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Abstract 

In psycholinguistics, there has been relatively little work investigating conceptualisation –

how speakers decide which concepts to express. This contrasts with work in natural language 

generation (NLG), a subfield of AI, where much research has explored content determination 

during the generation of referring expressions. Existing NLG algorithms for 

conceptualisation during reference production do not fully explain previous psycholinguistic 

results, so we developed new models that we tested in three language production 

experiments. 

In our experiments, participants described target objects to another participant. In 

Experiment 1, either its size, its colour, or both its size and colour distinguished the target 

from all distractor objects; in Experiment 2, either colour, type or both colour and type 

distinguished it from all distractors; In Experiment 3, either colour, size or the border around 

the object distinguished the target. We tested how well the different models fit the 

distribution of description types (e.g., “small candle”, “grey candle”, “small grey candle”) 

that participants produced. 

 Across these experiments, the PRO model provided the best fit. In this model, 

speakers first choose a property that rules out all distractors. If there is more than one such 

property, then they probabilistically choose one based on a preference for that property. Next, 

they sometimes add another property, with the probability again determined by its preference 

and speakers’ eagerness to overspecify.  

 

Keywords: Reference production; referring expressions; conceptualisation; overspecification; 

computational models.  
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Conceptualisation in reference production:  

Probabilistic modelling and experimental testing 

 

Human speech production — going from “intention to articulation” (Levelt, 1989), or from 

“mind to mouth” (Bock, 1995) — is a complex process, yet our understanding of it is 

increasing (Goldrick, Ferreira, & Miozzo, 2014). Many researchers agree that speech 

production involves different stages (e.g., Dell, 1986; Garrett, 1984; Levelt, 1989; Levelt, 

Roelofs, Meyer, 1999; Vigliocco & Hartsuiker, 2002). A speaker first has to decide what she 

wants to say1, a decision referred to as conceptual preparation or conceptualisation, which 

results in a preverbal message. The second stage, often referred to as formulation, involves 

lexical access and planning of the structure of the utterance. Finally, during phonological 

encoding, the utterance plan is phonologically encoded and articulated.  

 Most experimental studies and psycholinguistic models have concentrated on the last 

two stages of speech production, and as a result these are better understood than the first, 

conceptualisation stage. It is interesting, however, that conceptualisation is an important 

research topic in a different field, known as natural language generation (NLG, see e.g., Gatt 

& Krahmer, 2018; Mellish et al., 2006; Reiter & Dale, 2000). NLG is a subdomain of 

Artificial Intelligence dedicated to the automatic conversion of data into text. The goal of the 

current paper is to see whether NLG conceptualisation algorithms can further our 

understanding of how human speakers conceptualise their utterances. 

 One NLG area in which conceptualisation has been intensively studied is the generation 

of referring expressions, especially noun phrase descriptions of objects, such as “the grey 

candle”. This line of work dates back at least to Winograd (1972), and more systematically, 

from Appelt (1985) onwards (see Krahmer & Van Deemter, 2012, and Van Deemter 2016 for 

recent discussions). The focus on such descriptions is understandable, given that reference 
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has been argued to be central to communication (Johnson-Laird, 1983). NLG reference 

generation systems usually distinguish between content determination and linguistic 

realisation, similar to the distinction between conceptualisation and formulation in 

psycholinguistic models. During the content determination phase, the NLG system decides 

which attributes of a referent (like its colour, size or type)2 to include in the description. Next, 

during realisation, it decides how to express selected attributes in words and phrases. NLG 

models have often focused on the selection of attributes in full noun phrases that aim to 

single out the target from its distractors in one go (one-shot descriptions), and this is what we 

shall do in this paper as well. 

 Here, we ask to what extent these NLG models can serve as a stepping-stone 

towards computational models of human conceptualisation during the production of referring 

expressions. As we will demonstrate, it is possible to derive from NLG models precise, 

quantitative predictions about the referring expressions that humans produce. We contrast the 

predictions of different NLG models in a set of language production experiments, to further 

our understanding of human conceptualisation of reference production. 

 

Computational Models of Conceptualisation in Reference 

Computational models of content selection address language production from an applied 

perspective, in the context of larger NLG systems that automatically convert data into text 

(Mellish et al., 2006; Reiter & Dale, 2000). Such systems are useful in the automatic 

generation of, for example, textual weather reports (Goldberg, Driedger, & Kittredge, 1994), 

and summaries of patient information in intensive care (Portet et al., 2009). 

 Typically, content selection models determine which set of properties distinguishes a 

target object from the distractors in a given domain, assuming that we know the relevant 

properties of the domain objects. For example, a content selection model has to determine 
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which properties to select to refer to a target such as the circled object in Fig. 1 in order to 

distinguish it from its distractors (i.e., the two other objects); it could either select the 

property “red” or “small” (or both) for inclusion in the referring expression. In many cases, 

NLG algorithms start from handcrafted domain models, but in recent years they increasingly 

start from raw images (e.g., Kazemzadeh, Ordonez, Matten, & Berg, 2014; Mao et al., 2016).  

_______________________________ 

Insert Fig. 1 about here 

_______________________________ 

 Early NLG models of content selection. Algorithms differ primarily in the way they 

decide on the inclusion of attributes. In early NLG models, the focus was on computing the 

shortest possible distinguishing description that distinguishes the target from all its 

distractors. This is in line with Grice’s (1975) influential maxim of quantity, which states that 

speakers should make their contribution as informative as required but not more informative. 

The full brevity algorithm (Dale, 1989), for example, first checks whether there is a single 

property of the target that rules out all distractors. If this fails, it considers all possible 

combinations of two properties, and so on. Unfortunately, this approach suffers from two 

problems, making it less suitable as a psycholinguistic model of conceptualization. First, it is 

computationally expensive, which implies that producing a description could take a long time 

in larger domains and for longer descriptions (Appelt, 1985; Dale, 1989; Dale & Reiter, 

1995). Although this would not be an issue with a small number of attributes and distractors 

(as in many psycholinguistic experiments), it would face difficulties with more complex 

scenes. Second, the algorithm never produces overspecified descriptions, that is, descriptions 

that include more properties than necessary for unique identification of the target. An 

example of this is “small red broom” in Fig. 1.  
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 There is much evidence from psycholinguistic experiments that human speakers often 

produce overspecified descriptions. For example, Pechmann (1989) asked speakers to refer to 

a target object (a car, ball or chair, for example) among three, five or seven distractors, 

differing in their type, colour and/or size. Pechmann found that while only 4% of the 

descriptions speakers produced were underspecified, 21% of the descriptions included at least 

one property that was not required for identification by the addressee. Others report 

comparable low levels of underspecification (e.g., Koolen, Gatt, Goudbeek & Krahmer, 

2011). Percentages of overspecified descriptions vary from one study to the next, but are 

always substantial. Pechmann (1989), as noted above, reported 21% overspecified 

descriptions, but other studies found percentages between 40% and 80% (e.g., Koolen, 

Goudbeek, & Krahmer, 2013; Engelhardt, Bailey, & Ferreira, 2006; Engelhardt, Demiral, & 

Ferreira, 2011; Maes, Arts, & Noordman, 2004, Tarenskeen, Broersma, & Geurts, 2015). 

Several factors may influence the rate of overspecification, for instance, speakers are more 

likely to overspecify in situations where misunderstandings would be costly (Arts, 2004; 

Arts, Maes, Noordman, & Jansen, 2011), when instructions make participants aware of 

potential communication breakdown (Rubio-Fernandez, 2016), when domains are spatially 

complex (Paraboni & Van Deemter, 2014), and when the distractors in the scene are more 

varied (e.g., they differ in type or colour, Koolen et al., 2013; Rubio-Fernandez, 2016). 

 Another early content determination model is the greedy heuristic algorithm (Dale, 

1989, 1992). This algorithm selects attributes based on how many distractors they rule out, 

which is usually referred to as the discriminatory power or utility of an attribute. The 

algorithm iteratively selects that property which rules out most of the distractors not 

previously ruled out, incrementally extending the description based on what property has 

most discriminatory power at each stage. It has a number of interesting properties from a 

psycholinguistic perspective. First, it may give rise to overspecified descriptions because it is 
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incremental: When a property (e.g., colour) becomes redundant following the selection of a 

later property (e.g., size), the initial property cannot be “unselected”. Note that this notion of 

incrementality is different from that at the surface, word level: Although colour may be 

selected before size, this does not mean that colour information is necessarily realised before 

size at the word level. In addition, since the algorithm does not try to compute the shortest 

possible description, it is computationally considerably more efficient than the full brevity 

algorithm (Dale & Reiter, 1995). A limitation of the model is that ties are not resolved: 

applying the standard greedy algorithm to the example in Fig. 1 results in two possible 

descriptions —“the red one” and “the small one”— since both rule out the same distractors. 

 The rational speech act model. A more recent model in which discriminatory power 

plays a critical role is Frank and Goodman’s (2012) rational speech act model, which aims to 

account for both the production and comprehension of reference (see also Goodman & Frank, 

2016; Goodman & Stuhlmüller, 2013). It assumes that language users are rational actors: 

Speakers try to produce referring expressions that are optimally useful for listeners, and 

listeners, in turn, assume the speaker is maximally helpful. 

 During reference production, the probability that a speaker chooses an attribute is 

directly proportional to the informativeness of this property, formalised as a function of 

surprisal, which is an information-theoretic measure expressing (in this case) how much a 

given property reduces the listener’s uncertainty about which object is the target. For 

example, if one attribute rules out twice as many distractors as another attribute, then the 

most discriminatory attribute is chosen twice as often as the less discriminatory one. 

 Frank and Goodman (2012) showed that their model made very accurate predictions for 

an experiment in which participants were asked to bet which single property (e.g., “blue” or 

“circle”) would be most likely to be selected by a speaker referring to a target (e.g., a blue 

circle) that was presented together with a distractor set (e.g., a blue square and a green 
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square). However, as it stands, the model does not select multiple properties and therefore 

cannot account for psycholinguistic evidence from reference production tasks that speakers 

often use multiple properties in overspecified descriptions. In addition, the use of a single 

property is often not sufficient to distinguish the target from all distractors; yet, as we 

mentioned above, speakers rarely use underspecified descriptions. The model needs further 

development to account for these experimental findings. Nevertheless, an attractive feature of 

the model is that it is non-deterministic: It assumes that, if there is more than one 

distinguishing property (a property that holds true of the referent but is false of at least one of 

the distractors), each of these properties is selected some proportion of the time. This 

contrasts with many other computational algorithms that are deterministic, that is, they 

always generate the same referring expression in a particular situation (e.g., in an 

experimental condition). As we have argued in Van Deemter, Gatt, Van Gompel, and 

Krahmer (2012), reference production is normally non-deterministic; different speakers may 

produce different descriptions in a given context. In fact, speakers themselves are not 

deterministic either, but may produce different descriptions in the same context on different 

occasions as well (Viethen & Dale, 2010). 

 The incremental algorithm. Arguably the most influential computational model of 

reference generation has been the incremental algorithm proposed by Dale and Reiter (1995). 

It works from the assumption that some attributes are preferred over others (cf. Pechmann, 

1989). The algorithm presupposes the existence of a fixed preference order for a given 

domain, which is a complete ranking of all relevant attributes. Such a preference order can be 

used to model the relative importance of different attributes to the communicative task, their 

salience, or their (a)typicality for the objects in question. The algorithm iterates through this 

preference order, adding an attribute if it helps ruling out a distractor not previously ruled out 

and terminating when a set of attributes has been selected that collectively rules out all 
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distractors. Like the greedy heuristic algorithm, it can produce overspecified descriptions due 

to its incremental nature. 

 To see how the incremental algorithm works, let us consider the examples in Fig. 2, 

which will be tested as three different conditions in the current study. Fig. 2a is similar to Fig. 

1: Both colour and size are fully discriminatory in that each attribute alone distinguishes the 

circled target from its distractors. In Fig. 2b, size is fully discriminatory, whereas colour is 

only partially discriminating because it rules out only distractor. Finally, in Fig. 2c, colour is 

fully discriminatory whereas size is only partially discriminatory. 

