
Integrating Natural Language and Formal Analysis for Legal Documents

Shaun Azzopardi,∗ Albert Gatt,† Gordon Pace∗

∗Department of Computer Science
Faculty of ICT

University of Malta
shaun.azzopardi@um.edu.mt

gordon.pace@um.edu.mt

†Institute of Linguistics
University of Malta

alber.gatt@um.edu.mt

Abstract
Although much research has gone into natural language legal document analysis, practical solutions to support legal document drafting
and reasoning are still limited in number and functionality. However given the textual basis of law there is much potential for NLP
techniques to aid in the context of drafting legal documents, in particular contracts. Furthermore, there is a body of work focusing on
the formal semantics of norms and legal notions which has direct applications in analysis of such documents. In this paper we present
our attempt to use several off-the-shelf NLP techniques to provide a more intelligent contract editing tool to lawyers. We exploit these
techniques to extract information from contract clauses to allow intelligent browsing of the contract. We use this surface analysis to
bridge the gap between the English text of a contract to its formal representation, which is then amenable to automated deduction,
specifically it allows us to identify conflicts in the contract.

1. Introduction
Many fields of inquiry that have traditionally fallen un-

der humanistic studies have benefited from the develop-
ment of language technologies. For example, computa-
tional linguists have investigated several aspects of liter-
ary text and, more generally, “creativity”, yielding impor-
tant insights into the mechanisms underlying the creation
of such texts (Gervás, 2013). One area of the humanities
that has increasingly received more attention in the NLP
community is the field of legal studies.

The legal profession is wide and varied, however a good
amount of legal work involves the drafting of documents,
specifically contracts. Thus contracts are themselves lin-
guistic artefacts and amenable to NLP techniques such as
keyword and named entity extraction. Tools leveraging
such NLP techniques to complement technical knowledge,
have the potential to do for the drafting of contracts what
intelligent design solutions have done for architects and en-
gineers. Such tools already exist that provide some form
of help to the contract drafter (e.g. (Gabbard et al., 2015)),
however what is lacking is an actual analysis of the seman-
tics of the text.

Contracts have drawn the attention of researchers inter-
ested in the formalisation of some of their features, such
as norms, rights and obligations, often using some form of
deontic logic (Fenech et al., 2009; Gao and Singh, 2014).
Such formalisations constitute an abstraction of core as-
pects of the content of a contract, supporting reasoning and
detection of errors and/or conflicts. However there remains
a gap between the linguistic “surface” of a contract doc-
ument, and its underlying structure and semantics. As a
result, software tools that genuinely support contract edit-
ing, by providing on-demand analysis and reasoning of the

Figure 1: Three-layered (UI, Contract-Support, and NLP
and Databases) tool architecture.

linguistic content of a contract, remain absent in the field.

The present paper seeks to address this gap. In particu-
lar, we describe work on an intelligent contract editor which
(a) exploits well-understood NLP techniques to extract in-
formation from the text as it is being drafted, using this (b)
to enable intelligent browsing of contract clauses, and (c) to
automatically construct a partial formal representation that
supports automated reasoning about the core elements of
the contract.

2. Architecture
In designing the tool we were motivated by the need

to have an architecture that is extensible, given the rela-
tively frequent updates that NLP tools/models tend to get,
and the different approaches one can take to the same NLP
problem. Thus, as shown in Figure 1, we physically sepa-
rate the architecture in three modules that encapsulate the
UI, the contract-support algorithms, and the off-the-shelf
NLP tools and databases. In each module we similarly
take a component-based approach, keeping each algorithm
separate, using dependency injection to enable exchange
of these components without the need to change and re-
compile the system.

Our tool involves the use of off-the-shelf NLP tools,
such as a dependency parser and a part-of-speech tagger, of
which there are multiple implementations. Moreover most
are not developed in C#, our language of choice. To over-
come this problem our architecture exploits loosely coupled
modules and C# wrappers for the off-the-shelf tools to en-
able interfacing with out tool.

3. Information Extraction
Our contract-editing tool is implemented as an add-in

to Microsoft Word, allowing analysis of the contract side
to side with contract editing. For this we exploit several
information extraction algorithms, information which we
then associate with each contract clause as a set features.

