Parser

The grammar specification given in Appendix B, for theΠ-Language, was used to gen-

erate parser modules by using theJavaCCtools. JavaCC (Java Compiler Compiler) pro-

vides a set of tools (JavaCC, JJTree and JJDoc), which are able to understand a scripting

language based on ENBF, and generates parser and compiler classes for the language that

was specified in the EBNF specifications. These tools construct essential modules, for the

Parser section, and interface modules on which the Type-Checker and the Compiler can

be implemented.

At this stage, it is important to understand the task of the Parser, even though this will be

generated by the JavaCC tools. This is necessary, since the development of the compiler

will utilize many of the Parser features.

The Parser’s job is to scan through a stream of characters, where the sequence of these
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characters make up the currentπ-Calculus program, written in theΠ-Language defined

in Appendix B. This raw text is fed to a component known as theLexeror theTokenizer,

whereLexical Analysis is performed. This filters out the code by removing unwanted

text, such as comments and trailing white characters (spaces, carriage returns, tabs, etc.).

The Tokenizer outputs a stream of tokens, where each token represents an entity of the

langauge. For example, the keywordbegin, the channelc and the action?, would all be

tokens.

These tokens are then passed to the main Parser module, whereits job is to check that

the sequence of the tokens matches the grammar, (as defined inAppendix B), or more

specifically it checks for syntax errors. The Parser will output a data structure known

as anAbstract Syntax Tree, which is built from the tokens depicting the structure of the

program. The Syntax Tree gives the program its structure anda more sematic meaning.

Example 3.1 Parsing aπ-Calculus implementation section: For the followingπ-Calculus

implementation, the parser will generate the Abstract Syntax Tree in Figure 3.3.

c![a].0 | c?(x).0

Figure 3.3: Abstract Syntax Tree example
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3.2.1 Visitor Nodes

The JavaCC tools give the possibility of using Visitor classes, which, when implemented,

they will visit the nodes of a parse tree sequentially, and interpret the tree structure. The

Parser outputs a syntax tree built with visitor nodes, whileJavaCC will have already

generated a Visitor interface. Each visitor node will call amethod when this is visited

during the tree traversal, and the implementation of this visiting method is done within

the visitor class that implements the Visitor interface. This means that more than one

visitor class can be developed, and each of these can be specifically implemented to the

requirements.

During our implementation a number of visitors were implemented to meet the specifica-

tions that were required. The following modules implement the visitor interface generated

by JavaCC. This is given in Appendix C, Figure C.1.

Type-Checker traverses the syntax tree checking the channel types for arity mismatch.

It implements the typing rules given in Table 2.6. Development details given in

section 3.3.

Compiler will construct a machine representation based on the traversal of the syntax

tree, but without enforcing checking on types. See section 3.4 for more detail.

GraphicTree Translator interprets and translates tree nodes into graphic nodes which

can be drawn on a graphic context, thus, depicting the visualidea of a syntax tree.

This graphic context can then be drawn onto a windows form to be viewed on

screen.
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3.3 The Type-Checker

The Type-Checker is a module which implements the Visitor interface, and its job is

to type-check the channels. The Type-Checker implementation follows the typing rules

given in Table 2.6. The Abstract Syntax Tree is given to the Type-Checker module, which

will apply the syntax rules to the syntax tree. The Type-Checker module will then output a

message indicating that the tree is correctly typed, or an error message, which will indicate

where a typing mismatch occurred. The module does not alter the Abstract Syntax tree

in any way. In fact, the Type-Checker can be skipped through the process, and allow the

compiler to translate the syntax tree, regardless of its unstable state. This will allow the

user to experience a runtime failure, if this is desired.

This module starts by interpreting the type declarations, and adding each declared type to

an environment table. For every process that will be type checked, a copy of the current

environment table is attached with the process. The environment table is implemented

as a Hash Table where, the channel name, or the variable, willbe the key element, while

the referenced object will be the tree representation of thetype (see page 19). The whole

process will make use of a Stack, where the Hash Tables are stored before these are

attached to type check a process.

Example 3.2 Controlling environments: Consider the following system, with a Hash

Table for the type declarationsΓ. These declarations are left unchanged before type

checking each of the other processes by means of a stack.

Γ (P | Q | R)

The Type-Checker will first place the Hash Table on the stack,then it will take a copy

and use it to type-check processP . During the checking ofP , the Type-Checker will

manipulate the entries as required. When the checking on processP ends, the table is

discarded and a fresh copy of the original Hash Table is used for the type-checking of
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processQ. The same procedure is used for all concurrent processes.

The stack will be really required when a process contains parenthesis, which will divide

a single process into a number of other processes.

Γ (P.(M | N) | Q | R)

In this case the Hash Table that is used by processP is not discarded, but it is pushed on

top of the stack, with all the changes that it had undertaken.This table will then be used

by all the processes that have emerged fromP (ie. M andN), using the same procedure.

Upon the completion ofP , the Hash Table will be popped from the stack and discarded,

therefore the processesQ andR will have access to the original Hash Table thatP had

started off with.

3.4 The Compiler

The Compiler module translates an Abstract Syntax Tree intointermediate code. The

compiler implements the Visitor interface constructed by the JavaCC tools, and it traverses

the syntax tree using visiting nodes. During the traversal of the tree, the compiler will

build data structures according to what the nodes of the syntax tree represent.

Figure 3.4: The compiler translates an AST into Intermediate Code
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3.4.1 Intermediate Code Representation

At this stage, we shall define how the intermediate code representation is designed. This

representation is developed such that, it can be saved (or serialized) to a file, making it the

compiled version of the program.

A π-Calculus program is represented as an unordered list of processes, meaning that

P | Q | R will be represented as[| P :: Q :: R |]. An unordered list signifies

that the processes of this list are randomly ordered, makingsure that there will be as

much fairness as possible during execution.

Figure 3.5: Intermediate representation of a process

On the other hand, the processes will be represented as an ordered list ofπ-Calculus

tasks. In π-Calculus, a process is a sequence of actions. Hence in our machine we shall

not define an entity to represent a process, but rather, we will build up the process by

using a linked list of actions which we shall call tasks. We shall define a number of tasks,

where each of these will correspond to theπ-Calculus actions. Figure 3.6 gives the class

diagram for the classes representing these tasks, each of which inherit from an abstract

class Task.
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Figure 3.6: Class diagram - Task class and subclasses
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Output Task

An Output task represents an output action, for examplec![x1, ..., xn].P . This task will

contain a string value for the channelc, and a list of strings for the channelsx1, ..., xn

being outputted. This task must be part of a continuation or sequence of other actions,

and therefore it must be followed by another task. The next taskP will be represented as

a task.

Input Task

An Input task represents an input action such asc?(x1, ..., xn).P . Hence, this task will

contain a string value for the channelc, and a list of strings for the namesx1, ..., xn. The

following processP will be represented as a next task.

Replicated Input Task

A Replicated Input task is very similar to an input task, but it represents a replicated input

action such as∗c?(x1, ..., xn).P . This task will contain a string value for the channelc,

and a list of strings for the namesx1, ..., xn. The following processP will be represented

as a next task.

Tau Task

The Tau Task corresponds to an internal action, or an unobserved action,&.P . Hence this

task will hold no information, other then the next task to be followed.
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If Task

An If Task will stand for an If-Then-Else action. Let us consider the exampleif x =

y then P else Q. This task will define two strings to hold the two channels,x andy,

used for the equality. This task will store two pointers to two different tasks. One task is

pointing toP , which is the task to be followed if the equality is true, and the other task is

pointing toQ, the task to be followed if the equality is false.