_______________________________ 

Insert Fig. 2 about here 

_______________________________ 

 Let us say that the preference order for our examples is < type, colour, size >. As a 

result, the incremental algorithm first considers type in all examples; our target is a candle, 

but so are both distractors, hence the algorithm ignores this attribute and considers colour 

next. In Fig. 2a, the target is grey, while both distractors have different colours. Hence, the 

algorithm selects colour, and since this rules out all distractors, the search stops and the 

algorithm does not consider size. There is a final check whether the type attribute was 

selected, and if not, the algorithm includes it anyway, since (so the reasoning goes) an object 

description without type information (usually expressed by the head noun) is undesirable. 

The algorithm then terminates with a set of properties that could be realised linguistically as 

“the grey candle”. Thus, here, the algorithm generates a minimally specified description. 

 This is different in Fig. 2b. Following the same reasoning as before, type is not 

selected, but colour is (because it rules out the red candle). Since this does not rule out all 

distractors, the model now considers size, which is also selected (since it rules out the large 

grey candle). All distractors are ruled out, and the algorithm terminates with a set of 
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properties that could be realised as “the small grey candle”. This is an overspecified 

description, since “the small candle” would have been sufficient to rule out both distractors. 

In other words, the selection of size makes the previous inclusion of colour redundant, but 

due to the incremental nature of the model, colour is realised nonetheless. 

 Finally, in Fig. 2c, colour is also first selected and because it rules out all distractors, 

size is not considered. As a result, the algorithm ends up with properties that could be 

realised as “the grey candle”, which is a minimally specified expression. 

The incremental algorithm was strongly influenced by psycholinguistic work that had 

shown that speakers frequently overspecify and have a preference for certain attributes such 

as colour over of others, such as size. Subsequent experimental evaluations also reveal that 

the incremental algorithm produces descriptions that are more like those produced by human 

speakers than the full brevity and greedy heuristic algorithms, if an appropriate preference 

order is assumed (Van Deemter, Gatt, Van der Sluis, & Power, 2012). However, one issue 

with the incremental algorithm is that it is deterministic. Given a preference order and a 

domain, the incremental algorithm always predicts the same output in a specific condition. 

The candles in Figs. 2a and 2c are always referred to using the minimal description “the grey 

candle”, while the one in Fig. 2b is always referred to with the overspecified description “the 

large grey candle”. As we have discussed above, this prediction is not in accordance with the 

psycholinguistic data described above, which reveal that speakers produce descriptions that 

sometimes are and sometimes are not overspecified. 

 

Developing more psychologically plausible conceptualisation accounts 

The discussion above indicates that current computational models of reference generation are 

not yet completely psychologically realistic, as they cannot account for the full range of 

experimental evidence from human speakers. We therefore set out to improve these models, 
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taking the incremental algorithm as the starting point, and then to test their predictions in a 

series of reference production experiments. 

 Non-deterministic incremental algorithms. As we have seen, a major issue with the 

incremental algorithm is its deterministic nature, which is due to the complete, fixed ordering 

of attributes in the preference list. In Van Deemter et al. (2012), we proposed (but did not 

test) a variant of the incremental algorithm (which we call the “non-deterministic incremental 

algorithm”, or non-deterministic IA for brevity), which non-deterministically varies the order 

in which attributes are checked.  

 To see how this works, reconsider Figs. 2a-c. The algorithm checks colour before size 

with a probability c and it checks size before colour the rest of the time, with a probability 1–

c. Thus, c represents the colour-size preference. In Fig. 2a, in those cases where colour is 

checked first, the algorithm includes this in the description. Because it rules out all 

distractors, size is not subsequently checked. Assuming (as before) that type is always 

included, this results in a description such as “the grey candle” with a probability of c. The 

rest of the time (with a probability of 1–c), size is checked first. Because this also rules out all 

distractors, colour will not be added, resulting in “the small candle” with a probability of 1–c. 

The algorithm does not generate overspecified descriptions (“the small grey candle”) in Fig. 

2a, because once a fully distinguishing description has been found, it terminates. In Fig. 2b, 

speakers also first select colour with a probability of c, but because this does not result in a 

fully discriminatory expression, they add size, resulting in the overspecified “small grey 

candle” with a probability of c. The rest of the time, they first choose size, and because this is 

fully discriminatory, this results in “small candle” with a probability of 1–c. Finally, in Fig. 

2c, initial selection of colour results in a fully discriminatory expression, so it produces “grey 

candle” with a probability of c, but when they first choose size, they need to add colour, 
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resulting in “small grey candle” with a probability of 1–c. Thus, unlike the original IA, the 

non-deterministic IA generates overspecified descriptions in Fig. 2c some proportion of time. 

_______________________________ 

Insert Table 1 about here 

_______________________________ 

 Table 1 shows the formulas for generating the different non-deterministic IA 

descriptions. Assuming we can determine the colour-size preference c, the non-deterministic 

IA makes quantitative predictions about cases such as those in Fig. 2. For example, if the 

colour-size preference is .8, then “grey candle” in Figs. 2a and 2c and “small grey candle” in 

Fig. 3b should be produced in 80% of cases, while “small candle” in Figs. 2a and 2b and 

“small grey candle” in Fig. 2c should be generated in 20% of cases. Thus, if we can 

determine the colour-size preference c from the descriptions that speakers produce in one 

condition, we can predict the descriptions they should produce in another condition. 

 In sum, the non-deterministic IA appears to be a promising candidate for modelling 

conceptualisation during the human production of descriptions: It retains all positive aspects 

of the original incremental algorithm (incrementality, overspecification), and also captures 

the inherent non-determinism of human speakers. Until now, the quantitative predictions of 

the non-deterministic IA have not been tested, so we did this in the current study. 

 However, as noted above, the non-deterministic IA predicts no overspecification in Fig. 

2a, when both attributes are fully discriminatory. However, Goudbeek and Krahmer (2012) 

and Viethen, Van Vessem, Goudbeek and Krahmer (2017) showed that overspecification 

occurred between 11 and 40% of the time in such situations. These results suggest that the 

choice of an overspecified rather than a minimally specified description in Fig. 2a is also 

non-deterministic; speakers do not always produce minimal descriptions. We therefore also 

tested a modified version of the non-deterministic IA.  
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 In this modified algorithm, speakers sometimes add a second attribute even if the first 

attribute they selected is fully discriminatory. Fig. 3 shows the decision tree for the three 

conditions in Fig. 2 and Table 1 shows the formulas. The likelihood with which a particular 

description is chosen can be worked out by starting at “select first attribute” and following 

the arrows to the particular description. In the colour-or-size condition (Fig. 2a), speakers 

first choose colour or size depending on the preference (respectively c and 1–c). Either 

attribute is fully discriminating, but to account for previous evidence that speakers sometimes 

overspecify in this condition, the modified non-deterministic IA predicts that, in some 

proportion of trials, speakers add a second attribute. We assume that the probability that this 

happens is determined by the preference for this attribute: c for colour and 1–c for size. The 

probability of first selecting colour and then adding size in the colour-or-size condition is the 

product of these two selections: c*(1–c). But because speakers can also first select size and 

then add colour (1–c)*c, the total probability of colour-and-size descriptions is the sum of the 

two routes through the decision tree: c*(1–c)+(1–c)*c. In contrast, there is only one route to a 

colour-only description (c*c) and to a size-only (1-c)*(1-c) description. In a similar way, Fig. 

3 can be used to derive formulas for the colour-only and size-only conditions. Critically, the 

algorithm predicts that after selecting colour in the colour-only condition, speakers 

sometimes add size and after selecting size in the size-only condition, they sometimes add 

colour. 

_______________________________ 

Insert Fig. 3 about here 

_______________________________ 

 PRO: A model combining discriminatory power with preferences. So far, we have 

discussed two classes of potential conceptualisation models for human reference production: 

models relying either on preferences, such as the incremental algorithm, or on discriminatory 
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power, such as the greedy algorithm and the rational speech act theory. Recently, we have 

proposed a probabilistic conceptualisation model that does both (Gatt, Van Gompel, Van 

Deemter, & Krahmer, 2013; Van Gompel, Gatt, Krahmer, & Van Deemter, 2012). We 

termed this model the Probabilistic Referential Overspecification model (PRO), because the 

aims of this model are to account (1) for the fact that human reference production is 

probabilistic and (2) for the finding that humans frequently overspecify. In PRO, 

discriminatory power is assumed to play a role if an attribute rules out all distractors in one 

fell swoop. If there is a single fully discriminatory attribute, such as size in Fig. 2b or colour 

in Fig. 2c, then this attribute is always chosen first. However, when there are two fully 

discriminating attributes (as in Fig. 2a) preference comes into play: The model non-

deterministically selects one of the fully-discriminating attributes, with the chance that a 

particular attribute is chosen depending on its preference. For example, the chance that colour 

is selected can be c, whereas the chance that size is chosen is 1–c, as in the non-deterministic 

IA. If a single attribute is fully discriminating, the model could terminate after selecting 

either colour or size. But PRO assumes that the decision to stop or to overspecify is made 

non-deterministically as well. This is the second place where preference parameter c has an 

effect: The more preferred an attribute is, the more likely that it is added. In addition, we 

assume a second, “overspecification eagerness” parameter e that affects the likelihood that 

speakers overspecify. This parameter is motivated by evidence that the likelihood of 

overspecification is affected by the speaker’s task and by the type of speaker. For example, as 

we have seen, Arts (2004) and Arts et al. (2011) found that overspecification was more 

common in fault-critical situations, Rubio-Fernandez (2016) found that the frequency of 

overspecification depended on the instructions to the participants, and Deutsch and 

Pechmann (1982) found that adults overspecify more often than children. Note that because 

the overspecification eagerness parameter e is not a probability, but a parameter that 
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influences the probability with which speakers overspecify, it can be either positive or 

negative: Positive values make overspecification more likely than it would be if this 

parameter were not included, whereas negative values make it less likely. 

 PRO can be formalised as an algorithm, shown in Appendix 1. This algorithm allows us 

to make predictions for a wide range of situations with different targets and distractors. The 

present paper will focus on decision trees derived from the algorithm, which exemplify the 

workings of the PRO algorithm. Fig. 4 shows the decision tree for the conditions in Fig. 2. To 

work out the probabilities for referring expressions we start at “select first attribute”. Next, 

we follow the arrows to the appropriate condition and then the particular expression. For 

example, the probability that a speaker produces “small grey candle” in the colour-only fully 

distinguishing condition (Fig. 2c) is the product of the chance that she first selects the fully 

distinguishing attribute colour (1: the speaker always selects it) and the probability that size is 

added, with the latter probability being determined by the preference for size (1–c) plus the 

eagerness to overspecify (e). The probability that a speaker produces “grey candle” in the 

same condition is the product of first selecting colour (1) and subsequently not adding size, 

with the latter being the preference for not size (c) minus the overspecification preference e. 

Note that because the probabilities need to add up to one, the value for e is either added to or 

subtracted from the colour or size preference (rather than e.g., multiplied or divided by it). 

Also note that in the colour-or-size condition (Fig. 2a), colour-and-size descriptions can arise 

because speakers can first select colour and then add size c(1–c+e) or they can first select size 

and then colour (1–c)(c+e). As a result, the likelihood that a speaker chooses a colour and 

size description in this condition is c(1–c+e)+(1–c)(c+e). Table 1 shows a summary of the 

formulas. 
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_______________________________ 

Insert Fig. 4 about here 

_______________________________ 

 PRO relies on insights from other models, but crucially combines them in a novel way. 

In common with the greedy heuristic algorithm and the rational speech act theory, it assumes 

that discriminatory power plays a role in concept selection, although in contrast to these 

models, it only plays a role when an attribute rules out all distractors and unlike in the greedy 

heuristic, ties of such fully discriminatory attributes are resolved based on preferences. It 

builds on the incremental algorithm because it assumes that attributes’ preferences play an 

important role and that concept selection is incremental in nature. Like the non-deterministic 

IA and rational speech act theory, PRO assumes that concept selection is probabilistic, and 

finally, the assumption that attribute selection does not always stop once a fully 

discriminating description has been found is shared with the modified non-deterministic IA. 