We developed an algorithm that uses a mixture of regu-
lar expressions and named entity extraction to identify the
parties to the contract. Due to the structure of contracts
being dependent on the drafter, rather than some universal
template, this is not always effective, thus we allow the user
to specify these themselves to enable further analysis.

We use keyword and named entity extraction in this
manner, such that each clause is labelled with the keywords
specific to it and the named entities mentioned by it, along
with the parties mentioned.

These sets are used to enable the user to browse the con-
tract in question quickly, by highlighting the specific key-
word, party, and/or entity in question. This can be useful
for, for example, identifying clauses talking about a certain
party or a specific concept (e.g. clauses involving a pay-
ment, or involving a specific party).

Drafting contracts can also require or benefit from con-
sultation with a country’s laws and/or other relevant le-
gal documents. Thus, our tool also includes the capacity
to search through the laws and other legal documents of
Malta. A database containing information about compa-
nies is also included, to allow cross-referencing with offi-
cial company details which are important to get right in a
contract.

To improve on both the results of these searches and
the clause browsing we employ query expansion, where we
consider also the synonyms, and one edge away hypernyms
and hyponyms of the query.

4. Formal Analysis
Extracting sufficient information from a contract to sup-

port such reasoning remains an understudied problem. In-

Figure 2: Task pane views of law search, keyword and
named entity extraction.

deed, most approaches to legal texts that apply NLP tech-
niques tend to view the task as a form of information re-
trieval whose results are insufficient to support automated
reasoning (Gao and Singh, 2014; Dragoni et al., 2015;
Wyner and Peters, 2011).

Reasoning about contracts can be done by modelling
these using deontic logic (Von Wright, 1999), which views
contracts as agreement between two or more parties, with
norms (i.e. obligations, permissions, and prohibitions) and
structures over these (e.g. sequential composition of these).
To bridge the gap between a natural language contract and
such a model we have constructed a deontic logic that we
can use to reason about a contract which is only partially
known. This is important since this is intended to help
during contract-drafting, when the contract is not complete,
and also in the case where the translation algorithm is im-
perfect.

Definition 1 illustrates how a contract is defined in our
logic, note how the deontic norms are modelled as pred-
icates over an action α, labelled with the acting party p.
Simple contract clauses can then either be an obligation
(O), a permission (P), a prohibition (F) or a clause with
the norm being unknown (?p(α)). These clauses can then
also either be sequentially composed (C B C ′), reparated1

(C I C ′), concurrently composed (C&C ′), or a condi-
tioned on actions occurring ([e]C).

Definition 1. A contract C, where α is an action label and
p is a party label, is defined as follows:

C := Op(α) | Pp(α) | Fp(α) | C B C | C I C | C&C | [e]C
e := α | 0 | 1 | e.e | e+ e | e&e

Our approach to translate English contracts into this for-
mal representation uses syntactic parsing, where, for exam-
ple, “The passenger should check in” (an obligation clause)
would be of the following form S→ NP (VP→MD VP’),
shallowly, as in Figure 3. Note how this structures the sen-
tence such that it separates the party (NP → the passen-
ger), the norm (MD → should), and the action (VP’ →
check in) into different sub-trees.

1A reparation clause C′ for a contract C comes into effect if
and after C is violated.

S

VP

VP

PRT

RP

in

VB

check

MD

should

NP

NN

passenger

DT

The

Figure 3: Parse tree of a normative sentence.

To extract these from a sentence we define a number of
pattern-matching expressions using Tregex (Levy and An-
drew, 2006), which allows us to separately grab exactly the
relevant features of a normative sentence. Thus with an ap-
propriate expression we can get the formal counterpart of
the clause, i.e. Opassenger(checkIn), indicating an obligation
on the passenger to check in. We have defined several such
expressions that correspond to a certain parse tree structure
(along with the presence of a norm specifier like should, or
permitted to). Although it is not clear whether such con-
structions always correspond to a normative sentence (e.g.
“The receptionist should have been here” does not specify
an obligation, although it can be seen to imply a perceived
one), in the limited context of contracts this is more likely.

