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Numerical Cognition Without
Words: Evidence from Amazonia

Peter Gordon

Members of the Pirahã tribe use a ‘‘one-two-many’’ system of counting. I ask
whether speakers of this innumerate language can appreciate larger
numerosities without the benefit of words to encode them. This addresses
the classic Whorfian question about whether language can determine
thought. Results of numerical tasks with varying cognitive demands show
that numerical cognition is clearly affected by the lack of a counting system
in the language. Performance with quantities greater than three was
remarkably poor, but showed a constant coefficient of variation, which is
suggestive of an analog estimation process.

Is it possible that there are some concepts

that we cannot entertain because of the

language that we speak? At issue here is

the strongest version of Benjamin Lee

Whorf_s hypothesis that language can deter-

mine the nature and content of thought. The

strong version of Whorf_s hypothesis goes

beyond the weaker claim that linguistic

structure simply influences the way that we

think about things in our everyday encoun-

ters. For example, recent studies suggest that

language might affect how people mentally

encode spatial relations (1–3), and how they

conceive of the nature of individual objects

and their material substances (4). However,

none of these studies suggest that linguistic

structure prevents us from entertaining the

concepts that are available to speakers of

alternative linguistic systems.

The question of whether linguistic de-

terminism exists in the stronger sense has

two parts. The first is whether languages

can be incommensurate: Are there terms

that exist in one language that cannot be

translated into another? The second is

whether the lack of such translation pre-

cludes the speakers of one language from

entertaining concepts that are encoded by

the words or grammar of the other language.

For many years, the answer to both ques-

tions appeared to be negative. Although

languages might have different ways in

which situations are habitually described, it

has generally been accepted that there

would always be some way in which one

could capture the equivalent meaning in any

other language (5). Of course, when speak-

ing of translatable concepts, we do not

mean terms like Bmolecule[ or Bquark,[
which would not exist in a culture without

advanced scientific institutions. Failure to

know what molecules or quarks are does not

signal an inability to understand the English

language—surely people were still speaking

English before such terms were introduced.

On the other hand, one would question

someone_s command of English if they did

not understand the basic vocabulary and

grammar.

Words that indicate numerical quantities

are clearly among the basic vocabulary of a

language like English. But not all languages

contain fully elaborated counting systems.

Although no language has been recorded that

completely lacks number words, there is a

considerable range of counting systems that

exists across cultures. Some cultures use a

finite number of body parts to count 20 or 30

body tags (6). Many cultures use particular

body parts like fingers as a recursive base for

the count system as in our 10-based system.

Finally, there are cultures that base their

counting systems on a small number between

2 and 4. Sometimes, the use of a small-

number base is recursive and potentially

infinite. For example, it is claimed that the

Gumulgal South Sea Islanders counted with a

recursive binary system: 1, 2, 2_1, 2_2, 2_2_1,

and so on (6).

The counting system that differs perhaps

most from our own is the Bone-two-many[
system, where quantities beyond two are not

counted but are simply referred to as

Bmany.[ If a culture is limited to such a

counting system, is it possible for its

members to perceive or conceptualize quan-

tities beyond the limited sets picked out by

the counting sequence, or to make what we

consider to be quite trivial distinctions such

as that between four versus five objects?

The Pirah, are such a culture. They live

along the banks of the Maici River in the

Lowland Amazonia region of Brazil. They

maintain a predominantly hunter-gatherer

existence and reject assimilation into main-

stream Brazilian culture. Almost completely

monolingual in their own language, they

have a population of less than 200 living in

small villages of 10 to 20 people. They have

only limited exchanges with outsiders, using

primitive pidgin systems for communicating

in trading goods without monetary exchange

and without the use of Portuguese count

words. The Pirah, counting system consists

of the words: BhFi[ (falling tone 0 Bone[) and

Bho<[ (rising tone 0 Btwo[). Larger quantities

are designated as Bbaagi[ or Baibai[ (0 Bmany[).