 

Overview of the Experiments 

We report three experiments that contrasted the predictions of PRO and the different variants 

of the non-deterministic incremental algorithm. The conditions in the experiments were 

specifically designed so we could accurately determine the parameter values in the models 

and derive quantitative predictions from them.  

 Experiment 1 tested scenarios such as in Fig. 2, where colour and size discriminated the 

target from the distractors. To test how well the predictions of the models generalised to a 

different combination of attributes, Experiment 2 investigated scenarios where the target 

object’s type and colour were distinguishing features. We conducted the experiments in 

English and Dutch, to determine whether the models can account for the choice of referring 

expressions in both languages. Finally, in Experiment 3, three attributes discriminated the 
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target from the distractors, making the production of reference potentially more complex 

because speakers have a larger choice of attributes and can produce longer expressions. 

 The models under consideration all deal with reference in its simplest form, in that they 

do not account for the production of, say, complex descriptions including negation (“not the 

broom”) or reference to sets (“two candles”), so we used simple scenes such as in Fig. 2, 

where complex descriptions would be unlikely. In order to minimise the role of attention, we 

also used a small number of distractors: In domains with larger distractor set sizes, speakers 

may not see or may not pay attention to all distractors, so they would not be able to take them 

into account during reference production. Note that it is relatively common to have a limited 

number of objects in visual attention, for example the objects on a table in front of you. 

 Speakers described the target pictures to an addressee, who had to select the picture that 

the speaker described. Both participants saw the same pictures, but in different positions so 

that the speaker could not use the picture location (“middle candle”). In this way, we could 

investigate how speakers produced reference for an addressee while controlling for other 

factors that affect interactive dialogue such as speaker adjustment due to feedback from the 

addressee, alignment with the addressee and the influence of the preceding discourse 

(priming from a previous description or anaphoric reference). In future research, it will be 

helpful to test more complex situations with a more interactive task, but we believe it is 

important to examine simple situations first, because the models should make particularly 

precise predictions in such cases. 

 

Experiment 1 

Method 

Participants. Thirty pairs of undergraduate students, all native speakers from the 

University of Dundee, took part in the English experiment. In the Dutch experiment, we also 
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tested 30 participant pairs; all participants were native speakers of Dutch from Tilburg 

University. All speakers reported normal colour vision. 

Materials. The materials in both the English and Dutch experiment consisted of 36 

experimental item sets, each consisting of three conditions. Fig. 2 gives an example. In each 

condition, three pictures of objects (e.g., three candles) that only differed from each other in 

size or colour (or both size and colour) were shown. We used blue, grey, red and green as 

colours and the size of the smaller objects was two thirds of the larger objects. The target 

object was circled; its position was counterbalanced across items. The pictures were 

constructed using a version of the Snodgrass and Vanderwart (1980) line drawings with 

colour and texture (Rossion & Pourtois, 2004).  

 In the colour-or-size condition, mention of either the target’s size or colour was 

sufficient for the addressee to identify the target, because the target differed from both 

distractors in both size and colour. In the size-only condition, the use of size was sufficient to 

identify the target. Colour distinguished the target from only one of the distractors. Finally, in 

the colour-only condition, the use of colour ruled out all distractors, whereas the size of the 

target distinguished it from only one of the distractors.  

 The experiment included 108 filler items. It was run together with Experiment 2, so 

thirty-six of the fillers consisted of the experimental items from Experiment 2. In the other 72 

fillers, the target differed from both distractors in only its type (36 fillers), its orientation (44), 

part of its colour (6) or the number of objects (22). 

Design. The 36 experimental items were tested in three conditions. For each language, 

we constructed three experimental lists consisting of 12 items in each condition. The 

conditions were rotated over the lists according to a Latin square design so that all items were 

presented in all conditions, but each list contained only one condition of an item. Ten 
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participants were randomly assigned to each list. The experimental items and 108 fillers were 

presented in a random order that was the same across lists. 

Procedure. Participants were tested in pairs. The experimenter randomly assigned the 

roles of speaker and addressee to the two participants. Participants were sat behind computer 

monitors, facing each other. The participants were informed that they would see a series of 

scenarios containing objects. They were told that they would see the same objects, but that 

these appeared in different locations. This was done so that speakers would avoid producing 

referring expressions containing spatial information. The speaker was instructed to describe 

the circled objects so that the addressee could identify them and the addressee was asked to 

use the computer mouse to tick the described object on their screen. 

Coding. Following transcription of the recordings, we scored whether speakers used 

colour-and-size descriptions (e.g., “the large blue helicopter”), colour-only descriptions (e.g., 

“the red kite”), and size-only descriptions (e.g., “small racket”). All trials on which speakers 

made a speech error and then repaired their utterance were excluded. There were 51 repairs 

(4.7%) in the English experiment and 94 (9.8%) in the Dutch experiment. We also excluded 8 

cases (0.7%) from the English experiment and 7 (0.7%) from the Dutch experiment where 

speakers produced a modifier after the noun (usually in a relative clause, e.g., “big light bulb 

that’s green”), because they may be similar to a repair. Finally, 4 trials (0.4%) were removed 

from the Dutch experiment because the speaker mentioned neither colour nor size. 

 

Results and Discussion 

Fig. 5 shows the proportions of colour-and-size, colour-only and size-only descriptions in the 

English and Dutch experiments along with the predictions of the various models (see below). 

Because we were mainly interested in testing how well the models predicted the data rather 
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than in analysing differences between conditions, we focus on comparisons between the 

observed data and the predictions of the models below. 

As is clear from Fig. 5, the pattern of data was very similar in English and Dutch. 

Speakers overspecified in all conditions. Overspecification occurred most frequently in the 

size-only condition, but also occurred, to a lesser extent, in the colour-or-size and size-only 

conditions. In contrast, speakers very rarely underspecified: We found only 4 such cases. The 

experiment also showed a clear preference for colour over size: In the colour-or-size 

condition, speakers used colour-only descriptions considerably more often than size-only 

descriptions and colour-only descriptions were more frequent in the colour-only condition 

than size-only descriptions in the size-only condition. The critical question is: Can the models 

we discussed in the Introduction account for the numerical patterns we observed? 

 

Model Testing 

Parameter setting in the non-deterministic algorithm and PRO. The goodness-of-fit of 

the non-deterministic IA and PRO is dependent on their parameter settings. To get an 

impression of the fit of these models, and to compare them with each other, we used the 

generalisation criterion methodology (Busemeyer & Wang, 2000). This method is 

particularly suitable to studies with experimentally controlled conditions, as it splits the data 

into two subdesigns based on the experimental conditions in the experiment. It uses one 

subdesign consisting of one or more conditions to determine the best-fitting parameter values 

for this subdesign (the calibration stage) and then uses these values to make predictions for a 

different extrapolation condition (the generalisation stage). As pointed out by Busemeyer 

and Wang (2000), this cross-validation method compares a priori predictions of models, 

because it tests to what extent the parameter settings in the training condition(s) make 

accurate predictions for a new set of condition(s). 
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 In our experiments, we used two conditions as calibration conditions to determine the 

best-fitting parameter values and then used the remaining condition as the extrapolation 

condition. Thus, we found the best-fitting parameter values for the size-only and colour-only 

conditions to make numerical predictions in the colour-or-size condition. Similarly, the 

colour-or-size and colour-only conditions were used to make predictions in the size-only 

condition and the colour-or-size and size-only conditions for predictions in the colour-only 

condition. In this way, we obtained a priori predictions for all conditions. Because at least in 

theory, the findings from English and Dutch could be different, we did this separately for 

each language. 

 We used the binomial and multinomial probability functions binopdf and mnpdf in 

MatLab version 8.0.0.783 to calculate the parameter values that resulted in the highest 

p(data|model) in each of the pairs of calibration conditions. The obtained maximum 

likelihood parameter values from the pairs of calibration conditions were then used in the 

formulas for each of the models to calculate predictions in each of the conditions. 

 Using the binomial and multinomial probability functions, we then calculated 

p(data|model) across all conditions. We also calculated a value for the Bayesian Information 

Criterion (BIC), which provides an index of the goodness of fit of a model (the lower, the 

better the fit) and takes into account the number of free parameters (Schwarz, 1978). Finally, 

to compare two models directly, we calculated the Bayes factor (B): 𝐵 =

𝑒−
1

2
(𝐵𝐼𝐶𝑚𝑜𝑑𝑒𝑙1−𝐵𝐼𝐶𝑚𝑜𝑑𝑒𝑙2). A Bayes factor larger than 10 is generally considered strong 

evidence for the better fitting model (Lewandowky & Farrell, 2010; Wasserman, 2000). 

Evaluation of the non-deterministic IA. As explained in the introduction, the 

original, deterministic IA can be made non-deterministic by assuming that the colour-over-

size preference is probabilistic. Table 1 shows a summary of the formulas used to calculate 

the predictions. We determined the maximum likelihood value for c in each pair of conditions 
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in each language by finding the value for c that resulted in the best fit, the highest 

p(data|model), for each pair of conditions. These values were then used to make predictions 

in the remaining, third condition. 

Table 2 shows all values of c that we used to derive predictions from the non-

deterministic IA in each language. In all cases, c is larger than .5, indicating that the non-

deterministic IA assumes a preference for colour over size. 

_______________________________ 

Insert Table 2 about here 

_______________________________ 

Fig. 5 shows the predicted probabilities in English and Dutch and Table 3 shows the 

goodness-of-fit and BIC of the non-deterministic IA together with those of the other models 

discussed below. The modelling results show that the non-deterministic IA, which has one 

free parameter (c), provides a reasonable fit to the data in both English and Dutch. However, 

it predicts no overspecifications in the colour-or-size condition, whereas the data showed that 

overspecifications occurred fairly often (17% in English, 23% in Dutch). 

_______________________________ 

Insert Table 3 about here 

_______________________________ 

Evaluation of the modified non-deterministic IA. To account for the observed 

overspecifications in the colour-or-size condition, we assume that the incremental algorithm 

does not always stop after it has found a fully-discriminating expression, but sometimes adds 

a further attribute. See Fig. 3 for the decision tree and Table 1 for the formulas. 

We again determined the maximum likelihood value for c in each pair of conditions, 

and then used this value for predictions in the remaining condition. Table 2 shows the c-

values that we used and Fig. 5 shows the predicted proportions. We see that the algorithm 
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now correctly predicts overspecifications in the colour-or-size condition and Table 3 shows 

that overall, the fit of the model is fairly good. The fit is better than that of the original non-

deterministic incremental algorithm: B = 3.04*1075 in English and B = 8.57*10103 in Dutch. 

However, the modified version predicts more frequent overspecifications in the colour-or-

size condition than we observed and the predictions in the size-only and colour-only 

conditions are less good than in the original non-deterministic IA. 

The modified algorithm may not be completely successful in accounting for our data 

because the probability of adding a further attribute to an already fully-distinguishing 

expression may not just be determined by the preference for that attribute. As mentioned in 

the Introduction, there is evidence that the likelihood of overspecification is affected by both 

task and type of speaker (Arts et al, 2011, Rubio-Fernandez, 2016; Deutsch & Pechmann, 

1982). We therefore added an overspecification eagerness parameter e  and tested whether 

including it would improve the predictions of the modified incremental model. In this model, 

the probability of adding size after selecting fully discriminatory colour is the preference for 

size (1–c) plus the overspecification eagerness (e) and the probability of not adding size in 

this case is the remaining probability (c–e). Similarly, the probability of adding colour after 

choosing fully discriminatory size is the preference for colour (c) plus the overspecification 

eagerness value (e), while the probability of not adding colour is the remainder (1–c–e). 