Binding Task

A Binding Task is defined to correspond to the binding action of a channel. In order to

accurately handle the binding and scoping of channels, a binding action or task had to be

materialized to a specific point in time within the execution. This means that the syntax

(#n)P will be represented by a single binding task. This task will contain a string to

store the channel that is being bound, followed be the process with the bound channel,

which is represented as a task.

Brackets Task

The Brackets Task is defined to be used for structural purposes only. During the first

phases of the research it was noted that parentheses are usedfrequently to structure the

π-Calculus syntax. For example, the systemP.(Q | R) is allowed, where the processP

is followed by two unordered processesQ andR. Therefore, this will be represented as a

Brackets Taskwhich will contain an unordered list of unordered tasks.
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Null Task

The Null Task is defined to represent the end of the link list oftasks. It is used for internal

processing, but it can be compared to the null process0.

3.4.2 Intermediate Code to String Translator

A translator module was developed to allow us to convert a compiled version of aπ-

Calculus program into a string representation. This modulecan be closely related to a

de-compiler. This module, is a necessity for the Virtual Machines that will be developed

since, the machines will have to output the resulting state,after performing a number

of reduction steps. Therefore, this module will be called from the virtual machine, to

translate the current machine representation into a readable format.

This translator will traverse a list of processes, and for each of the processes, the trans-

lator will traverse the tasks sequentially, and the corresponding string representation is

composed.
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3.5 A Minor Optimization

An optimization was adopted at this stage for the If-Then-Else operation. The idea is to

type-check the channels involved in the condition expression. If these are not of the same

type, then it can be deduced that the channels will never be equal. Therefore, theThen

process will never be followed and thus, it can be removed. The following pseudo-code

is adopted.

1. Retrieve type declaration for both channels, and check for the type equality.

2. If both channels are of the same type then construct the If Task normally.

3. If the two channels are not of the same type, then discard the Then section, and

construct the Else process as a continuation to the preceding process.
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Chapter 4

A Stand-Alone Virtual Machine

In Chapter 3 we have dealt with the design of the compiler, which is able to translate

π-Calculus notation into machine data structures, such thatthis format is easier to ma-

nipulate and work with. The aim of this chapter is to develop avirtual machine based

on the abstract machine given by Turner in his dissertation [Tur95]. The virtual machine

performs reduction operations on the intermediate code, inthe same way thatπ-Calculus

notation is reduced using the reduction rules in Table 2.3. More specifically, we shall

develop a set of reduction procedures, which will be appliedto this intermediate code

representation, allowing the processes to communicate.

This machine implementation is a Stand-Alone Virtual Machine, meaning that the whole

execution will be done internally. This implies that the virtual machine will accept the

input system as intermediate code, and will only output the results once that the compu-

tation has been terminated. The computation will be contained within the Stand-Alone

Virtual Machine until the processes can no longer reduce among them, and it is then that

the results are outputted. This brings us to an important objective, which involves the ac-

curacy of the virtual machine. We want our stand-alone virtual machine to output correct
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results when it terminates the execution. This means that the machine has to process the

reduction rules consistently, and always produce the expected results. We shall tackle the

correctness of our virtual machine in more detail in section4.1.

A Stand-Alone Virtual machine gives us the advantage of focusing on the performance

of the machine. Since all of the commutation will be under thecontrol of the virtual

machine, this allows us to develop an efficient architectureand expand on optimizations,

which will perform rapid process reductions.

It is important to mention that the machine will besimulating the concurrent environ-

ment of theπ-Calculus parallel processes, since it will be working on a uniprocessor (one

processor). When mentioning a simulation, an essential point is brought forward; the

fairnessof the simulated execution. As we know,π-Calculus offers a non-deterministic

execution, but, since our machine will run on a single processor, our machine will perform

a deterministic execution. Hence, throughout the designing stages, it is extremely impor-

tant to keep the handling and the execution of the processes as fair as possible. This in-

volves having every process being given an equal chance for communication. This might

turn out to be more difficult to accomplish than the actual correctness and accuracy of the

machine, since it is easy to produce a correct result withoutachieving the correct amount

of fairness between the processes. To summarize, our main objective will be develop a

stand-alone virtual machine capable of executing the communication between processes

and reducing these processes with a hundred percent correctness, while achieving this as

fairly as possible.

4.1 Correctness Of The Virtual Machine

When talking about the correctness of a machine, we mean to say whether or not the ma-

chine matches reality or its realistic counterpart. To prove the correctness of our machine,
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we shall compare the virtual machine results with the actualreal results ofπ-Calculus,

and make sure that the machine results are accurate. Since our Virtual Machine will be

developed on algorithms, we can positively state that our machine is correct, if the algo-

rithms that make up the machine are correct with respect to a number of specifications,

where our specifications are theπ-Calculus reduction rules given in Table 2.3.

In Chapter 3 we have seen how to translateπ-Calculus terms into intermediate code rep-

resentations, by means of the Compiler modules. We have to our availability, an In-

termediate Code to String Translator(see section 3.4.2), which translates the machine

representation into a string which is readable. Therefore,we affirm that, if we are able to

translateπ-Calculus terms into intermediate code and vice-versa, then the two forms can

be regarded as equivalent.

Figure 4.1: Convertingπ-Calculus terms to machine terms, and vice-versa

Consider the exampleP | Q given in Figure 4.1. By using the Compiler, we translate our

system into Intermediate Code Representation format, and by using the String Translator

we convert the Intermediate Code into its original state.

Now,we can move a step further and define a functionfV M(S) within our Virtual Ma-

chine implementation, which will accept aπ-Calculus systemS in intermediate code

format, and outputs the resulting system in intermediate code. Internally this function

will consist of all the rules discussed in Table 2.3.
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Figure 4.2: Correctness of machine

Next, we utilize our function (Virtual Machine) as shown in Figure 4.2, which will reduce

the intermediate code representation in a number of steps asfollows:

fV M([| P :: Q |]) −→∗ [| R |]

Now we need to translate the results back intoπ-Calculus terms, and for this, we use our

Intermediate Code to String translator, as depicted in Figure 4.2.

So far we have achieved a result using the Virtual Machine. Consequently, we now have

to determine the correctness of the Virtual Machine. In order to determine this, we have

to show that the acquired result is equivalent to its realistic counterpart result. By the

realistic result we refer to the result achieved if the starting system had to be reduced by

using the reduction rules in Table 2.3.

This is clearly pictured in Figure 4.3. Please note that the results of the reduction transi-

tions of theπ-Calculus terms and the results of reduction transitions ofthe Intermediate

Code, can be achieved differently.
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Figure 4.3: Correctness of machine

4.2 Stand-Alone Architecture

The design for the Stand-Alone Virtual Machine is based on the machine described by

David Turner in his thesis [Tur95].

The machine consists of aProcess Manager, which will contain instructions for process

reduction orReduction Procedures. This module will work in between two First In First

Out (FIFO) queues, theRun Queueand theService Heap. As seen in Figure 4.4, the

processes1 will circulate around the two queues and are handled by theProcess Manager.

When the virtual machine commences its execution, it will have available an unorder list

of processes, as described in Section 3.4.1. These processes will be randomly enqueued

onto the Run Queue, thus giving the simulation a higher levelof fairness. Once that all

the processes are enqueued, the simulation can commence.

At this stage, it is important to make a distinction between the nature of the tasks involved

in the processes. We classify Output Tasks, Input Tasks and Replicated Input Tasks as

communication tasks, since these tasks represent the actions that are always handled in

pairs, because communication must be between two processes. The rest of the tasks; the

Tau Tasks, the Binding Tasks, the Brackets Tasks, the If Tasks and the Null Tasks are

non-communication tasks, meaning that these represent procedures that do not require

1A single process is actually a linked list of tasks. See Section 3.4.1.
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Figure 4.4: Simple design for the Stand-Alone Virtual Machine

another process to be executed.