This approach is however limited by the number of ex-
pressions defined (and their quality). Another issue is that
some sentences may not have correlates in our logic (e.g.
a distinction is made between state-based and action-based
clauses, between which their is no one-to-one correlation
(Hage, 2001)).

With this formal representation we can detect conflicts
automatically, through an appropriate trace semantics (e.g.
Op(a) is satisfied if a is done, while C B C ′ is satisfied if
C is satisfied, after which C ′ applies and is satisfied). We
generate an automaton that is liable to conflict analysis at
states, using the method delineated in (Fenech et al., 2009).
While we axiomatise conflicts in Definition 2, from (Gor-
don J. Pace, 2012).

Definition 2. Two contracts are said to be in conflict if
there is no trace that satisfies both at the same time. The
conflict relation is denoted by z, so that that C and C ′ are
conflicting is denoted by CzC ′. Note also that we denote
two mutually exclusive actions as a ./ a′.

Contract TP TN FP FN Precision Recall F1 F0.5

C14 14 33 5 2 0.739 0.875
C21 9 170 56 0 0.139 1
C41 16 61 9 0 0.64 1
C69 12 37 4 0 0.75 1
C199 5 37 18 10 0.217 0.333
Results 0.497 0.842 0.625 0.541

Figure 4: Formalizing norms evaluation.

Axioms:

` Pp(a)zFp(a) (1)
` Op(a)zFp(a) (2)

a ./ a′ ` Op(a)zOp(a
′) (3)

a ./ a′ ` Op(a)zPp(a
′) (4)

CzC ′ ` C ′zC (5)
CzC ′ ∧ C ′ ≡ C ′′ ` CzC ′′ (6)

5. Evaluation
We evaluated our research in two ways: (1) by testing

our English to deontic logic translation on a random selec-
tion of contracts from the Australian Contract Corpus (Cur-
totti and McCreath, 2011); and (2) simple feedback from
notaries after a few days use.

As our gold-standard we selected five contracts from
the corpus (of varying length), and then hand-tagging each
clause with a suitable representation in our logic (where
possible). Clauses were also tagged as normative or not,
and as formalizable (in our logic) or not.

The results from this are shown in Figure 4, where:
True positives those clauses that can be formalized and have
been formalized correctly. False positives are clauses that
are cannot be formalized but have been formalized (incor-
rectly). True negatives are clauses that cannot be formal-
ized and where not attempted. While false negatives are
clauses that can be formalized and where not formalized.

As can be seen the amounts of false positives is not neg-
ligible, especially with contracts C21 and C199. Through
an analysis of their text we conclude that these false pos-
itives occur mostly in the definitions section of these con-
tracts. These are only tagged as normative (given the pres-
ence of possible norm specifiers), with translation mostly
failing. Methods however exist to extract definitions au-
tomatically (e.g. (Curtotti et al., 2013)) which we should
employ in a more mature version of the algorithm.

The tool as a whole was given to a number of lawyers
for simple feedback on its utility for them. The feedback
was mostly positively focused on the legal document and
company search, and neutral from those who said they
rarely consult with such already available online databases.
The other features were not perceived as useful, although
it was pointed out that they may be more applicable in the
context of large contracts.

6. Discussion
Our tool thus effectively combines existing NLP tools

and formal contract analysis algorithms, providing for a

degree of automated analysis. However, there are other
features that we did not consider that would make the
tool more attractive to notaries, such as a templating sys-
tem, easing the analysis of definitions (e.g. (Curtotti et
al., 2013)), a versioning system (a work-in-progress), or a
higher-level analysis of the components of a contract (e.g.
(Gabbard et al., 2015)).

On the formal side our approach also has some limita-
tions. A major one is the fact that we check for equality
between actions simply by checking for string equality. A
better measure of equality can be added to our algorithm
by semantic similarity measures that use a lexical database
to analyse the senses of a word (as done in (Aires et al.,
2015)).

The logic used needs to be augmented with state-based
norms as first-class entities, since these appear in contracts
also although seemingly at a lesser incidence then action-
based ones. An example of such a norm is “The passenger
should be in possession of their passport during the whole
trip”, which we detect automatically by noting the use of
“be”2.