For brevity, we do not present the full model testing here, because including the 

overspecification parameter did not help. The maximum likelihood value of e for predicting 

expressions in the colour-or-size condition was very negative (–.46 in English, –.57 in 

Dutch). A negative e-value is theoretically possible and means that overspecification is 

predicted to be less likely than it would have been without this parameter (see modelling of 

PRO below), but in this case it resulted in a negative value for the proportion of colour-and-

size descriptions in the colour-or-size condition in both English and Dutch. Thus, including 
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an overspecification parameter resulted in impossible values, indicating that it is 

inappropriate to include it in this model. 

Evaluation of the PRO model. The modelling above shows that neither the original 

non-deterministic IA nor the modified version provides a very good fit of all data. We 

therefore tested PRO, which assumes that speakers first choose an attribute that rules out all 

distractors; if there is more than one, then the probability of choosing an attribute is being 

determined by its preference c. Next, speakers may add a second attribute, with the chance of 

adding it depending on the preference for this attribute (c) and the overspecification 

eagerness of the speaker (e). See Fig. 5 for the decision tree and Table 1 for the formulas. 

We determined the maximum likelihood values and calculated the predicted 

proportions of expressions in the same way as before. Table 2 shows the parameter values 

and Fig. 5 shows the predictions. Note that the overspecification eagerness parameter e is 

negative, as it was in the version of incremental algorithm that included this parameter, but in 

this case, it did not result in negative predicted proportions. Inclusion of this parameter 

merely makes overspecification less likely than if it had not been included. (We also tested 

PRO without this parameter and although the fit was better than any of the versions of the 

incremental algorithm, it was less good than PRO with this parameter.) The model testing 

results in Table 3 show that the fit of PRO is excellent. It is considerably better than that of 

the next-best model, the modified non-deterministic IA: English B = 6.55*1089, Dutch B = 

2.11*10125. PRO predicts all observed proportions within .07.  

 

Discussion 

Comparison of the models and the observed data showed that PRO provided the best fit to the 

data from both the English and Dutch experiments. The non-deterministic incremental 

algorithm failed to account for overspecifications in the colour-or-size condition, because the 

algorithm terminates when either colour or size is selected, as either attribute is fully 



CONCEPTUALISATION IN REFERENCE PRODUCTION 26 

 

distinguishing. The modified version of the incremental algorithm was designed to deal with 

this issue, because it sometimes adds a further attribute even if a fully distinguishing attribute 

has already been selected. This algorithm did indeed generate overspecifications in the 

colour-or-size condition, but provided a less good fit in the size-only and colour-only 

conditions than the original non-deterministic algorithm. Additional modelling showed that 

the fit did not improve when an overspecification eagerness parameter was added, suggesting 

that the better fit of PRO is not merely due to the extra parameter it has. 

 

Experiment 2 

Experiment 1 investigated whether models of reference generation can successfully account 

for the use of two frequently used attributes, colour and size. Experiment 2 investigated the 

use of a different commonly used attribute, the object’s type or category, which is usually 

encoded by the head noun, such as “bed” or “ashtray”. In this respect, it is different from 

other attributes, which are generally encoded by a modifier. Thus, its selection may involve 

different mechanisms from those of other attributes. Specifically, the original incremental 

algorithm as proposed by Dale and Reiter (1995) assumes that type is included in the 

description regardless of whether it rules out any distractors, that is, speakers would say “the 

grey bed” rather than “the grey one” even if all objects in the context are beds. In our 

modelling of the non-deterministic IA, we made the same assumption. 

 In contrast, the PRO model does not make any additional assumptions to account for 

the use of the type attribute: The decision tree in Fig. 4 also applies to cases where type is a 

distinguishing attribute. Similarly, we do not need to make any special assumptions for the 

use of type in the modified non-deterministic IA, because it assumes that, after selecting a 

fully distinguishing attribute, speakers sometimes add a further attribute. Hence, after 
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selecting an attribute such as colour, they may add type even though colour is fully 

distinguishing. 

 Thus, Experiment 2 tested whether models need to incorporate a special mechanism for 

dealing with type. Fig. 6 shows an example of the conditions in Experiment 3. The conditions 

were the same as in Experiment 1, but rather than manipulating colour and size, we 

manipulated type and colour. To test the various models, we examined whether speakers 

mentioned the type alone, the colour alone or both the type and colour in the different 

conditions. As before, we tested both English and Dutch. 

_______________________________ 

Insert Fig. 6 about here 

_______________________________ 

Method 

 Participants. Experiment 2 was run together with Experiment 1, so the participants 

were the same. 

 Materials, design, and procedure. These were the same as in Experiment 1, except 

that the experimental materials now had conditions where either only colour ruled out all 

distractors, only type ruled out all distractors or both type and colour ruled out all distractors. 

 Coding. The coding was done in the same way as in Experiment 1. In the English 

experiment, 25 trials (2.3%) were excluded because speakers repaired their utterance, 2 

(0.2%) because they used a postnominal modifier and 4 (0.4%) because they used a negation 

(e.g., “not the scissors”). In the Dutch experiment, 38 trials (3.5%) were repairs, 3 (0.3%) 

contained a postnominal modifier, 5 (0.5%) were excluded because the response could not be 

understood, and 18 (1.7%) because of recording failure. 
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Results and Discussion 

Fig. 7 shows the observed proportions of type-and-colour, type-only and colour-only 

descriptions in English and Dutch along with the predictions of the models. As in Experiment 

1, the results from English and Dutch were similar: Speakers overspecified in all conditions 

and they rarely underspecified (only 4 cases). The experiment showed a clear preference for 

type over colour: In the type-or-colour condition, speakers produced type-only descriptions 

much more frequently than colour-only descriptions. In addition, they produced type-only 

descriptions in the type-only condition more often than colour-only descriptions in the 

colour-only condition. 

 

Model Testing 

Evaluation of the non-deterministic IA. Similar to Experiment 1, we turned the 

deterministic IA into a non-deterministic variant by assuming that the type-colour preference 

is probabilistic, that is, speakers first check colour with a probability of c and first check type 

with a probability of 1–c. Type is fully discriminatory in the type-or-colour condition, so 

when speakers first check type, they should not add colour, resulting in the expression bed 

with a proportion of 1–c. Colour is also fully discriminatory in this condition, so when 

speakers check colour first, they do not need to add type to rule out all distractors. However, 

to account for our finding that speakers rarely produced colour-only descriptions, we follow 

Dale and Reiter (1995) in assuming that the head noun is always produced, that is, type is 

always added. Thus, speakers should produce black bed with a proportion of c in the type-or-

colour condition. In the colour-only condition, speakers should again first choose type with a 

probability of 1–c, but because it is not fully discriminatory in this case, they should 

subsequently add colour. The rest of the time (c), they should first choose colour. However, 

although colour is fully discriminatory, they should again add type because it is encoded on 

the head noun. Thus, regardless of whether speakers first choose type or colour in the colour-
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only condition, they always end up including both attributes. Finally, in the type-only 

condition, type is fully discriminatory, so when they check this attribute first, they do not 

need to add colour, resulting in bed with a proportion of 1–c. The rest of the time, they first 

check colour, but because this is not fully discriminatory, they need to add type, resulting in 

black bed with a proportion of c. Table 4 shows the formulas for the non-deterministic IA. 

_______________________________ 

Insert Table 4 about here 

_______________________________ 

 As before, we determined the value for c in a particular condition and language by 

calculating the maximum likelihood value for c in the two other conditions of that language. 

See Table 5 for the values of c and Fig. 7 for the predictions. 

_______________________________ 

Insert Table 5 about here 

_______________________________ 

 Table 6 shows that the model makes fairly accurate predictions. In particular, it is 

notable that the non-deterministic IA correctly predicts overspecification in the type-or-

colour condition. The reason is that in cases where colour is selected first, the head noun, 

encoding type, is always added, resulting in an overspecified expression. Other predictions 

for Experiment 1 are also in line with the observed data. In particular, the non-deterministic 

IA predicts that colour-only descriptions are never produced (because it assumes that type is 

always included), and the observed data show that such descriptions are indeed very rare. It 

also correctly predicts that the majority of descriptions in the colour-only condition are type-

and-colour descriptions and that in the type-or-colour and type-only conditions, both type-

and-colour and type-only descriptions are produced a fair amount of time. However, the 
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model predicts more type-only descriptions in the type-or-colour than type-only condition, 

whereas the data show the opposite pattern. 

_______________________________ 

Insert Table 6 about here 

_______________________________ 

 Evaluation of the modified non-deterministic IA. The modified version of the IA is 

the same as in Experiment 1 (Fig. 3), except that size is replaced by type. Table 4 shows the 

formulas. As mentioned above, it does not require additional assumptions about the inclusion 

of the head noun. This is because the model assumes that a second attribute may be added 

even if the initially selected attribute is fully distinguishing. Assuming that type is strongly 

preferred, speakers should usually add it after selecting colour even if colour is fully 

distinguishing. Therefore, few colour-only descriptions should be produced. 

 We determined the type-colour preference value c as before, shown in Table 5 and 

resulting in the predictions in Fig. 7. The predictions are quite similar to those of the original 

non-deterministic algorithm, except that the modified model correctly predicts some colour-

only descriptions in the colour-only and type-and-colour conditions. Table 6 shows that the 

fit of the model is good, considerably better than the original non-deterministic IA: B = 

2.80*1047 for English and B = 4.43*1044 for Dutch. However, like the original model, it 

incorrectly predicts more type-only descriptions in the type-or-colour than type-only 

condition. We also tested whether adding an overspecification eagerness parameter similar to 

that used in PRO improved the model. Unlike in Experiment 1, this did not result in negative 

predicted proportions, but the model with the additional parameter provided a less good fit. 

Evaluation of the PRO model. To account for the data in Experiment 2, PRO makes 

the same assumptions and uses the same formulas as for the choice between colour and size 

in Experiment 1. The decision tree in Fig. 4 can be used by replacing size with type. Table 4 
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shows the formulas. Similar to the modified non-deterministic IA, PRO does not make any 

additional assumptions for the inclusion of the head noun. Thus, it predicts that type is 

omitted in a proportion of cases in the type-or-colour and colour-only conditions.  

We determined parameter values as before, shown in Table 5. In contrast to 

Experiment 1, the overspecification eagerness values e are positive, indicating that the model 

assumes that speakers are more eager to overspecify when the distinguishing attributes are 

type and colour than when they are colour and size. This may seem surprising given that 

Experiments 1 and 2 were run together with the same participants. One possible explanation 

is that speakers do not always consider type-and-colour descriptions as true 

overspecifications when only type or only colour is sufficient, because omitting the head 

noun is uncommon in English and Dutch (as our experiments show). Therefore, they may be 

more likely to overspecify in such cases. This suggests that the overspecification parameter e 

does not just capture how eagerly speakers overspecify, but also whether they consider type-

and-colour descriptions to be true overspecifications in cases where mentioning one of the 

attributes is sufficient. This is in line with Dale and Reiter’s (1995) proposal, which uses a 

special mechanism to ensure that a type is included in every description; however, our model 

arrives at this prediction automatically, without requiring any special mechanism. 

Fig. 7 shows the predictions of PRO. All predicted data points are within .07 of the 

observed data, resulting in a very good fit of the model, as shown in Table 6. The fit is better 

than the modified non-deterministic IA in English (B = 1.86*1013) and somewhat better in 

Dutch (B = 10.96).  

 

Discussion 

As in Experiment 1, PRO provided an excellent fit to the data from both the English and 

Dutch experiments. Although the two versions of the non-deterministic IA that we tested 
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provided a decent fit to the data, they performed less well. The original modified incremental 

IA did not predict any colour-only descriptions in the colour-only and type-and-colour 

conditions. The modified version did, but it incorrectly predicted that type-only descriptions 

should be more frequent in the type-or-colour than in the type-only condition. 

 An interesting conclusion from the modelling of the experimental results is that we do 

not need to assign a special status to the type attribute, that is, we do not need to assume that 

speakers add it because they want to avoid a referring expression without a head noun, unlike 

the incremental algorithm. Where the type is distinguishing, both PRO and the modified non-

deterministic IA can account for the paucity of descriptions without this attribute by 

assuming that it is strongly preferred. 