The process manager will, retrieve the process at the head ofthe queue, and it will handle

the first task of the process, according to the classificationof this task. The difference

in handling, is that, communication tasks make use of the Service Heap, while non-

communication tasks do not. The account for communication tasks is given in Section

4.3, and the account for non-communication tasks is given inSection 4.4.

4.3 Handling Process Communication

If the Process Managerdequeues a communication task, such as Input, Output or a Repli-

cated Input from the Run Queue, the Process Manager will follow the flowchart depicted

in Figure 4.5.

The Process Manager will have a single process at a time to handle. Thus, only one task
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Figure 4.5: Stand-Alone Machine algorithm
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needs to be handled. Communication tasks will always request a channel to communicate

through,

Example 4.1: For instance, all of the following processes are requestingthe channelc.

c![a, b, d].P | ∗ c![b, d, e].Q|c?(x, y, z).R

The Process Manager will search for a task along the Service Heap, which had requested

the same channel. This is known as channel blocking, since the search to match the pair

is only done on the heap, and thus having the effect of the channels being blocked by the

requiting task.

If a task is not found in the heap, the requested channel is notblocked, and no other

process has requested this channel. Hence, the Process Manager will enqueue the process

on the Service Heap, and thus blocking the channel which is being requested.

On the other hand, if a process is found blocking a channel on the Service Heap, the

Process Manager will check thepolarity of the two tasks. This means that the Process

Manager will compare the task being serviced with the one found on the heap, and will

match up a pair only if the two tasks can communicate as specified in Section 2.1.2. For

instance, an output is matched with either an input or a replicated input. If the other half

of the communication pair is not available, then the task being serviced is enqueued on

the Service Heap.

Nonetheless, if a match is found, then the two processes can communicate and reduce.

Hence the Process Manager will retrieve the names from the output action and substitute

the variables of the input action, with the retrieved channel names. If type-checking has

been performed during compilation, then the number of namesbeing passed will match

up with the number of variables. However, if the Type-Checker module has been over-

passed, then the Process Manager will halt and trigger a runtime failure.
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Following the communication, the two processes are reduced, by discarding the first task

of each process, since these tasks have been performed. Afterwards, these processes are

enqueued to the end of the Run Queue, and subsequently, the Process Manager com-

mences this procedure once again.

In this whole procedure, the processes are being circulatedaround as much as possible so

that we try to account for fairness as mush as possible. The Service Heap acts as a meeting

point for the processes, avoiding the situation of having two processes which never pair

up to communicate.

Example 4.2: The following example shows how two processes are enqueued on the Run

Queue, and how the Process Manager handles these processes,by using the Service Heap

to establish communication.

Process Manager Run Queue Service Heap

P 〈 � 〉 R〈 � 〉 H〈 � 〉

P 〈 � 〉 R〈 c![a, b].Q 〉 H〈 � 〉

P 〈 � 〉 R〈 c![a, b].Q | c?(x, y).R 〉 H〈 � 〉

P 〈 c![a, b].Q 〉 R〈 c?(x, y).R 〉 H〈 � 〉

P 〈 � 〉 R〈 c?(x, y).R 〉 H〈 c![a, b].Q 〉

P 〈 c?(x, y).R 〉 R〈 � 〉 H〈 c![a, b].Q 〉

P 〈 c?(x, y).R • c![a, b].Q 〉 R〈 � 〉 H〈 � 〉

P 〈 R{a,b/x,y} • Q 〉 R〈 � 〉 H〈 � 〉

P 〈 Q 〉 R〈 R{a,b/x,y} 〉 H〈 � 〉

P 〈 � 〉 R〈 R{a,b/x,y} | Q 〉 H〈 � 〉
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Figure 4.6: Stand-Alone machine with optimized service heap

4.3.1 Optimizing The Service Heap

An important optimization that is implemented to this mechanism, is the division of the

Service Heap into two sections, one for output tasks and another for input tasks. This

optimization is a variation to the optimization implemented by Turner. The idea is to have

two Service Heaps, rather then a single one, where input tasks and replicated input tasks

are separated from output tasks, reducing the search space by half2. So now, the algorithm

will work similar to the one described in Section 4.3, with the only difference that, if an

output is being serviced, then, the search is done only on theInput Service Heap, and

vice-versa for inputs. If the process needs to be enqueued tothe Service Heap, then this

is enqueued to the Input Service Heap, whether its task is an Input or a Replicated Input.

If the task is an Output then this is enqueued to the Output Service Heap.

2This is the worst case scenario where1

2
of the tasks are outputs and the other1

2
are a mixture of inputs

and replicated inputs
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Replicated Input tasks are treated in the same manner as Input tasks, throughout the han-

dling of processes. Some researchers suggest that Replicated Inputs should be allocated

on a separate heap, which will be a permanent storage for these processes. This would

be a good optimization, but it was not implemented here. The reason for this is that if a

Replicated Input had to be stored on a permanent Service Heap, then this will permanently

block a channel. Thus, it will have priority over other processes (Input Tasks), having a

fairness breach during the execution of the simulation. Hence, it was decided, that, in

our implementation, the machine will have to absorb the costof enqueues/dequeues of

Replicated Input tasks, but gaining the fairness of the execution.

4.4 Handling Non-Communication Tasks

The rest of the tasks, such as Tau Task, If Task, Binding Task,Brackets Task and Null

Task, are processed differently, since these can reduce a process independently and with-

out using the Service Heap.

TheTau Task serves only as an internal operation that is performed within the process.

Hence, the Processor does not need to perform any additionalhandling of this task. The

procedure is that the next task is simply enqueued at the end of the Run Queue.

Example 4.3 (Handling Tau Tasks):

Process Manager Run Queue Service Heap

P 〈 � 〉 R〈 � 〉 H〈 � 〉

P 〈 � 〉 R〈 τ.P 〉 H〈 � 〉

P 〈 τ.P 〉 R〈 � 〉 H〈 � 〉

P 〈 P 〉 R〈 � 〉 H〈 � 〉

P 〈 � 〉 R〈 P 〉 H〈 � 〉
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An If Task is handled by the Processor by evaluating the conditional equality that it

contains. If the equality is evaluated to a true value, then the process for thethenpart is

enqueued, while if the equality is calculated to a false value, then the process for theelse

part is enqueued.

Example 4.4 (Handling If Tasks):

Process Manager Run Queue Service Heap

P 〈 � 〉 R〈 � 〉 H〈 � 〉

P 〈 � 〉 R〈 [x = y](P )(Q) 〉 H〈 � 〉

P 〈 [x = y]
︸ ︷︷ ︸

true

(P )(Q) 〉 R〈 � 〉 H〈 � 〉

P 〈 P 〉 R〈 � 〉 H〈 � 〉

P 〈 � 〉 R〈 P 〉 H〈 � 〉

TheBinding Task purpose is to bind the given name to the process. In order to accom-

plish this, the Processor will issue a fresh name, which is unique throughout the whole

system, and it will substitute the channel name that was to bebound, with this new fresh

name. This ensures that the name is unique to the process, which has the same effect as

being bound. The Processor will then enqueue the process at the end of the Run Queue.

Example 4.5 (Handling Binding Tasks):

Process Manager Run Queue Service Heap

P 〈 � 〉 R〈 � 〉 H〈 � 〉

P 〈 � 〉 R〈 (#n)P 〉 H〈 � 〉

P 〈 (#n)P 〉 R〈 � 〉 H〈 � 〉

P 〈 P{n0/n} 〉 R〈 � 〉 H〈 � 〉

P 〈 � 〉 R〈 P{n0/n} 〉 H〈 � 〉
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Brackets Taskscontain a list of processes, hence the Processor’s job is to enqueue each

of these processes to the Run Queue. The idea is to open up the brackets and release the

processes that were enclosed as new processes.