I was able to take three field trips,

ranging from 1 week to 2 months, living

with the Pirah, along with Daniel Everett

and Keren Everett, two linguists who have

lived and worked with the tribe for over 20

years and are completely familiar with their

language and cultural practices. Observations

were informed by their background of con-

tinuous and extensive immersion in the Pirah,
culture. During my visits, I became interested

in the counting system of the Pirah, that I had

heard about and wanted to examine whether

they really did have only two numbers and

how this would affect their ability to perceive

numerosities that extended beyond the limited

count sequence.

Year 1: Initial observations. On my first

week-long trip to the two most up-river

Maici villages, I began with informal obser-

vations of the Pirah, use of the number

words for one and two. I was also interested

in the possibility that the one-two-many

system might actually be a recursive base-2

system, that their limited number words

might be supplemented by more extensive

finger counting, or that there might be taboos

associated with counting certain kinds of

objects as suggested by Zaslavsky in her

studies of African counting systems (7, 8).

Keren Everett developed some simple tasks

to see if our two Pirah, informants could

refer to numerosities of arrays of objects

using Pirah, terms and any finger counting

system they might have. Instructions and

interactions with participants were in the

Pirah, language. When it was necessary to

refer to the numerosity of an array, Keren

Department of Biobehavioral Sciences, Columbia
University, 525 West 120th Street, New York, NY
10027, USA. E-mail: pgordon@tc.columbia.edu

Table 1. Use of fingers and number words by
Pirahã participant. The arrow (Y) indicates a shift
from one quantity to the next.

No. of objects
Number

word used
No. of fingers

1 hói (0 1)
2 hoı́ (0 2) 2

aibaagi (0 many)
3 hoı́ (0 2) 3
4 hoı́ (0 2) 5 Y 3

aibai (0 many)
5 aibaagi (0 many) 5
6 aibaagi (0 many) 6 Y 7
7 hói (0 1)* 1

aibaagi (0 many) 5 Y 8
8 5 Y 8 Y 10
9 aibaagi (0 many) 5 Y 10
10 5

*This use of ‘‘one’’ might have been a reference to adding
one rather than to the whole set of objects.
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Everett used the Portuguese number words

embedded in Pirah, dialogue. Such terms are

understood by the Pirah, to be the language

of Brazilians, but their meaning is not

understood. In addition to this short session,

during the first year trip, I continuously took

opportunities to probe for counting abilities

in everyday situations.

The outcome of these informal studies re-

vealed the following: (i) There was no re-

cursive use of the count system—the Pirah,
never used the count words in combinations

like BhFi-ho<[ to designate larger quantities.

(ii) Fingers were used to supplement oral

enumeration, but this was highly inaccurate

even for small numbers less than five. In

addition, BhFi[ and Bho<,[ the words for

Bone[ and Btwo,[ were not always used to

denote those quantities. Whereas the word for

Btwo[ always denoted a larger quantity than

the word for Bone[ (when used in the same

context), the word for Bone[ was sometimes

used to denote just a small quantity such as

two or three or sometimes more. An example

of the use of counting words and finger

counting is given in Table 1 in one of the

informal sessions with an informant who

appeared to be in his 50s. Videotaped ex-

tracts from the session are included in the

supporting online materials (movie S1).

The interpretation of these observations is

limited by their informal nature and small

sample size. However, the observations are

supplemented with 20 years of observation

by the Everetts as trained linguists in their

analysis of the Pirah, language. One partic-

ularly interesting finding is that BhFi[
appears to designate Broughly one[—or a

small quantity whose prototype is one. Most

of the time, in the enumeration task, BhFi[
referred to one, but not always. An analogy

might be when we ask for Ba couple of Xs[
in English, where the prototypical quantity is

two, but we are not upset if we are given

three or four objects. However, we surely

would be upset if given only one object,

because the designation of a single object

has a privileged status in our language.