 

Experiment 3 

 

The previous experiments showed that PRO accounts well for the production of referring 

expressions when colour and size discriminated the target from the distractors (Experiment 1) 

and when type and colour did (Experiment 2). However, accounting for reference production 

in these experiments was arguably relatively simple. To test the scope of PRO and to 

compare it more thoroughly with the next-best model, the modified non-deterministic IA, we 

included a third discriminating attribute in Experiment 3. This makes the reference generation 

process in the models more complex because (1) speakers need to choose between three 

rather than two different attributes that each have their own preference, (2) they can produce 

longer expressions by choosing all three attributes and (3) because the attributes can be 

combined in more different ways, they have a larger number of expressions to choose from.  

 We used a border (e.g., a square or a triangle) around the objects as the third attribute 

because speakers normally realise the border attribute post-nominally in a prepositional 
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phrase (e.g., the airplane in the square). This allowed us to explore the possibility that 

concepts expressed as postnominal modifiers are selected differently from prenominal 

modifiers. Brown-Schmidt and Tanenhaus (2006), for example, showed that fixations to a 

size-contrast distractor were later when a size adjective was produced post-nominally (e.g., 

the triangle with small diamonds) than when it was produced pre-nominally (e.g., the small 

triangle), suggesting that pre- and postnominal modifiers are encoded at different points in 

time (see also Brown-Schmidt and Konopka, 2008). However, other research suggests that at 

least in some instances, speakers encode postnominal modifiers simultaneously with the 

earlier part of the noun phrase For example, Garrett’s (1975) analysis of speech errors 

showed that word exchange errors occur between different phrases in a clause (e.g., I broke a 

dinghy in the stay, where I broke a stay in the dinghy is intended), suggesting that lexical 

planning has a clausal scope (see also Meyer, 1996 for evidence from the picture-word 

interference method). 

 Experiment 3 did not aim to investigate the scope of conceptual planning directly, but 

because there is some evidence that pre- and postnominal modifiers are planned differently, 

we wanted to see whether PRO could account for the selection of concepts in postnominal 

modifiers. If the selection of concepts in postnominal modifiers is similar to that in 

prenominal modifiers, PRO would not need to make any additional assumptions to account 

for the use of the border attribute. But if concept selection is different in postnominal 

modifiers, then the PRO algorithm that we tested in Experiments 1 and 2 would not make 

accurate predictions for this case and additional mechanisms would need to be considered. To 

test the predictions of PRO and the modified non-deterministic IA, we used the conditions in 

Fig. 8, in which we manipulated the colour, size and border of the objects. 
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_______________________________ 

Insert Fig. 8 about here 

_______________________________ 

Method 

 Participants. Thirty-five new participants from the same population as in the English 

Experiments 1 and 2 took part. 

 Materials. The materials consisted of 84 experimental items in 7 conditions. Fig. 8 

shows an example. Each condition showed three objects of the same type. The objects were 

selected from Rossion and Pourtois (2004). The target object was indicated by a red arrow 

underneath it and its position was counterbalanced across items. In the seven conditions, we 

manipulated whether the colour, size or border of the target was different from that of the 

distractors. The border attribute was manipulated by putting either a square, circle, diamond 

or triangle around the objects. As in the previous experiments, we used four colours: blue, 

grey, red and green, but the size of the smaller objects was only half the size of the larger 

objects (it was two-thirds in Experiments 1 and 2). 

 In the colour-only condition, colour distinguished the target from both distractors, 

whereas size and border distinguished the target from only one of the distractors. Similarly, 

in the size-only and border-only conditions, respectively size and border distinguished the 

target from both distractors, whereas the other two attributes only distinguished it from one 

distractor. In the colour-and-size, colour-and-border and size-and-border conditions, there 

were always two fully discriminating attributes as indicated by the labels for the conditions, 

whereas the remaining attribute ruled out only one distractor. Finally, in the colour-size-or-

border condition, all three attributes each ruled out all distractors. 
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 We also included 96 fillers. In these fillers, the target differed from both distractors in 

both its colour and type (12 fillers), both its colour and border (12), its orientation (20), the 

number of objects (20), type only (14), size only (6), border only (6) or part of its colour (6). 

Design. All 84 experimental items had seven conditions. We constructed seven 

experimental lists consisting of 12 items per condition, using a Latin square design as before. 

Five participants were assigned to each list. The experimental items and fillers were 

presented in a random order that was the same across lists. 

Procedure. The procedure was the same as in the previous experiments except as 

follows. Instead of an addressee who was a real participant in the experiment, we used a 

confederate. The confederate was a male native English speaking student from the University 

of Dundee. None of the participants showed awareness that their partner was a confederate. 

To ensure that attributes were used as pre-modifiers or post-modifiers (rather than say, e.g., 

“blue in the circle”), the speaker was asked to name the object in each expression. 

 Coding. The coding was the same as in the previous experiments except that we now 

also coded whether speakers used the border attribute. We excluded trials on which 

participants produced a speech error (N = 208, 7.1%) or a postnominal modifier that did not 

include border (N = 42, 1.4%). We excluded 8 trials (0.3%) on which speakers did not 

include a head noun (e.g., “green”) because we wanted to test whether the models could 

account for the use of attributes that were expressed both before and after the noun. Finally, 3 

trials (0.1%) were excluded because speakers did not use either colour, size or border. 

 

Results and Discussion 

_______________________________ 

Insert Fig. 9 about here 

_______________________________ 
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Fig. 9 shows the observed proportions of referring expressions in each condition along with 

the predictions of the modified non-deterministic IA and PRO. As in Experiments 1 and 2, 

the results showed that overspecification was common in the conditions where the most 

preferred attribute (here: colour) did not rule out all distractors. Even in the conditions where 

colour was fully discriminating, participants used overspecified descriptions in over 35% of 

trials. Across conditions, participants used all combinations of attributes that led to 

unambiguous descriptions, including descriptions that contained all three attributes colour, 

size and border. Finally, participants again rarely produced underspecified expressions. 

 

Model testing 

 Evaluation of the modified non-deterministic IA. Because participants in Experiment 

3 could choose between three attributes (colour, size and border), the modified non-

deterministic IA had two parameters: one for the colour preference (c) and one for the size 

preference (s). The border preference was the remaining proportion (1–c–s). We only 

calculated the predictions of the model without the overspecification eagerness parameter 

because in both Experiments 1 and 2, the fit was better without it. 

 The algorithm cannot be presented in a single decision tree for all conditions, so instead 

we exemplify its workings with a decision tree for the colour-only condition (Fig. 10). The 

algorithm assumes that speakers may either select colour (c), size (s) or border (1–c–s) first in 

this condition. If they select colour, they may not add a further attribute because colour is 

fully discriminatory. The probability that no attribute is added is the colour preference (c). 

However, the modified version of the IA does not always terminate when a fully 

discriminating description is found, so either size or border may be added. The probability of 

adding either size or border is determined by the preference for each (respectively s and 1–c–
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s). After the second attribute is added, speakers may add a third attribute and the probability 

of this is again determined by the preference for that attribute. 

_______________________________ 

Insert Fig. 10 about here 

_______________________________ 

 The algorithm proceeds slightly differently if size is first selected in the colour-only 

condition, because this attribute is not fully distinguishing. Thus, speakers must add a further 

attribute. The probability that they add colour is the preference for colour normalised over the 

preferences of the remaining attributes colour and border (c/(1–s)), and similarly, the 

probability of adding border is the normalised preference for border. If speakers first select 

size and then colour, they may either add border (determined by its preference) or not, but if 

they first select size and then border, they must add colour, because neither size nor border is 

fully distinguishing. Finally, if speakers first select border, then the algorithm proceeds along 

similar lines as when they first select size.  

 As before, the likelihood that a particular expression is produced is calculated by 

multiplying the formulas at each stage in the decision tree and summing the different routes 

that can be taken. Appendix 2 shows all formulas derived from the algorithm. 

 We determined the parameter values of c and s in each condition by finding their 

maximum likelihood values in the other six conditions. Table 7 shows the values we used in 

each condition and Fig. 9 shows the resulting predictions. The fit of the model is quite poor: 

p(data|model) < 1.00*10–320, BIC > 1490. Especially, in the colour-only, size-only and 

border-only conditions, it overpredicts the probability that speakers use all three attributes 

and underpredicts the probability that they use a single attribute. In the colour-or-size, colour-

or-border and colour-size-or-border conditions, it underpredicts the proportion of colour-only 



CONCEPTUALISATION IN REFERENCE PRODUCTION 38 

 

descriptions and in the size-or-border condition, it overpredicts colour-and-border 

descriptions. 

_______________________________ 

Insert Table 7 about here 

_______________________________ 

 Evaluation of PRO. Like the modified non-deterministic IA, PRO has parameters for 

the colour (c) and the size (s) preference; the border preference is the remainder (1–c–s). In 

addition, it includes the overspecification parameter (e), but in contrast to the previous 

experiments, we did not calculate its value using the other conditions in the current 

experiment. Given that our participants came from the same population and the method was 

similar to that in the previous experiments, the overspecification eagerness value in the 

current experiment should be similar. In particular, it should be similar to the value in 

Experiment 1, because neither in the current experiment nor in Experiment 1 was the head 

noun a distinguishing attribute. Experiment 2 showed that the overspecification value is 

different when the head noun is a distinguishing attribute. (We argued this is because 

speakers do not consider overspecification by the head noun as true overspecification, 

because omitting the head noun is uncommon.) Thus, we used the overspecification value 

from Experiment 1 (–.0531). 

 Fig. 11 shows the PRO decision tree for all conditions. We exemplify it using the 

colour-or-size condition. Both colour and size are fully distinguishing attributes, so speakers 

should always first choose either colour or size. The probability of choosing each is 

determined by the preference for the attribute normalised over the two fully distinguishing 

attributes. The starting box on the left in Fig. 11 shows this. For example, the probability of 

first selecting colour in the colour-or-size (CS) condition is c/(c+s). Next, speakers may add 

no further attribute, add size or add border. The probability that speakers do not add a further 
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attribute is the colour preference (i.e. not the size plus border preference) minus the 

overspecification eagerness value (c–e). The probability that speakers do add another 

attribute is the remainder (1–c+e) multiplied by the preference for the attribute (e.g., size) 

normalised over the two remaining attributes (e.g., size and border, s/(1–c). Finally, speakers 

may add a third attribute, with the chance being determined by the preference for that 

attribute plus the overspecification eagerness value (e.g., 1–c–s+e for adding border after 

colour and size). Again, the probability that a particular description is used is calculated by 

multiplying the formulas at each stage and summing the different routes that lead to the 

expression. Appendix 2 shows all formulas. 

_______________________________ 

Insert Fig. 11 about here 

_______________________________ 

 We determined the c and s parameter values as before. Table 7 shows these values and 

Fig. 9 shows the predictions of PRO. In all conditions, PRO correctly predicts what the most 

frequently used description is and in all conditions except the size-or-border condition, it also 

predicts what the second most frequent description is. All proportions are predicted within 

.15. The model appears to have no particular difficulty with descriptions that used the 

postnominal border modifier and accurately predicts the proportions of descriptions with all 

three attributes. Overall, the fit of the model is good: p(data|model) = 8.91*10–108, BIC = 

508.77. Note that the BIC value cannot directly be compared to that in Experiments 1 and 2, 

because it is based on more conditions. The fit of PRO is considerably better than that of the 

modified non-deterministic IA: B > 6.11*10234. 
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Discussion 

The main aim of the experiment was to test whether PRO could account for reference 

production in more complex scenarios with more distinguishing attributes, resulting in a 

wider choice of attributes and in potentially longer expressions. The modelling results 

suggested that it can: The predicted proportions were generally very close to the observed 

results for all descriptions. 