Example 4.6 (Handling Brackets Tasks):

Process Manager Run Queue Service Heap

P 〈 � 〉 R〈 � 〉 H〈 � 〉

P 〈 � 〉 R〈 (M | N) 〉 H〈 � 〉

P 〈 (M | N) 〉 R〈 � 〉 H〈 � 〉

P 〈 M • N 〉 R〈 � 〉 H〈 � 〉

P 〈 N 〉 R〈 M 〉 H〈 � 〉

P 〈 � 〉 R〈 M | N 〉 H〈 � 〉

TheNull Task indicates to the Processor the end of a process, or a Null process. Hence,

the Processor will simply discard the instance, and returnsto servicing other processes.

Example 4.7 (Handling Null Tasks):

Process Manager Run Queue Service Heap

P 〈 � 〉 R〈 � 〉 H〈 � 〉

P 〈 � 〉 R〈 0 〉 H〈 � 〉

P 〈 0 〉 R〈 � 〉 H〈 � 〉

P 〈 � 〉 R〈 � 〉 H〈 � 〉
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4.4.1 Optimizing The Management Of Tasks

We employ a small change while handling the processes. The optimization concerns the

non-communication tasks which are discussed in Section 4.4. As one can notice, these

tasks can avoid being queued up on the Run Queue.

Example 4.8: Consider the following process as the simplest of examples.It would be

good practice if our processor will execute all of the internal actions and enqueue the

processP at once, instead of queuing the process after each continuation.

&.&.&.P

In our implementation of the machine we shall allow only the queuing of Input tasks,

Output tasks and Replicated Input tasks, (Communication Tasks), while all of the other

tasks have to be processed by a filtering module, before beingqueued. TheFilter will

perform this processing until a communication task is available, after which this will be

enqueued to the Run Queue.

By introducing this policy, we are making the execution morefair between processes.

Example 4.9: For instance, note the following state on the Run Queue.

〈 c![a].P | (#z)c?(x).z![x].Q | c?(y).R 〉

If we do not apply the optimization that is being suggested, then the third process has an

advantage over the second process, because the second process is still waiting to process

the binding action, which does not affect, in any way, the following action. Therefore, by

processing a non-communication task, we make sure that all processes have a more just

chance of execution.
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Figure 4.7: Stand-Alone machine applying all the discussedoptimizations

4.5 Environments

Performing substitutions within processes during communication, is a very expensive pro-

cedure. Apart from being costly, we are never sure if a process will survive through its

whole lifetime. Therefore, if a process had to be stopped forsome reason, then all of the

substitutions that were performed, will be useless and waisted. We improve this situation

by introducingEnvironments. Environments permit us to avoid substitutions completely,

meaning that the variable terms are never modified within theprocesses.

An environmentE is the mapping from a variablex to a channel namec.

E ::= x 7→ c

These mappings are stored using a Hash Table. Note that environments are bound to the

usage of a single process Hence we modify our virtual machine, such that we can store
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an environment table (Hash Table) for each of the processes that the machine will be

handling.

Therefore, when a substitution is required, instead of performing a direct substitution

{new/old}, a new entry is added to the process’ environment tableold 7→ new. Thus,

whenever it is required to use theold variable as a channel, this is looked up in the hash

table and the correct channel name is retrieved.
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Chapter 5

An Interactive Virtual Machine

In this chapter we discuss the development of a virtual machine which will allow a user

to interact with the machine itself, while this performs thesame functionalities as those

within the Stand-Alone Virtual Machine. By this we understand that the Interactive Vir-

tual Machine will first have to reduce a givenπ-Calculus program, after which the results

are shown to the user. Based on these results the user will input π-Calculus commands,

which these will trigger the virtual machine to reduce the program even further, thus con-

tinuing with the execution. After that the program is again reduced, the machine will

display to the user the next results, with which the user can again interact.

The idea is to have a user inputting aπ-Calculus program, and while the virtual machine

is executing this program, the user can communicate with theprogram usingπ-Calculus

notation. The user will be allowed to compose Input Tasks andOutput Tasks, and use

these to communicate with the internal program. This means that, inπ-Calculus terms the

user, together with these actions that are being used, can beregarded as a process. The user

is an external process, working concurrently with the virtual machine, and communicating

with it. We see this in Figure 5.1 where processU is the user and processM is the virtual
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Figure 5.1: User interacting with machine

machine. Note how the machine is not a single process, but rather it is composed of the

internal process which make up theπ-Calculus program.

This machine focuses mostly with the communication betweenthe user and the machine,

however we will allow communication between the internal processes of the program

which is being executed. In other words we have to provide twomodes of operation for

this virtual machine.

Stepped Into - when the machine stops for user interaction at every singlereduction.

The machine outputs its current state to the user, at every step of the execution,

even if this is performed internally between the program processes.

Stepped Over - the machine will only halt when no more internal reductionsare avail-

able. This allows the internal program to process logical work that is to be per-

formed, before interacting with the user.

5.1 Stand-Alone vs Interactive

Let us investigate on what an Interactive Machine will servefor, and why it is an important

tool to be developed and analyzed. Note how an Interactive environment, offers many

more interesting uses than the Stand-Alone environment. But what are the advantages of

developing an Interactive Virtual Machine over a Stand-Alone Virtual Machine?
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Note that the Stand-Alone Virtual Machine developed in Chapter 4 offers limited func-

tionalities. Programs running within the Stand-Alone machine are restricted only to the

environment offered by the machine. This makes it hard for the user to assess the pro-

gram’s behavior. In fact, the Stand-Alone Virtual Machine does not give the user the

desired perspective and thus the user cannot analyze the program internal reductions.

The most straightforward use of having an Interactive Virtual Machine is to give the user

the possibility to understand and learn theπ-Calculus notation. The machine can serve

as a learning tool for those who wish to learn theπ-Calculus, since the reductions can

be visualized more then when giving examples on paper. The idea is to aid the learning

process since the user can feel part of theπ-Calculus system.

Another useful job that an Interactive Virtual Machine can accomplish, is to debugπ-

Calculus programs. The interaction feature can also act as atracing functionality to the

program that is being executed. During interaction, the developer can learn of mistakes,

or bugs, within the program. This will be possible since the user will have a clear picture

of the current state of the machine.

A more interesting observation is that by developing such a virtual machine, we are creat-

ing a level of abstraction on top of theπ-Calculus program. Similar to what Sewell accom-

plished in the development of the Nomadic-PICT [PSP99, SW].Indirectly, the framework

now has a layer of abstraction where the execution of the internalπ-Calculus program is

abstracted away from the user, by means of the interactive virtual machine. The user will

still be communicating with the program usingπ-Calculus notation, however the commu-

nication is done through the virtual machine, thus the details of the internal program is

unobservable from the user. The interesting point is that, both layers are using the same

π-Calculus notation. As we shall see in Chapter 6, when we testthe implementation of

this machine, is that, if we position a user in front of twoπ-Calculus programs which

implement the same interface (input/output relations) andfunctionality, then the user will
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Figure 5.2: Abstraction layer provided by the Interactive Virtual Machine

not be able to distinguish one from the other despite that these are internally implemented

differently.

At this point we have started to deviate beyond the scope of this study. However, it is

extremely motivating, how such an interactive machine whencorrectly developed, will

transform the environment to a more realistic distributed system. This is so, since an

interactive machine will not only work on a single processorbut it is now communicating

with an external source, in this case the user. An interesting question will be, what if the

interaction had to be performed between two or more interactive machines?