There is no concept of Broughly one[ in a

true integer system. Even the informal use

of the indefinite article Ba X[ strictly

requires a singular reference. In Pirah,,

BhFi[ can also mean Bsmall,[ which con-

trasts with Bogii[ (0 big), suggesting that the

distinction between discrete and continuous

quantification is quite fuzzy in the Pirah,
language.

Year 2: Experiments in nonverbal numer-

ical reasoning. On my second visit to the

Pirah, villages for a 2-month period, I

developed a more systematic set of proce-

dures for evaluating the numerical compe-

tence of members of the tribe. The

experiments were designed to require some

combination of cognitive skills such as the

need for memory, speed of encoding, and

mental-spatial transformations. This would

reveal the extent to which such task demands

interact with numerical ability, such as it is.

Details of the methods are available on

Science Online (9). There were seven partic-

ipants, who included all six adult males from

two villages and one female. Most of the data

were collected on four of the men who were

consistently available for participation. The

tasks were devised to use objects that were

available and familiar to the participants

(sticks, nuts, and batteries). The results of

the tasks, along with schematic diagrams, are

presented in Fig. 1. These are roughly

ordered in terms of increasing cognitive

demand. Any estimation of a person_s
numerical competence will always be con-

founded with performance factors of the task.

Because this is unavoidable, it makes sense to

explore how performance is affected by a

range of increasingly demanding tasks.

In the matching tasks (A, B, C, D, and F),

I sat across from the participant and with a

stick dividing my side from theirs, I

presented an array of objects on my side of

the stick (below the line in the figures) and

they responded by placing a linear array of

AA batteries (5.0 cm by 1.4 cm) on their

side of the table (above the line). The

matching task provides a kind of concrete

substitute for counting. It shares the element
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Fig. 1. Results of number tasks with Pirahã villagers (n 0 7). Rectangles indicate AA batteries (5.0 cm
by 1.4 cm), and circles indicate ground nuts. Center line indicates a stick between the author’s
example array (below the line) and the participant’s attempt to ‘‘make it the same’’ (above the line).
Tasks A through D required the participant to match the lower array presented by the author using a
line of batteries; task E was similar, but involved the unfamiliar task of copying lines drawn on paper;
task F was a matching task where the participant saw the numerical display for only about 1 s before
it was hidden behind a screen; task G involved putting nuts into a can and withdrawing them one by
one; (participants responded after each withdrawal as to whether the can still contained nuts or was
empty); task H involved placing candy inside a box with a number of fish drawn on the lid (this was
then hidden and brought out again with another box with one more or one less fish on the lid, and
participants had to choose which box contained the candy).
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of placing tokens in one-to-one correspon-

dence with individuals in a to-be-counted

group. The first matching tasks began with

simple linear arrays of batteries. This prog-

ressed to clusters of nuts matched to the

battery line, orthogonal matching of battery

lines, matching of battery lines that were

unevenly spaced, and copying lines on a

drawing. In all of these matching experi-

ments, participants responded with relatively

good accuracy with up to 2 or 3 items, but

performance deteriorated considerably be-

yond that up to 8 to 10 items. In the first

simple linear matching task A, performance

hovered around 75% up to the largest

quantities. Matching tasks with greater

cognitive demands required mental transpo-

sition of the sample array to the match array

without benefit of tagging for numerical

quantity. Performance dropped precipitously

to 0% for the larger target set sizes in these

tasks. One exception was task D with

unevenly spaced objects. Although this was

designed to be a difficult task, participants

showed an anomalous superiority for large

numerosities over small. Performance initial-

ly deteriorated with increased set size up to 6

items, then shot up to near perfect perfor-

mance for set size 7 through 10. A likely

interpretation of this result was that the

uneven spacing for larger set sizes promoted

recoding of arrays into smaller configurations

of two or three items. This allowed partic-

ipants to use a chunking strategy of treating

each of the subgroups as a matching group.