 Most critically, PRO made better predictions than the modified non-deterministic IA, 

the model closest to PRO in Experiments 1 and 2. Although the modified non-deterministic 

IA made fairly accurate predictions in the previous experiments, it did not fare well in 

Experiment 3. In particular, in all conditions except the size-or-border condition, it predicted 

too many descriptions with all three attributes and in all conditions, it predicted too few with 

a single attribute. Unlike PRO, the modified non-deterministic IA does not appear to 

generalise to the more complex scenarios in Experiment 3, suggesting that its reference 

production mechanisms are different from those of human speakers. 

 Experiment 3 showed that the production mechanisms underlying PRO do generalise to 

situations that are more complex than in the previous experiments. In addition, PRO made 

accurate predictions for postnominal modifiers that include the border attribute; it did not 

require additional assumptions to deal with these modifiers. PRO assumes that properties are 

not necessarily selected in the order in which they are realized, that is, whether they occur 

pre- or postnominally. Instead, an attribute’s discriminatory power and preference affect the 

order in which concepts are selected. PRO is currently a concept selection model only; it does 

not account for the linearization of the selected attributes, but assumes that this is a separate 

task. The modelling results from Experiment 3 showed that this is a feasible account, as PRO 

made accurate predictions about both pre- and postnominal attributes. Although Experiment 

3 did not directly test whether human speakers select postnominal concepts after prenominal 



CONCEPTUALISATION IN REFERENCE PRODUCTION 41 

 

concepts, the fact that PRO can account for both without postulating additional mechanisms 

suggests that human speakers do not distinguish between pre- and postnominal modifiers 

during concept selection. 

 To derive the PRO predictions, we used the same overspecification eagerness value e as 

in Experiment 1, so the number of free parameters of PRO in Experiment 3 was the same as 

that of the modified non-deterministic IA. Thus, the number of free parameters does not 

explain the better fit of PRO compared to the modified non-deterministic IA. The finding that 

the overspecification eagerness value from Experiment 1 resulted in accurate predictions for 

Experiment 3 is striking for two reasons. First, if postnominal modifiers were added as an 

“afterthought” when the prenominal modifiers did not rule out all distractors (similar to a 

speech repair), then the overspecification value for postnominal attributes should have been 

different from that of prenominal attributes, because speakers would have been less eager to 

add an overspecifying postnominal attribute. The fact that we could use the same 

overspecification value for pre- and postnominal attributes again suggests that their concepts 

are selected in the same way. Second, one might have expected that the more attributes 

speakers have already selected, the less likely it is that they select further attributes. As a 

result, the overspecification value should have been lower during the selection of the third 

attribute than the second. This did not appear to be the case: Using the same value, PRO 

accounted for referring expressions that included two as well as three attributes. In other 

words, a third attribute is as likely to be added as a second. However, expressions with three 

attributes are less frequent than those with two because, following the selection of two 

attributes, the overall chance that no further attribute is added is higher than that an attribute 

is added. 
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General Discussion 

Evaluation of the Models 

As we mentioned in the Introduction, existing computational models are at odds with 

important aspects of the way in which people perform the conceptualization of referring 

expressions. In particular, evidence that speakers use a range of referring expressions in the 

same condition is inconsistent with deterministic computational models such as the full 

brevity, greedy and incremental algorithms, while the rational speech act theory currently 

does not deal with overspecification. Taking into account that human speakers are non-

deterministic and frequently overspecify, we therefore developed new models and tested 

them in three reference production experiments. 

 To account for the inherently probabilistic nature of reference production, we modified 

the original incremental algorithm to make it non-deterministic. Unlike in the original 

algorithm, where the preference order of attributes is fixed, we postulated that speakers are 

most likely to first select the attribute that is most preferred, but sometimes instead select the 

less preferred attribute, with the likelihood being determined by the relative preference for 

the two attributes. We tested two non-deterministic versions of the incremental algorithm. In 

the first version, probabilistic selection of attributes continues until all distractors are ruled 

out. However, this version failed to account for overspecification when all distinguishing 

attributes were fully distinguishing, because the selection of any distinguishing attribute 

causes the algorithm to stop. We therefore tested a second version according to which 

speakers probabilistically add further attributes even after a fully distinguishing description 

has been found. This model indeed provided a better overall fit of the data in Experiments 1 

and 2 than the first version, but in Experiment 3, it predicted too many descriptions with all 

three attributes and too few with a single attribute. 
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 Our results were more consistent with the predictions of the PRO model, a probabilistic 

model that assumes that attributes’ preferences as well as discriminatory power play a role in 

conceptualisation during reference production. It claims that speakers first choose the 

attribute that rules out all distractors. When more than one attribute is fully discriminating, 

they probabilistically choose one depending on its preference. Next, they add further 

attributes depending on the degree to which each of these is preferred and on speakers’ 

eagerness to overspecify. Across experiments, PRO made accurate predictions about the 

proportions with which different referring expressions were used in the conditions.  

 The excellent fit of PRO cannot be explained by the number of free parameters in the 

model. First, the parameter values in each condition were fixed on the basis of the data from 

the other conditions so they were not truly free. Second, versions of the non-deterministic IA 

that had the same number of parameters as PRO made less good predictions. In Experiments 

1 and 2, we tested the modified non-deterministic IA with an overspecification parameter, but 

its predictions were less good than PRO. In Experiment 3, PRO had the same number of 

parameters as the modified non-deterministic IA, because the overspecification parameter 

value was independently obtained from Experiment 1. 

 The main conclusion we can draw from our PRO modelling results is that it is possible 

to develop an algorithmic model of reference that mimics human reference production very 

closely, much more closely than classic reference generation algorithms of the 1990s and 

current versions of the rational speech act theory. The success of the model comes from 

making crucial aspects of the algorithm probabilistic and taking into account both the 

preference of attributes and a form of discriminatory power. PRO can be seen as a synthesis 

between the classic 1990s algorithms and the rational speech act theory. From earlier 

reference generation algorithms, it borrows the ideas that some attributes are intrinsically 

more preferred than others and that discriminatory power plays a role. From the rational 
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speech act theory, it borrows the ideas of probabilistic generation and discriminatory power. 

By combining these ideas in a unique way, PRO makes accurate predictions about human 

reference production. 

 The complexity of the formulas in the PRO algorithm (especially for longer 

expressions and conditions where several attributes are fully distinguishing, as in Experiment 

3) might seem at odds with the fluency with which human speakers usually produce 

reference. The reason that the formulas are so complex is that PRO predicts averaged 

probabilities of referring expressions across multiple speakers and items using multiple routes 

through the decision trees. However, on each individual trial, the referring process is much 

simpler because averaged probabilities need not be calculated. Rather, the process of 

producing reference can be seen as throwing a biased dice at each point in the decision tree 

that determines whether they will follow one route or another. This can be a simple, fast 

process for human speakers. 

 Although PRO can boast a considerable degree of empirical adequacy, one might argue 

that this achievement is bought at the expense of the attractive simplicity possessed by such 

models as the greedy algorithm and the rational speech act theory. An interesting question 

from this perspective is what the origins of the attribute preference and overspecification 

parameters in PRO are. Why do speakers prefer certain attributes over others and why does 

the likelihood of overspecification depend on the type of speaker and her task? Regarding 

attribute preference, it seems plausible that this is affected by how easy it is to detect 

differences in this attribute. Belke and Meyer (2002) found that participants detected 

differences in colour between two objects faster than differences in size. They suggested that 

this may be because colour is an absolute attribute, that is, it can be determined independently 

of the colour of other objects, whereas size is a relative attribute that can generally only be 

determined by comparing it to other objects in the context. However, we have recently found 
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that colour is not always preferred to size in reference production (Van Gompel, Gatt, 

Krahmer, & Van Deemter, 2014): When the difference in size between the target and 

distractors is sufficiently large, speakers use size as often as colour. This is more consistent 

with the idea that attribute preferences are due to their perceptual saliency rather than the 

distinction between relative and absolute attributes.  

 Other factors may also affect attribute preference. For example, Goudbeek and 

Krahmer (2012) found that the use of specific attributes in object descriptions could be 

primed: Speakers used an attribute more often when they had just heard a referential 

description with this attribute than when they had not (e.g., they said “the fan facing left” 

more often after hearing “the front-facing chair” than “the red chair”). This finding suggests 

that in addition to perceptual saliency, the conceptual saliency of attributes (due to priming) 

also affects their preference. This may also explain why Westerbeek, Koolen, and Maes 

(2015) and Rubio-Fernandez (2016) found that speakers mentioned colour more often when 

it was an atypical attribute of the object (e.g., a pink banana): Atypical colours are 

conceptually incongruent and may therefore be more salient than typical colours. 

 The overspecification parameter is likely to be affected by speakers’ cooperativeness 

with the listener: As Arts et al. (2011) and Rubio-Fernandez (2016) observed, when it is 

particularly important that the listener correctly identifies the object because it is critical for 

his task, speakers tend to overspecify more. Time pressure (cf., Horton & Keysar, 1996) and 

the complexity of the domain (Koolen et al., 2013; Paraboni and Van Deemter, 2014) may 

also affect how often speakers overspecify. The amount of overspecification also appears to 

depend on the type of speaker. As we mentioned before, Deutsch and Pechmann (1982) 

found that children overspecified less often than adults. It is possible that this speaker effect 

reflects cooperativeness: Certain speakers such as children may be less cooperative with the 
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listener than other speakers (Fukumura, 2016; Matthews, Lieven, Theakston, & Tomasello, 

2006). 

 

Future directions 

Because there is an almost unlimited number of target attributes and different distractors in 

the real word, speakers’ ability to refer potentially faces an infinite number of possible 

situations. Since our decision trees do not cover all possible inputs (e.g., where there are more 

than three distinguishing attributes or where there is no single fully distinguishing attribute), 

they are not a complete algorithm. In Appendix 1, we show the “complete” PRO algorithm, 

which is defined under a much wider class of possible situations; since the algorithm is 

under-determined by the available experimental data, it contains an element of extrapolation. 

The algorithm is only complete under certain assumptions: for example, it only deals with 

one-shot descriptions to singular objects (as opposed to sets), so it does not yet account for 

repeated reference and the use of anaphora. In future, PRO may be extended to cover an even 

wider class of situations. 

 Many features of the PRO algorithm remain untested. For example, our experiments 

tested situations with only two distractors. When there are many distractors, speakers may not 

keep all information in their focus of attention. As a result, the first stage in PRO, where 

speakers choose a fully distinguishing property, may become probabilistic: Although a 

property may not rule out all distractors, speakers may sometimes first choose it because it 

rules out all distractors in their current attention. Speakers may also ignore a fully 

discriminating property during the first stage because they may sometimes fail to check 

whether it has discriminatory power. Additional mechanisms may be called for. For example, 

it might be that speakers only take into account distractors and their attributes if they have 
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fixated them; PRO could deal with this by postulating that only these distractors and 

attributes are in the attentional domain. 

 Another question is which attributes are considered for inclusion in the referring 

expression. We have implicitly assumed that PRO only selects attributes that distinguish the 

target from at least one of the distractors. For instance, it cannot generate expressions like 

“grey candle with the flame” for the situations in Fig. 2, because “with the flame” does not 

discriminate the target from any of the distractors. This prediction was generally borne out by 

the data from our experiments. The only exception was the use of the type attribute in 

Experiment 1, where it did not rule out any distractors: Participants used this in 88% of their 

English descriptions and 93% of their Dutch descriptions. (In Experiment 2, PRO can explain 

the occurrence of references with type because in that experiment, type ruled out at least one 

distractor. In Experiment 3, participants were instructed not to omit the noun.)  