In this kind of machine we see that our priorities change, since at this point, the machine

does not only have to perform efficiently with its inner processing, but also in retrieving

information about the current state of the machine. The machine state has to be retrieved

and showed to the user as efficient as possible. In this machine the main processing power

has to tackle the crossing point between the User and the Machine. We need to assume

that the user will be a slow process, so we have to bargain withthe internal structure of

the machine, to make the User-Machine interface more efficient. By applying this change

in performance priority we need to apply changes to the internal design of the machine.

Fairness is another vital point in this machine implementation, since now, we have the

user acting as an external process, which will have priorityat certain times. For this we
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have to examine the two modes of interaction. If we take the Stepped Into1 mode then

the fairness of the overall machine will be reduced, since the user will have priority over

all the other processes. However, note that when the user chooses an internal action to be

processed, then this choice has to be randomly selected fromthe set of internal actions.

Therefore, it is interesting to note that in this respect we have to take into account the

fairness of the execution.

On the other hand, when the machine will be operating in Stepped Over2 mode, the fair-

ness of the machine will have to be accounted for in a similar way as within the stand-

alone machine. This means that the user will actually not be given any preference when

operating in this mode. This is an important point to emphasis on, since the machine will

allow interaction when no additional reductions are possible to be processed. Hence, as

we have already discussed in Chapter 4, all the internal processing of the machine will

execute on a rational framework.

5.2 Correctness Of The Virtual Machine

For this machine we still need to take into account the correctness of the virtual machine.

The objective is very similar to the correctness of the stand-alone machine (see Section

4.1). In fact the underlying intentions do not change, meaning that, when a system is given

to the machine, the result that is produced has to be equivalent to its realistic counterpart.

The only difference here, is that, the correctness has to be monitored iteratively, each time

the user interacts with the machine. It is very important to have the correctness of the

interactive machine stable throughout the whole executionsince, the results produced by

the machine will reflect the input that is to follow. Therefore, the interactive machine we

will keep up with our previous objective regarding correctness.

1The machine stops and waits for user interaction at every step, even at internal tasks.
2The machine will stop and wait for user interaction when no further internal reductions will be possible.
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Figure 5.3: Correctness of the Interactive Machine

Figure 5.3 shows us the correctness of the virtual machine. Note how the execution of this

virtual machine, is engaged into an iterative process and the internal processing is trigged

upon user interaction. Therefore, the virtual machine willhave to produce accurate results

at each iteration. It is important to understand that the results, depend on the previous user

input, hence the machine has to produce correct results withrespect to the inputs that the

user has done.

As we shall see, in order to have control over what the user inputs into the machine, we

will use channel typing. Channel types will allow the machine to type-check the actions

that are given to the machine by the user. If the action is not correctly typed, then the

machine will complain to the user, thus avoiding arity mismatch at runtime.

5.3 Interactive Architecture

The development of an Interactive Virtual Machine, will mostly involve, an efficient

mechanism which allows us to read the current machine status. This machine will be

displaying the current state of the internal program, at every step during the simulated
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execution. Hence, it is crucial to have optimal performance, in the linkage between the

user and the machine.

We start by re-organizing the architecture of how processesare handled. Note that, the

structure of the processes is the same as in the Stand-Alone Virtual Machine. This means

that we will be operating on the same intermediate code representation, as discussed in

Section 3.4.1.

The architecture design for the Interactive Virtual Machine is given in Figure 5.4. We have

aProcess Manager, which will be handling all process communication. By observing this

design, one can note that, some of the strategies are similarto the Stand-Alone Virtual

Machine.

We make a distinction betweenCommunication TasksandNon-Communication Tasks,

after which we employ a further step to make another distinction between the channel

requests of the communication tasks. This means that now, weare categorizing the com-

munication tasks, by the channel name that is being requested.

Figure 5.4: Interactive Virtual Machine Architecture
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To accomplish this, we define an object (Channel), which represents the actual channel of

communication, consisting mainly of an input queue and an output queue. The Process

Manager which will enqueue processes on the respective queue. Several of these channels

will be stored using a Hash Table, which allows easy and efficient access. Thus, we

now have a design which will allow us to retrieve the current state of the machine very

effectively and with the least amount of processing costs. For example, if we had to list

the key elements of the Hash Table we immediately have all thechannel names that are

being used by the machine.

5.3.1 Channels

A Channel is composed of a name, identifying the channel, anda channel type object

classifying the channel to a particular type definition. A channel will contain two process

queues; one will queue input task and replicated input tasks, while the other will queue

output tasks. These queues are dedicated queues, meaning that they will only enqueue

processes that are requesting the same channel.

Note that the queues with this channel object, are similar tothe Service Heap of the Stand-

Alone Virtual Machine. In fact, we employed the first optimization, by distinguishing the

input queue from the output queue, from the very start.

Criteria are defined for processes requesting to queue up forthe use of a channel object.

The first is that only processes with a communication task3 can be enqueued. Another

criteria is that, the channel being requested and the channel used by the task, have to be

the same one, meaning that both the name and the channel type have to be equivalent.

This ensures that runtime errors are not introduced by the user during interaction.

3A communication task can be either an Input Task, a Replicated Input Task or an Output Task.
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Figure 5.5: Channel Architecture

The most important function that a channel object can perform, is that a channel object

can output its current state. The state of the channel is whatis displayed to the user, and it

should give an overview of how the user can interact with thisparticular channel. There-

fore, the state of a channel is simply two boolean values, representing the two queues for

inputs and outputs. These values will indicate if a channel has available processes await-

ing in the input and output queues, hence, a true value means that at least one process is

waiting in that queue, while a false value means that the queue is empty. This allows the

machine to communicate to the user, the different combinations of a channel state.

5.4 Handling Process Communication

The communication between the processes is handled by the Process Manager. At this

stage it is important to mention that in this virtual machinewe will be dealing with two

situation of process communication. Either a machine process communicates with the

user during interaction, or two machine processes communicate internally. For the user

to communicate with the machine, the user will have to createa task, which this will be
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handled as the process which is to be serviced, meaning that communication will have to

be done with this process if possible. On the other hand, if two of the machine processes

will communicate internally between them, then from the user’s point of view this will be

regarded as an internal reduction.

When a user launches a task into the machine, the Process Manager selects the channel

that is being requested. The channel retrieved is first checked for type equivalence. Once

that the channel is identified as correct, the Process Manager will retrieve the first process

awaiting to communicate from the channel. Now, if the user’stask is an input task or a

replicated input task, then the first process on the output queue is retrieved. On the other

hand, if the user’s task is an output task, then the first process from the input queue is

retrieved. The Process Manager will then reduce the two processes in the same manner

as in the Stand-Alone Virtual Machine, thus following the rules in Table 2.3.

For internal communication, the Process Manager will randomly select a channel which

has non-empty queues (input and output). By having a channelwith at least one task

enqueued on each of the queues, then this signifies that the channel can communicate

internally. Hence, the process manager will retrieve theseprocesses and communication

is accomplished.

5.4.1 Internal Reduction

When discussing internal reductions within the Interactive machine, we mean that the

machine will either reduce a non-communication task, or that the machine will allow two

processes having a matching pair of communication tasks, tocommunicate internally.

Therefore, it is important to note that, from the user’s point of view both of these situations

are regarded as internal reductions.
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Recall that we are dealing with two modes of interactivity within this virtual machine.

When executing a Stepped Into simulation, then we need to allow the user to experience

even internal reduction happening within the machine’s program. Hence, the optimiza-

tion employed for the Stand-Alone machine, is not applicable in this case. However, if

a Stepped Over simulation is being run, then it is important to ensure that all internal

reductions are performed.

To handle the Stepped Into simulation, we enforce that only one reduction is performed

at every user interaction. This means that the Non-Communication Queue seen in Figure

5.4 will enqueue processes awaiting for a non-communication task to be performed. A

channel which can perform an internal communication will besuppressed from reducing.