7. Conclusion
Professionals involved in contract-drafting have the po-

tential to benefit from tools that employ NLP techniques
that can automatically analyse the contract while it is being
written. This is an area of the humanities where NLP tools
have yet to make an impact.

We developed a tool as an add-in to MS Word that
presents several features as task panes. These employ key-
word and named entity extraction so as to facilitate the ex-
traction of certain key words associated with each clause,
to enable easier browsing of a contract depending on these
keys.

We also employ a deontic logic, and syntactic parsing to
automatically (partially) translate an English contract into
a deontic logic model from which automated deductions
can be made. Specifically conflicts between clauses can be
detected.

The tool was tested by lawyers and notaries, getting
overall positive feedback with suggestions for further work
(e.g. including contract templates), with the law and com-
pany search being seen as the most useful, and automated
deduction as promising.

8. References
Jo˜ao Paul Aires, Vera Lucia Strube de Lima, and Fe-

lipe Meneguzzi. 2015. Identifying potential conflicts be-
tween norms in contracts. In 18th International Work-
shop on Coordination, Organisations, Institutions and
Norms (COIN 2015) @IJCAI, July.

Shaun Azzopardi. 2015. Intelligent contract editing. Mas-
ter’s thesis, Department of Computer Science, University
of Malta.

Michael Curtotti and Eric C. McCreath. 2011. A corpus of
australian contract language: Description, profiling and

2There does not exist a single action a such that for this exam-
ple we can construct a norm Op(a), i.e. a norm which is satisfied
by the performance of a single action.

analysis. In Proceedings of the 13th International Con-
ference on Artificial Intelligence and Law, ICAIL ’11,
pages 199–208, New York, NY, USA. ACM.

Michael Curtotti, Eric McCreath, and Srinivas Sridharan.
2013. Software tools for the visualization of definition
networks in legal contracts. In Proceedings of the Four-
teenth International Conference on Artificial Intelligence
and Law, ICAIL ’13, pages 192–196, New York, NY,
USA. ACM.

Mauro Dragoni, Guido Governatori, and Serena Villata.
2015. Automated rules generation from natural language
legal texts. In Workshop on Automated Detection, Ex-
traction and Analysis of Semantic Information in Legal
Texts, pages 1–6, San Diego, USA, June.

Stephen Fenech, Gordon J. Pace, and Gerardo Schneider.
2009. Automatic conflict detection on contracts. In Pro-
ceedings of the 6th International Colloquium on Theo-
retical Aspects of Computing, ICTAC 2009, August.

Jason Gabbard, Jana Z. Sukkarieh, and Federico Silva.
2015. Writing and reviewing contracts: Don’t you wish
to save time, effort, and money? In Proceedings of the
15th International Conference on Artificial Intelligence
and Law, ICAIL ’15, pages 229–230, New York, NY,
USA. ACM.

Xibin Gao and Munindar P. Singh. 2014. Extracting nor-
mative relationships from business contracts. In Pro-
ceedings of the 2014 International Conference on Au-
tonomous Agents and Multi-agent Systems, AAMAS
2014, May.

Pablo Gervás. 2013. Story generator algorithms. In
P. Hühn, editor, The Living Handbook of Narratology.
Hamburg: Hamburg University.

Fernando Schapachnik Gordon J. Pace. 2012. Contracts
for interacting two-party systems. In Anders P. Ravn
Gordon J. Pace, editor, Proceedings of Sixth Workshop
on Formal Languages and Analysis of Contract-Oriented
Software, volume 94 of EPTCS, pages 21–30.

Jaap Hage. 2001. Contrary to Duty Obligations - A Study
in Legal Ontology. IOS Press.

Roger Levy and Galen Andrew. 2006. Tregex and tsur-
geon: tools for querying and manipulating tree data
structures. In 5th International Conference on Language
Resources and Evaluation, LREC 2006.

Georg Henrik Von Wright. 1999. Deontic logic: A per-
sonal view. Ratio Juris, 12(1):26–38, March.

Adam Wyner and Wim Peters. 2011. On rule extraction
from regulations. In Katie Atkinson, editor, JURIX, vol-
ume 235 of Frontiers in Artificial Intelligence and Appli-
cations, pages 113–122. IOS Press.