 One possible solution for this problem would be to assume that, as it stands, PRO 

focuses on discriminating attributes, but that later processes can add attributes that do not rule 

out any distractors, subject to the preference for this attribute (so type would be added 

relatively often). A different solution would be to assume that the decision trees of PRO 

(Figs. 4 and 11) should include not just colour, size and border, but also type. We did not test 

whether this would account for the use of the type attribute, because it would have resulted in 

another parameter, type preference, and this would have resulted in too many parameters for 

the number of data points (i.e. conditions and types of expressions) we had. The inclusion of 

another attribute, such as type, to the model would not change the relative proportions with 

which the descriptions including colour, size and border are used; the only thing that changes 

is that the model would sometimes generate these descriptions with and sometimes without 

the additional attribute. 
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 As described, PRO and the other computational models we have discussed are 

conceptualisation or content determination models. They were not designed to account for 

word order preferences, for example, whether speakers say “large grey candle” or “grey large 

candle”. In line with most language production models, we have assumed that speakers in our 

experiments first determined which concepts to express, and following this, they accessed the 

lexical properties of the words for these concepts and put the words in order during the 

realisation stage (e.g., Bock & Levelt, 1994; Dell, 1986; Levelt et al., 1999).  

 PRO’s strict separation between conceptualisation and realisation may suggest that 

speakers put all concepts that they select into a memory buffer before they lexicalise them 

and put them in order. In our experiments, this seems plausible, because there was little word 

order variation: For example, speakers virtually always produced size before colour in 

Experiments 1 and 3. Although in theory, it is possible that speakers always conceptualised 

size before colour and put the words in the same order as they accessed the concepts, this 

seems unlikely given that colour was preferred over size. Furthermore, in the colour-only 

conditions, colour was fully discriminatory, whereas size was not. Thus, it seems plausible 

that at least in some cases, speakers accessed the concept for colour first and kept it in a 

conceptual buffer until they had accessed the size concept. It is likely that this also happened 

in Experiment 2, where colour was produced before type even though type is more preferred. 

In sum, when properties have a rigid word order, speakers often appear to hold concepts in a 

buffer before they order them. 

 However, when word order is more flexible, the order in which concepts are selected 

may affect their order of mention. Fukumura (2018) investigated the ordering of colour and 

pattern (green spotted bow vs. spotted green bow), where both word orders are relatively 

common. She found that both discriminability and attribute preference affected word order, 

suggesting that speakers may immediately have lexicalised the property that was 
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conceptualised first, rather than holding it into a buffer. If the latter is true, PRO should also 

make predictions about word order in such cases; it would be interesting to explore this in 

future work. 

 Finally, PRO is currently neutral with regard to whether speakers select particular 

attributes because they are allocentric, in order to help the listener identify the target, or 

egocentric, selecting attributes that are easiest for themselves to produce (e.g., Brennan & 

Clark, 1996; Brown & Dell, 1987; Heller, Gorman, & Tanenhaus, 2012; Horton & Keysar, 

1996; Fukumura & Van Gompel, 2012; Wardlow-Lane & Ferreira, 2008). For example, 

speakers may first choose a fully discriminating attribute because the fact that it rules out all 

distractors makes it most helpful for the listener. Alternatively, they may first choose a fully 

discriminating attribute because this target attribute is most contrastive and therefore 

perceptually most salient for themselves. Similarly, speakers may prefer one attribute over 

another because they assume it is perceptually or conceptually more salient for the listener 

(and therefore more helpful) or because it is more salient for themselves. PRO is compatible 

with either type of account. 

 In sum, we hope to have demonstrated that computational models of reference 

generation can be useful models of human reference production and conceptualisation, 

because they make explicit quantitative predictions that can be tested in psycholinguistic 

experiments. We see the PRO model, and the manner in which we have tested its quantitative 

predictions, as the start of a new avenue of research. We have shown that PRO provides an 

excellent fit to our current data, but more experimental work is needed to test more of PRO’s 

assumptions and predictions. This should result in an even better understanding of human 

reference production, and in even more accurate and more general reference production 

algorithms.  
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Table 1: Formulas of the models in Experiment 1.  

_____________________________________________________________________ 

 

 description 

 colour and size colour-only size-only 

 

Non-deterministic incremental algorithm 

colour-or-size condition 0 c 1–c 

size-only condition c 0 1–c 

colour-only condition 1–c c 0 

 

Modified non-deterministic incremental algorithm 

colour-or-size condition c*(1–c)+(1–c)*c c*c (1–c)*(1–c) 

size-only condition c+(1–c)*c 0 (1–c)*(1–c) 

colour-only condition c*(1–c)+1–c c*c 0 

 

PRO 

colour-or-size condition c*(1–c+e)+(1–c)*(c+e) c*(c–e) (1–c)*(1–c–e) 

size-only condition 1*(c+e)  0 1*(1–c–e) 

colour-only condition 1*(1–c+e) 1*(c–e) 0 

___________________________________________________________________________ 
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Table 2: Parameter values for the predictions in each language (Experiment 1). 

___________________________________________________________________________ 

 English Dutch 

 c e c e 

Non-deterministic incremental algorithm 

colour-or-size condition  .8799  .8389 

size-only condition  .9376  .9240 

colour-only condition  .8916  .8381 

 

Modified non-deterministic incremental algorithm 

colour-or-size condition  .8454  .7969 

size-only condition  .9180  .8944 

colour-only condition  .7867  .7164 

 

PRO 

colour-or-size condition .8777 –.0449 .8360 –.0786 

size-only condition .8473 –.0789 .8122 –.0911 

colour-only condition .8664 –.0510 .8161 –.0631 

___________________________________________________________________________ 
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Table 3: Model testing results for Experiment 1. 

___________________________________________________________________________ 

 p(data|model) BIC 

English 

 Non-deterministic IA 4.70*10–179 826.16 

 Modified non-deterministic IA 1.43*10–103 480.55 

 PRO  2.99*10–12 66.93 

 

Dutch 

 Non-deterministic IA 1.35*10–239 1106.91 

 Modified non-deterministic IA 1.16*10–135 628.28 

 PRO  7.56*10–9 51.14 

___________________________________________________________________________  
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Table 4: Formulas of the models in Experiment 2. 

_________________________________________________________________________ 

 description 

 type and colour type-only colour-only 

 

Non-deterministic incremental algorithm 

type-or-colour condition c 1–c 0 

type-only condition c 1–c 0 

colour-only condition 1 0 0 

 

Modified non-deterministic incremental algorithm 

type-or-colour condition c*(1–c)+(1-c)*c (1–c)*(1–c) c*c 

type-only condition c+(1–c)*c (1–c)*(1–c) 0 

colour-only condition c*(1–c)+1–c 0 c*c 

 

PRO 

type-or-colour condition c*(1–c+e)+(1–c)*(c+e) (1–c)*(1–c–e) c*(c–e) 

type-only condition 1*(c+e) 1*(1–c–e) 0 

colour-only condition 1*(1–c+e) 0 1*(c–e) 

_________________________________________________________________________ 
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Table 5: Parameter values for the predictions in each language (Experiment 2). 

___________________________________________________________________________ 

 

 English Dutch 

 c e c e 

 

Non-deterministic IA 

type-or-colour condition .3136 .2507 

type-only condition .4859 .3601 

colour-only condition .3997 .3045 

 

Modified non-deterministic IA 

type-or-colour condition .1914 .1563 

type-only condition .2477 .2051 

colour-only condition .2125 .1679 

 

PRO 

type-or-colour condition .1864 .1272 .1503 .1004 

type-only condition .2065 .1508 .1602 .0953 

colour-only condition .1932 .1451 .1834 .0604 

___________________________________________________________________________ 

Note. IA = incremental algorithm; PRO = probabilistic referential overspecification model. 
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Table 6: Model testing results for Experiment 2. 

___________________________________________________________________________ 

 p(data|model) BIC 

English 

 Non-deterministic IA 4.89*10–69 321.54 

 Modified non-deterministic IA 1.37*10–21 103.03 

 PRO  8.25*10–7 41.93 

 

Dutch 

 Non-deterministic IA 1.57*10–64 330.77 

 Modified non-deterministic IA 6.95*10–20 95.15 

 PRO  2.42*10–17 90.43 

___________________________________________________________________________  
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Table 7: Parameter values for the predictions in Experiment 3. 

_______________________________________________________________ 

 

 parameter values used for predictions 

 c s 

Modified non-deterministic IA 

colour-only condition .6145 .1283 

size-only condition .6557 .0860 

border-only condition .6814 .1316 

colour-or-size condition .6241 .1195 

colour-or-border condition .6209 .1246 

size-or-border condition .6817 .0907 

colour-size-or-border condition .6306 .1178 

 

PRO 

colour-only condition .6633 .1130 

size-only condition .6596 .1115 

border-only condition .6583 .1144 

colour-or-size condition .6592 .1160 

colour-or-border condition .6437 .1103 

size-or-border condition .6591 .0910 

colour-size-or-border condition .6450 .1131 

_______________________________________________________________ 
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Fig. 1: Three brooms; the target broom is circled. Note that both colour and size distinguish 

the target from its distractors. The colours of the objects are indicated in brackets. 
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a. Either colour or size fully distinguishes the target from the distractors. 

 

b. Only size fully distinguishes the target from the distractors. 

 

c. Only colour fully distinguishes the target from the distractors. 

 

Fig. 2: Three examples of a target (circled) and distractors. The colours of the objects are 

indicated in brackets; participants saw the actual colours, not the words in brackets. 

  

(red) 

(red) 

(red) 

(gray) 

(gray) 

(gray) 

(gray) 

(blue) 

(blue) 



CONCEPTUALISATION IN REFERENCE PRODUCTION 66 

 

Fig. 3: Modified non-deterministic IA decision tree for the conditions in Experiment 1. 
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Fig. 4: PRO decision tree for the conditions in Experiment 1. 
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Fig. 5: Observed results and model predictions for Experiment 1. C = colour-only descriptions, S = size-only 

descriptions, CS = colour-and-size descriptions. 
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a. Either type or colour fully distinguishes the target from the distractors.  

 

b. Only colour fully distinguishes the target from the distractors. 

 

 

c. Only type fully distinguishes the target from the distractors. 

 

Fig. 6: Three examples of a target (circled) and distractors in Experiment 2. The colours of 

the objects are indicated in brackets; participants saw the actual colours, not the words in 

brackets. 
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Fig. 7: Observed results and model predictions for Experiment 2. C = colour-only descriptions, T = type-only 

descriptions, TC = type-and-colour descriptions. 
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a. Only colour fully distinguishes the target from the distractors.  

 

b. Only size fully distinguishes the target from the distractors.  

 

c. Only border fully distinguishes the target from the distractors.  

 

d. Both colour and size fully distinguish the target from the distractors. 

(blue) 

(blue) 

(blue) 

(blue) (green) 

(green) 

(green) 

(green) 

(green) 

(blue) 

(blue) 

(green) 



CONCEPTUALISATION IN REFERENCE PRODUCTION 72 

 

 

e. Both colour and border fully distinguish the target from the distractors. 

 

f. Both size and border fully distinguish the target from the distractors.  

 

g. Colour, size or border all fully distinguish the target from the distractors. 

 

Fig. 8. Seven examples of a target (indicated by an arrow) and distractors. The colours of the 

objects are indicated in brackets; participants saw the actual colours, not the words. 
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Fig. 9: Observed results and model predictions for Experiment 3. C = colour-only 

descriptions, S = size-only descriptions, B = border-only descriptions, CS = colour-and-size 

descriptions, CB = colour-and-border descriptions, SB = size-and-border descriptions, CSB = 

colour-size-and-border descriptions.  
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Fig. 10. Modified non-deterministic IA decision tree for the colour-only condition (Fig. 8a) in 

Experiment 3. 
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Fig. 11. PRO decision tree for the conditions in Fig. 8.
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Appendix 1: PRO algorithm 

 

Input: A domain of objects, containing a target referent r and a non-empty set M of 
distractors. A set A of attributes true of r, each of which is false for at least one distractor in 
M. Furthermore, for each attribute, a probability that reflects the Preference degree 
associated with the attribute (this is to inform P-choose); and a probability that determines 
the likelihood of overspecification (this is to inform R-choose; details below). 
 
Output: If a distinguishing description of r (given A and M) exists then the algorithm returns 
one of these as the value of D. 
 