Therefore, we then give the user the option to either interact with the machine by intro-

ducing a task, or by instructing the machine to perform internal tasks. When performing

internal reductions within the machine, the user will stillbe able to notice the changes

occurring in the program.

During Stepped Over execution, the interactive machine will check for both types of inter-

nal reductions and keep reducing until no further are available. This means that for every

single user interaction, the virtual machine can possibly perform a number of reductions.

Please note, that during this mode of operation, the virtualmachine will not be utilizing

the Non-Communication Queue since, these will not be allow to stand idle within the

system.

5.5 Environments

In the implementation of the Interactive Virtual Machine, we make use of channel name

environments just as these are used in the Stand-Alone machine. Therefore, we extend

our channel object representation, and allow it to hold a setof name mappings for each of
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the processes that are enqueued.

Figure 5.6: Environment Mappings between the user and the virtual machine

The difference that is required for the Interactive machineis that we have to keep a set

of name environments for the user. Remember that the user is regarded as an external

process, hence the machine will have an environment table, which will map the channel

names which the user is using to the real channel names withinthe machine. As Figure

5.6 shows, the environments’ mappings, are used to link the user’s channel names to the

appropriate channel name within the virtual machine.

5.6 Graphical User Interface Design

Throughout this project the GUI (Graphical User Interface)of the application was not

part of the main objectives. However, since we have discussed the development of an

Interactive Virtual Machine, we now realize that for an interactive machine to be easily

understandable by the user, we require a user-friendly presentation.

Most important of all is how the GUI will present the virtual machine status. The most

suitable solution was to design a table as depicted in Figure5.7. This will list all of the

free channels that the machine currently has available. Thelist will also give the type

of the channel, thus the user will know how to handle communication with every listed

channel. The channel rows have two columns representing thetwo queues for the channel.

Checkboxes can be used to indicate whether processes are awaiting or not, within the

channel queues.
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Figure 5.7: Proposed table showing the current state of the machine

A panel will allow the user to create a task, and process this task within the virtual ma-

chine. Thus, on doing so, the status table will change the values showing how the system

state has changed with the effect of the given task.

All of the other modules that we discussed will be incorporated within a simple appli-

cation, which will serve as an Integrated Development Environment forπ-Calculus. The

IDE will offer an editor whereπ-Calculus programs can be written using theΠ-Language,

and options will be available to simulate the program on the two virtual machines that we

discussed.
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Evaluation

This chapter mostly consist of testing analysis on the virtual machines that have been

developed. As one can note, we emphasized on the correctnessof our virtual machines.

Now we get to evaluate the correctness of both machines. In Chapters 4 and 5, we mention

correctness before the development, so that throughout theimplementation our mind was

focused on the construction of correct virtual machines, which produces accurate results.

In this chapter we tackle the final part of machine correctness. Therefore, we have to

verify, that both of our machines are indeed simulating how processes communicate, as

defined in Table 2.3.

Figure 6.1 shows clearly our task in this chapter. Note that we will be focusing on the

equivalence of the results. This means that we will composeπ-Calculus examples, and

simulate the execution of these examples on our virtual machines, thus obtain the first

result. Hence, we will follow through the same examples on paper, to obtain a second

result, we check for the equality of these results and if these are equivalent then this

shows that the virtual machine is correct. To prove the correctness of the virtual machines

we would have to test each of the different situations that the machines can end up in.
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Figure 6.1: Evaluating the correctness of the virtual machines

The plan for the testing stages, is to, first test our Stand-Alone Virtual Machine imple-

mentation, followed by, testing the Interactive Virtual Machine using the same examples.

This will allow us to verify that both machines are correct aswell as consistent with each

other. We then move on to, test the abstract layer of the Interactive Virtual Machine by

composing examples, with different implementations, and investigate whether the user is

able to distinguish between the examples.

6.1 Testing the Stand-Alone Virtual Machine

The Stand-Alone virtual machine was first tested for the basics of theπ-Calculus actions,

after which more complex examples where used for the testing. Note that the simple

tests where omitted from this chapter, but we will be dealingwith a number of elaborated

examples. These examples offer all of the required test cases for our Stand-Alone virtual

machine.

6.1.1 Test case - Memory cell

The first example is the same one given in Example 2.13 of Chapter 2. This example

consists of a process capable of generating memory cells, and an other process that is
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utilizing one of these memory cells. This test will verify the correctness of the virtual

machine for several of reduction rules given in Table 2.3.

Setup

The memory cell example was coded as aπ-Calculus program and used for this test. This

program is illustrated in Section A.1 of the appendices. Theprogram when given to the

Stand-Alone machine should reduce to the following two processes, wherehelloworld is

the value that was temporary stored at the cell.

∗createcell?(value, getcell).(#cell)(cell![value] | getcell![cell])

| helloworld![ ]

Results

At the end of the development, the results obtained where satisfying. The expected results

where obtained. This test served for the verification of the rulesr-communication and

r-replicated-communication of Table 2.3. We also tested the scoping principle, and

verified that bound names and free names are handled correctly.

6.1.2 Test case - Changing the network of communication

We next test the machine using theπ-Calculus program given in Section A.2. This pro-

gram illustrates how theπ-Calculus capabilities of how the communication network be-

tween processes change dynamically. Let us first examine thelogical meaning behind this

program. Take the following system of processes.

P | Q | R
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where P =⇒ one?(channel).if channel = change then ((#n)one![n].n?(message))

Q =⇒ one![change].one?(new).two![new]

R =⇒ two?(new).new![helloworld]

As one can note processP is unaware of processR and these cannot communicate. How-

ever, processQ will communicate with processP the channelchange. Hence, the process

P will check for the conditionchannel = change. If this is so, then the processP com-

municates a fresh channel name to the processQ which will in turn communicate with

processR. Therefore, at this stage, processR is aware of processP by means of the new

channel.

Setup

The Stand-Alone virtual machine is given the program as illustrated in Section A.2. The

machine will perform a correct simulation if the end resultsconsists of inactive processes,

meaning that communication has been achieved correctly throughout.

Results

At this stage some problems where identified, since the virtual machine was not producing

correct results as expected. However, these problems wheretackled and the tests where

performed once again. Variations to this test where used to help in the debugging of the

problem. Finally we have satisfying results on the outcome.
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6.1.3 Remarks

Throughout the evaluation stages of the Stand-Alone virtual machine, we note a number

of faults. The most involving problems that we needed to solve where the ones related to

the ruler-replicated-communication and the handling of bound names. The utmost of

efforts have been done to find a solution to these problems, and which was finally found.

It is important to mention that, the testing during this stage served as an important phase

to fully understand the concepts of theπ-Calculus notation.

6.2 Testing the Interactive Virtual Machine

The Interactive Virtual Machine will be mainly tested for its interactive features. Note

that the reduction procedures that are implemented within the Interactive virtual machine,

are identical to the reduction procedures within the Stand-Alone virtual machine. Thus,

the Interactive machine was tested using, similar tests as the ones performed on the Stand-

Alone machine. This ensured us that the internal operationsare consistent between the

two virtual machines. Therefore, the testing that is performed here, is to verify that the

user-to-machine interaction is achieving accurate results. We then test the machine for

the feature of abstraction that it offers, by constructing aπ-Calculus program with similar

functions as the one used during the first test, and investigate on whether the user can

notice the difference between the two programs.

6.2.1 Test case - Stack A

A stack implementation was constructed usingπ-Calculus notation, and this was then

imported to aΠ-Language program as illustrated in Section A.3. The Stack program

76



CHAPTER 6. EVALUATION

provides aπ-Calculus declaration, which when invoked, this will return a unique channel

to a stack, (b). This channel (b) representing a stack, will then return two channels, on

for pushing channel names on top of the stack (push), and another to pop channel names

from the top of the stack (pop). When channel names are outputted using the push, then

this represents the push feature. On the other hand, to pop channel name, we first have to

output a listener channel, and then we pop the channel name tothe top of the stack, by

inputting from this listener channel.