When time constraints were introduced

in task F (exposing the array for only 1 s),

performance was drastically affected and

there was a clear correlation between set

size and accuracy beginning at set size 3. A

line-drawing task (E) was highly affected by

set size, being one of the worst perform-

ances of all. Not only do the Pirah, not

count, but they also do not draw. Producing

simple straight lines was accomplished only

with great effort and concentration, accom-

panied by heavy sighs and groans. The final

two tasks (G and H) required participants to

keep track of a numerical quantity through

visual displacement. In one case, they were

first allowed to inspect an array of nuts for

about 8 s. The nuts were placed in a can, and

then withdrawn one at a time. Participants

were required to say, after each withdrawal,

if there were still any nuts left in the can or

if it was empty. Performance was predict-

ably strongly affected by set size from the

very smallest quantities. The final task

involved hiding candy in a box, which had

a picture of some number of fish on the lid.

The box was then hidden behind the

author_s back, and two cases were revealed,

the original with the candy, and another

with one more or one less fish on the lid. For

quite small comparisons such as three versus

four, performance rarely went over 50%

chance responding.

There is a growing consensus in the field of

numerical cognition that primitive numerical

abilities are of two kinds: First, there is the

ability to enumerate accurately small quantities

up to about three items, with only minimal

processing requirements (10–16). I originally

termed this ability Bparallel individuation[
(17, 18), referring to how many items one

can encode as discrete unique individuals at

the same time in memory. Without overt

counting, humans and other animals possess

an analog procedure whereby numerical

quantities can be estimated with a limited

degree of accuracy (11, 19–26). Many

researchers believe that large-number estima-

tion, although based on individuated elements,

is coalesced into a continuous analog format

for mental representation. For example, the

discrete elements of a large number array

might be represented as a continuous length of

a line, where a longer line inexactly represents

a larger numerosity.

When people use this analog estimation

procedure, the variability of their estimates

tends to increase as the target set size

increases. The ratio of average error to

target set size is known as Weber_s fraction

and can be indexed by a measure known as

the coefficient of variation—the standard

deviation of the estimates divided by set size

(23). Although performance by the Pirah,
on the present tasks was quite poor for set

sizes above two or three, it was not random.

Figure 2 shows the mean response values

mapped against the target values for all

participants in the simple matching tasks A,

B, C, and F. The top graph shows that mean

responses and target values are almost

identical. This means that the Pirah, partic-

ipants were trying hard to get the answers

correct, and they clearly understood the

tasks. The lower graph in Fig. 2 shows that

the standard deviation of the estimates

increases in proportion to the set size,

resulting in a constant coefficient of varia-

tion of about 0.15 after set size three, as

predicted by the dual model of mental

enumeration. This value for the coefficient

of variation is about the same as one finds in

college students engaged in numerical esti-

mation tasks (23). Data for individual tasks

and individual participants were consistent

with the averaged trends shown in Fig. 2.

Graphs are available in the supporting

online materials (figs. S2 and S3).

The results of these studies show that the

Pirah,_s impoverished counting system lim-

its their ability to enumerate exact quantities

when set sizes exceed two or three items.

For tasks that required additional cognitive

processing, performance deteriorated even

on set sizes smaller than three. Participants

showed evidence of using analog magnitude

estimation and, in some cases, they took

advantage of spatial chunking to decrease

the cognitive demands of larger set sizes.

This split between exact enumeration ability

for set sizes smaller than three and analog

estimation for larger set sizes parallels

findings from laboratory experiments with

adults who are prevented from explicit

counting; studies of numerical abilities in

prelinguistic infants, monkeys, birds, and

rodents; and in recent studies using brain-

imaging techniques (11, 23–30).

The analog estimation abilities exhibited

by the Pirah, are a kind of numerical

competence that appears to be immune to

numerical language deprivation. But because

lower animals also exhibit such abilities,

robustness in the absence of language is

already established. The present experiments

allow us to ask whether humans who are not

exposed to a number system can represent

exact quantities for medium-sized sets of

four or five. The answer appears to be

negative. The Pirah, inherit just the abilities

to exactly enumerate small sets of less than

three items if processing factors are not

unduly taxing (31).