1: if some property in A individually suffices to remove all distractors then 
2:         P-choose one such property, for example P  
3:         D := {P}  
4: while True do 
5:         if A = empty then  
6:         return D 
7:         else if D is not distinguishing yet then  
8:                       P-choose a property from A  
9:                       update D, A, and M  
10:               else  
11:                    R-choose between STOP and the n properties remaining in A  
                          (making n+1 options in total) 
12:                    if a further property is chosen then 
13:                         Update D, A, and M 
14:                    else  
15:                         return D 

 

 

The PRO algorithm, sketched in pseudo-code above, iterates through a number of steps, each 

of which either adds an attribute or none at all. The algorithm has two phases. The first phase 

(lines 1-3) checks whether there is one single attribute that is able to identify the referent; if 

there is, then such an attribute is included in the description. If there is more than one 

attribute that is fully discriminatory, then one is probabilistically included into the description 

(P-choose, line 2). P-choose (short for Property-choose) is the function that selects properties 

probabilistically, in proportion to their relative degree of preference. P-choose uses p – 1 

preference values, where p is the number of fully distinguishing attributes (that have not yet 

been included in the description). For example, there is one preference value in the colour-or-
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size condition of Experiment 1 (c) and two in the colour-size-or-border condition of 

Experiment 3 (c and s). The preference values are normalised over all fully distinguishing 

attributes, so in the colour-or-size condition of Experiment 3, the colour preference is c/(c+s) 

and the size preference is s/(c+s) (border is not fully distinguishing in this condition).  

The second phase of the algorithm (lines 4-15) takes place whether or not the first 

phase has found an attribute to include: Either way, this second phase keeps looking for 

opportunities to include (further) attributes in the description (line 4) until a description is 

returned. A is the set of all available properties that hold true of the referent r but are false for 

at least one distractor; A shrinks as properties are added to the set of properties D that is 

generated. M is the set of distractors, which likewise gets smaller. If there are no remaining 

properties left in A (a situation that did not occur in our experiments), then the description D 

cannot be updated and the algorithm outputs D (lines 5-6).  

If D does not yet distinguish the target from all distractors, then another attribute is 

added, with the probability determined by its preference value (lines 7-9). As before, P-

choose uses p – 1 preference values, where p is the number of remaining distinguishing 

attributes and the preference values are normalised over these attributes. As a result of the 

“while True” loop (line 4), there may be several iterations of P-choose before the attributes 

fully distinguish the target from the distractors. If D is distinguishing, then the algorithm 

probabilistically chooses either to stop and return D, or to add a further attribute (lines 11-

15). The decision to stop or continue is determined by R-Choose (short for Redundancy-

choose), which reflects both an attribute’s preference and the speaker’s overspecification 

eagerness.  

Updating D, A and M: Whenever a property P is chosen, then D is updated by adding 

P as an element of D; A is updated by removing P from A (because it is no longer available); 
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and M is updated by intersecting M with the set of all domain objects for which the property 

is true (i.e., by removing distractors). 

R-Choose uses r – 1 preference values, with r being the number of remaining 

attributes that rule out at least one distractor. Again, because of the “while True” loop, the 

algorithm may go through several iterations of R-Choose. As explained in Experiment 3, 

during each iteration, the probability of adding a particular attribute (e.g., colour, size or 

border) is the probability of adding any attribute multiplied by the preference value for that 

particular attribute normalised over all remaining attributes. 
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Appendix 2: Formulas used in Experiment 3 

 

Modified non-deterministic IA 

 

Colour-only condition 

 

C = c*c 

CS = c*s*(c+s)+s*(c/(1-s))*(c+s) 

CB = c*(1-c-s)*(1-s)+(1-c-s)*(c/(c+s))*(1-s) 

CSB = c*s*(1-c-s)+c*(1-c-s)*s+s*(c/(1-s))*(1-c-s)+s*((1-c-s)/(1-s))*1+(1-c-

s)*(c/(c+s))*s+(1-c-s)*(s/(c+s))*1 

 

Size-only condition 

 

S = s*s 

CS = c*(s/(1-c))*(c+s)+s*c*(c+s) 

SB = s*(1-c-s)*(1-c)+(1-c-s)*(s/(c+s))*(1-c) 

CSB = c*(s/(1-c))*(1-c-s)+c*((1-c-s)/(1-c))*1+s*c*(1-c-s)+s*(1-c-s)*c+(1-c-

s)*(c/(c+s))*1+(1-c-s)*(s/(c+s))*c 

 

Border-only condition 

 

B = (1-c-s)*(1-c-s) 

CB = (1-c-s)*c*(1-s)+c*((1-c-s)/(1-c))*(1-s) 

SB = (1-c-s)*s*(1-c)+s*((1-c-s)/(1-s))*(1-c) 

CSB = c*(s/(1-c))*1+c*((1-c-s)/(1-c))*s+ s*(c/(1-s))*1+s*((1-c-s)/(1-s))*c+(1-c-s)*s*c+(1-c-

s)*c*s 

 

Colour-or-size condition 

 

C = c*c 

S = s*s 

CS = c*s*(c+s)+s*c*(c+s) 

CB = c*(1-c-s)*(1-s)+(1-c-s)*(c/(c+s))*(1-s) 

SB = s*(1-c-s)*(1-c)+(1-c-s)*(s/(c+s))*(1-c) 

CSB = c*s*(1-c-s)+c*(1-c-s)*s+s*c*(1-c-s)+s*(1-c-s)*c+(1-c-s)*(c/(c+s))*s+(1-c-

s)*(s/(c+s))*c 

 

Colour-or-border condition 

 

C = c*c 

B = (1-c-s)*(1-c-s) 

CS = c*s*(c+s)+s*(c/(1-s))*(c+s) 

CB = c*(1-c-s)*(1-s)+(1-c-s)*c*(1-s) 

SB = s*((1-c-s)/(1-s))*(1-c)+(1-c-s)*s*(1-c) 

CSB = c*s*(1-c-s)+c*(1-c-s)*s+s*(c/(1-s))*(1-c-s)+s*((1-c-s)/(1-s))*c+(1-c-s)*s*c+(1-c-

s)*c*s 
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Size-or-border condition 

 

S = s*s 

B = (1-c-s)*(1-c-s) 

CS = c*(s/(1-c))*(c+s)+s*c*(c+s) 

CB = c*((1-c-s)/(1-c))*(1-s)+(1-c-s)*c*(1-s) 

SB = s*(1-c-s)*(1-c)+(1-c-s)*s*(1-c) 

CSB = c*(s/(1-c))*(1-c-s)+c*((1-c-s)/(1-c))*s+s*c*(1-c-s)+s*(1-c-s)*c+(1-c-s)*c*s+(1-c-

s)*s*c 

 

Colour-size-or-border condition 

 

C = c*c 

S = s*s 

B = (1-c-s)*(1-c-s) 

CS = c*s*(c+s)+s*c*(c+s) 

CB = c*(1-c-s)*(1-s)+(1-c-s)*c*(1-s) 

SB = s*(1-c-s)*(1-c)+(1-c-s)*s*(1-c) 

CSB = c*s*(1-c-s)+c*(1-c-s)*s+s*c*(1-c-s)+s*(1-c-s)*c+(1-c-s)*c*s+(1-c-s)*s*c 

 

PRO 
 

Colour-only condition 

 

C = (c-e) 

CS = (1-c+e)*(s/(1-c))*(c+s-e) 

CB = (1-c+e)*((1-c-s)/(1-c))*(1-s-e) 

CSB = (1-c+e)*(s/(1-c))*(1-c-s+e)+(1-c+e)*((1-c-s)/(1-c))*(s+e) 

 

Size-only condition 

 

S = (s-e) 

CS = (1-s+e)*(c/(1-s))*(c+s-e) 

SB = (1-s+e)*((1-c-s)/(1-s))*(1-c-e) 

CSB = (1-s+e)*(c/(1-s))*(1-c-s+e)+(1-s+e)*((1-c-s)/(1-s))*(c+e) 

 

Border-only condition 

 

B = (1-c-s-e) 

CB = (c+s+e)*(c/(c+s))*(1-s-e) 

SB = (c+s+e)*(s/(c+s))*(1-c-e) 

CSB = (c+s+e)*(c/(c+s))*(s+e)+(c+s+e)*(s/(c+s))*(c+e) 

 

Colour-or-size condition 

 

C = (c/(c+s))*(c-e) 

S = (s/(c+s))*(s-e) 

CS = (c/(c+s))*(1-c+e)*(s/(1-c))*(c+s-e)+(s/(c+s))*(1-s+e)*(c/(1-s))*(c+s-e) 

CB = (c/(c+s))*(1-c+e)*((1-c-s)/(1-c))*(1-s-e) 

SB = (s/(c+s))*(1-s+e)*((1-c-s)/(1-s))*(1-c-e) 
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CSB = (c/(c+s))*(1-c+e)*(s/(1-c))*(1-c-s+e)+(c/(c+s))*(1-c+e)*((1-c-s)/(1-

c))*(s+e)+(s/(c+s))*(1-s+e)*(c/(1-s))*(1-c-s+e)+(s/(c+s))*(1-s+e)*((1-c-s)/(1-s))*(c+e) 

 

Colour-or-border condition 

 

C = (c/(1-s))*(c-e) 

B = ((1-c-s)/(1-s))*(1-c-s-e) 

CS = (c/(1-s))*(1-c+e)*(s/(1-c))*(c+s-e) 

CB = (c/(1-s))*(1-c+e)*((1-c-s)/(1-c))*(1-s-e)+((1-c-s)/(1-s))*(c+s+e)*(c/(c+s))*(1-s-e) 

SB = ((1-c-s)/(1-s))*(c+s+e)*(s/(c+s))*(1-c-e) 

CSB = (c/(1-s))*(1-c+e)*(s/(1-c))*(1-c-s+e)+(c/(1-s))*(1-c+e)*((1-c-s)/(1-c))*(s+e)+((1-c-

s)/(1-s))*(c+s+e)*(c/(c+s))*(s+e)+((1-c-s)/(1-s))*(c+s+e)*(s/(c+s))*(c+e) 

 

Size-or-border condition 

 

S = (s/(1-c))*(s-e) 

B = ((1-c-s)/(1-c))*(1-c-s-e) 

CS = (s/(1-c))*(1-s+e)*(c/(1-s))*(c+s-e) 

CB = ((1-c-s)/(1-c))*(c+s+e)*(c/(c+s))*(1-s-e) 

SB = (s/(1-c))*(1-s+e)*((1-c-s)/(1-s))*(1-c-e)+((1-c-s)/(1-c))*(c+s+e)*(s/(c+s))*(1-c-e) 

CSB = (s/(1-c))*(1-s+e)*(c/(1-s))*(1-c-s+e)+(s/(1-c))*(1-s+e)*((1-c-s)/(1-s))*(c+e)+((1-c-

s)/(1-c))*(c+s+e)*(c/(c+s))*(s+e)+((1-c-s)/(1-c))*(c+s+e)*(s/(c+s))*(c+e) 

 

Colour-size-or-border condition 

 

C = c*(c-e) 

S = s*(s-e) 

B = (1-c-s)*(1-c-s-e) 

CS = c*(1-c+e)*(s/(1-c))*(c+s-e)+s*(1-s+e)*(c/(1-s))*(c+s-e) 

CB = c*(1-c+e)*((1-c-s)/(1-c))*(1-s-e)+(1-c-s)*(c+s+e)*(c/(c+s))*(1-s-e) 

SB = s*(1-s+e)*((1-c-s)/(1-s))*(1-c-e)+(1-c-s)*(c+s+e)*(s/(c+s))*(1-c-e) 

CSB = c*(1-c+e)*(s/(1-c))*(1-c-s+e)+c*(1-c+e)*((1-c-s)/(1-c))*(s+e)+s*(1-s+e)*(c/(1-

s))*(1-c-s+e)+s*(1-s+e)*((1-c-s)/(1-s))*(c+e)+(1-c-s)*(c+s+e)*(c/(c+s))*(s+e)+(1-c-

s)*(c+s+e)*(s/(c+s))*(c+e) 
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