Setup

Figure 6.2 gives a trace through the steps involved during the test. We load the stack

program to the Interactive machine atStep 1. This gives us the channelstack, indicating

that an input is available, hence inStep 2we output on the channelstacka channel name

mystack. The channelmystackwill then indicate the availability of output. Note as well

that the types of the channels are changing accordingly. These types are the same as

declared in the program and these can be viewed by the user during interaction. AtStep

3, we input from the channelmystacktwo values, and we use the variablesmypushand

mypop. Notice how these variables are given the corresponding channel names, and how

these channel names are added to our table. At this stage we can start pushing data on to

the stack. AtStep 4we push the channel namesone, two andthree

We now test that the stack is performing the expected job, by performing a pop. Thus,

at Step 5we output the channellisteneron the channelpop0. The channellistener is

correctly added to the table, indicating that it is ready to output a channel name. Therefore,

at Step 6we perform an input from the channellistener. The variablevalueis assigned

the channel namethree, which is the expected result since the channel namethree, was

the last name that was pushed on the stack.
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Figure 6.2: Trace of stack program
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To confirm that the stack is working accurately, atStep 7we push the channel nametest

on to the stack. Hence, atStep 8we empty the stack by repeating the steps 5 and 6 for

each value to be popped from the stack. As one can notice, the returning results are as

expected, meaning that the first channel name retrieved wastest, after which the names

two andone, where retrieved sequentially. Notice, how the last pop didnot retrieve any

channel name, since the stack is empty.

Results

The expected results have were achieved from the test that was applied. Variations to

the sequence given in Figure 6.2, where performed as a test toverify that the Interactive

virtual machine is simulating the execution ofπ-Calculus correctly. These tests and the

one discussed previously, gave very promising results. Note how program Stack A in

Section A.3 is testing all of the features tackled throughout this dissertation. We even

verified that the typing column is showing accurate values, meaning that the type given to

the channel is the correct one.

6.2.2 Test case - Program Details Abstraction

After that the Interactive virtual machine has been verifiedas correct and that it is produc-

ing accurate results as expected, we investigated on the interactive feature of the machine.

We developed aπ-Calculus program with the same functionalities as that of Stack A that

was used for the previous test. This program is given in Section A.4 of the appendices.

The difference in this stack implantation (Stack B) is that the channel names are being

stored using two lists rather the a single list as in Stack A. This means that the head of

the stack will iterate the push feature between the two stacks, and for the pop feature the

same principle applies but it has to be done in an opposite direction.
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Setup

The plan for this test was to perform the same sequence of procedures, as performed in

the previous test on both stack implementations. We simply switch the Stack A program

with that of Stack B, and perform the same test. This would verify that the two programs

have consistent functionalities, thus the user is unable todistinguish the Stack A program

from the Stack B program.

Figure 6.3: Program details are abstracted away from the user

Results

This test turned out to be most satisfying, since no difference could be noted between the

two implementations. Both stacks are instantiated in the same manner, and both provide

thepushchannel and thepopchannel. Other tests have been performed, and it was noted

that the two programs have to be constructed using the same “interface”, meaning that the

interaction with the user has to provide the same type of channels and amount.

6.2.3 Remarks

Promising results have been achieved through these tests that have been carried out. To a

certain point we proved the correctness of the machines, andverified most of our specula-
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tions especially the interactive abstraction that the Interactive virtual machine is capable

of offering.

6.3 Limitations

Following the evaluation stage, we can discuss a number of known problems and the

limitations of the application that has been developed.

Both of our virtual machines do not conduct anyGarbage Collection. By Garbage Collec-

tion we understand, that those channels that are no longer referenced, or no longer used,

then these can be disposed. By disposing of these channels, the machine will be able to

perform more efficiently since, the machine will be accounting for resource handling.

Another limitation that our machine has is the lack of the Summation operator. This was

already discussed earlier, and we explained how this was purposely omitted, because it

offers more complexity to the overall structure of the machines. However, it still remains

listed as a limitation since certainπ-Calculus program which makes use of this operator

cannot be simulated on our machines.

A crucial limitation that was noted concerns channel typing. Since, the typing mechanism

that was adopted for the development of the virtual machinesis a limited one, then this

also limits the capabilities of the virtual machines. We identify the Interactive Virtual Ma-

chine more restricted in this significance, since the Stand-Alone machine can be executed

without the Type-Checker module, thus allowing it to simulate even complex programs.
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Conclusions and Future Work

Throughout this dissertation we have seen howπ-Calculus notation was easily encapsu-

lated into a simple programming language, such as theΠ-Language. For this dissertation,

theΠ-Language described in this study, has proven to be a decent language, to program

a π-Calculus program. We even described a simple typing systemto be used when com-

posingπ-Calculus programs, and this was followed by a Type-Checkerto ensure correct

channel typing. We then described the construction of the intermediate code representa-

tion for π-Calculus. We suggested that this representation would actas the transitional

point betweenπ-Calculus notation and various virtual machines. This guided us to de-

velop a compiler to translateπ-Calculus notation into this intermediate representation. We

then focused on Turner’s, Abstract Machine forπ-Calculus, and we illustrate how a sim-

ilar machine can be implemented. This virtual machine was able to interpretπ-Calculus

programs, and simulate the communication of the processes within an encloses environ-

ment. We next suggested to develop an Interactive virtual machine, which will extend the

functionality of the Stand-Alone virtual machine, by allowing an external source to com-

municate with the machine. We even proposed, how such a machine would be capable of

abstracting the implementation details ofπ-Calculus programs from the user.
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The virtual machine implementations where then evaluated and tested for correctness and

accuracy. A number of examples where introduced, and these were used to verify that the

Stand-Alone virtual machine is able to produce correct results, when compared with the

realistic counterparts. Subsequently, the Interactive virtual machine was tested using these

examples. However, special interest was given to the two different Stack implementations.

Theseπ-Calculus programs offered a stack data structure, using the same user-to-machine

interface, but have a different inner implementation. We proved that the Interactive virtual

machine, does indeed provide a layer of abstraction to the user. The results demonstrated

how, a typical user is unable to distinguish between twoπ-Calculus programs, that offer

the same functionalities but with different internal methodologies.

At this point we can suggest a few ideas for possible further work. Maybe the most

obvious task to follow would be to improve on the limitationsof the developed virtual

machines. As we have stated, the current implementations tonot offer Garbage Collec-

tion for unreferenced channels and it does not offer the possibility to use the Summation

operator. Hence, a potential task would be to develop a virtual machine which extends

these functionalities.

Throughout this study we did not focus much on typing mechanisms, since this was be-

yond the initial objectives. However, we did tackle simple channel typing in brief, and

this has an interesting topic in the field ofπ-Calculus. For that reason, a prospective task

would be to elaborate on typing techniques forπ-Calculus. We believe that typing is

essential to carry out accurate interactivity, between theuser and the Interactive virtual

machine. A potential project would be to develop a system of interactive machine, which

will act as interactive agents over a distributed system.