In evaluating the case for linguistic deter-

minism, I suggest that the Pirah, language is

incommensurate with languages that have

counting systems that enable exact enumer-

ation. Of particular interest is the fact that the

Pirah, have no privileged name for the singular

quantity. Instead, BhFi[ meant Broughly one[
or Bsmall,[ which precludes any precise trans-

lation of exact numerical terms. The present

study represents a rare and perhaps unique

case for strong linguistic determinism. The

A
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0.0
0.2
0.4
0.6
0.8
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1.4
1.6
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0.00
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1 2 3 4 5 6 7 8 9
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M
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n D
S

V
C

Mean

SD

Fig. 2. (A) Mean accuracy and standard
deviation of responses in matching tasks and
(B) coefficient of variation. Figures for individ-
ual tasks and individual participants are avail-
able in the supporting online materials.
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study also provides a window into how the

possibly innate distinction (26) between quan-

tifying small versus large sets of objects is

relatively unelaborated in a life without num-

ber words to capture those exact magnitudes

(32).
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Exact and Approximate Arithmetic
in an Amazonian Indigene Group

Pierre Pica,1 Cathy Lemer,2 Véronique Izard,2 Stanislas Dehaene2*

Is calculation possible without language? Or is the human ability for
arithmetic dependent on the language faculty? To clarify the relation
between language and arithmetic, we studied numerical cognition in speakers
of Mundurukú, an Amazonian language with a very small lexicon of number
words. Although the Mundurukú lack words for numbers beyond 5, they are
able to compare and add large approximate numbers that are far beyond their
naming range. However, they fail in exact arithmetic with numbers larger
than 4 or 5. Our results imply a distinction between a nonverbal system of
number approximation and a language-based counting system for exact
number and arithmetic.

All science requires mathematics. The

knowledge of mathematical things is

almost innate in usI . This is the

easiest of sciences, a fact which is

obvious in that no one_s brain rejects

it; for laymen and people who are

utterly illiterate know how to count

and reckon.

Roger Bacon (1214–1294),

English philosopher and scientist

Where does arithmetic come from? For some

theorists, the origins of human competence in

arithmetic lie in the recursive character of the

language faculty (1). Chomsky, for instance,

stated that Bwe might think of the human

number faculty as essentially an Fabstraction_
from human language, preserving the mech-

anisms of discrete infinity and eliminating

the other special features of language[ (2).

Other theorists believe that language is not

essential—that humans, like many animals,

have a nonverbal Bnumber sense[ (3), an

evolutionarily ancient capacity to process

approximate numbers without symbols or

language (4–6) that provides the conceptual

foundation of arithmetic. A third class of

theories, while acknowledging the existence

of nonverbal representations of numbers,

postulates that arithmetic competence is

deeply transformed once children acquire a

system of number symbols (7–9). Language

would play an essential role in linking up the

various nonverbal representations to create a

concept of large exact number (10–12).

To elucidate the relations between language

and arithmetic, it is necessary to study numer-

ical competence in situations in which the

language of numbers is either absent or

reduced. In many animal species, as well as

in young infants before they acquire number

words, behavioral and neurophysiological

experiments have revealed the rudiments of

arithmetic (6, 13–16). Infants and animals

appear to represent only the first three

numbers exactly. Beyond this range, they

can approximate Bnumerosity,[ with a fuzzi-

ness that increases linearly with the size of the

numbers involved (Weber_s law). This finding

and the results of other neuroimaging and

neuropsychological experiments have yielded

a tentative reconciliation of the above theo-

ries: Exact arithmetic would require language,

whereas approximation would not (12, 17–21).

This conclusion, however, has been chal-

lenged by a few case studies of adult brain-

lesioned or autistic patients in whom language

dysfunction did not abolish exact arithmetic;

such a finding suggests that in some rare cases,

even complex calculation may be performed

without words (22).

In the final analysis, the debate cannot be

settled by studying people who are raised in

a culture teeming with spoken and written

symbols for numbers. What is needed is a

language deprivation experiment, in which

neurologically normal adults would be raised
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