In conclusion we believe that, the study aboutπ-Calculus has served as a stepping stone

for observing a different perspective of programming, and appreciating detailed issues

regarding concurrency and communication, from a distinct point of view.
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Appendix A

Examples ofπ-Calculus Programs

The following π-Calculus programs were constructed during this study, as part of the

objectives for the dissertation. These examples are used inChapter 6, during the testing

phase of the development.
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A.1 Memory cell

ch createcell := < < >, < < < > > > >;

ch cell := < < > >;
ch helloworld := < >;

ch listener := < < < > > >;

begin

*createcell?(value,getcell).(#cell)(cell![value] | getcell![cell])
| createcell![helloworld,listener]

.listener?(myfirstcell)

.myfirstcell?(message)

.message![]
end

A.2 Changing the network of communication

var COM := < < < > > >;

ch one := COM;

ch two := COM;
ch change := < < > >;

ch n := < < > >;
ch helloworld := < >;

begin
one?(channel).if channel=change then ((#n)one![n].n?(message))

| one![change].one?(new).two![new]
| two?(new).new![helloworld]

end
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A.3 Stack A

var PUSH := < < > >;

var POP := < < < > > >;
var B := <PUSH, POP>;

ch stack := <B>;
ch b := B;

ch pop := POP;

ch push := PUSH;
var rec CELL := < < >, CELL>;

ch a := CELL;
ch endd := CELL;

ch head := <CELL>;
ch createcell := < < >, CELL, <CELL> >;

def stack(b)
begin

(#endd,head,createcell,push,pop)
(

b![push,pop].

(
head![endd].0

| *createcell?(x,next,ret).(#a)(a![x,next].0 | ret![a].0)
| *push?(x).head?(y).createcell![x,y,head].0

| *pop?(z).head?(x).if x = endd

then (head![endd].0)
else (x?(v,w).(z![v].0 | head![w].0))

)
)

end
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A.4 Stack B

var PUSH := < < > >;

var POP := < < < > > >;
var B := <PUSH, POP>;

ch stack := <B>;
ch b := B;

ch pop := POP;

ch push := PUSH;
var rec CELL := < < >, CELL>;

ch a := CELL;
ch end1 := CELL;

ch head1 := <CELL>;
ch end2 := CELL;

ch head2 := <CELL>;

ch current := < <CELL> >;
ch createcell := < < >, CELL, <CELL> >;

ch reset := < >;

def stack(b)

begin
(#end1,end2,head1,head2,createcell,push,pop,current,reset)

( b![push,pop]. (

*reset?().(head1![end1].0 | head2![end2].0 | current![head1].0)

| reset![]

| *createcell?(x,next,ret).(#a)(a![x,next].0 | ret![a].0)
| *push?(x).current?(head).head?(y).createcell![x,y,head].

if head=head1 then (current![head2]) else (current![head1])
| *pop?(z).current?(head).

if head=head1

then (current![head2].head2?(x).
if x=end2

then (reset![]) else (x?(v,w).( z![v] | head2![w])))
else (current![head1].head1?(x).

if x=end1
then (reset![])

else (x?(v,w).(z![v] | head1![w] ) ) )

) )
end
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EBNF for the Π-Language

The following EBNF describes the language that we designed,including all the required

changes. The standardExtended Backus-Naur form (EBNF)[ISO96] is used, which is an

extension of the basic Backus-Naur form (BNF) meta-syntax notation.

Start := (Include) ∗ (Declaration) ∗ (Definition) ∗ (Declaration) ∗

(< BEGIN > Pipe < END >)? < EOF >

Include := < INCLUDE > File < SEMICOLON >

File := < STRING >

Definition := < DEF > DefName < BEGIN > (Declaration) ∗

Pipe < END >

DefName := Name < LPAREN > (Tuples)? < RPAREN >

RecArguments := (TypeV ariable | RecArg | Name)

(< COMMA > (TypeV ariable | RecArg | Name))∗
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Arguments := (TypeV ariable | Arg) < COMMA > (TypeV ariable | Arg)) ∗

Arg := ” < ”(Arguments)?” > ”

RecArg := ” < ”(RecArguments)?” > ”

TypeV ariable := < TY PEV AR >

DecChannel := < CH > Name < ASS > (TypeV ariable | Arg)

< SEMICOLON >

DecV ariable := < V AR > TypeV ariable < ASS > (TypeV ariable | Arg)

< SEMICOLON >

DecRecV ariable := < V AR >< REC > TypeV ariable < ASS >

(TypeV ariable | RecArg) < SEMICOLON >

Declaration := (DecChannel | DecV ariable | DecRecV ariable)

Int := (< INTEGER > | < STOP >)

Pipe := (Process(< PIPE > Pipe)?) | (Brackets(< PIPE > Pipe)?)

Brackets := < LPAREN > Pipe < RPAREN >

Process := Continuation | Restriction

Continuation := (((Input | Output | Tau | ReplicatedInput | DefinitionCall |

Print)(< CONTINUATION > Process)?)

| (IfThen | Stop | Brackets))

ReplicatedInput := < REPLICATION > Input

Stop := < STOP >

Input := Channel < INPUT > ”(”(NameTuples)?”)”

Output := Channel < OUTPUT > ”[”(Tuples)?”]”

Channel := < STRING >

Tuples := Channel(< COMMA > Channel) ∗

NameTuples := Name(< COMMA > Name) ∗

Name := < STRING >

Tau := < TAU >

Restriction := < LPAREN >< HASH > Channel BNames

BNames := ((< COMMA > Channel BNames)

| (< RPAREN > (Brackets | Process)))

IfThen := < IF > Expression < THEN > Brackets(< ELSE > Brackets)?

Expression := Name < EQUALS > Name

DefinitionCall := Channel < LPAREN > (Tuples)? < RPAREN >

Print := < PRINT >< LPAREN > Tuples < RPAREN >

89



Appendix C

Class Diagrams

This appendix contains classes diagrams, which describe the most important modules of

the application.

ThePiParserVisitorclass represents the visitor interface generated by the JavaCC tools.

Several modules implement this interface, such as theTypeCheckerand theCompiler.

TheTaskManagerclass is the core module of the Stand-Alone virtual machine.It encap-

sulates all of the reduction procedures and it handles the process communication.

The Channelclass represents the channel of communication within the Interactive vir-

tual machine. The main changes that where applied to this machine revolve around the

Channel class.

TheMachineclass is the focal point of the Interactive virtual machine,by scheduling the

processes on Channel objects. It also acts as the bridge between the user and the internal

program, since it provides an interactive interface.
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Figure C.1: PiParserVisitor Class Diagram(Visitor interface generated by JavaCC)
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Figure C.2: TaskManager Class Diagram
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Figure C.3: Channel Class Diagram
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Figure C.4: Machine Class Diagram
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User Manual

Figure D.2, gives a screen shot of the application while running in editing mode. One can

edit a number ofπ-Calculus programs. By using the toolbar functions or the main menu,

one can create new files, save files, open existing files, and perform the standard functions

offered by editors.

Figure D.1: The editor’s toolbar
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Figure D.2: Application running in editing mode

The application offers MDI support as shown in Figure D.3. Multiple documents can be

opened concurrently, either displayed as separate windowsor as a serious of tabs.

Figure D.3: MDI support
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Figure D.4: The editor’s side-bar

The editor’s side-bar is used to run the three main modules found in the application. One

can either parse the program, and display a graphical view ofthe syntax tree, or simulate

the program on the Stand-Alone machine or simulate the program on the Interactive ma-

chine.

Figure D.5: Showing the Syntax Tree for the program
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The user interface for the Stand-Alone machine, illustrates how the machine has com-

puted the program internally.

Figure D.6: Running the Stand-Alone virtual machine
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The interactive interface offers a panel for the processingof tasks. The user is able to

select a task and a channel, and input either a number of namesor variables accordingly.

For multiple names, or variables these have to be separated by commas. The table show

the current state of the Virtual Machine, given a list of channels, their type and the avail-

ability for input and output. The bottom panel gives the default output stream that is used

to receive channel names.

Figure D.7: Running the Interactive virtual machine
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Contents of the CD-Rom
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